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Imaging with thermal noise induced currents*

Trent DeGiovannif, Fernando Guevara Vasquez', and China Mauck?

Abstract. We use thermal noise induced currents to image the real and imaginary parts of the conductivity
of a body. Covariances of the thermal noise currents measured at a few electrodes are shown to be
related to a deterministic problem. We use the covariances obtained while selectively heating the
body to recover the real power density in the body under known boundary conditions and at a known
frequency. The resulting inverse problem is related to acousto-electric tomography, but where the
conductivity is complex and only the real power is measured. We study the local solvability of this
problem by determining where its linearization is elliptic. Numerical experiments illustrating this
inverse problem are included.
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1. Introduction. In an electrical conductor, the excitement of charge carriers due to heat
produces random currents. This phenomenon is called Johnson-Nyquist noise and was first
observed in the early 20th century [22, 36]. Given a single component with impedance Z(w)
(in Ohms) at an angular frequency w (in 27 Hz), the power spectral density (|.J(w)[*) (in
A?%/Hz) of the random current J(t) across the component is

2KkT Re (Z(w))
1.1 Jw)?) = =————"2
(1.1) <| (W)l > T |Z(w)}
Here k ~ 1.36 x 10723J - K~! is Boltzmann’s constant and T is temperature (in Kelvin). We
recall the power spectral density of a finite variance, ergodic random process J(t) is given by

T/2

. 1 - .
(1.2) <|J(w)|2> = Tlgr;o %—T\JT(w)F, where Jr(w) = /_T/2 dt J(t) exp[—wt],

where © = v/—1. Although thermally induced noise in a nuisance in electrical circuits, we show
one way to use it to image the conductive properties of a body. Johnson-Nyquist noise and its
generalization to the Maxwell equations (see, e.g., [39]) are examples of a more general physical
principle called the fluctuation dissipation theorem, which relates the variance of fluctuations
of a linear system about an equilibrium to the dissipative properties of the system, see e.g.
[24, 38, 40].
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2 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

To image the conductivity of a body, we propose heating the body while simultaneously
measuring the variance of the thermal noise induced currents using electrodes that are con-
nected to the ground. For instance, this can be done on a two-dimensional conductive body
as illustrated in Figure 1.1, with electrodes on its boundary that are connected to the ground
(zero voltage or potential). The electrical measurements are made while the body is heated
at a known spatial location via an external source, e.g. a laser, and the process is repeated at
different locations to scan the body. In our approach, we also need to subtract measurements
of thermal noise induced currents at a known and constant background temperature.

Figure 1.1. A two-dimensional conductive body is attached to the ground via electrodes which are used to
measure the thermal noise currents resulting from heating the body at particular locations, e.g. the location
depicted in red.

Our main contribution is to show that such thermal noise current measurements are equiv-
alent to measuring the real power dissipated inside the conductive body, i.e.

(1.3) o' (2)|Vu(@)P?,

where o/(z) is the real part of the conductivity and u solves an appropriate (deterministic)
auxiliary problem which depends on electrodes configuration and the conductivity o(z) which
can be complex (see section 3).

1.1. Related work. Recovering ¢’(z) from functionals of the form (1.3) is well-studied
for the case of real ¢ in ultrasound modulated electrical impedance tomography or acousto-
electric tomography [2], where the internal functional (1.3) is measured by locally perturbing
a conductive body using ultrasound waves, while making electrical measurements on the
body’s surface. Various reconstruction approaches have since been studied for this problem
[7, 10, 15, 25, 26, 34] as well as its well-posedness [4, 21, 27]. The problem of recovering
an anisotropic real conductivity has also been studied [8, 31, 32, 33]. A similar problem
using microwaves instead of ultrasound is discussed in [3]. Optical tomography can also
be modulated by ultrasound, allowing measurements of a functional similar to (1.3), see
[11, 37]. Hybrid inverse problems (including acousto-electric tomography) have been studied
by formulating them as an overdetermined system of non-linear partial differential equations
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 3

and then studying their local uniqueness properties by linearizing, see [6, 27]. For reviews on
hybrid inverse problems, see [1, 5].

The o complex case is considered in [12], but this analysis only applies if the fields are
known (as in elastography). Complex o were also considered in the case of the Maxwell
equations in [13]. However, to our knowledge, there is no study of the functional (1.3) where
u depends on a complex o, but only its real part ¢’ appears explicitly in the measurements.

1.2. Possible applications. The biggest challenge to the applicability of the method that
we present here is that the thermally induced random currents are very small and this could
introduce signal-to-noise issues. We envision two possible applications.

The first possible application would be to Atomic Force Microscopy (AFM). In this imaging
modality, a height-map of a sample is obtained by measuring the deflections of a cantilever
as its tip scans the sample. A heated cantilever tip can be used to heat the sample locally
without touching it, see e.g. [23]. Moreover, electrical measurements of thermal noise induced
currents can be done simultaneously with the AFM scan. An advantage of this approach is
that one can measure height and conductivity of the sample without touching the sample,
possibly making the cantilever tip last longer. We mention that conductivity variations can
be measured in AFM by creating a voltage difference between the sample and the cantilever
(assuming it is conductive). This method is known as Conductive Atomic Force Microscopy
or CAFM, see e.g. the review in [29].

The second possible application is to monitoring of laser welding, see e.g. [18]. If two sheets
of metal are been welded together, their temperature is raised significantly near the weld and
the sheets also become electrically connected. We believe that by measuring thermal noise
currents, one can monitor whether the weld was effective. We give an order of magnitude of
the signals and background that would need to be measured in this situation in subsection 3.3.

1.3. Contents. We start in section 2 by deriving a quasi-static model from the Maxwell
equations with a current source modeling the random currents. In section 3 we show how
variances of the random currents are related to a deterministic problem. This is done for two
different kinds of boundary conditions. Moreover we give rough magnitude estimates for the
currents that would need to be measured to implement our approach. In section 4, we ana-
lytically and numerically analyze the linearized real problem (subsection 4.1) and linearized
complex problem (subsection 4.2). This analysis is based on [6] where the ellipticity, in the
Douglis-Nirenberg sense [19], is established for the real linearized problem with at least two
distinct boundary conditions. We give a condition in Lemma 4.1 for the linearized problem
with complex conductivity to be elliptic for at least three distinct boundary conditions. Still,
it remains unclear if boundary conditions exist such that the fields associated with the aux-
iliary problem satisfy the condition of Lemma 4.1. Then in section 5 we present a simple
numerical reconstruction approach based on a finite difference discretization of the problem
(subsection 5.1). We solve the inverse problem using data that either comes directly from
the internal functional (1.3) or from simulated realizations of random currents. In addition,
we show reconstructions in the case that conductivity is real (subsection 5.2) or complex
(subsection 5.3). Finally, we summarize our results in section 6.

This manuscript is for review purposes only.



95
96
97

98

110
111
112
113
114

123

124
125
126
127

129

4 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

2. The quasi-static model. In an isotropic medium, thermal fluctuations induce fluctua-
tion of charge carriers near an equilibrium. For non-magnetic media, the thermal fluctuation
currents can be modeled by a random external electric current j. (A/m?) in the Maxwell
equations [39], namely

V x H=1weFE + j.

(2.1)
VX E=—wuH.

Here F and H are the electric and magnetic fields and the angular frequency is w. The
convention for time harmonic fields here is that £(x,t) = Re [E(z,w)explwt]]. The electric
permittivity is ¢ and may be written as ¢ = & — 10’ /w, where ¢/ = Ree and o’ is the real
conductivity. The magnetic permeability p is assumed real and equal to that of the vacuum.
Note that if p had an imaginary part (i.e. non-zero magnetic losses), then an analogous
“random magnetic current” needs to be added to the Maxwell equations. The fluctuation
dissipation theorem (see e.g. [40, Chapter 1] and the particular application to the Maxwell
equations in [39]) states that the random current field j. has zero mean (j.) = 0 and its power
spectral density (at a fixed frequency) is

(2:2) (je(@)ii(a)) = =T (@)’ (2)3(x — )L

where T'(x) is the temperature in Kelvin at a point z and I is the identity matrix. We
emphasize that (2.2) depends only on the temperature and the real part of the conductivity.
The real part of the electrical permittivity (which is associated with lossless behavior) does
not directly appear in (2.2). In general (2.2) should use the energy of a quantum oscillator
[39] instead of KT, namely
(2.3) O(T,w) = % coth %,
where /1 ~ 1.05 x 10734 - s is Planck’s constant. Here we assume we work with relatively
small frequencies so that kT' > hw and we can make the approximation O(T,w) ~ T, see
also [28]. In particular, this approximation is valid at room temperature and frequencies of
the order of 1kHz or 1MHz.

Instead of working with the Maxwell equations, we use a quasi-static approximation that
is used in electrical impedance tomography, see e.g. [14, 16]. In this approximation, it is
convenient to define the complex conductivity o by

(2.4) o(x) = o'(z) + we' ().

If we assume that wpu|o|L? < 1, where L is the characteristic length of the problem, then one
can use the approximation V x E = 0. In other words, we may assume that the electric field
comes from a potential F = —V¢. By taking divergence on both sides of the first equation in
(2.1) we get

(2.5) V- [oVe] =V - Je.
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 5

Remark 1. As noted in [16], the quasi-static approzimation holds for conductivities consis-
tent with human tissues (see, e.g., [14]). For example if we take L = 10 cm, ¢/ = 2 ecm~'kQ ™1,
w = 2710 kHz and &' = 1uF /m, we get wplo|L? ~ 1.7 x 107* <« 1.

3. From the stochastic to the deterministic problem. Let Q be a smooth simply con-
nected open domain of R? and let ¢ € C'(Q) with its real part satisfying ¢’ > ¢ for some
positive constant c¢. We assume a potential ¢ satisfies

V. [oVé] =V j., in Q,

(3:1) ¢ =0, on 0.

Here j is the random current term with (j.) = 0 and (|je|*) given in (2.2). We assume that
je is C1(Q2) and hence ¢ is C?(2) [20, Ch. 6.3].

We assume we measure currents flowing out of the domain 2 at n “electrodes” by the
complex vector with n entries

e1(x)
(3.2) J= /mdsm - | o@)Vé(@) - v(2),
en(z)

where v(z) is the unit outward pointing normal to 02 at some x € 052, and the function e;(x)
are possibly complex C!(9€2) “electrode functions” defined on 9. For example they could be
a continuously differentiable approximation of the characteristic function of electrodes at the
boundary. Note that a particular electrode function may be used to represent an experiment
where currents are collected from a particular combination of distinct physical electrodes on
0f). Thus, n could also be thought of as a number of experiments.

In the following result we prove that the n x n covariance matrix' (J.J*) of such measure-
ments can be related to solutions to deterministic auxiliary problems.

Theorem 3.1. The covariance of the vector of measurements J are given by

(3.3) (TT)y = 2 /Q dy Re (o(4))T(4)Vusly) - Yy (3),

T
where the functions u; are solutions to the Dirichlet problems
V- [oVu;| =0, in Q
(3.4 oV |
u;=-¢e;, ondQ, i=1,...,n.

Proof. First, note that we can write the solution to (3.1) as

(35 @) = [ dyGla.9)¥, -5etw),
where G(x,y) is the Green function G(z,y) satisfying the equation

Vi [o(@)V.G(x,y)] =0(x —vy), x,y €N

(3.6)
G(z,y) =0, 2 € 0Q or y € ON.

1This is a slight abuse of terminology, as (JJ*) is a cross-spectral power density.
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6 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

To double check (3.5), it is clear that ¢(x) = 0 for x € 9Q because G(z,y) = 0 for = € 0.
Also:

V. - [o(2)Vad] = /Q dy Vs - [0(@)VoGla )V, - jely)

=/dy5(x—y)vy-je(y)
Q

=V Je().
Now it is helpful to use integration by parts to get
P(x) = /Qdy G(z,y)Vy - je(y)
(37) = [ 8 Glawictn) -vin) — [ ay¥,6.p) -5

= —/ dy VyG(x,y) - je(y).
Q

The ij—th entry of the covariance (JJ*) can be written from (3.2) as

(3.8) (JJ");; = </BQ dS(z) /BQ dS(z')ei(z)o(2)Veop(z) - v(z)e;(z')o(x")V pwd(2!) - y(x’)> .

By (3.7), ¢ is in turn given as a linear functional of the random currents j.(y), which introduces
two integrals over {2 in the above expression. The linearity of the mean can be used to get
the covariance of j., which by (2.2) is delta correlated in space. This reduces the number of
integrals over €2 by one. More precisely, we obtain:

= x x "Re (o ei(x)o(x)e; (2o (z v (x)T"
17 = [ as@) [ as@) [ aERe(o)Twe @@ @@ )

vxvyG(ma y)vat’ VyG(LL’,, y)V(Jj/)

T
59) _n /Q dyRe (o(y))T(y) [ /8 ) dS(ar)eAx)a(x)vxvyG(w,y)v(m)]

dS(x)ej(x")o(z")V VG2, y)v(z')
s |

- /Q dy Re (0(y)) T(y)V yuily) - Vyii; (0),

where u; solves the problem (3.4) and we use that V,V,G(z,y) is symmetric. The last equality
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 7
follows by doing integration by parts twice:

- dS(z)ei(x)o(x)V,G(x,y) - v(z) = /devz Jo(x)VG(x, y)ui(z)]

= [ V.- (o) V. Gle plus(a)

+ / dzo(2)V,G(x,y) - Vyu(x)
Q
(3.10) = u;(y) + / dzVy - [0(2)G (2, y)Voui(z)]
Q
—/deG(x,y)Vx‘[U(x)vxui(x)]

—uly) + [ dS@)G(en)o(@)Vau(z) - viz)
o0
= ui(y).
|
It may be possible to loosen the regularity assumptions on j. and e; and derive a similar result
to Theorem 3.1. Since the scope of this work is focused on establishing the relation between

the stochastic and deterministic problems, we leave this for future work. While (3.3) gives
the entire covariance matrix (JJ*), we only need its diagonal entries.

3.1. Boundary conditions modeling electrodes with insulating gaps. The setup using
Dirichlet boundary conditions (3.1) assumes that ¢|pq = 0, which would likely be hard to
realize in practice because we expect to have a few electrodes connected to the ground with
insulating gaps between them. This corresponds to a boundary condition of mixed type:
homogeneous Dirichlet on the electrodes and homogeneous Neumann (zero flux) on the gaps
between the electrodes. To be more precise, let I' = suppe; U ... U suppe, then we replace
(3.1) with

V:[oVd] =V - je, in Q,
(3.11) oVe¢-v=0, on 002 —T,
¢=0, onT.

Then Theorem 3.1 holds in the same fashion, but we assume that the wu; are solutions to the
following mixed boundary problem replacing (3.4) with

V. [aVul] = 0, in Q,
(3.12) oVu;-v =0, on 00 — T,

u; = e;, on I

The proof follows by noting that integration by parts now yields

o@) = [ daSwGEiw) o)~ [ Gl tw)
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8 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

resulting in four terms when ¢(z) is substituted in (JJ*);;. One of the terms is similar to the
case of the Dirichlet boundary conditions, and all of the others contain integrals over the zero
flux part of the boundary. By invoking the zero flux boundary conditions, these terms can be
easily seen to disappear, leaving us with the same formula for (J.J*) i -

3.2. Differential temperature measurements. Utilizing Theorem 3.1, we can now relate
the differential temperature measurements as described in section 1 to measurements of the
internal functional (1.3). Concretely, we take a set of measurements of the covariance of the
currents in a body at temperatures T'= Ty and T' = Ty + T (x), where 6T (z) is a prescribed
heating pattern. Then the differential temperature measurements give

(3.13) [(Traor o) = (T = /Q de 5T (2)Re (0/(2)) |V ()2,

considering only the diagonal elements of the covariance matrix. As previously noted, only
measurements of the diagonal elements are used for our reproduction approach. By taking a
sufficiently rich set of heating patterns we ideally get an estimate for the internal functional

(3.14) Hii(z) = o' (2)|Vu(2)|?, for z € Q, i € {1,...,n}.

For real conductivities (o0 = ¢'), the internal functional (3.14) corresponds to the power
dissipated inside the domain.

Remark 2. As an example of a heating pattern localized about x’, we can take 6T (z;2") =
cexp|—|r — 2'|?/(2a)], where ¢ > 0 and a > 0 is sufficiently small. In this case, we get
from (3.13), the convolution of Hy with a Gaussian, evaluated at x'. These are precisely the
heating patterns we use in our numerical experiments (see section 5). Notice that such heating
patterns 6T (x) are proportional to time snapshots of the heat equation Green function in a
homogeneous medium. The heating patterns can be achieved by a spatially and temporally
localized heating of Q (e.g. with a laser beam). Of course, this is assuming that the electrical
measurements occur at a much faster time-scale than heat propagation and sufficient time is
left for the medium to cool down before moving to another location x'. The interplay between
electrical measurements and the heat equation is left for future studies. Heating patterns need
not be spatially localized and one may consider other patterns such as cosines and sines.
Spatially extended patterns may be advantageous in terms of signal to noise ratio, but may not
be practical to realize.

3.3. Rough estimation of thermal noise induced currents. The thermal noise induced
currents are very small and may limit the application of this approach. To get an idea of
the magnitude of the signals that need to be measured to obtain H;; in (3.13), we need to
distinguish between current measurements with the background temperature Ty and with
perturbed temperature Ty + §T. We make rough estimates of these currents in two situations:
the first is consistent with the numerical experiments and the second one is consistent with
laser welding.

Conductivities used in the numerical experiments. For the background temperature
measurements, recall that Boltzmann’s constant is on the order of 10723 J. K~!. For our
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 9

numerical experiments we chose Az = 0.1 cm and a domain with area 10 cm?. The conduc-
tivity is assumed to be 1072 em™! Q~! and constant on a band of width Aw/(27) = 10 kHz
centered at w/(27) = 10 kHz. Then at temperature 7y = 300 K and accounting for the 1/7
factor, the variance of the random currents is on the order of 10729 A2, To reach this estimate
we assumed the squared gradient of the auxiliary fields is constant and equal to 10™2 cm™2.
For the differential measurements we may further assume a d7° = 10 K on area of (0.2)? cm?.

This gives a current variance of the order 10725 A% and a signal to noise ratio of 107°.

Conductivities consistent with welding. The conductivity of gold is much higher than
what we used in the numerical experiments and is on the order of 4.5 x 107m~" Q~!. For
instance consider a sheet of gold of dimensions 1 cm X 1 cm X 1 mm and a bandwidth and
central frequencies on the order of 100 Hz. For this choice of frequencies, the quasi-static
approximation (section 2) is not well satisfied. Nevertheless, if the conductivity is assumed
constant on this frequency band and Ty = 300 K, the variance of the random currents is on
the order of 1071*A2. For the differential measurements we may further assume a AT = 1300
K (which is close to the melting point of gold) on an area of (0.1)?> mm?. This gives a current
variance of the order 10717 A? and a signal to noise ratio of 1073,

3.4. The inverse problem for real conductivities. The inverse problem for a real conduc-
tivity o = o’ consists of the measurement equation (3.14) and the auxiliary problem (3.4). To
be more precise, we seek to recover u; and o given H;; and e; from the real non-linear system

of partial differential equations, for i =1,...,n,
V. [oVu;] =0, ze€Q,
(3.15) u—e; =0, x €9,

H;; — a]Vui\Q =0, x¢€ Q.

We call the model associated with measurements H;; given by the expectation in Theorem 3.1
the deterministic model and the model associated with measurements given by realizations of
randomly induced currents the stochastic model.

3.5. The inverse problem for complex conductivities. We write the complex problem by
separating the real and complex parts of (3.14) and (3.4). We use a single prime (resp. double
prime) to denote the real part (resp. imaginary part) of a complex quantity, e.g. 0 = ¢’ 410",
uj = uj +wf, and e; = €’ +1e/. Then the problem is to find o', 0, u; and u given Hj;, e,
and e} from the non-linear system of partial differential equations, for j =1,...,n,

V- [U/Vu;] -V [J”Vu;'] =0, z€Q,
V- [o'Vuj] + V- [0"Vuj] =0, zeQ,

(3.16) u; — e =0, xed,
u;-’ — e;-’ =0, x €0,

H;; — 0/(|Vu;-|2 + |V =0, z€Q.

An equivalent formulation of (3.16) can be found using the conjugates of u; and the e; instead
of their real and imaginary components separately. Both the system (3.15) and (3.16) can be
modified to instead use the experimental boundary conditions (3.12).
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10 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

Remark 3. The non-linear system of equations that would be obtained by allowing the con-
ductivity to be complex in ultrasound modulated EIT (see e.g. [5]) is similar to (3.16) with
two real measurement equations per boundary condition instead of a single one, i.e. for x € Q:

Hi; — o' (VU] + [Vuff|*) =0, and
Hj; — o (|Vu]* + [Vuf|?) = 0.

We did not consider this problem because the form of the measurements we consider (3.16) is
a direct result of using thermal induced random currents, see Theorem 3.1.

4. Linearized problem. Before attempting to reconstruct conductivities numerically, we
analyze the linearizations of the real (3.15) and complex (3.16) conductivity problems. Our
goal is to find sufficient conditions for injectivity of the linearized problems, or in other words,
if they admit a unique solution. Our analysis is based on [6], which includes a proof that the
linearized real conductivity problem is elliptic in the sense of Douglis-Nirenberg under certain
boundary conditions [19]. This was established in [27] for ultrasound modulated EIT and
generalized to other hybrid inverse problem in [6].

The linearization of the real conductivity problem (3.15) around the solution (u;, o) in the
variables (du;,d0) for i =1,...,n is given by

V- [oVou] + V- [doVu] =0, =€,
(4.1) ou; =0, z €0,
§Hy; — 60|Vu,|* — 20V6u; - Vu; =0, € Q.

The linearization of the complex conductivity problem (3.16) around the solution (u}, 7, 0", ")
in the variables (du’, du7,do’,d0") for j =1,...,n is given by

V- [U'V&L;] + V- [(SO’,VUH -V [a”V&ug] -V [50"Vu9’] 0, ze€q,
V- [0'Voui] + V- [60'Vu]] + V- [0"Véu)]| + V- [66"VU] =0, ze€Q,

(4.2) oujy =0, xed,
5u}' =0, xz€d9,

0H;j — 50'(|Vu9|2 + \Vu;-/|2) —20'Véuj; - Vu; — 20'Vou; - Vu; =0, z€Q.

In [6], it is established (4.1) is elliptic using two boundary conditions if the gradients of
the associated fields are nowhere orthogonal or parallel. We do not attempt to analyze how
this condition might be satisfied in the case of the mixed boundary conditions (3.12). We
note that this establishes that (4.1) is not elliptic in the case of one experiment with mixed
boundary conditions. Instead, we attempt to analyze the problem numerically by estimating
the conditioning of the symbol of the linearized problem. For the case of complex conductivity
(4.2), we give a sufficient condition in Lemma 4.1 for ellipticity; however, we do not give
boundary conditions that guarantee this is satisfied, nor do we prove that such boundary
conditions exist. We note for elliptic linear systems, it is possible to obtain stability estimates
by augmenting the system with boundary conditions satisfying the Lopatinskii condition,
following [6].
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To establish if (4.1) and (4.2) are elliptic, we first compute the principal symbol of their
associated matrix-valued differential operators A(z, D) for x € Q, where D = (0y,,...,0z,),
and d is the dimension (d = 2 in our case). Since these are linearized systems, the entries
Aj;j(x, D) are polynomials in D for each z € 2. We associate each row of A with an integer s;
and each column with an integer ¢;, chosen such that the maximum degree of each polynomial
Aij(x, D) is s; + tj. The principal component Ag(z, D) is obtained from A(z, D) by keeping
only the terms in Aj;j(x, D) with order exactly s; + t;. If the principal symbol Ay(x,&) is
injective for all £ # 0, then the problem is elliptic in the Douglis-Nirenberg sense at x € 2.

Remark 4. Although the results in this section are derived for Dirichlet boundary conditions
in the auxiliary problem (3.4), the same analysis can be carried out with minor modifications
for mized type boundary conditions corresponding to electrodes with zero-fluz gaps (3.12).

4.1. Injectivity of the linearized real problem. Letting F; = Vu; the principal symbol of
the real problem (4.1) is the 2n x (n + 1) matrix

_’F1‘2 20’F1'Z§ 0 i
Foag —olg® - 0
(4.3) Ao(z,€) = : : : :
|F|? 0 <o 20F, -
PN’ 0 e —olef ]
for i = 1,...,n and where 0 = ¢’. The system is in Douglis-Nirenberg form where the row
weights s; are given by the 2n vector (0,1,0,1,...,0,1) and the column weights t; are given

by the n+1 vector (0,1,1,...,1). As noted previously, this symbol is shown to be injective in
two dimensions using two boundary conditions such that F; and F, are nowhere orthogonal,
or parallel [6].

We consider the discretized problem on the square [0, 10]? using a uniform 200 x 200 grid.
The conductivity used can be seen in Figure 5.1 (a). We numerically solve (3.12) to calculate
the fields u; for ¢ = 1,...,n. The Dirichlet boundary conditions are defined on the set

(4.4) I' = (([0,4.5] U [5.5,10]) x {0,10}) U ({0, 10} x ([0,4.5] U [5.5,10])).

For x € T the boundary conditions are of the form

gm = Hsin(0) (%O)m,

hum = 5cos(6) (E) ,
where (r,0) is the polar representation of the nodes in I'. We enforce the no flux boundary
condition on the gaps, i.e. x € 9Q —T.

To establish the ellipticity of the operator, we need to show its principal symbol is injective
for all £ # 0. As a numerical indication of ellipticity, we check injectivity numerically for £ € =,
where Z is a set of 100 vectors uniformly spaced on the unit circle (since £ is two-dimensional
in our simulations). At each point z in the grid we use to discretize {2, we compute the
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12 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

maximum condition number of the symbol along directions & € =, i.e.

UmaX(-AO(xaf))}
)]

(46) Omin (.A()(l’,

max
n |

where omin(A) (resp. omax(A)) is the smallest (resp. largest) singular value of a matrix A.
Notice that although Ag(z, ) depends quadratically on &, its condition number depends non-
linearly on &, so we resort to a brute force approach. Of course, this strategy is a heuristic
that does not replace checking for every & # 0 but that still seems to reveal lack of ellipticity
of the symbol. The maximum condition number (4.6) of the symbol (4.3) can be seen in
Figure 4.1. These numerical results are in line with the previously established theory: the
maximum condition number is higher under one experiment than under two experiments,
indicating that the problem with one experiment is worse than the one for two experiments.
Indeed, the problem with one experiment is hyperbolic and may be solved locally (see e.g.
[6, 7, 34]). Numerically, reconstructions can still be obtained with one experiment, albeit with
severe artifacts.

=

) One boundary condition

~

@

w

ES

10

(b) Two boundary conditions

Figure 4.1. Mazimum condition number (4.6) of the symbol of the linearized problem (4.1) on the square
domain [0,10]? with log 10 scaling. The left image (a) is the conditioning of the symbol with one boundary
condition giwen by g1 in (4.5). The right image (b) is the conditioning of the symbol with two boundary
conditions given by g1 and hy in (4.5).

4.2. Injectivity of the linearized complex problem. Letting F] = Vuj, F}' = VuJ, and
Fj = Fj +F, the symbol for the complex linear system (4.2) is the 3n x (2 + 2n) matrix

[ |y 0 20'F| 16 20'F) 0 - 0 0
Fla& —F & —d'|¢)? o”|¢]? 0 0
FY'ag F{-& —o"[E)P —o'|¢]? 0 0
(4.7 Ao(z,8) = : : : : : )
|F|? 0 0 20'F! 1€ 20'F" -2
Fy - —Fp - 0 —o'|¢? o”[¢|?
Fiag Fyea 0 —o"l¢f? —o'lg? |
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 13

for j =1,...,n. The system is in Douglis-Nirenberg form where the row weights s; are given
by the 3n vector (0,1,1,0,1,1,...,0,1,1) and the column weights ¢; are given by the 2 + 2n
vector (0,0,1,1,...,1,1).

Lemma 4.1. Assume |F;| > ¢ > 0 and let Fy = F;/|Fy|, fori=1,...,n. Assume also that
o'(x),0"(x) > 0. Then the symbol Ao(x,§) of the system (4.2) is injective at x if there are
three distinct indices i1, 19,13 such that

(4.8) By &2 = | By, - € = | By - € implies € = 0.
In particular, the symbol is not injective for n =1 orn = 2.

Proof. The symbol matrix when n = 1 is of size 3 x 4 and thus cannot be injective. If
n = 2, the symbol matrix is square of size 6 x 6 and we write it such that the measurement
equations are the first two rows

[ | Fy|? 0 20'F] 1§ 20'F{ 1€ 0 0
| Fy|? 0 0 0 20'Fl 16 20"Fy 1€
F{ 1 —F/ & —o'|¢? a”|€|? 0 0

F g Fa& =o"l§f —o'¢]? 0 0
Fézé _FQN'/LS 0 0 _0./|§’2 U”|§’2

EY g g0 0 o'l ol |

We consider this as a block matrix with the top left block being 2 x 2, and then the bottom
right block being 4 x 4. The bottom right matrix is block diagonal with invertible diagonal
2 x 2 blocks, and we use this to compute the Schur complement

AL (F 6 + (FY - 6)%) et ((F 1) + (Y- 25)2)]
2 .

1" !

| Bl + MW ((F3-18)* + (F5 18)°)  gaeritseere (Fa - 18)* + (- 6)?)

The determinant of the Schur complement is then

2 "o F 2 / /! F 2 / /!
49 e (e [0+ (7 a6P) = L2 [0+ (77 6]
which gives
(4.10) det Ao(a,€) = 20/" Yo PF Py - € — | B - €2)

By the assumptions on o/, 0", Fy and Fy, det .Zo(x,é) = (0 is equivalent to |F1 P = ‘FQ ]2
Thus, we now focus on finding the null cone of the (real) quadratic form ¢(&) = |Fy -&|? — | Fh -
€12 = £7Q¢, where the symmetric matrix @ is given by

(4.11) Q=FEF" + F/F" - BFT — By E)T.

Notice that trace Q@ = |E}|? — |F3|2 = 0. Hence, either Q is identically zero or it has one
positive and one negative eigenvalue. Since the spectrum of @ is contained in {¢q(§) | || = 1},
there must be a unit length £ such that ¢(§) = 0 and thus the symbol is not injective.
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14 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

For n > 3, the symbol matrix has more rows than columns, thus if it is rank deficient,
the determinants of all its largest square sub-matrices must be zero. We first compute the
determinant of one such (2 + 2n) x (2 + 2n) matrix, which is associated with the first two
experiments and where the rows associated with measurements for experiments ¢ > 3 are
deleted, i.e.

[ | Fy|? 0 20'F] -1& 20'F) € 0 0 0 0
| Fy|? 0 0 0 20"y 16 20" FY -af 0 0
Fi & —F{ -6 —o'l¢f a”[¢]? 0 0 0 0
F' g Fif =d"lgP —d|¢)? 0 0 0 0
Fj o1& —FY -1 0 0 —o'|¢)? a”|€|? 0 0
Fy el Fya 0 0 —a"[¢PF —o'[¢]? 0 0
Fy ol —Fy g 0 0 0 0 e =dllEP oM
\E)) & F) g 0 0 0 0 N [T

We consider the top left 2 x 2 matrix as a block, and the bottom right 2n x 2n matrix as
a block. The bottom right matrix is still block diagonal with invertible 2 x 2 blocks. The
determinant of the Schur complement is given by (4.9), and the determinant of the sub-matrix
is given by

(4.12) 20" 0" |¢|*" 2o 2D (|F P By - € — | Fa?|Fy - €)7)

We can generalize (4.12) to any two distinct indices 7 and j by considering the (2n+2) x (2n+2)
sub-matrix obtained from Ag(z,{) by deleting all the rows corresponding to measurements
for experiments other than ¢ or j. This sub-matrix has determinant:

(4.13) 20"0"|¢|"" 2o P (| By - € — | B Fy - )

If Ag(z, &) is rank deficient at some z, all the determinants (4.13) must vanish for any two
distinct indices ¢ and j. By the assumptions on o', ¢” and the Fj, this is equivalent to the
following quadratic forms vanishing for any two distinct indices 7 and j:

(4.14) 6ij(6) = |F; - € — £y - €%
Since we assumed (4.8) holds, we conclude that £ = 0 and that the symbol must be injective
for n > 3. [ ]

Remark 5. We do not present a method for finding boundary conditions such that the
condition in Lemma 4.1 is satisfied, nor do we know if such boundary conditions exist for all
possible o’ (x), 0" (x) > 0. For a concrete example of three unit length vectors satisfying (4.8),
take Iy = eq, Fy = ey and Fy = (e1 + e2)/V/2. In this particular case q12(8) = |€1)?% — [&2)?
and q13(&) = |&|* — &1 + &I?/2. The null cone of q12 is span{e1 + e2} and that of q1 3 is
span{(1++/2)e1 + ea}, and clearly their intersection is {0}.

Numerically, we have found that the complex reconstruction is challenging under many
combinations of boundary conditions. This can be expected from numerically computing the
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7
6
5
4
3

) Two measurements (b) Three measurements (¢) Four measurements

Figure 4.2. The mazimum condition number (4.6) of the symbol of the complex linearized problem (4.2)
on the discretized square domain with log 10 scaling. The images from left to right are given by two, three, and
four boundary conditions in the form of (4.15).

maximum condition number (4.6) as we illustrate in the numerical experiment appearing in
Figure 4.2 and that we describe next.

The ground truth conductivity can be seen in Figure 5.3 with the real part in (a) and the
imaginary part in (b). We only consider the linearized complex problem (4.2) with Dirichlet
boundary conditions. The boundary conditions are of the form

gm =0gm + hm:
(4.15)

ilm :hm+ Z9m,

7
2
1
2
with h and g defined in (4.5). The scaling of the imaginary part by 1/2 is to match the imag-
inary part of the background conductivity. In Figure 4.2, we can see the numerical condition
of the symbol for two, three, and four boundary conditions. We begin this experiment with
n = 2 since, with one measurement, the system is underdetermined. The boundary conditions
for n = 2 are g1, izl, for n = 3 are gl,gg,ﬁl, and for n = 4 are gl,gg,ﬁl,ﬁ2. We use the same
domain and grid as in the real case.

The maximum condition number (4.6) improves significantly by moving from two to three
measurements, but the improvement from three to four is modest. The high condition number
for two boundary conditions (Figure 4.2 (a)) is consistent with Lemma 4.1, where two bound-
ary conditions are insufficient for ellipticity. With more boundary conditions (Figure 4.2 (b)
and (c)), the areas where the conditioning is high match up with the reconstruction artifacts
for the complex case (Figure 5.3).

5. Numerical reconstructions. The following numerical reconstructions use values con-
sistent with the quasi-static approximation, i.e., values such that wyu|o|L? < 1. In particular
we let L =10 cm and o’ € [1/3,2] em™! kQ~1. In the case of non-zero complex conductivity
we let w/(2m) = 10 kHz and ¢ = we’ € [1/2,1] em~! kQ 1. Our choice of parameters is near
those in human tissues and satisfies the quasi-static approximation, see e.g. [14]. The exam-
ples we consider assume a thin plate that is homogeneous in the z direction with thickness
Az = 0.1cm. If we consider Q@ C R?, then multiplying the measurements by Az corresponds
to the results in section 3.
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16 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

5.1. Discrete model. We discretize the system (3.15) on a square domain Q = [0,10]?
using a uniform grid with n? nodes. We denote by N the set of nodes indexed with their
integer coordinates (i1,42) and the set of edges by E C N x N. The nodes are partitioned
into interior nodes I and boundary nodes B, which are the nodes that are on the boundary
9. We use the forward difference operator D € RVI*IEl defined such that

Dy
D= [ DQ] |
Here D; (resp. Ds) is the horizontal (resp. vertical) first order difference operator. Given a
function 1 defined on the nodes IV, the horizontal and vertical difference operators are defined
by
Y(in +1,i2) — (i, i2)
Axy ’

Y(iy,ip + 1) —ap(iy, ia)
A.TUQ ’

(D19 (i1, i2) =

(Do) (i1, i2) =

where Ax; and Axy are the horizontal and vertical discretization steps respectively.

If we use finite differences to discretize (3.15), we note that the gradient components in
the 1 and z9 directions are defined on horizontal and vertical edges. Thus the norm of
the discretized gradient is not defined at any particular edge. To obtain the gradient at a
single spatial location in the discretized problem, we interpolate the gradient approximated
values from their respective edges to the nodes and compute the gradient norm at the nodes.
Thus it also makes sense to interpret the internal functional H;; as a nodal based quantity
and to completely determine the conductivity by interpolating a node based quantity. These
interpolations between edges and nodes are achieved with the following matrices

N7 :horizontal edges — nodes,
N, :vertical edges — nodes,
FEq :nodes — horizontal edges,
FE»> :nodes — vertical edges,

E12 modes — all edges.
To define these matrices we let ¢ be the matrix-valued function

p(A) = (Diag(|A"[1))7HAT],
where | - | is the entry-wise absolute value, 1 is an appropriately sized vector of ones, and
Diag(v) denotes the matrix with the vector v on its diagonal. The matrix ¢(A) preserves

constant vectors, more precisely, if ¢ is an appropriate sized constant vector ¢(A)c = ¢. The
interpolation operators are then defined as

B
Ny = o(DT), Ny=o(DI). Er=o(Dy). Es—o(Dy) E—[ }

This manuscript is for review purposes only.
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Given Hj; (defined at the nodes) and e; (defined at the boundary nodes) the discrete
inverse problem for real conductivity is then to find s and wu; (defined at the nodes) such that
fori=1,...,n,

DT[Ey 25 ® (Du;)]; = 0,
(5.1) uilp —e; =0,
Hii — [N1(E15 © |Dyuil?) + No(Ezs © ‘D2“i|2)}1 =0,

where ©® is the Hadamard or componentwise product. We note that in the first equation
of (5.1), we have a graph Laplacian with edge weights given by Ej2s, see e.g. [17]. This
system is modified slightly under the assumption that the conductivity is known in a small
neighborhood of the boundary. The modified system is solved using Gauss-Newton iteration.
However, the interpolation process introduces a null space into the Jacobian. We use Tikhonov
regularization with a parameter v to prevent this null space from interfering when solving for
the Gauss-Newton step. The parameter corresponds to adding a penalty term of ~|jw||?, when
solving the least squares problem for finding a Gauss-Newton step w. An Armijo line search
is used as globalization strategy (see e.g. [35]).

Given Hj; and ej, the complex inverse problem is to recover s, s”

!/ 1 5 —
; uy, and uj for j =

1,...,n,
DT [E158' © (Du})]; — DT[E1 28" © (Duf)]; = 0,
_DT[ELQS/ © (Du;/)][ + DT[ELQS// © (Du;)][ = 0,
/ /
(5 2) uj|B_6j:07
: " "o__
U/] B — ej — 0,

Hj; = [N (E1s' © | Dyjf?) + Na(Eas © [ Douj*)]

+ [N1(E1s' © |D1uf?) + Na(Eas’ © [Douff?)], = 0.
A similar Gauss-Newton procedure was used to solve (5.2).
Heating Patterns: Recall that to obtain the measurements H;;; we need to locally heat
a region of the conducting plate. This requires numerically approximating (3.13) at both the
background temperature Ty and when the plate is locally heated according to 67'(z). For our
measurements we let §7'(x) be the Gaussian heating pattern,

g(z,a) = (27ra)71 exp (—|x]2(2a)71)

where |- | denotes the 2-norm. The heating pattern g(z,a) can be considered an approximate
Dirac since it integrates in x to one. This is also similar to the heating pattern from a laser
covering an area of roughly mwa or it could also be interpreted as a time snapshot of a Green
function for the heat equation in a homogeneous medium.

Deterministic simulations: Continuous measurements from the deterministic model
using this heating pattern can be written as

(5.3) Hii(z) = (o|Vu|*, Ty + g(- — l‘»a)>L2(Q) - <U|VU1;’2,T0>L2(Q) :
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18 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

We approximate H;;(x) by evaluating the heating pattern at each node z in the discrete model.
Then to approximate the inner products, we use a uniform fine grid with n? nodes such that
n > n. The number of fine grid nodes n is chosen such that there are at least four fine grid
nodes per effective area of the heating pattern, i.e. ma. Owing to (3.13), the right hand side
of (5.3) is the convolution of H;; with a Gaussian kernel.

Stochastic simulations: Ideally we would like to simulate acquiring the data H;; through
an empirical measurement of the power spectral density (1.2) of the currents J (see (3.2))
that leak to the ground, resulting from stochastic source term j. in (3.1), which has a power
spectral density (2.2) dictated by the fluctuation dissipation theorem. This could be achieved
by generating a realization of j. over a long time interval [—7"/2,T'/2] and then calculating the
time average of |J;|? as in (1.2). The procedure is to be repeated for each heating pattern to
approximate H;; through differential temperature measurements (3.13). Since this could be
computationally expensive, we used instead the ergodicity of j. to calculate many realizations
of a discretization of j. satisfying (2.2).

We discretize a realization of j. with one value per edge of the fine grid. For each edge
e, we take j.(e) sampled from a mean zero random normal distribution with variance x(Tp +
g(z,a))s(e)/m (heated) or kTps(e)/m (unheated), where s(e) is the conductivity of edge e.
These variances are determined by the fluctuation dissipation theorem as in (2.2) and depend
linearly on the temperature and on the conductivity. The measurements from the simulated
random current model are then given by approximating

(5.4) Hii(z) = <<U!Vui\27T0 +9(- — xaa)>L2(Q)> - <<U’Vui‘2,To>L2(Q)> ’

where the outer angular brackets denote ensemble averaging. The average is approximated em-
pirically with M realizations of random currents where the inner product for each realization
is approximated using a uniform fine grid. The realizations of the background temperature
measurements (the rightmost term in (5.4)) are not recalculated for each heating pattern.

Remark 6. We believe the simulation method used for realizations of random currents cre-
ates a more challenging problem than experimental data. In practice, measurements could
be taken over a time interval and then averaged over time. This gives temporal structure to
the data that is not reflected by our simulations which ignore the temporal correlation of the
random currents.

5.2. Real conductivity. First, we consider problems of purely real conductivity (o = o’)
in both the case of measurements from simulated random currents (stochastic model) and
measurements using their variances (deterministic model). For both problems we consider the
Dirichlet boundary conditions (3.4) using e; = (x1+z2)/10 and e3 = (1+xz; —x2)/10. For the
more challenging problem of the experimental boundary conditions (3.12), we only consider
the deterministic model of measurements.

We show in Figure 5.1 numerical reconstructions for a purely real conductivity in the
deterministic and stochastic models. The deterministic measurements H;; in (5.3) are taken
with Ty = 300 and a = 0.01 on a 60 x 60 coarse grid using a 120 x 120 fine grid to approximate
the integrals. The same conditions were used for the stochastic model, where in addition we
took Tp = 0.01 using 1000 realizations of random currents. We chose a particularly low back-
ground temperature Tp to get clean enough data with the number of realizations we chose.

This manuscript is for review purposes only.
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As can be expected from subsection 3.3, the signal to noise ratio for the differential temper-
ature measurements worsens for large Ty. The reconstructions in the stochastic simulations
Figure 5.1(c) are comparable to those in the deterministic case Figure 5.1(b), which is remark-
able given the significant errors that are introduced in the data for the stochastic simulations.
We mention that our choice of discretization ensures that each approximate Dirac heating
pattern (a = 0.01) covers a minimum of four grid points.

The conductivity is assumed to be known for nodes that are 0.5cm, or less, away from the
boundary. The Tikhonov regularization parameter is v = 574, and iterations are run until the
2-norm of the step is less than 0.1. The initial guess is the solution to (5.1) with a constant

conductivity.
2.0 2.0
18 18 18
16 16 16
14 14 14
]
12 12 12
10 10 Lo
08 0.8 0.8
0.6 0.6
0.6
04 0.4
0.4
(a) (b) ()

Figure 5.1. Reconstructions of purely real conductivity values (em™ kQ™') on a 10cmx 10cm square
domain. The ground truth conductivity in (a) is evaluated on the fine grid. Both the reconstructions using the
determanistic model (b) and a stochastic model (c) are evaluated on the coarse grid.

The numerical example in Figure 5.2 uses data from experimental boundary conditions
in (3.12).The set I' defined in (4.4), corresponds to the electrode functions. On I', we use
electrode functions g; and h; (4.5) for the boundary conditions. This set has gaps of lem
at the center of each side of the square with no flux conditions. The no flux conditions are
enforced by using centered approximations to the nodes on 09 —I' (see, e.g., [30, sec 2.12]).
The ground truth conductivity is given in Figure 5.2 (a). The reconstructions are evaluated
on a 100 x 100 coarse grid, and a 200 x 200 fine grid is used to evaluate the measurements
(5.3). A minimum of twelve fine grid points are in the effective area of each approximate Dirac
heating pattern.

The Gauss-Newton iteration is regularized with v = 373, and iterations are run until the
2-norm of the step size is less than 0.1. The reconstructions in Figure 5.2 are close to the
original conductivity, although there are some numerical artifacts due to the gaps between
the electrodes, which are superficially similar to those caused by corner type singularities in
the conductivity as studied in [9].

5.3. Complex conductivity. An example of a complex conductivity reconstruction using
the deterministic model of measurements can be seen in Figure 5.3. Four experiments are
used with the Dirichlet boundary conditions g1, g2, hi, ho given in (4.15). The reconstructions
are evaluated on a 100 x 100 coarse grid, and a 200 x 200 fine grid is used to evaluate the
measurements (5.3). The Gauss-Newton iteration now uses v = 1074, and iterations are run

This manuscript is for review purposes only.
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0.30 2.00
175
0.20 025
1.50
0.20
0.15 125
0.15 1.00
0.10
0.10 075
0.05 0.50
0.05
0.25

Figure 5.2. Conductivity values (cm™" kQ™"') for a numerical reconstruction (c) of the same conductivity
as Figure 5.1 using the experimental boundary conditions in (3.12). The data Hi; = Re(o(x))|Vui(x)|? used
for the reconstructions is shown in (a) for g and in (b) for hy, with units cm™> kQ 1.

until the 2-norm of the step size is less than 0.1. A constant complex conductivity and the
corresponding solutions to (5.2) are used for the initial guess.

The numerical artifacts in the complex reproduction are consistent with the areas in
Figure 4.2 (c), where the maximum condition number (4.6) of the symbol is largest. Intuitively,
reconstructing the imaginary conductivity may be more challenging as it does not explicitly
appear in the measurements. In the discrete system (5.2) it appears only when coupled with
a gradient of the real or imaginary auxiliary field. When the gradient of the real part is large
it may overwhelm the contribution of the complex conductivity. This is the exact behavior
we see in our numerical experiments. When the real conductivity is high, the gradient of the
real field is large, and the reconstructed complex conductivity (Figure 5.3 (d)) is lower than
the true value.

6. Summary and perspectives. We propose a new hybrid inverse problem for recovering
the conductivity of a body using thermal noise. The fluctuation dissipation theorem for
electrodynamic media allows us to relate the variance of thermal noise currents taken with
different temperature patterns to the real part of the conductivity of a body. By taking
a sufficiently rich set of measurements we can estimate an internal functional that depends
on this real conductivity and the solution to an associated auxiliary problem. We show
this relation holds for both Dirichlet boundary conditions and mixed Neumann/Dirichlet
boundary conditions, the latter of which is a more realistic description of an experimental
setup where such measurements might be used. For purely real conductivities, these are
power density measurements. This problem of recovering a real conductivity from power
density measurements also appears in acousto-electric tomography.

Before attempting numerical reconstructions we try and determine if the linearized prob-
lems are elliptic in the Douglis-Nirenberg sense. The linearized real problem has previously
been shown to be elliptic, given the auxiliary fields are nowhere orthogonal or parallel [6]. For
the real problem with mixed boundary conditions, we make no effort to show our boundary
conditions satisfy this condition. Instead, we numerically evaluate the worst conditioning of
the principal symbol at each point in space. The numerical results are consistent with the
previous theoretical work in [6]; using more boundary conditions improves the numerical con-
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Figure 5.3. Real and imaginary conductivity values (cm™" kQ™") for a numerical reconstruction (c) & (d)
of a complex conductivity on a 10ecmx 10cm square domain. The ground truth (a) & (b) is evaluated on the
fine grid and the reconstruction is evaluated on the coarse grid.

ditioning of the symbol. For the complex symbol, we give a sufficient condition on the auxiliary
fields for the problem to be elliptic, without proving that the auxiliary fields can be generated.
In contrast with the real case where two boundary conditions are sufficient for ellipticity, the
complex case requires three or more boundary conditions. We perform a similar numerical
evaluation of the conditioning of the symbol under a number of different experiments. This
evidence indicates that the complex conductivity problem with two boundary conditions is not
elliptic. This numerical approach to classification may find use in similar problems, especially
in problems with complicated boundary conditions or principal symbols. The clear limitation
of this method is that it does not inform the choice of boundary conditions. We note that the
conditioning in these problems would not normally be seen as high for other applications.

Finally, we present a simple discrete model for numerical reconstructions. Our numerical
reconstructions are consistent with the linearization study. We also present results using sim-
ulated random thermal currents for the case of a purely real conductivity. These simulations
ignore temporal correlations, making the problem more challenging. In this case, we can get
an accurate, if noisy, reconstruction of the conductivity at a low temperature.

This method of thermal noise imaging may find applications in e.g. Atomic Force Mi-
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croscopy, laser weld monitoring. A challenge in using our approach is that the relative size of
the measurements due to the background temperature and the heating pattern (see subsec-
tion 3.3) results in currents that may be hard to measure reliably in practice.

Our results are for a fixed frequency w, and removing this limitation may allow for more
accurate reconstructions in the complex case. Considering multiple frequencies could take
into account any frequency dependency of ¢’ or € in 0 = ¢’ + we’, but requires a different
analysis. Additionally, the relative scale of the variables of interest, w and e, changes which
may introduce other challenges to the reconstructions.
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