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Abstract. We use thermal noise induced currents to image the real and imaginary parts of the conductivity4
of a body. Covariances of the thermal noise currents measured at a few electrodes are shown to be5
related to a deterministic problem. We use the covariances obtained while selectively heating the6
body to recover the real power density in the body under known boundary conditions and at a known7
frequency. The resulting inverse problem is related to acousto-electric tomography, but where the8
conductivity is complex and only the real power is measured. We study the local solvability of this9
problem by determining where its linearization is elliptic. Numerical experiments illustrating this10
inverse problem are included.11
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1. Introduction. In an electrical conductor, the excitement of charge carriers due to heat14

produces random currents. This phenomenon is called Johnson-Nyquist noise and was first15

observed in the early 20th century [22, 36]. Given a single component with impedance Z(ω)16

(in Ohms) at an angular frequency ω (in 2π Hz), the power spectral density
〈
|J(ω)|2

〉
(in17

A2/Hz) of the random current J(t) across the component is18

(1.1)
〈
|J(ω)|2

〉
=

2κT

π

Re (Z(ω))

|Z(ω)|2
.19

Here κ ≈ 1.36× 10−23J ·K−1 is Boltzmann’s constant and T is temperature (in Kelvin). We20

recall the power spectral density of a finite variance, ergodic random process J(t) is given by21

(1.2)
〈
|J(ω)|2

〉
= lim

T→∞

1

2πT
|ĴT (ω)|2, where ĴT (ω) =

∫ T/2

−T/2
dt J(t) exp[−ıωt],22

where ı =
√
−1. Although thermally induced noise in a nuisance in electrical circuits, we show23

one way to use it to image the conductive properties of a body. Johnson-Nyquist noise and its24

generalization to the Maxwell equations (see, e.g., [39]) are examples of a more general physical25

principle called the fluctuation dissipation theorem, which relates the variance of fluctuations26

of a linear system about an equilibrium to the dissipative properties of the system, see e.g.27

[24, 38, 40].28

∗Submitted to the editors May 8 2023.
Funding: This work was partially funded by the National Science Foundation grants DMS-2008610 and DMS-

2136198.
†Mathematics Department, University of Utah, Salt Lake City, UT 84112 (degiovan@math.utah.edu, fgue-

vara@math.utah.edu).
‡Formerly: Mathematics Department, University of Utah, Salt Lake City, UT 84112. Currently: STV Incorpo-

rated, 200 W Monroe St #1650, Chicago, IL 60606.

1

This manuscript is for review purposes only.

mailto:degiovan@math.utah.edu
mailto:fguevara@math.utah.edu
mailto:fguevara@math.utah.edu


2 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

To image the conductivity of a body, we propose heating the body while simultaneously29

measuring the variance of the thermal noise induced currents using electrodes that are con-30

nected to the ground. For instance, this can be done on a two-dimensional conductive body31

as illustrated in Figure 1.1, with electrodes on its boundary that are connected to the ground32

(zero voltage or potential). The electrical measurements are made while the body is heated33

at a known spatial location via an external source, e.g. a laser, and the process is repeated at34

different locations to scan the body. In our approach, we also need to subtract measurements35

of thermal noise induced currents at a known and constant background temperature.36

A

A

Figure 1.1. A two-dimensional conductive body is attached to the ground via electrodes which are used to
measure the thermal noise currents resulting from heating the body at particular locations, e.g. the location
depicted in red.

Our main contribution is to show that such thermal noise current measurements are equiv-37

alent to measuring the real power dissipated inside the conductive body, i.e.38

(1.3) σ′(x)|∇u(x)|2,39

where σ′(x) is the real part of the conductivity and u solves an appropriate (deterministic)40

auxiliary problem which depends on electrodes configuration and the conductivity σ(x) which41

can be complex (see section 3).42

1.1. Related work. Recovering σ′(x) from functionals of the form (1.3) is well-studied43

for the case of real σ in ultrasound modulated electrical impedance tomography or acousto-44

electric tomography [2], where the internal functional (1.3) is measured by locally perturbing45

a conductive body using ultrasound waves, while making electrical measurements on the46

body’s surface. Various reconstruction approaches have since been studied for this problem47

[7, 10, 15, 25, 26, 34] as well as its well-posedness [4, 21, 27]. The problem of recovering48

an anisotropic real conductivity has also been studied [8, 31, 32, 33]. A similar problem49

using microwaves instead of ultrasound is discussed in [3]. Optical tomography can also50

be modulated by ultrasound, allowing measurements of a functional similar to (1.3), see51

[11, 37]. Hybrid inverse problems (including acousto-electric tomography) have been studied52

by formulating them as an overdetermined system of non-linear partial differential equations53
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 3

and then studying their local uniqueness properties by linearizing, see [6, 27]. For reviews on54

hybrid inverse problems, see [1, 5].55

The σ complex case is considered in [12], but this analysis only applies if the fields are56

known (as in elastography). Complex σ were also considered in the case of the Maxwell57

equations in [13]. However, to our knowledge, there is no study of the functional (1.3) where58

u depends on a complex σ, but only its real part σ′ appears explicitly in the measurements.59

1.2. Possible applications. The biggest challenge to the applicability of the method that60

we present here is that the thermally induced random currents are very small and this could61

introduce signal-to-noise issues. We envision two possible applications.62

The first possible application would be to Atomic Force Microscopy (AFM). In this imaging63

modality, a height-map of a sample is obtained by measuring the deflections of a cantilever64

as its tip scans the sample. A heated cantilever tip can be used to heat the sample locally65

without touching it, see e.g. [23]. Moreover, electrical measurements of thermal noise induced66

currents can be done simultaneously with the AFM scan. An advantage of this approach is67

that one can measure height and conductivity of the sample without touching the sample,68

possibly making the cantilever tip last longer. We mention that conductivity variations can69

be measured in AFM by creating a voltage difference between the sample and the cantilever70

(assuming it is conductive). This method is known as Conductive Atomic Force Microscopy71

or CAFM, see e.g. the review in [29].72

The second possible application is to monitoring of laser welding, see e.g. [18]. If two sheets73

of metal are been welded together, their temperature is raised significantly near the weld and74

the sheets also become electrically connected. We believe that by measuring thermal noise75

currents, one can monitor whether the weld was effective. We give an order of magnitude of76

the signals and background that would need to be measured in this situation in subsection 3.3.77

1.3. Contents. We start in section 2 by deriving a quasi-static model from the Maxwell78

equations with a current source modeling the random currents. In section 3 we show how79

variances of the random currents are related to a deterministic problem. This is done for two80

different kinds of boundary conditions. Moreover we give rough magnitude estimates for the81

currents that would need to be measured to implement our approach. In section 4, we ana-82

lytically and numerically analyze the linearized real problem (subsection 4.1) and linearized83

complex problem (subsection 4.2). This analysis is based on [6] where the ellipticity, in the84

Douglis-Nirenberg sense [19], is established for the real linearized problem with at least two85

distinct boundary conditions. We give a condition in Lemma 4.1 for the linearized problem86

with complex conductivity to be elliptic for at least three distinct boundary conditions. Still,87

it remains unclear if boundary conditions exist such that the fields associated with the aux-88

iliary problem satisfy the condition of Lemma 4.1. Then in section 5 we present a simple89

numerical reconstruction approach based on a finite difference discretization of the problem90

(subsection 5.1). We solve the inverse problem using data that either comes directly from91

the internal functional (1.3) or from simulated realizations of random currents. In addition,92

we show reconstructions in the case that conductivity is real (subsection 5.2) or complex93

(subsection 5.3). Finally, we summarize our results in section 6.94
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4 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

2. The quasi-static model. In an isotropic medium, thermal fluctuations induce fluctua-95

tion of charge carriers near an equilibrium. For non-magnetic media, the thermal fluctuation96

currents can be modeled by a random external electric current je (A/m2) in the Maxwell97

equations [39], namely98

(2.1)
∇×H = ıωεE + je

∇× E = −ıωµH.
99

Here E and H are the electric and magnetic fields and the angular frequency is ω. The100

convention for time harmonic fields here is that E(x, t) = Re [E(x, ω) exp[ıωt]]. The electric101

permittivity is ε and may be written as ε = ε′ − ıσ′/ω, where ε′ ≡ Re ε and σ′ is the real102

conductivity. The magnetic permeability µ is assumed real and equal to that of the vacuum.103

Note that if µ had an imaginary part (i.e. non-zero magnetic losses), then an analogous104

“random magnetic current” needs to be added to the Maxwell equations. The fluctuation105

dissipation theorem (see e.g. [40, Chapter 1] and the particular application to the Maxwell106

equations in [39]) states that the random current field je has zero mean ⟨je⟩ = 0 and its power107

spectral density (at a fixed frequency) is108

(2.2)
〈
je(x)j

∗
e (x

′)
〉
=
κ

π
T (x)σ′(x)δ(x− x′)I,109

where T (x) is the temperature in Kelvin at a point x and I is the identity matrix. We110

emphasize that (2.2) depends only on the temperature and the real part of the conductivity.111

The real part of the electrical permittivity (which is associated with lossless behavior) does112

not directly appear in (2.2). In general (2.2) should use the energy of a quantum oscillator113

[39] instead of κT , namely114

(2.3) Θ(T, ω) =
ℏω
2

coth
ℏω
2κT

,115

where ℏ ≈ 1.05 × 10−34J · s is Planck’s constant. Here we assume we work with relatively116

small frequencies so that κT ≫ ℏω and we can make the approximation Θ(T, ω) ≈ κT , see117

also [28]. In particular, this approximation is valid at room temperature and frequencies of118

the order of 1kHz or 1MHz.119

Instead of working with the Maxwell equations, we use a quasi-static approximation that120

is used in electrical impedance tomography, see e.g. [14, 16]. In this approximation, it is121

convenient to define the complex conductivity σ by122

(2.4) σ(x) = σ′(x) + ıωε′(x).123

If we assume that ωµ|σ|L2 ≪ 1, where L is the characteristic length of the problem, then one124

can use the approximation ∇×E ≈ 0. In other words, we may assume that the electric field125

comes from a potential E = −∇ϕ. By taking divergence on both sides of the first equation in126

(2.1) we get127

(2.5) ∇ · [σ∇ϕ] = ∇ · je.128

129
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IMAGING WITH THERMAL NOISE INDUCED CURRENTS 5

Remark 1. As noted in [16], the quasi-static approximation holds for conductivities consis-130

tent with human tissues (see, e.g., [14]). For example if we take L = 10 cm, σ′ = 2 cm−1kΩ−1,131

ω = 2π10 kHz and ε′ = 1µF/m, we get ωµ|σ|L2 ≈ 1.7× 10−4 ≪ 1.132

3. From the stochastic to the deterministic problem. Let Ω be a smooth simply con-133

nected open domain of R3 and let σ ∈ C1(Ω) with its real part satisfying σ′ > c for some134

positive constant c. We assume a potential ϕ satisfies135

(3.1)
∇ · [σ∇ϕ] = ∇ · je, in Ω,

ϕ = 0, on ∂Ω.
136

Here je is the random current term with ⟨je⟩ = 0 and
〈
|je|2

〉
given in (2.2). We assume that137

je is C1(Ω) and hence ϕ is C2(Ω) [20, Ch. 6.3].138

We assume we measure currents flowing out of the domain Ω at n “electrodes” by the139

complex vector with n entries140

(3.2) J =

∫
∂Ω
dS(x)

e1(x)...
en(x)

σ(x)∇ϕ(x) · ν(x),141

where ν(x) is the unit outward pointing normal to ∂Ω at some x ∈ ∂Ω, and the function ei(x)142

are possibly complex C1(∂Ω) “electrode functions” defined on ∂Ω. For example they could be143

a continuously differentiable approximation of the characteristic function of electrodes at the144

boundary. Note that a particular electrode function may be used to represent an experiment145

where currents are collected from a particular combination of distinct physical electrodes on146

∂Ω. Thus, n could also be thought of as a number of experiments.147

In the following result we prove that the n×n covariance matrix1 ⟨JJ∗⟩ of such measure-148

ments can be related to solutions to deterministic auxiliary problems.149

Theorem 3.1. The covariance of the vector of measurements J are given by150

(3.3) [⟨JJ∗⟩]ij =
κ

π

∫
Ω
dyRe (σ(y))T (y)∇ui(y) · ∇uj(y),151

where the functions ui are solutions to the Dirichlet problems152

(3.4)
∇ · [σ∇ui] = 0, in Ω

ui = ei, on ∂Ω, i = 1, . . . , n.
153

Proof. First, note that we can write the solution to (3.1) as154

(3.5) ϕ(x) =

∫
Ω
dy G(x, y)∇y · je(y),155

where G(x, y) is the Green function G(x, y) satisfying the equation156

(3.6)
∇x · [σ(x)∇xG(x, y)] = δ(x− y), x, y ∈ Ω

G(x, y) = 0, x ∈ ∂Ω or y ∈ ∂Ω.
157

1This is a slight abuse of terminology, as ⟨JJ∗⟩ is a cross-spectral power density.
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6 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

To double check (3.5), it is clear that ϕ(x) = 0 for x ∈ ∂Ω because G(x, y) = 0 for x ∈ ∂Ω.158

Also:159

∇x · [σ(x)∇xϕ] =

∫
Ω
dy∇x · [σ(x)∇xG(x, y)]∇y · je(y)

=

∫
Ω
dy δ(x− y)∇y · je(y)

= ∇x · je(x).

160

Now it is helpful to use integration by parts to get161

(3.7)

ϕ(x) =

∫
Ω
dy G(x, y)∇y · je(y)

=

∫
∂Ω
dS(y)G(x, y)je(y) · ν(y)−

∫
Ω
dy∇yG(x, y) · je(y)

= −
∫
Ω
dy∇yG(x, y) · je(y).

162

The ij−th entry of the covariance ⟨JJ∗⟩ can be written from (3.2) as163

(3.8) ⟨JJ∗⟩ij =
〈∫

∂Ω
dS(x)

∫
∂Ω
dS(x′)ei(x)σ(x)∇xϕ(x) · ν(x)ej(x′)σ(x′)∇x′ϕ(x′) · ν(x′)

〉
.164

By (3.7), ϕ is in turn given as a linear functional of the random currents je(y), which introduces165

two integrals over Ω in the above expression. The linearity of the mean can be used to get166

the covariance of je, which by (2.2) is delta correlated in space. This reduces the number of167

integrals over Ω by one. More precisely, we obtain:168

(3.9)

⟨JJ∗⟩ij =
∫
∂Ω
dS(x)

∫
∂Ω
dS(x′)

∫
Ω
dy
κ

π
Re (σ(y))T (y)ei(x)σ(x)ej(x′)σ(x′)ν(x)

T

∇x∇yG(x, y)∇x′∇yG(x′, y)ν(x
′)

=
κ

π

∫
Ω
dyRe (σ(y))T (y)

[∫
∂Ω
dS(x)ei(x)σ(x)∇x∇yG(x, y)ν(x)

]T
[∫

∂Ω
dS(x′)ej(x′)σ(x′)∇x′∇yG(x′, y)ν(x′)

]
=
κ

π

∫
Ω
dyRe (σ(y))T (y)∇yui(y) · ∇yuj(y),

169

where ui solves the problem (3.4) and we use that ∇x∇yG(x, y) is symmetric. The last equality170
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follows by doing integration by parts twice:171

(3.10)

∫
∂Ω
dS(x)ei(x)σ(x)∇xG(x, y) · ν(x) =

∫
Ω
dx∇x · [σ(x)∇xG(x, y)ui(x)]

=

∫
Ω
dx∇x · [σ(x)∇xG(x, y)]ui(x)

+

∫
Ω
dxσ(x)∇xG(x, y) · ∇xui(x)

= ui(y) +

∫
Ω
dx∇x · [σ(x)G(x, y)∇xui(x)]

−
∫
Ω
dxG(x, y)∇x · [σ(x)∇xui(x)]

= ui(y) +

∫
∂Ω
dS(x)G(x, y)σ(x)∇xui(x) · ν(x)

= ui(y).

172

173

It may be possible to loosen the regularity assumptions on je and ei and derive a similar result174

to Theorem 3.1. Since the scope of this work is focused on establishing the relation between175

the stochastic and deterministic problems, we leave this for future work. While (3.3) gives176

the entire covariance matrix ⟨JJ∗⟩, we only need its diagonal entries.177

3.1. Boundary conditions modeling electrodes with insulating gaps. The setup using178

Dirichlet boundary conditions (3.1) assumes that ϕ|∂Ω = 0, which would likely be hard to179

realize in practice because we expect to have a few electrodes connected to the ground with180

insulating gaps between them. This corresponds to a boundary condition of mixed type:181

homogeneous Dirichlet on the electrodes and homogeneous Neumann (zero flux) on the gaps182

between the electrodes. To be more precise, let Γ = supp e1 ∪ . . . ∪ supp en then we replace183

(3.1) with184

(3.11)

∇ · [σ∇ϕ] = ∇ · je, in Ω,

σ∇ϕ · ν = 0, on ∂Ω− Γ,

ϕ = 0, on Γ.

185

Then Theorem 3.1 holds in the same fashion, but we assume that the ui are solutions to the186

following mixed boundary problem replacing (3.4) with187

(3.12)

∇ · [σ∇ui] = 0, in Ω,

σ∇ui · ν = 0, on ∂Ω− Γ,

ui = ei, on Γ.

188

The proof follows by noting that integration by parts now yields189

ϕ(x) =

∫
∂Ω−Γ

dS(y)G(x, y)je(y) · ν(y)−
∫
Ω
dy∇yG(x, y) · je(y),190
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8 T. DEGIOVANNI, F. GUEVARA VASQUEZ, AND C. MAUCK

resulting in four terms when ϕ(x) is substituted in ⟨JJ∗⟩ij . One of the terms is similar to the191

case of the Dirichlet boundary conditions, and all of the others contain integrals over the zero192

flux part of the boundary. By invoking the zero flux boundary conditions, these terms can be193

easily seen to disappear, leaving us with the same formula for ⟨JJ∗⟩ij .194

3.2. Differential temperature measurements. Utilizing Theorem 3.1, we can now relate195

the differential temperature measurements as described in section 1 to measurements of the196

internal functional (1.3). Concretely, we take a set of measurements of the covariance of the197

currents in a body at temperatures T = T0 and T = T0 + δT (x), where δT (x) is a prescribed198

heating pattern. Then the differential temperature measurements give199

(3.13)
[〈
JT0+δTJ

∗
T0+δT

〉
−
〈
JT0J

∗
T0

〉]
ii
=
κ

π

∫
Ω
dx δT (x)Re (σ(x))|∇ui(x)|2,200

considering only the diagonal elements of the covariance matrix. As previously noted, only201

measurements of the diagonal elements are used for our reproduction approach. By taking a202

sufficiently rich set of heating patterns we ideally get an estimate for the internal functional203

(3.14) Hii(x) = σ′(x)|∇ui(x)|2, for x ∈ Ω, i ∈ {1, . . . , n}.204

For real conductivities (σ = σ′), the internal functional (3.14) corresponds to the power205

dissipated inside the domain.206

Remark 2. As an example of a heating pattern localized about x′, we can take δT (x;x′) =207

c exp[−|x − x′|2/(2a)], where c > 0 and a > 0 is sufficiently small. In this case, we get208

from (3.13), the convolution of Hii with a Gaussian, evaluated at x′. These are precisely the209

heating patterns we use in our numerical experiments (see section 5). Notice that such heating210

patterns δT (x) are proportional to time snapshots of the heat equation Green function in a211

homogeneous medium. The heating patterns can be achieved by a spatially and temporally212

localized heating of Ω (e.g. with a laser beam). Of course, this is assuming that the electrical213

measurements occur at a much faster time-scale than heat propagation and sufficient time is214

left for the medium to cool down before moving to another location x′. The interplay between215

electrical measurements and the heat equation is left for future studies. Heating patterns need216

not be spatially localized and one may consider other patterns such as cosines and sines.217

Spatially extended patterns may be advantageous in terms of signal to noise ratio, but may not218

be practical to realize.219

3.3. Rough estimation of thermal noise induced currents. The thermal noise induced220

currents are very small and may limit the application of this approach. To get an idea of221

the magnitude of the signals that need to be measured to obtain Hii in (3.13), we need to222

distinguish between current measurements with the background temperature T0 and with223

perturbed temperature T0+ δT . We make rough estimates of these currents in two situations:224

the first is consistent with the numerical experiments and the second one is consistent with225

laser welding.226

Conductivities used in the numerical experiments. For the background temperature227

measurements, recall that Boltzmann’s constant is on the order of 10−23 J · K−1. For our228
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numerical experiments we chose ∆z = 0.1 cm and a domain with area 10 cm2. The conduc-229

tivity is assumed to be 10−3 cm−1 Ω−1 and constant on a band of width ∆ω/(2π) = 10 kHz230

centered at ω/(2π) = 10 kHz. Then at temperature T0 = 300 K and accounting for the 1/π231

factor, the variance of the random currents is on the order of 10−20 A2. To reach this estimate232

we assumed the squared gradient of the auxiliary fields is constant and equal to 10−2 cm−2.233

For the differential measurements we may further assume a δT = 10 K on area of (0.2)2 cm2.234

This gives a current variance of the order 10−25 A2 and a signal to noise ratio of 10−5.235

Conductivities consistent with welding. The conductivity of gold is much higher than236

what we used in the numerical experiments and is on the order of 4.5 × 107m−1 Ω−1. For237

instance consider a sheet of gold of dimensions 1 cm × 1 cm × 1 mm and a bandwidth and238

central frequencies on the order of 100 Hz. For this choice of frequencies, the quasi-static239

approximation (section 2) is not well satisfied. Nevertheless, if the conductivity is assumed240

constant on this frequency band and T0 = 300 K, the variance of the random currents is on241

the order of 10−14A2. For the differential measurements we may further assume a ∆T = 1300242

K (which is close to the melting point of gold) on an area of (0.1)2 mm2. This gives a current243

variance of the order 10−17 A2 and a signal to noise ratio of 10−3.244

3.4. The inverse problem for real conductivities. The inverse problem for a real conduc-245

tivity σ = σ′ consists of the measurement equation (3.14) and the auxiliary problem (3.4). To246

be more precise, we seek to recover ui and σ given Hii and ei from the real non-linear system247

of partial differential equations, for i = 1, . . . , n,248

(3.15)

∇ · [σ∇ui] = 0, x ∈ Ω,

ui − ei = 0, x ∈ ∂Ω,

Hii − σ|∇ui|2 = 0, x ∈ Ω.

249

We call the model associated with measurements Hii given by the expectation in Theorem 3.1250

the deterministic model and the model associated with measurements given by realizations of251

randomly induced currents the stochastic model.252

3.5. The inverse problem for complex conductivities. We write the complex problem by253

separating the real and complex parts of (3.14) and (3.4). We use a single prime (resp. double254

prime) to denote the real part (resp. imaginary part) of a complex quantity, e.g. σ = σ′+ ıσ′′,255

uj = u′j + ıu′′j , and ej = e′j + ıe′′j . Then the problem is to find σ′, σ′′, u′j and u′′j given Hjj , e
′
j ,256

and e′′j from the non-linear system of partial differential equations, for j = 1, . . . , n,257

(3.16)

∇ ·
[
σ′∇u′j

]
−∇ ·

[
σ′′∇u′′j

]
= 0, x ∈ Ω,

∇ ·
[
σ′∇u′′j

]
+∇ ·

[
σ′′∇u′j

]
= 0, x ∈ Ω,

u′j − e′j = 0, x ∈ ∂Ω,

u′′j − e′′j = 0, x ∈ ∂Ω,

Hjj − σ′(|∇u′j |2 + |∇u′′j |2) = 0, x ∈ Ω.

258

An equivalent formulation of (3.16) can be found using the conjugates of uj and the ej instead259

of their real and imaginary components separately. Both the system (3.15) and (3.16) can be260

modified to instead use the experimental boundary conditions (3.12).261
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Remark 3. The non-linear system of equations that would be obtained by allowing the con-262

ductivity to be complex in ultrasound modulated EIT (see e.g. [5]) is similar to (3.16) with263

two real measurement equations per boundary condition instead of a single one, i.e. for x ∈ Ω:264

H ′
jj − σ′(|∇u′j |2 + |∇u′′j |2) = 0, and

H ′′
jj − σ′′(|∇u′j |2 + |∇u′′j |2) = 0.

265

We did not consider this problem because the form of the measurements we consider (3.16) is266

a direct result of using thermal induced random currents, see Theorem 3.1.267

4. Linearized problem. Before attempting to reconstruct conductivities numerically, we268

analyze the linearizations of the real (3.15) and complex (3.16) conductivity problems. Our269

goal is to find sufficient conditions for injectivity of the linearized problems, or in other words,270

if they admit a unique solution. Our analysis is based on [6], which includes a proof that the271

linearized real conductivity problem is elliptic in the sense of Douglis-Nirenberg under certain272

boundary conditions [19]. This was established in [27] for ultrasound modulated EIT and273

generalized to other hybrid inverse problem in [6].274

The linearization of the real conductivity problem (3.15) around the solution (ui, σ) in the275

variables (δui, δσ) for i = 1, . . . , n is given by276

(4.1)

∇ · [σ∇δui] +∇ · [δσ∇ui] = 0, x ∈ Ω,

δui = 0, x ∈ ∂Ω,

δHii − δσ|∇ui|2 − 2σ∇δui · ∇ui = 0, x ∈ Ω.

277

The linearization of the complex conductivity problem (3.16) around the solution (u′j , u
′′
j , σ

′, σ′′)278

in the variables (δu′j , δu
′′
j , δσ

′, δσ′′) for j = 1, . . . , n is given by279

(4.2)

∇ ·
[
σ′∇δu′j

]
+∇ ·

[
δσ′∇u′j

]
−∇ ·

[
σ′′∇δu′′j

]
−∇ ·

[
δσ′′∇u′′j

]
= 0, x ∈ Ω,

∇ ·
[
σ′∇δu′′j

]
+∇ ·

[
δσ′∇u′′j

]
+∇ ·

[
σ′′∇δu′j

]
+∇ ·

[
δσ′′∇u′j

]
= 0, x ∈ Ω,

δu′j = 0, x ∈ ∂Ω,

δu′′j = 0, x ∈ ∂Ω,

δHjj − δσ′(|∇u′j |2 + |∇u′′j |2)− 2σ′∇δu′j · ∇u′j − 2σ′∇δu′j · ∇u′j = 0, x ∈ Ω.

280

In [6], it is established (4.1) is elliptic using two boundary conditions if the gradients of281

the associated fields are nowhere orthogonal or parallel. We do not attempt to analyze how282

this condition might be satisfied in the case of the mixed boundary conditions (3.12). We283

note that this establishes that (4.1) is not elliptic in the case of one experiment with mixed284

boundary conditions. Instead, we attempt to analyze the problem numerically by estimating285

the conditioning of the symbol of the linearized problem. For the case of complex conductivity286

(4.2), we give a sufficient condition in Lemma 4.1 for ellipticity; however, we do not give287

boundary conditions that guarantee this is satisfied, nor do we prove that such boundary288

conditions exist. We note for elliptic linear systems, it is possible to obtain stability estimates289

by augmenting the system with boundary conditions satisfying the Lopatinskii condition,290

following [6].291
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To establish if (4.1) and (4.2) are elliptic, we first compute the principal symbol of their292

associated matrix-valued differential operators A(x,D) for x ∈ Ω, where D = (∂x1 , . . . , ∂xd
),293

and d is the dimension (d = 2 in our case). Since these are linearized systems, the entries294

Aij(x,D) are polynomials in D for each x ∈ Ω. We associate each row of A with an integer si295

and each column with an integer tj , chosen such that the maximum degree of each polynomial296

Aij(x,D) is si + tj . The principal component A0(x,D) is obtained from A(x,D) by keeping297

only the terms in Aij(x,D) with order exactly si + tj . If the principal symbol A0(x, ξ) is298

injective for all ξ ̸= 0, then the problem is elliptic in the Douglis-Nirenberg sense at x ∈ Ω.299

Remark 4. Although the results in this section are derived for Dirichlet boundary conditions300

in the auxiliary problem (3.4), the same analysis can be carried out with minor modifications301

for mixed type boundary conditions corresponding to electrodes with zero-flux gaps (3.12).302

4.1. Injectivity of the linearized real problem. Letting Fi = ∇ui the principal symbol of303

the real problem (4.1) is the 2n × (n+ 1) matrix304

(4.3) A0(x, ξ) =


|F1|2 2σF1 · ıξ · · · 0
F1 · ıξ −σ|ξ|2 · · · 0

...
...

. . .
...

|Fn|2 0 · · · 2σFn · ıξ
Fn · ıξ 0 · · · −σ|ξ|2

 ,305

for i = 1, . . . , n and where σ = σ′. The system is in Douglis-Nirenberg form where the row306

weights si are given by the 2n vector (0, 1, 0, 1, . . . , 0, 1) and the column weights tj are given307

by the n+1 vector (0, 1, 1, . . . , 1). As noted previously, this symbol is shown to be injective in308

two dimensions using two boundary conditions such that F1 and F2 are nowhere orthogonal,309

or parallel [6].310

We consider the discretized problem on the square [0, 10]2 using a uniform 200× 200 grid.311

The conductivity used can be seen in Figure 5.1 (a). We numerically solve (3.12) to calculate312

the fields ui for i = 1, . . . , n. The Dirichlet boundary conditions are defined on the set313

(4.4) Γ =
(
([0, 4.5] ∪ [5.5, 10])× {0, 10}

)
∪
(
{0, 10} × ([0, 4.5] ∪ [5.5, 10])

)
.314

For x ∈ Γ the boundary conditions are of the form315

(4.5)
gm = 5 sin(θ)

( r

10

)m
,

hm = 5 cos(θ)
( r

10

)m
,

316

where (r, θ) is the polar representation of the nodes in Γ. We enforce the no flux boundary317

condition on the gaps, i.e. x ∈ ∂Ω− Γ.318

To establish the ellipticity of the operator, we need to show its principal symbol is injective319

for all ξ ̸= 0. As a numerical indication of ellipticity, we check injectivity numerically for ξ ∈ Ξ,320

where Ξ is a set of 100 vectors uniformly spaced on the unit circle (since ξ is two-dimensional321

in our simulations). At each point x in the grid we use to discretize Ω, we compute the322

This manuscript is for review purposes only.
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maximum condition number of the symbol along directions ξ ∈ Ξ, i.e.323

(4.6) max
ξ∈Ξ

[
σmax(A0(x, ξ))

σmin(A0(x, ξ))

]
,324

where σmin(A) (resp. σmax(A)) is the smallest (resp. largest) singular value of a matrix A.325

Notice that although Ã0(x, ξ) depends quadratically on ξ, its condition number depends non-326

linearly on ξ, so we resort to a brute force approach. Of course, this strategy is a heuristic327

that does not replace checking for every ξ ̸= 0 but that still seems to reveal lack of ellipticity328

of the symbol. The maximum condition number (4.6) of the symbol (4.3) can be seen in329

Figure 4.1. These numerical results are in line with the previously established theory: the330

maximum condition number is higher under one experiment than under two experiments,331

indicating that the problem with one experiment is worse than the one for two experiments.332

Indeed, the problem with one experiment is hyperbolic and may be solved locally (see e.g.333

[6, 7, 34]). Numerically, reconstructions can still be obtained with one experiment, albeit with334

severe artifacts.335

(a) One boundary condition (b) Two boundary conditions

Figure 4.1. Maximum condition number (4.6) of the symbol of the linearized problem (4.1) on the square
domain [0, 10]2 with log 10 scaling. The left image (a) is the conditioning of the symbol with one boundary
condition given by g1 in (4.5). The right image (b) is the conditioning of the symbol with two boundary
conditions given by g1 and h1 in (4.5).

4.2. Injectivity of the linearized complex problem. Letting F ′
j = ∇u′j , F ′′

j = ∇u′′j , and336

Fj = F ′
j + ıF ′′

j , the symbol for the complex linear system (4.2) is the 3n× (2 + 2n) matrix337

(4.7) Ã0(x, ξ) =



|F1|2 0 2σ′F ′
1 · ıξ 2σ′F ′′

1 · ıξ · · · 0 0
F ′
1 · ıξ −F ′′

1 · ıξ −σ′|ξ|2 σ′′|ξ|2 · · · 0 0
F ′′
1 · ıξ F ′

1 · ıξ −σ′′|ξ|2 −σ′|ξ|2 · · · 0 0
...

...
...

. . .
. . .

...
...

|Fn|2 0 · · · 0 · · · 2σ′F ′
n · ıξ 2σ′F ′′

n · ıξ
F ′
n · ıξ −F ′′

n · ıξ · · · 0 · · · −σ′|ξ|2 σ′′|ξ|2
F ′′
n · ıξ F ′

n · ıξ · · · 0 · · · −σ′′|ξ|2 −σ′|ξ|2


,338
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for j = 1, . . . , n. The system is in Douglis-Nirenberg form where the row weights si are given339

by the 3n vector (0, 1, 1, 0, 1, 1, . . . , 0, 1, 1) and the column weights tj are given by the 2 + 2n340

vector (0, 0, 1, 1, . . . , 1, 1).341

Lemma 4.1. Assume |Fi| ≥ c > 0 and let F̂i = Fi/|Fi|, for i = 1, . . . , n. Assume also that342

σ′(x), σ′′(x) > 0. Then the symbol Ã0(x, ξ) of the system (4.2) is injective at x if there are343

three distinct indices i1, i2, i3 such that344

(4.8) |F̂i1 · ξ|2 = |F̂i2 · ξ|2 = |F̂i3 · ξ|2 implies ξ = 0.345

In particular, the symbol is not injective for n = 1 or n = 2.346

Proof. The symbol matrix when n = 1 is of size 3 × 4 and thus cannot be injective. If347

n = 2, the symbol matrix is square of size 6 × 6 and we write it such that the measurement348

equations are the first two rows349 

|F1|2 0 2σ′F ′
1 · ıξ 2σ′F ′′

1 · ıξ 0 0
|F2|2 0 0 0 2σ′F ′

2 · ıξ 2σ′F ′′
2 · ıξ

F ′
1 · ıξ −F ′′

1 · ıξ −σ′|ξ|2 σ′′|ξ|2 0 0
F ′′
1 · ıξ F ′

1 · ıξ −σ′′|ξ|2 −σ′|ξ|2 0 0
F ′
2 · ıξ −F ′′

2 · ıξ 0 0 −σ′|ξ|2 σ′′|ξ|2
F ′′
2 · ıξ F ′

2 · ıξ 0 0 −σ′′|ξ|2 −σ′|ξ|2

 .350

We consider this as a block matrix with the top left block being 2 × 2, and then the bottom351

right block being 4 × 4. The bottom right matrix is block diagonal with invertible diagonal352

2× 2 blocks, and we use this to compute the Schur complement353 [
|F1|2 + 2(σ′)2

(|ξ|σ′)2+(|ξ|σ′′)2

(
(F ′

1 · ıξ)2 + (F ′′
1 · ıξ)2

)
2σ′′σ′

(|ξ|σ′)2+(|ξ|σ′′)2

(
(F ′

1 · ıξ)2 + (F ′′
1 · ıξ)2

)
|F2|2 + 2(σ′)2

(|ξ|σ′)2+(|ξ|σ′′)2

(
(F ′

2 · ıξ)2 + (F ′′
2 · ıξ)2

)
2σ′′σ′

(|ξ|σ′)2+(|ξ|σ′′)2

(
(F ′

2 · ıξ)2 + (F ′′
2 · ıξ)2

)] .354

The determinant of the Schur complement is then355

(4.9)
2σ′′σ′

(σ′)2 + (σ′′)2

(
|F1|2

|ξ|2
[
(F ′

2 · ıξ)2 + (F ′′
2 · ıξ)2

]
− |F2|2

|ξ|2
[
(F ′

1 · ıξ)2 + (F ′′
1 · ıξ)2

])
,356

which gives357

(4.10) det Ã0(x, ξ) = 2σ′σ′′|ξ|6|σ|2(|F1|2|F2 · ξ|2 − |F2|2|F1 · ξ|2).358

By the assumptions on σ′, σ′′, F1 and F2, det Ã0(x, ξ) = 0 is equivalent to |F̂1 · ξ|2 = |F̂2 · ξ|2.359

Thus, we now focus on finding the null cone of the (real) quadratic form q(ξ) = |F̂1 · ξ|2−|F̂2 ·360

ξ|2 = ξTQξ, where the symmetric matrix Q is given by361

(4.11) Q = F̂ ′
1F̂

′T
1 + F̂ ′′

1 F̂
′′T
1 − F̂ ′

2F̂
′T
2 − F̂ ′′

2 F̂
′′T
2 .362

Notice that traceQ = |F̂1|2 − |F̂2|2 = 0. Hence, either Q is identically zero or it has one363

positive and one negative eigenvalue. Since the spectrum of Q is contained in {q(ξ) | |ξ| = 1},364

there must be a unit length ξ such that q(ξ) = 0 and thus the symbol is not injective.365
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For n ≥ 3, the symbol matrix has more rows than columns, thus if it is rank deficient,366

the determinants of all its largest square sub-matrices must be zero. We first compute the367

determinant of one such (2 + 2n) × (2 + 2n) matrix, which is associated with the first two368

experiments and where the rows associated with measurements for experiments i ≥ 3 are369

deleted, i.e.370 

|F1|2 0 2σ′F ′
1 · ıξ 2σ′F ′′

1 · ıξ 0 0 · · · 0 0
|F2|2 0 0 0 2σ′F ′

2 · ıξ 2σ′F ′′
2 · ıξ · · · 0 0

F ′
1 · ıξ −F ′′

1 · ıξ −σ′|ξ|2 σ′′|ξ|2 0 0 · · · 0 0
F ′′
1 · ıξ F ′

1 · ıξ −σ′′|ξ|2 −σ′|ξ|2 0 0 · · · 0 0
F ′
2 · ıξ −F ′′

2 · ıξ 0 0 −σ′|ξ|2 σ′′|ξ|2 · · · 0 0
F ′′
2 · ıξ F ′

2 · ıξ 0 0 −σ′′|ξ|2 −σ′|ξ|2 · · · 0 0
...

...
...

...
. . .

. . .
. . .

...
...

F ′
n · ıξ −F ′′

n · ıξ 0 0 0 0 · · · −σ′|ξ|2 σ′′|ξ|2
F ′′
n · ıξ F ′

n · ıξ 0 0 0 0 · · · −σ′′|ξ|2 −σ′|ξ|2


.371

We consider the top left 2 × 2 matrix as a block, and the bottom right 2n × 2n matrix as372

a block. The bottom right matrix is still block diagonal with invertible 2 × 2 blocks. The373

determinant of the Schur complement is given by (4.9), and the determinant of the sub-matrix374

is given by375

(4.12) 2σ′′σ′|ξ|4n−2|σ|2(n−1)
(
|F1|2|F2 · ξ|2 − |F2|2|F1 · ξ|2

)
.376

We can generalize (4.12) to any two distinct indices i and j by considering the (2n+2)×(2n+2)377

sub-matrix obtained from Ã0(x, ξ) by deleting all the rows corresponding to measurements378

for experiments other than i or j. This sub-matrix has determinant:379

(4.13) 2σ′′σ′|ξ|4n−2|σ|2(n−1)
(
|Fi|2|Fj · ξ|2 − |Fj |2|Fi · ξ|2

)
.380

If Ã0(x, ξ) is rank deficient at some x, all the determinants (4.13) must vanish for any two381

distinct indices i and j. By the assumptions on σ′, σ′′ and the Fi, this is equivalent to the382

following quadratic forms vanishing for any two distinct indices i and j:383

(4.14) qi,j(ξ) = |F̂i · ξ|2 − |F̂j · ξ|2.384

Since we assumed (4.8) holds, we conclude that ξ = 0 and that the symbol must be injective385

for n ≥ 3.386

Remark 5. We do not present a method for finding boundary conditions such that the387

condition in Lemma 4.1 is satisfied, nor do we know if such boundary conditions exist for all388

possible σ′(x), σ′′(x) > 0. For a concrete example of three unit length vectors satisfying (4.8),389

take F̂1 = e1, F̂2 = e2 and F̂3 = (e1 + e2)/
√
2. In this particular case q1,2(ξ) = |ξ1|2 − |ξ2|2390

and q1,3(ξ) = |ξ1|2 − |ξ1 + ξ2|2/2. The null cone of q1,2 is span {e1 + e2} and that of q1,3 is391

span {(1 +
√
2)e1 + e2}, and clearly their intersection is {0}.392

Numerically, we have found that the complex reconstruction is challenging under many393

combinations of boundary conditions. This can be expected from numerically computing the394
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(a) Two measurements (b) Three measurements (c) Four measurements

Figure 4.2. The maximum condition number (4.6) of the symbol of the complex linearized problem (4.2)
on the discretized square domain with log 10 scaling. The images from left to right are given by two, three, and
four boundary conditions in the form of (4.15).

maximum condition number (4.6) as we illustrate in the numerical experiment appearing in395

Figure 4.2 and that we describe next.396

The ground truth conductivity can be seen in Figure 5.3 with the real part in (a) and the397

imaginary part in (b). We only consider the linearized complex problem (4.2) with Dirichlet398

boundary conditions. The boundary conditions are of the form399

(4.15)
g̃m = gm +

ı

2
hm,

h̃m = hm +
ı

2
gm,

400

with h and g defined in (4.5). The scaling of the imaginary part by 1/2 is to match the imag-401

inary part of the background conductivity. In Figure 4.2, we can see the numerical condition402

of the symbol for two, three, and four boundary conditions. We begin this experiment with403

n = 2 since, with one measurement, the system is underdetermined. The boundary conditions404

for n = 2 are g̃1, h̃1, for n = 3 are g̃1, g̃2, h̃1, and for n = 4 are g̃1, g̃2, h̃1, h̃2. We use the same405

domain and grid as in the real case.406

The maximum condition number (4.6) improves significantly by moving from two to three407

measurements, but the improvement from three to four is modest. The high condition number408

for two boundary conditions (Figure 4.2 (a)) is consistent with Lemma 4.1, where two bound-409

ary conditions are insufficient for ellipticity. With more boundary conditions (Figure 4.2 (b)410

and (c)), the areas where the conditioning is high match up with the reconstruction artifacts411

for the complex case (Figure 5.3).412

5. Numerical reconstructions. The following numerical reconstructions use values con-413

sistent with the quasi-static approximation, i.e., values such that ωµ|σ|L2 ≪ 1. In particular414

we let L = 10 cm and σ′ ∈ [1/3, 2] cm−1 kΩ−1. In the case of non-zero complex conductivity415

we let ω/(2π) = 10 kHz and σ′′ = ωε′ ∈ [1/2, 1] cm−1 kΩ−1. Our choice of parameters is near416

those in human tissues and satisfies the quasi-static approximation, see e.g. [14]. The exam-417

ples we consider assume a thin plate that is homogeneous in the z direction with thickness418

∆z = 0.1cm. If we consider Ω ⊂ R2, then multiplying the measurements by ∆z corresponds419

to the results in section 3.420
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5.1. Discrete model. We discretize the system (3.15) on a square domain Ω = [0, 10]2421

using a uniform grid with n2 nodes. We denote by N the set of nodes indexed with their422

integer coordinates (i1, i2) and the set of edges by E ⊂ N × N . The nodes are partitioned423

into interior nodes I and boundary nodes B, which are the nodes that are on the boundary424

∂Ω. We use the forward difference operator D ∈ R|N |×|E| defined such that425

D =

[
D1

D2

]
.426

Here D1 (resp. D2) is the horizontal (resp. vertical) first order difference operator. Given a427

function ψ defined on the nodes N , the horizontal and vertical difference operators are defined428

by429

(D1ψ)(i1, i2) =
ψ(i1 + 1, i2)− ψ(i1, i2)

∆x1
,

(D2ψ)(i1, i2) =
ψ(i1, i2 + 1)− ψ(i1, i2)

∆x2
,

430

where ∆x1 and ∆x2 are the horizontal and vertical discretization steps respectively.431

If we use finite differences to discretize (3.15), we note that the gradient components in432

the x1 and x2 directions are defined on horizontal and vertical edges. Thus the norm of433

the discretized gradient is not defined at any particular edge. To obtain the gradient at a434

single spatial location in the discretized problem, we interpolate the gradient approximated435

values from their respective edges to the nodes and compute the gradient norm at the nodes.436

Thus it also makes sense to interpret the internal functional Hii as a nodal based quantity437

and to completely determine the conductivity by interpolating a node based quantity. These438

interpolations between edges and nodes are achieved with the following matrices439

N1 :horizontal edges → nodes,

N2 :vertical edges → nodes,

E1 :nodes → horizontal edges,

E2 :nodes → vertical edges,

E1,2 :nodes → all edges.

440

To define these matrices we let φ be the matrix-valued function441

φ(A) = (Diag(|AT |1))−1|AT |,442

where | · | is the entry-wise absolute value, 1 is an appropriately sized vector of ones, and443

Diag(v) denotes the matrix with the vector v on its diagonal. The matrix φ(A) preserves444

constant vectors, more precisely, if c is an appropriate sized constant vector φ(A)c = c. The445

interpolation operators are then defined as446

N1 = φ(DT
1 ), N2 = φ(DT

2 ), E1 = φ(D1), E2 = φ(D2), E1,2 =

[
E1

E2

]
.447
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Given Hii (defined at the nodes) and ei (defined at the boundary nodes) the discrete448

inverse problem for real conductivity is then to find s and ui (defined at the nodes) such that449

for i = 1, . . . , n,450

(5.1)

DT [E1,2s⊙ (Dui)]I = 0,

ui|B − ei = 0,

Hii −
[
N1(E1s⊙ |D1ui|2) +N2(E2s⊙ |D2ui|2)

]
I
= 0,

451

where ⊙ is the Hadamard or componentwise product. We note that in the first equation452

of (5.1), we have a graph Laplacian with edge weights given by E1,2s, see e.g. [17]. This453

system is modified slightly under the assumption that the conductivity is known in a small454

neighborhood of the boundary. The modified system is solved using Gauss-Newton iteration.455

However, the interpolation process introduces a null space into the Jacobian. We use Tikhonov456

regularization with a parameter γ to prevent this null space from interfering when solving for457

the Gauss-Newton step. The parameter corresponds to adding a penalty term of γ∥w∥2, when458

solving the least squares problem for finding a Gauss-Newton step w. An Armijo line search459

is used as globalization strategy (see e.g. [35]).460

Given Hjj and ej , the complex inverse problem is to recover s′, s′′, u′j , and u′′j for j =461

1, . . . , n,462

(5.2)

DT [E1,2s
′ ⊙ (Du′j)]I −DT [E1,2s

′′ ⊙ (Du′′j )]I = 0,

DT [E1,2s
′ ⊙ (Du′′j )]I +DT [E1,2s

′′ ⊙ (Du′j)]I = 0,

u′j |B − e′j = 0,

u′′j |B − e′′j = 0,

Hjj −
[
N1(E1s

′ ⊙ |D1u
′
j |2) +N2(E2s⊙ |D2u

′
j |2)

]
I

+
[
N1(E1s

′ ⊙ |D1u
′′
j |2) +N2(E2s

′ ⊙ |D2u
′′
j |2)

]
I
= 0.

463

A similar Gauss-Newton procedure was used to solve (5.2).464

Heating Patterns: Recall that to obtain the measurements Hii; we need to locally heat465

a region of the conducting plate. This requires numerically approximating (3.13) at both the466

background temperature T0 and when the plate is locally heated according to δT (x). For our467

measurements we let δT (x) be the Gaussian heating pattern,468

g(x, a) = (2πa)−1 exp
(
−|x|2(2a)−1

)
469

where | · | denotes the 2-norm. The heating pattern g(x, a) can be considered an approximate470

Dirac since it integrates in x to one. This is also similar to the heating pattern from a laser471

covering an area of roughly πa or it could also be interpreted as a time snapshot of a Green472

function for the heat equation in a homogeneous medium.473

Deterministic simulations: Continuous measurements from the deterministic model474

using this heating pattern can be written as475

(5.3) Hii(x) ≈
〈
σ|∇ui|2, T0 + g(· − x, a)

〉
L2(Ω)

−
〈
σ|∇ui|2, T0

〉
L2(Ω)

.476
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We approximate Hii(x) by evaluating the heating pattern at each node x in the discrete model.477

Then to approximate the inner products, we use a uniform fine grid with ñ2 nodes such that478

ñ > n. The number of fine grid nodes ñ is chosen such that there are at least four fine grid479

nodes per effective area of the heating pattern, i.e. πa. Owing to (3.13), the right hand side480

of (5.3) is the convolution of Hii with a Gaussian kernel.481

Stochastic simulations: Ideally we would like to simulate acquiring the data Hii through482

an empirical measurement of the power spectral density (1.2) of the currents J (see (3.2))483

that leak to the ground, resulting from stochastic source term je in (3.1), which has a power484

spectral density (2.2) dictated by the fluctuation dissipation theorem. This could be achieved485

by generating a realization of je over a long time interval [−T/2, T/2] and then calculating the486

time average of |Ji|2 as in (1.2). The procedure is to be repeated for each heating pattern to487

approximate Hii through differential temperature measurements (3.13). Since this could be488

computationally expensive, we used instead the ergodicity of je to calculate many realizations489

of a discretization of je satisfying (2.2).490

We discretize a realization of je with one value per edge of the fine grid. For each edge491

e, we take je(e) sampled from a mean zero random normal distribution with variance κ(T0 +492

g(x, a))s(e)/π (heated) or κT0s(e)/π (unheated), where s(e) is the conductivity of edge e.493

These variances are determined by the fluctuation dissipation theorem as in (2.2) and depend494

linearly on the temperature and on the conductivity. The measurements from the simulated495

random current model are then given by approximating496

(5.4) Hii(x) ≈
〈〈
σ|∇ui|2, T0 + g(· − x, a)

〉
L2(Ω)

〉
−
〈〈
σ|∇ui|2, T0

〉
L2(Ω)

〉
,497

where the outer angular brackets denote ensemble averaging. The average is approximated em-498

pirically with M realizations of random currents where the inner product for each realization499

is approximated using a uniform fine grid. The realizations of the background temperature500

measurements (the rightmost term in (5.4)) are not recalculated for each heating pattern.501

Remark 6. We believe the simulation method used for realizations of random currents cre-502

ates a more challenging problem than experimental data. In practice, measurements could503

be taken over a time interval and then averaged over time. This gives temporal structure to504

the data that is not reflected by our simulations which ignore the temporal correlation of the505

random currents.506

5.2. Real conductivity. First, we consider problems of purely real conductivity (σ = σ′)507

in both the case of measurements from simulated random currents (stochastic model) and508

measurements using their variances (deterministic model). For both problems we consider the509

Dirichlet boundary conditions (3.4) using e1 = (x1+x2)/10 and e2 = (1+x1−x2)/10. For the510

more challenging problem of the experimental boundary conditions (3.12), we only consider511

the deterministic model of measurements.512

We show in Figure 5.1 numerical reconstructions for a purely real conductivity in the513

deterministic and stochastic models. The deterministic measurements Hii in (5.3) are taken514

with T0 = 300 and a = 0.01 on a 60×60 coarse grid using a 120×120 fine grid to approximate515

the integrals. The same conditions were used for the stochastic model, where in addition we516

took T0 = 0.01 using 1000 realizations of random currents. We chose a particularly low back-517

ground temperature T0 to get clean enough data with the number of realizations we chose.518
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As can be expected from subsection 3.3, the signal to noise ratio for the differential temper-519

ature measurements worsens for large T0. The reconstructions in the stochastic simulations520

Figure 5.1(c) are comparable to those in the deterministic case Figure 5.1(b), which is remark-521

able given the significant errors that are introduced in the data for the stochastic simulations.522

We mention that our choice of discretization ensures that each approximate Dirac heating523

pattern (a = 0.01) covers a minimum of four grid points.524

The conductivity is assumed to be known for nodes that are 0.5cm, or less, away from the525

boundary. The Tikhonov regularization parameter is γ = 5−4, and iterations are run until the526

2-norm of the step is less than 0.1. The initial guess is the solution to (5.1) with a constant527

conductivity.528

(a) (b) (c)

Figure 5.1. Reconstructions of purely real conductivity values (cm−1 kΩ−1) on a 10cm×10cm square
domain. The ground truth conductivity in (a) is evaluated on the fine grid. Both the reconstructions using the
deterministic model (b) and a stochastic model (c) are evaluated on the coarse grid.

The numerical example in Figure 5.2 uses data from experimental boundary conditions529

in (3.12).The set Γ defined in (4.4), corresponds to the electrode functions. On Γ, we use530

electrode functions g1 and h1 (4.5) for the boundary conditions. This set has gaps of 1cm531

at the center of each side of the square with no flux conditions. The no flux conditions are532

enforced by using centered approximations to the nodes on ∂Ω − Γ (see, e.g., [30, sec 2.12]).533

The ground truth conductivity is given in Figure 5.2 (a). The reconstructions are evaluated534

on a 100 × 100 coarse grid, and a 200 × 200 fine grid is used to evaluate the measurements535

(5.3). A minimum of twelve fine grid points are in the effective area of each approximate Dirac536

heating pattern.537

The Gauss-Newton iteration is regularized with γ = 3−3, and iterations are run until the538

2-norm of the step size is less than 0.1. The reconstructions in Figure 5.2 are close to the539

original conductivity, although there are some numerical artifacts due to the gaps between540

the electrodes, which are superficially similar to those caused by corner type singularities in541

the conductivity as studied in [9].542

5.3. Complex conductivity. An example of a complex conductivity reconstruction using543

the deterministic model of measurements can be seen in Figure 5.3. Four experiments are544

used with the Dirichlet boundary conditions g̃1, g̃2, h̃1, h̃2 given in (4.15). The reconstructions545

are evaluated on a 100 × 100 coarse grid, and a 200 × 200 fine grid is used to evaluate the546

measurements (5.3). The Gauss-Newton iteration now uses γ = 10−4, and iterations are run547
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(a) (b) (c)

Figure 5.2. Conductivity values (cm−1 kΩ−1) for a numerical reconstruction (c) of the same conductivity
as Figure 5.1 using the experimental boundary conditions in (3.12). The data Hii = Re (σ(x))|∇ui(x)|2 used
for the reconstructions is shown in (a) for g1 and in (b) for h1, with units cm−3 kΩ−1.

until the 2-norm of the step size is less than 0.1. A constant complex conductivity and the548

corresponding solutions to (5.2) are used for the initial guess.549

The numerical artifacts in the complex reproduction are consistent with the areas in550

Figure 4.2 (c), where the maximum condition number (4.6) of the symbol is largest. Intuitively,551

reconstructing the imaginary conductivity may be more challenging as it does not explicitly552

appear in the measurements. In the discrete system (5.2) it appears only when coupled with553

a gradient of the real or imaginary auxiliary field. When the gradient of the real part is large554

it may overwhelm the contribution of the complex conductivity. This is the exact behavior555

we see in our numerical experiments. When the real conductivity is high, the gradient of the556

real field is large, and the reconstructed complex conductivity (Figure 5.3 (d)) is lower than557

the true value.558

6. Summary and perspectives. We propose a new hybrid inverse problem for recovering559

the conductivity of a body using thermal noise. The fluctuation dissipation theorem for560

electrodynamic media allows us to relate the variance of thermal noise currents taken with561

different temperature patterns to the real part of the conductivity of a body. By taking562

a sufficiently rich set of measurements we can estimate an internal functional that depends563

on this real conductivity and the solution to an associated auxiliary problem. We show564

this relation holds for both Dirichlet boundary conditions and mixed Neumann/Dirichlet565

boundary conditions, the latter of which is a more realistic description of an experimental566

setup where such measurements might be used. For purely real conductivities, these are567

power density measurements. This problem of recovering a real conductivity from power568

density measurements also appears in acousto-electric tomography.569

Before attempting numerical reconstructions we try and determine if the linearized prob-570

lems are elliptic in the Douglis-Nirenberg sense. The linearized real problem has previously571

been shown to be elliptic, given the auxiliary fields are nowhere orthogonal or parallel [6]. For572

the real problem with mixed boundary conditions, we make no effort to show our boundary573

conditions satisfy this condition. Instead, we numerically evaluate the worst conditioning of574

the principal symbol at each point in space. The numerical results are consistent with the575

previous theoretical work in [6]; using more boundary conditions improves the numerical con-576
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(a) True σ′ (b) True εω

(c) Reconstructed σ′ (d) Reconstructed εω

Figure 5.3. Real and imaginary conductivity values (cm−1 kΩ−1) for a numerical reconstruction (c) & (d)
of a complex conductivity on a 10cm×10cm square domain. The ground truth (a) & (b) is evaluated on the
fine grid and the reconstruction is evaluated on the coarse grid.

ditioning of the symbol. For the complex symbol, we give a sufficient condition on the auxiliary577

fields for the problem to be elliptic, without proving that the auxiliary fields can be generated.578

In contrast with the real case where two boundary conditions are sufficient for ellipticity, the579

complex case requires three or more boundary conditions. We perform a similar numerical580

evaluation of the conditioning of the symbol under a number of different experiments. This581

evidence indicates that the complex conductivity problem with two boundary conditions is not582

elliptic. This numerical approach to classification may find use in similar problems, especially583

in problems with complicated boundary conditions or principal symbols. The clear limitation584

of this method is that it does not inform the choice of boundary conditions. We note that the585

conditioning in these problems would not normally be seen as high for other applications.586

Finally, we present a simple discrete model for numerical reconstructions. Our numerical587

reconstructions are consistent with the linearization study. We also present results using sim-588

ulated random thermal currents for the case of a purely real conductivity. These simulations589

ignore temporal correlations, making the problem more challenging. In this case, we can get590

an accurate, if noisy, reconstruction of the conductivity at a low temperature.591

This method of thermal noise imaging may find applications in e.g. Atomic Force Mi-592
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croscopy, laser weld monitoring. A challenge in using our approach is that the relative size of593

the measurements due to the background temperature and the heating pattern (see subsec-594

tion 3.3) results in currents that may be hard to measure reliably in practice.595

Our results are for a fixed frequency ω, and removing this limitation may allow for more596

accurate reconstructions in the complex case. Considering multiple frequencies could take597

into account any frequency dependency of σ′ or ε′ in σ = σ′ + ıωε′, but requires a different598

analysis. Additionally, the relative scale of the variables of interest, ω and ε, changes which599

may introduce other challenges to the reconstructions.600
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