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I. INTRODUCTION

A realistic dynamical process always involves exchange of energy between the central
degrees of freedom (subsystem) and the surrounding environment (bath), which is referred
to as dissipation.IIE This is particularly important in the condensed phase, in which thermal
fluctuations of the bath often profoundly affect the dynamics of the subsystem. For example,
quantum tlraunsport545 of electrons or molecular excitations along extended molecules or
molecular arrays often occur via energetic relaxation of the subsystem, with the excess
energy dissipated to satisfy the energy conservation. For this reason, the total dissipated
energy reflects the progress of the relaxation during the dynamics. In particular, it is highly
desirable to understand the relative importance of each bath degree of freedom (DOF) at
each instance or the overall relaxation process. This can be accomplished by decomposing the
dynamics of the total dissipated energy into individual contributions by specific components
of the bath. Such an ability will provide detailed knowledge about which bath components
play a predominant role in the dynamics, which can help us to establish useful principles for
designing and controlling the quantum behavior of molecular systems.lﬂE For instance, such
insights are needed to understand how energy is dissipated by the photosynthetic complexes,

and how to modify physical systems to enhance or suppress dissipation.

In the field of quantum thermodynamics, methodologies for analyzing the flow of heat
and entropy between macroscopic bath reservoirs have been developed for closed and
driven systems. These tools can provide detailed descriptions about how thermodynamic
principles manifest in quantum systems such as quantum heat enginegE and rectiﬁers.
However, there are still relatively few methods which can efficiently track time dependence
of the quantum statistical properties related to individual microscopic components of the
bath. In this paper, we address this challenge by extending the theory of quantum master
equations, which is one of the major workhorses for simulating the dynamics of open quantum

systems.

To calculate the dissipation due to a single bath component, we need to monitor its change
in energy which, in turn, requires dynamical information about the environment. In princi-
ple, this task can be fulfilled by utilizing already available simulation methods for quantum
dynamics that follow the bath explicitly. In practice, this remains a widely challenging task.

For example, the energy of a single DOF can be straightforwardly obtained from efficient



wavefunction propagation methods such as multi-configurational time-dependent Hartree
(MCTDH)Iﬁ4ﬂ or time-dependent density matrix renormalization group (T D—DMRG).M
However, incorporating the effect of temperature requires additional complications such as
combination with thermofield dynamics. Even so, the bath subspace must be truncated to
reduce the computational burden to an amenable extent, which can significantly affect
the accuracy of the calculation.

Another major category of simulation methods are quantum master equations where
the focus is on the reduced density matrix (RDM) of the subsystem and the influence of
the environment is only captured implicitly by determining how it affects the subsystem.
For these methods, the dynamics of a bath component can be accessed by combining the
mode with the subsystem and propagating the RDM of this extended subsystem.lﬁ@ Even
when the simulation method does not easily allow such a re-definition of the subsystem,
the dissipation can be indirectly extracted by introducing an additional bath mode into the
subsystem, which acts as a probe. Nevertheless, both procedures can be computationally
quite demanding, as the construction of the extended subsystem significantly increases the
dimension of the RDM. This issue becomes especially problematic when the bath frequency
becomes comparable to or less than the thermal energy, where a large number of bath
quantum states must be explicitly included in the density matrix to faithfully simulate the
statistical mechanics of the bath mode.

Mixed quantum-classical simulation methods,@ where the bath is captured classically,
can be used to compute the energy of the bath modes with only modest computational
costs.@@ However, the reliability of the calculation is often deteriorated by the approxi-
mations involved in the formulation. Indeed, these methods often exhibit uncontrollable
artifacts such as negative subsystem state populations or zero-point leak of the vibrational
energy.@@

Motivated by the absence of efficient yet reliable tools for resolving dissipation, we have re-
cently developed a practical scheme@ based on Fermi’s golden rule rate in the weak-coupling
limit. The scope of our theory covers non-adiabatic chemical dynamics in the condensed
phase such as the transfer of molecular excitation or Charge, in the presence of har-
monic bath modes affecting the process. Although the master equation for the population
of the subsystem states was already reported several decades ago,@@ our previous work

extended it to resolve the overall dissipated energy into the amounts absorbed by each bath



mode. This was accomplished by explicitly quantizing a bath mode and calculating how its
vibrational energy changes upon the population transfer between electronic-vibrational (vi-
bronic) quantum states. Deriving an efficient expression, however, required a clever but not
readily generalizable analytical summation over all vibronic state pairs based on an equality
extracted from the theory of spectral line shapes.

In this paper, we present a general framework for constructing practical and accurate
schemes to isolate dissipation pathways in open quantum systems. The formulation incor-
porates a specific bath DOF into the subsystem component and calculates the change in
its energy with Nakajima-Zwanzig projection operator technique. By perturbatively ex-
panding the Liouville-von Neumann equation, we elucidate the rate of dissipation expressed
by using traces of operator products, which can be applied for general types of bath and
subsystem-bath interaction. We also rigorously prove that this approach satisfies energy
conservation and detailed balance. We then demonstrate the applicability of our approach
by using it toward deriving the dissipation rate equations for prototypical models of open
quantum systems, namely subsystems coupled to harmonic oscillator baths or spin baths.
In the subsequent paper, Paper II,@ we will use the developed expressions to quantify the
dissipation pathways in model Hamiltonians and assess the accuracy of the theory by bench-
marking it against numerically exact simulations.

The structure of the paper is as follows: In Sec. [lI, we first provide an overview of the
theoretical background required to understand the main findings of our work, and introduce
our new framework for quantifying the dissipation pathways. In Sec. [[II, we apply our
framework to specific model Hamiltonians and connect the outcomes to previously known

results. In Sec. [[V] we summarize our main findings and suggest future research directions.

II. THEORY

Our objective is to extract the rate of dissipation into a specific bath DOF, under the
dynamics governed by a quantum master equation. As our approach is developed based
on the projection operator technique, we present its brief review in Sec. [LAl We then
propose our new theoretical framework for resolving the dissipated energy into individual
bath components in Sec. [[IB. Finally, Sec. [LC! discusses energy conservation and detailed

balance.



A. The projection operator technique for open quantum systems

We consider a group of quantum states interacting with the surroundings, which are
classified as the subsystem and bath, respectively. We adopt the viewpoint of open quantum

system and divide the Hamiltonian H of the system as

FI = ﬁsub + I:Ibath + I:Iintv (1)
where f[sub is the Hamiltonian of the subsystem, f[bath the bath, and f[int the interaction
between the subsystem and bath.

We cast Hyy, by using {|A)} as the basis and split it into diagonal and off-diagonal

components which account for the state energies and inter-state couplings, respectively:

Ij]sub - IA{ener + ﬁcoupa (2)
[:[ener - Z EA |A> <A| s (3)
A

Heowp = Y > Vap|A) (B + Hec (4)

B<A

Here, E,4 is the energy of the state A, Vag = Vg4 is the coupling between states A and B,
and H.c. denotes Hermitian conjugate. In turn, we assume that the sum of the Hamiltonian
components for bath and subsystem-bath interaction can be split into individual elements
{h;},
ﬁbath + [:[int = Z iLj, (5)
J

and each element only couples to the diagonal part of the subsystem Hamiltonian

hi = (14) (Al © 0ay). (6)

A

On the other hand, the off-diagonal component of H, «ub does not interact with the bath in our

e

model, which is called Condon approximation® in molecular systems. Such an assumption is
frequently employed to construct quantum master equations for chemical dynamics in con-
densed phases, starting from harmonic oscillator bath to more general bath models.

We now apply the projection operator techniqu to derive the master equation that
governs the time evolution of an open quantum system. To apply the technique, one first

splits the identity super-operator into Z =P+ Q where P and Q project the full density



matrix p onto the dynamically relevant part 75/3 and the rest Qﬁ, respectively. As P performs
a projection, it should satisfy P2 = P and also 75Q = Q?S =0.

The time evolution of p is governed by the Liouville-von Neumann equation dp(t)/dt =
—iLp(t)/h, where the Liouvillian super-operator is defined as £p = [H, p]. By assuming
that the density of the system is initially confined in the dynamically relevant part so that

Pp(0) = p(0) and Qp(0) = 0, one can derive a formally exact expression for the dynamics

of Pp(t) 5364

d - (PPN (t—1') A4l A s
—[Pp(t)] = —=PLPH(t) / PLOexp { i . )Qﬁ} QLPp(t") dt'. (7)
We now apply perturbation theory by dividing the total Hamiltonian as H = Hy+ H, where

FIO = ﬁener + ﬁbath + I:Iintv
- (8)
Hl - Hcoup>
and treating H, as perturbation. The Liouvillian is also accordingly split as L=1Ly+ L,

where

Lop = [Ho, p] and L1p = [Hy, 7). 9)

We now specify the form of P as
p=> (Pa]A) (Al ® Ra), (10)
A

where Py = Try, (A| p|A) is the population of the subsystem state |A) and Tr}, indicates the
trace@ over the bath subspace. We also define Ry as the equilibrium bath density for h A

lf{A _ exp(—ﬁizA)

Tryexp(—Bha)] "

where 8 = 1/kgT is the inverse temperature , and hy4 is the projection of the total system

Hamiltonian onto a subsystem state

ha=(AlH|A) =Es+) ia;. (12)
J

According to Eqs. (I0) and (II), P instantly relaxes the bath density to reference densities
{E 4} and also quenches any coherence between the subsystem states.
From now on, we will focus on the dynamics of the projected density matrix 75,6(15)

[Eq. (I0)] and derive the rate equation that governs the subsystem state populations. We do

6



so by following a procedure similar to that in Ref. . Specifically, we first expand Eq. ()
by applying time-dependent perturbation theory and keeping the terms up to the second
order in £;. From Egs. (@) and (I0) it follows that ﬁﬁoﬁ = ﬁoﬁﬁ = 752175[3 = 0. If we
replace Q by 7 — P and invoke these identities, the expression simplifies into

dos o1 =) 2 A s o

Applying the Markov approximation and calculating Try[(A| %{ﬁﬁ(t)} |A)] lead us to the

rates of change in the electronic populations

1

Pu(t) = 2

Try, l /0 h (A|PLy exp(—it' Lo /h) L1 Pp(t) | A) dt’] . (14)

We expand the integrand in Eq. ([4]) with the expressions for the Liouvillians [Eq. ([@)] and
the projection super-operator [Eq. (I0)], and insert the explicit forms of Hy and H; [Eq. (§)]
The result is a first-order rate equation between the subsystem populations
Pa(t) =) [~KpaPa(t) + KapPp(t)], (15)
B#A
where the rate constant K, governs the population transfer from |A) to |B), and is ex-
pressed as

2 2 R AT
Koy = Vsl g / oy [Up(¢) RaU ()] dt. (16)
0

h2

In the above, Uy (#) is the shorthand notation for the unitary operator

O4(t') = exp ( - ”;?A). (17)

For brevity, from now on the dependence on ¢ of the operators {U4(#)} will be omitted.
Equations ([I3)—(17) are valid for general types of bath and subsystem-bath interaction,
as we did not make any assumption about the specific form of ﬁbath and ﬁmt up to this
point. The calculation of the rate constants { Kz} is possible if the trace of the operator
product Trb[U BJ%AUL] converges to zero rapidly enough as ¢’ increases, so that the value of
the integral in Eq. (I6)) is well-defined. For relatively simple bath models, such as linearly
coupled harmonic oscillator or weakly coupled %-spins, it is possible to obtain analytical
expressions of the trace as will be illustrated in Sec. [II. Even in the situations in which
the analytical expression cannot be obtained, it will be still possible to evaluate the trace

by factorizing it into the quantities arising from individual bath components and evaluating
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each of them numerically. Namely, the equilibrium bath densities {E 4} can be expressed as

RA =11 j 7aj, where 7,; is the thermal density operator for a single bath mode

o exp(—finy)
Y T exp(—Boay)]”

(18)

with Tr; being the trace over the subspace spanned by the j-th bath component. Then we
numerically calculate the traces of the operator products arising from the individual bath

components

Tr;[ip;fayaly,) = Tr {eXp (Zt,;Bj)fAj exp ( - Zt,;;Aj)] ; (19)
where the unitary operators {u4;} are defined in an analogous manner to Eq. (I7). Practi-
cally, Eq. (I9) is calculated by representing the operators in a trace by using a finite number
of bath quantum states that faithfully represent 74, with a desired accuracy. After repeating
such a procedure for all bath components, the full trace can be constructed according to

To (0B (] — it'(Ep — Ea) A
1, [UpRAU)| = exp ( — #> H Trjldp;7aiy;), (20)
j
which is derived from Eq. (I2]).

Before we move onto the calculation of dissipation, we note that Eq. (I3]) is an “incoherent”
master equation which is only dependent on the state population and does not account for
any coherences between the subsystem states. This is because we are only focusing on the
dynamics of the projected density 75/6(15), and discarded the feedback from the bath onto the
subsystem by making the second-order approximation in Eq. (I3). We note, however, that
a recent Work@ illustrated a way to simultaneously follow the dynamics of both 75;3(25) and

Qﬁ(t), while also rigorously addressing how the dynamics of the subsystem is affected by
the state of the bath.

B. Quantifying the dissipation by individual bath modes using projection

operator technique

The dissipation accounts for the transfer of energy from the subsystem to the surround-
ings, which is reflected in how the energy expectation value regarding the bath-related com-
ponent (ﬁbath + ﬁint> changes with time. If we decompose this expectation value according

~

to Eq. (B]), the energy of the j-th bath component is expressed by E;(t) = Tr[h;p(t)], whose
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time-derivative

. - d
(1) = Ty 000 e1)
becomes the rate of dissipation into this specific bath component. Our goal is to derive a
practical expression for Eq. (2I) using the projection operator technique. In this paper, we

aim to calculate the amount of dissipation solely arising from the dynamics of ﬁﬁ(t). Then,

the simplest approach would be to substitute p(¢) on the right-hand side by 75,5(15),
e [d
E,(0) £ Ty P00 | (22)

However, it turns out that Eq. (22) is not sufficient to capture the dissipation because P
[Eq. (I0)] does not allow any change in the bath density. This constraint becomes the most
detrimental when the equilibrium energy of the bath component becomes identical for all
subsystem states, as in the linearly coupled harmonic oscillator bath model (Sec. [ILA)) which
is often used to study open quantum systems. We can explicitly show this by replacing 75,5(15)
with the right-hand side of Eq. (10),

Tr {ﬁj%[ﬁﬁ(t)]] = XA: (difl‘t(t) Trb[@AjRA]), (23)

and then factoring the bath energy ¢; = Trb[@Ajﬁ’A], which we assumed to be state-

independent, out from the right-hand side of Eq. (23)) to yield
Tr [z}ji[ﬁﬁ(t)]] = ¢ [ﬁ <Z PA(t))] = 0. (24)
dt dt -
In the last equality, we used the property that the sum of the electronic populations ) , Pa(?)
is always conserved throughout the dynamics. The fact that Eq. (22]) yields a vanishing
dissipation for a widely used model of open quantum system dynamics states that we need
to devise a better method to calculate the dissipated energy.

To get a physically meaningful dissipation by a bath component, we must allow its energy
to change while also being consistent with the population dynamics governed by Eq. (I5).
We suggest that such requirements can be fulfilled by factorizing the overall projection
operator into P = ﬁjﬁj_ where p; acts on the j-th bath component and P._ on all others:

@ﬁz}j@%&ﬂﬂ@ﬂ@@%@MJ, (250)

A

ﬁ%ﬁ:§:<ﬂthMﬁVmP@@“®émﬁ)- (25D)
A



In Eq. (28b), we have introduced the equilibrium density operator

Raj— =[] ra (26)

k#j
and the trace Try, j_ over the subspace spanned by all bath modes except the jth component.
Naturally, Ri=R a,j—Ta; and Ty, [O] =Try, ;- [Trj [OH are satisfied for an arbitrary operator
0.
In Appendix |Al, we show that

(1) = Ty P10 (21)
is valid under the assumption p(t) = Pp(t) [Eq. [IQ)], which reflects that we are trying to
calculate the dissipation specifically induced by the evolution of Pj(t). Equation (27) lets us
capture the amount of energy dissipated into a bath component before it is quenched by the
remaining part of the projection operator p;. What now remains is converting Eq. (27) to a

practical expression, which can be achieved by following a procedure analogous to Sec. [[LAl

Namely, as 75]2_ = 75]-_, we can replace P in Eq. @) by P._ and obtain

d > ~ A AN A~
E[PJ—P@)] = _ﬁpj—ﬁpj_p(t)
| AP it—t) . \ (28)
T Pj-LQ;_ exp [— Q; L }Qj_m?j_,a(t’) dt’

where Qj_ =7 - 75j_. The next step is expressing Qj_ in Eq. (28) in terms of P;_ and
making further simplifications by using ﬁj_ﬁoﬁ = ﬁoﬁj_ﬁ = 75]-_2175]-_,5 = 0, which is
satisfied when p = 75,6 Finally, by employing the Markov approximation, we arrive at an

expression identical to Eq. (I4) except P is replaced by 75j_,

q . o
GPi0) =~ [ P Lyesp(oit Lom Py t) de. (29)

Expanding the integrand leads us to

P, Ly exp(—it' Lo/h)L1P;_p Z Z [\VAB\ |A) (A
A B#A (30)
& <PA(t)T1"b,j_[(jBRA(7L] - PB(t)TIb,j_[UBRBUL]) & I:{AJ_:| + H.C.

Note that the partial trace objects in Eq. ([B0) are operators in the subspace spanned by the

jth component, in contrast to the scalar quantities in Eq. ([I6). To proceed, we factorize the

10



bath operators in the traces into contributions from the jth component and the rest. For

{R4} we can recognize Eqs. (IR) and (28), and for {U4} [Eq. (IT)] we have Eq. (I) and
- it .
UAJ»_:eXp l_%(EA+;UAk)}’ (31)

so that Uy = 4 AjU 4.j—- We now plug these factorized bath operators in Eq. (80) and use
the resulting expression with Eq. (29) to expand Eq. ([27). At the end, we obtain the rate

equation for the dissipation

Ej(t) =) > [KhaPalt) + KhpPa(1)], (32)

A B<A

whose rate constants {K7, ,} are given by

; 2|Vap|?
]CJBA = K2

Re/ Trb,j—[ﬁB,j—RA,j—ﬁLj_]Trj[(@Bj — @Aj)ﬂBjTAAjﬂLj] dt/. (33)
0

The integrand of Eq. (B3] can be evaluated by following a similar procedure as that of
Eq. ([16), for general types of the bath and subsystem-bath interaction. If an analytical
expression for the trace Tr;[ug;7 Aj'&Lj] is available, we can utilize the relation

[0 — D)y ajithy] = ih— Tl ayih ) (34)

Eqgs. 32)—(B4) summarize the main findings of this work, which provide an efficient frame-
work for calculating dissipation underlying Markovian quantum master equation (MQME).
For the remaining part of the paper, the developed method will be referred to as MQME-D
to highlight our extension of MQME toward the analysis of dissipation.

We emphasize that the usage of the factorized projection operator 75j_ [Eq. 27)]
by MQME-D does not affect the population dynamics governed by the original MQME
[Eq. (I5)]. It can be thought that at every time instance ¢, we start from the projected
density ﬁﬁ(t) and temporarily lift the projection for the j-th bath component. The density
matrix is then propagated for an infinitesimal amount of time dt, and the dissipated energy
into the j-th bath component is evaluated based on Eq. (27). Immediately after that, the re-
maining part of the projection operator p; is applied to the intermediate density 75]-_ p(t+dt)
and quenches the excess energy of the j-th component gained by the dissipation. By doing
so, the density returns again to the fully projected form 75/3(15 + dt), in agreement with the

11



evolution according to Eq. ([IH). The procedure just described can be rationalized by the
identity
PR = b [Py (0] (35)
dt! PN T Pig U= PR
whose proof is outlined in Appendix Bl

C. Proof of thermodynamic principles

We now confirm that the dissipation calculated by MQME-D [Eq. (82])] satisfies thermo-

dynamic principles, namely energy conservation and detailed balance.

1. FEnergy conservation

We first prove the energy conservation, which states that the rate of energy loss from the

subsystem must be equal to the rate of energy gain by the entire bath. This is expressed as
Ean(t) + Y E;(t) =0, (36)
J

where Eg,,(t) is the expectation value for the energy of the subsystem

~

Esub(t) = Tr[HSub ﬁ(t)] (37>

Even though the calculation of the dissipation is based on Eq. (27) which is exact, it would
be still meaningful to check whether Eq. (B6) is still valid despite the Markov approximation
applied in the derivation. It is also yet another demonstration of the consistency between
the dynamics of the population [Eq. (I3))| and dissipation [Eq. [82)], apart from Appendix [B.
To begin with, we combine Eq. (87) with Eq. (IQ) by recalling that we are assuming that
the identity () = Pp(t) is satisfied at every instance (Sec. [[LB)), and therefore

Eun(t) =Y EaPa(t). (38)

Taking the time-derivative of both sides and expanding P (t) with Eqs. (5) and (I8) lead

us to

. 2 o0 A~ A A ,
Ean(t) = =15 >y [E,LX|VAB|2 Re (PA(t) / Try[UpRAUY] dt
A B#A 0 (39)

~ Py(t) / o[04 fen 0] dt’)] |
0

12



When this is combined with Eqs. ([82]) and (33]), we get
Ean(t) + > Ej(t)
J

— _% Z Z {|VAB|2 Re (PA(t) /000 Trp[(ha — hp)UpRaUY] dt! (40)

A B<A

+ Pp(t) / Try[(hg — ha)UaRpUL) dt’)},
0

where we have used the definition of h4 [Eq. (IZ)] to condense the bath operators. Then,
by recognizing the identity
Try[(ha — hp)UsRAUY] = —zh%Trb[UBRAUI‘], (41)

we can perform the integration over ¢’ to derive

/ Try[(ha — hp)UsgRAUY] dt’ = m(1 — lim Trb[UBJ%AUg]). (42)
0 ! — 00

Equation (42) shows that the integrals in Eq. (40) yield purely imaginary numbers if
Try, [U BEAUI;] decays to zero as t' — oo, eventually converting Eq. (40) to Eq. (86). There-
fore, as long as the integrals for the rate constants |[Eq. (I6)| are well-defined, Eq. ([36) is

also valid and we can conclude that MQME-D satisfies the energy conservation.

2. Detailed balance

At the steady state, the ratio between the rate constants for population transfer in the

opposite directions must satisfy
KAB _ PA(OO)
KBA PB (OO) ’

(43)

which arises from the connection of Eq. (I5) to the steady-state condition, P4(co) = 0 for
all A. The net dissipation into every bath component must also vanish at this point, so
that limy_,., £;(t) = 0. Combining this condition with Eqs. (32) and [@3) gives us a relation
between dissipation rate constants in the opposite directions,
Ky Eas (44)

Ky, Kpa
which must be satisfied in order to maintain its consistency with the population dynam-

ics. To prove Eq. (44), we first need to derive the detailed balance condition for the state
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populations, which is achieved by following an approach motivated by Ref. B We start by
defining a function in the time-domain

oyl

it RPN
faalt) =exp (' (Bn = E) | InfUn a0 (45)
and perform the Wick rotation t' — t' — i3 to get

fpa(t' —ihf) = exp K% + ﬁ) (Ep — EA)]

X Trp[Up exp(—Bhp)Ra exp(Bha)UY].

(46)

We now introduce the identity

eXp<_ﬁilB)RA eXp(ﬁfAlA) = giﬁitgiﬁ E’B, (47)

which is immediately validated by replacing R4 and Rp with its definition [Eq. ()] If we
insert Eq. (A7) in Eq. (46) and take the complex conjugate, we can elucidate

r,[exp(—fB Y, 05;)]
Try[exp(—B_; 04;)]

where the state energies F 4 and E were eliminated from the expression by recalling Eq. (12).

fa(t’ —ihf) = [fas(@)]", (48)

Equation (48] conjoins the two time profiles related to the population transfers in opposite

directions. Meanwhile, fz4(t') and its Fourier transform fpa(w) are connected by

foa(t’ / fra(w)e™ dw, (49)
which can be combined with Eq. (48)) to give
1 Trplexp(—=B22;045)] [ - ot
t/ _ J / Bhw  —iwt d 50
fap(t') 27 Trolexp(—B 5, 053] J oo fBa(w)e”™e w, (50)
where we have recognized that fza(t') = [fsa(—t')]* which makes fpa(w) a real-valued

function. We now express the integrand in the explicit expression of Kp4 [Eq. (I6])] in terms
of fpa(t’ ) |[Eq. (3)] and change the lower limit of the integral to —oo by using the identity
2Re [,  y(z)dz = [°_y(2)dz which holds when [y(z)]* = y(—=2). Finally, invoking Egs. ([@9)
and (H]) and then carrying out the integrations lead us to

Vagl? - Frn—F
Kpa = % fBA(BTA)a (51a)
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2T ~Bha) ; (Ep—F
Kap = |VA§| Xuloxpl ﬁAA)] fBa (73 A) (51b)
W2 Try[exp(—Bhs)] h
which gives the simplified ratio between the rate constants as
Kap _ Tryfexp(—ha)] (52)

Kpa  Try, [eXP(_ﬁiLB)].

Equation (52)) is the detailed balance condition which shows that the ratio between the
steady-state populations [Eq. (43))| follows the Boltzmann distribution dictated by the PESs
associated with the two relevant subsystem states. When the two PESs have an identical
landscape as in the Hamiltonian models discussed in Sec. [l1I, we have Tr[exp(—3 3, 04;)] =
Trylexp(—B)_; 9p;)] and the ratio between the traces in Eq. (52) further simplifies into
exp|B(Ep — Ea)].

We now prove that the detailed balance is also satisfied for the dissipation. For this
purpose, we re-write the intermediate expression for the dissipation rate constant |[Eq. (33))]

by combining the two traces,

. 21Vanl? 0 A
Ky = a2k g | l(en; = oa)0nRal} dt, (53)
0

which is allowed by the fact that Tr[O]Tr[0] = Tr[O ® O] for arbitrary operators O and
O’ acting on orthogonal subspaces. Equation (53) now resembles Eq. (IB) except for the
additional operator 0p; — 04, in the trace, which prompts us to follow the similar procedure

as we carried out for the state populations. We thus define a time profile analogous to

Eq. #3),

g/
A ~ A

- it . .
7§A(t,) = exXp (%(EB — EA))TI"b[(’UBj - 'UAj)UBRAUL], (54)
and perform the Wick rotation to arrive at
i it
aa(t' —ihf) = exp %—I—ﬁ (Ep — E4)

x Try[(0p; — 04;)Up exp(—Bhg)Raexp(Bha)U}].

(55)

By invoking Eq. (47) and relating the time profiles in the opposite directions, we obtain the

relation
Tgalt' — i) = —[Tip())", (56)

which, in contrast to Eq. (48)), has an additional negative sign on the right-hand side arising
from 0p; — 04, in the traces of Egs. (54) and (G5). Continuing along the steps we took for
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the state populations [Eqs. ([@9)—(52)] eventually leads us to

Khp _ Tiplexp(=pha)]
Kpa  Trylexp(—Bhp)]

(57)

from which we can straightforwardly prove Eq. (44) by comparing it with Eq. (52).

III. APPLICATION TO SPECIFIC MODELS

In this section, we apply MQME-D developed in Sec. [IBl to prototypical models of open
quantum systems. Section [IT Al first deals with a harmonic bath with a general form of
linear subsystem-bath coupling, and then shows that the results reduce to the formulae
reported in our earlier Work. Section [[IIBl treats a model which consists of %—Spins and
demonstrates that the results recovers the known connection to the harmonic bath model

in the weak-coupling limit.

A. Harmonic Oscillator Bath
1. General Linear Subsystem-Bath Coupling

We first apply MQME-D to the bath composed of harmonic oscillators that are linearly

coupled to the subsystem states, which is represented by the Hamiltonian

~ [or wirs
Hypatnh = Z <§] + 5 )7 (58)

. w2d? .
=3[ 1) (10 3 (- e, + 20| (59)
A J

In the equations above, p; and Z; are the mass-weighted momentum and position operators
for the j-th bath mode, and da; determines the strength of interaction between |A) and
the j-th bath mode. This type of Hamiltonian is used to describe a variety of chemical
phenomena involving vibronic interactions, such as excitation energy transfer,@@ charge

transfer, and singlet ﬁssion. In this model, 04; is given by

2
. b3 ws
Daj = Ej + %(%’ — da;)?, (60)
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whose energy expectation value can be calculated based on Eqgs. () and ([I2]), yielding

€; = Try[0a;Ra] = % coth (57;&)]) (61)

Equation (&I]) shows that, for the model depicted by Eqs. (B8) and (59)), the thermal equilib-
rium energy of a bath component is indeed independent of the subsystem states, as supposed
by Eq. (24). As we have alluded in Sec. [[IBl the naively constructed expression [Eq. (22
would yield zero dissipation under such a circumstance, which highlights the importance of
Egs. (32) and (B3)) for quantitative decomposition of the dissipated energy.

The energy difference between the zero-phonon excitation energy and the Franck-Condon
excitation energy at the origin of the bath coordinates is known as the reorganization energy.

We introduce the notation

wzd A d Bi

_ j4A; 48]

Ay = Y (62
j

such that the reorganization energy for |A) becomes A44. We also define the bath spectral

density (BSD) which is the profile of subsystem-bath interaction strength in the frequency

domain,

wid 4dp;
Tapw) = %5@ —w)). (63)
J

The traces of the operator products required to evaluate the dissipation rate constants

can be expressed analytically:

w3 (dpj — da;)?

Tr; a7zt ;] = exp [—

2h
. (64)
y { coth (Bhwj) 1 — cos(w;t’) N Z_sm(wjt’) H |
2 wj wj
N, widpy —dag)?
Tr;[(0p; — vAj)qurAquj] = ]% ’ Tl"j[quTAjULj] (65)
65

X [cos(wjt/) — i coth <5 5 J) s1n(wjt’)} :
Equation (64]) can be derived by either invoking the polaron transformation or switching
to the interaction picture and applying the cumulant expansion. However, one should
be aware that the cumulant expansion must be used with care in this case, due to the

emergence of the time-ordered integral.@ Equation (63) straightforwardly emanates from

Eq. ([€4) via Eq. (34]). These results can be inserted in Eq. (33]) to obtain the expression for
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the dissipation rate constants,

Kj-—%ZﬁfLV — 2N, + M)
BAT T 2 AA AB BB

/°° ( z’t’(EB—EA+AAA—2AAB+ABB))
x Re exp | —
0

n (66)

X exp|—gaa(t’) + 29a5(t") — gup(t)]

X [cos(wjt’) — i coth <5F;wj) sin(wjt’)} dt’,

where )\f;‘ B = wjz-d 4;dpj/2 is the generalized reorganization energy associated with the j-th

bath mode, and g (') is the line-broadening function,

gap(t’) = %/000 Jap(w) {coth (BZW) 1 - cos(wt) +1 sin(wt’)z— wt dw. (67)

w? W
In Paper II, we will conduct a thorough assessment of the accuracy of the dissipation calcu-

lated by Egs. (82)) and (GG]).

2. Local Coupling

When each of the harmonic oscillators in the bath is exclusively coupled to a single

subsystem state, Egs. (58]) and (59) reduce to the so-called local bath model,

~2 2 22
~ Das B
s = Y50 (B2 4 2570, (65)
A g

. w?.d>.
JMZZP@W®Z(WMWM+%M”. (69)
A J

This model is often used to describe excitation energy transfer among electronically coupled
chromophore molecules without any significant inter-molecular vibronic coupling. The

dissipation rate equation and rate constants for this model can be conveniently derived from

Egs. (32) and (66]) by imposing the condition d4;dg; = 0 whenever A # B, which leads to

Eaj(t) = > [KEhPa(t) + K% Po(t)], (70)
B#A
and
o 2Vapl?
Kgh = %)\A]’IBA(WA]'% (71a)
2Vl
K = %)\A]’IAB(WA]'% (71b)

18



with Aa; = w?;d%;/2. Here, the “dissipative potential” Zyp(w) is defined as

IBA(M) = Re/ fZ(t/)AB(t/)
0
(72)
g
X {cos(wt’) — i coth (%) sin(wt’)] dt’,
which quantifies the capability of a bath mode to induce dissipation under a unit reorgani-

zation energy. The time profiles Fa(t') and A(t') are expressed as

Fatt) =exp | - TELA g ), (730)
Aalt) = exp | - TELERM ), (730)

which are the Fourier transform of the linear fluorescence and absorption spectra of molecule
A in the model of excitation energy transfer.
Reformulating Eq. (1)) in terms of BSD [Eq. (63])] converts the rate constants to contin-

uous functions in the frequency domain

. 2‘VAB‘2 JAA((,U)

Tha(w) = 2 " Tpa(w), (74a)
j,fB(W) = 2“/7:;}9‘2 JAiJ(w)IAB(w)- (74b)

For the functions J44(w) and J45(w), the superscript denotes the molecule which the bath
mode is coupled to, and the subscript the direction of population transfer. Equation (74)
is called “dissipative spectral densities,” as they determine how the dissipated energy is
distributed across the frequency domain. If we replace K&/, and K74 in the dissipation
rate equation |Eq. ([T0)] by J#4(w) dw and J45(w) dw, we get an expression for the rate of
dissipation through the frequency window [w,w + dw| at a certain time,

Da(w,t) dw =Y _[T54(w)Pa(t) + Tip(w) Po(t)] dw. (75)

B#A

Equation (78) is indeed identical to Eq. (51) in our earlier Work, with minor changes in

the notation.

B. Spin Bath

As a last example, we consider a situation where a two-level subsystem interacts with the

nearby spins. We denote the subsystem states by |+) and |—) and express Hyy, as

Hyy, = %(H) (H = 1=) =D + V) (= + [=) (+D), (76)
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while the bath consists of %—Spins under the presence of a magnetic field along the z-direction

N hw;
Hypath = Z QJUZJu (77>
J
where {6,;,0,;,0.;} are the Pauli operators for the j-th spin. In our model, the spins in the

bath couple to the subsystem according to

= (4 141 = 1) Do (- meo—w) (78)

with the interaction strength quantified by {7,}. The Hamiltonian defined by Eqs. (76]) (78]
has been thoroughly studied@@ and can be thought as a simplified model of a solid-state

qubit undergoing relaxation due to the environmental spins in the matrix. By employing
Vij = TJJZ]- F h%’%j (79)

with Eqgs. (I8), (I9), and (34)), the operator traces required for calculating the rate constants

are evaluated as

Trfia iejal ] = cos®(20;) + sin?(26;) [cos(a)jt’) — itanh <6 Z“’j ) sin(cbjt')} . (80)

Tr;[(04; — ijj)ui]eru i] = ha;sin®(26;) [tanh (52@j) cos(w;t’) — z'sin(d)jt’)} . (81)

In the above, ©; = |/w? + 472 and 0; = 3 tan™'(27;/w;). If the subsystem-bath coupling is
weak compared to the Zeeman splitting so that v; < w; and w; ~ @;, we can approximate
Eq. (80) by expanding cos(26;) and sin(26;) and keeping the two lowest-order terms in #; in

the resulting expression,

4
Tr; [ﬂﬂfijﬂlj] ~1— 12] [1 — cos(w;t") + i tanh ( ) sin(w;t }
w*
I (82)
4'7j 5
~exp | — — 9 1 — cos(w;t’) +itanh sin(w;t’) ¢ |,
W
j
to which we can apply Eq. ([84) and get
4hry? hw;
Tr;[(04; — @sz)fLyfijﬂlj] _ 2 {tanh (b) cos(w;t’) — isin(wjt')]
wj 2 (83)

x Tyl eyl ).
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If we combine these results with Eqs. (20) and (33]), we can express the rate constants for

the population transfer and dissipation as

2 00 1! —
Key = 2ve Re/ exp W(EE — 4A) 4g5(t) | at’, (84)
h? 0 h
. ]2 . o0 W (+£E — 4A, p
Kiy= FAQ Re/0 exp <% — 4gs(t ))

(85)
X [cos(wjt’) — i coth <@) sin(wjt’)} dt’,

by defining the spectral density, reorganization energy, and line-broadening function of the

spin bath as

Jow) =Y mjo(w — w), (86)
J
- hy? Bhw; _
J— 1 J - J
N o tanh ( 5 ) As 2]: N, (87)
N L[ 1 —cos(wt') . Bhw; \ sin(wt’) — wt’
o) = 1 /0 Js(w)[ O 1 ( . D aw, (s9)

respectively. By comparing Eq. (85) with its harmonic oscillator counterpart [Eq. (66)], we

can see that the dynamics of the spin bath can be described by a surrogate spin-boson model

defined by Egs. (B8), (Z6), and

; w2d?
o = (1) (41 = 1) (D@ 3 (- s, + 20 (80

whose spectral density is related to that of the spin bath via

Jis(w) = Ju(w) tanh (5%) (90)

We have thus demonstrated that the well-known connectionE between the spin and harmonic

oscillator bath in the weak-coupling limit [Eq. (90)] also prevails in the dissipation.

IV. CONCLUSION

In this paper, we proposed MQME-D, which is a new theoretical framework for decompos-
ing the dissipated energy in open quantum system dynamics into contributions by individual
bath components. The developed framework was applied to multiple prototypical Hamil-

tonian models of open quantum system, which led us to practical expressions that enable

21



efficient decomposition of the dissipation underlying these models. In particular, we showed
that MQME-D yields identical expressions to our previous WOIk@ for the local harmonic
bath model. The energy conservation and detailed balance for these dissipation rate formu-
lae [Eqs. (Q)—([73)] are now guaranteed by the general proof presented in Sec. [[LC, which
was not attempted in the previous Work@ due to the complicated form of the expressions.

The success of MQME-D implies that it is more fundamental and useful compared to the
former approach based on explicit quantization of the bath mode. The approach enables
establishing dissipation pathways without following explicitly the dynamics of the bath. At
a formal level the projection operator technique enables us to develop practical expression
without the need to overcome the technical challenge of adding up over all contributions
due to individual bath components. We expect that the procedure illustrated herein to be
applicable to a broad range of models for open quantum system dynamics, provided that
we can concretely specify the form of individual bath components and their coupling to the
subsystem.

We note, however, that the current version of MQME-D only focuses on the projected
density Pp and therefore any contributions from Qp and its interaction with Pp are ne-
glected. Moreover, the derivations were based on the second-order perturbation theory and
the Markov approximation. Overall, these aspects would limit the accuracy of the theory
under the presence of strong subsystem-bath interaction or underdamped bath modes that
resonate with the subsystem. Hence, it would be desirable to continue the search for a
more general theory of dissipation that can take the dynamics of Qﬁ into account, incor-
porate non-equilibrium relaxation of the bath,la@ or target generalized quantum master
equationéaJE that do not involve any Markovianity or time-locality. Increasing the order of
the perturbative treatment or even calculation of entropy production may be also attempted
based on the previous studies along this direction.ﬁ We note that, when there are only a
handful of bath components that exert strong subsystem-bath coupling or non-Markovianity,
they can be directly dealt by forming the extended subsystem.@

Another shortcoming of the current work is that it can only handle the situations where
the bath exclusively couples to the subsystem Hamiltonian through the diagonal part. Nev-
ertheless, we believe it can be extended in the near future toward more general situations
involving both diagonal and off-diagonal couplings.

We expect that the power of MQME-D and its possible extensions will be demonstrated
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by combining our theory of dissipation with elaborate model Hamiltonians for molecular
systems. For example, detailed spectral densities were constructed for natural and artificial
molecular systems by fitting the linearly coupled harmonic bath model to spectroscopic
signal@@ or quantum chemistry-based calculations.@ Our framework can be used
to locate parts of these spectral densities that contribute the most to the dynamics, which
may then be connected to specific features of the molecular vibration to yield comprehensive

interpretations about how vibronic interaction affects non-adiabatic dynamics.
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Appendix A: Derivation of Eq. (27)

In this appendix, we prove Eq. (27) which forms the theoretical foundation for calculating
the dissipation with the projection operator technique. We first establish a general identity
which can treat a broader range of master equations, and then show that Eq. ([21) is a
specific case of this identity.

Let us start from a general Hamiltonian for open quantum system

H' = Hyy, + Hyy + Hy, (A1)
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where f[sub is the subsystem Hamiltonian given by Eq. (2). The remaining terms lf]bl + IA{]DQ
are the combined Hamiltonian for both the bath and the subsystem-bath interaction, where
Iffbl describes the bath component of interest and ﬁbg the rest. From now on, for the sake
of mathematical rigor, we will explicitly express all operators for the system in the direct
product form. The subsystem Hamiltonian accordingly becomes f[sub = f[sub ® fbl ® be

where

Haa, = Z Eq|A) (Al + Z Vap |A) (B, (A2)
A AB

and fbl and fbg are the identity operators within the subspaces spanned by the first and sec-
ond bath components, respectively. The general expressions for the two bath Hamiltonians

Hyi and Hyy are

Hyy = Lop @ byy @ Iy + Z [\A> (B|® &P ® sz}, (A3a)
AB

Hyp = Loy ® Iy @ bio + Y _ [|A) (B| ® Iy @ &3] (A3b)
AB

where fsub is the identity operator for the subspace spanned by the subsystem, and Z;bl and
{e1By (i)bQ and {¢{}P}) are arbitrary operators that act on the subspace spanned by the first
(second) bath component. We now conceive a general projection super-operator P’ which
acts on the full density matrix of the system according to
Po(t) =) [oan(t)|A) (Bl @ RYF @ RY). (A4)
A,B

In the above, we have introduced

oap(t) = (A| Tros [Trna[0'(1)]] | B) (A5)

as an element of the subsystem RDM, with R{P and R{? being the corresponding reference
bath densities. As usual, the traces Try; and Try, indicate the trace over the subspaces
spanned by the first and second bath components, respectively.

We now examine the condition required for

1o | 1 L] = | i G Pt 0] (6)
to be valid, in which Pps is the projection super-operator that only acts on the second bath
component

PO =) (|A) (B| @ Trie[(A|O|B) ] ® R{;B). (A7)
A,B
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Here, O is an arbitrary operator in the entire space spanned by H. It Eq. (A6]) is satisfied,
it means that the rate of dissipation into a bath component is unaffected even when all other
bath components are constrained by Pio. In Sec. [[IB, we exploited this property to bring
out a bath component from the projection and calculate the dissipation associated with it,
while still keeping other bath modes under the projection. To validate Eq. (AG), we first
switch the order of the time-derivative and Py on the right-hand side, and then re-express
the time-derivatives in each side by employing Liouville-von Neumann equation. The result

18

T [ﬁbl d@f)} b Te[H () — F OB, (ASa)
Tr [ﬁfb%[ﬁbgﬁ’(t)]] =il Te[Ha P { H'p/(t) — p/() H'}]. (A8D)

where we have taken into account that there is no time-dependence in 75192. We now insert
the explicit expressions for the Hamiltonian operators [Eqs. (Al)—(A4)] in the right-hand
side of Eq. (A8k) and simplify the resulting expression to obtain

mpm%fngﬁm@mm®®ngmwwm®ﬂ

A ) (A9)
+ > Trn {Trbz (& © L) (B] S'(t) |4) }] ’

A,B

where we have used S'(t) to abbreviate il [H'j/(t) — §/(t)H']. A similar procedure can be
also carried out for the right-hand side of Eq. (A8b) with the definition of Py [Eq. (A7),
yielding

Tr [ﬁm%[ﬁbmt)]] = Ty, [BblTrbz [(A]S(t) |A) }}
A (A10)
# 3 o [P s [ 8190 1))

A,B
If we compare the right-hand sides of Eqs. (A9) and (A1Q), their only difference is whether or
not the bath operators by; and ¢AB are within the trace over the subspace of the second bath
component. A sufficient condition for taking the bath operators in Eq. (A9) out of the trace is
that (A|S'(t) |B) must be factorizable into operators within the individual bath subspaces.
As every term in the system Hamiltonian [Egs. (Al) and (A3))] are already in the direct
product form, the only remaining requirement is that the projected densities (Al p'(t) |B)

are factorizable. In general, such a condition is not satisfied because the subsystem-bath
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interaction [Eq. (A3)] entangles different bath components as the system evolves in time.
Nevertheless, this issue can be remedied by making an additional assumption that p'(t) =
Poaf (t) [Eq. (AT)] at this instance. As this condition must be satisfied with classifying every
single bath component as Hyy, it is required that p/(£) = P'7/(t), which will remain valid at

all instance if we keep our focus on the projected density (Sec. [1B]).

Having confirmed the validity of Eq. (A6) within the formulation presented in our work,
we can now observe that Eq. ([27)) is a specific case of Eq. (A6), as P’ [Eq. (A4)] reduces
to P [Eq. (I0)] when Rng = 74;04p and EQB = EA,]-_(SAB. The connections between
Eq. (Al) and the Hamiltonian models in Sec. [TI] are also readily established. For example,
the Hamiltonian for linearly coupled harmonic oscillator bath [Eqgs. (58) and (£9)] is obtained

by setting
. H2 w? w2d?
bbl = %—}—7][%3, éélB :(SAB<—CU]2-CZA]'ZZ’]'+ ]2AJ), (A].la)
. ~2 2 2,72
bro = Z (% + %fi), ¢y’ = dan Z ( — widardy + wszk) (Allb)

Appendix B: Validation of Eq. (35)

This Appendix presents the proof of Eq. (85]) which assures that the dynamics of the state
populations is unaltered by calculation of the dissipation under the split of the projection
operator P = ]5]-7%_ [Eq. [23)]. We start by applying p; from the left of Eq. (29)),

d L A
i Pi-p(t)] = =55 | BPj-Luexp(=it' Lo/h)LiP;-p(t) dt', (B1)
0
which is justified by that p; is time-independent and therefore the order of the projection
and integration can be switched. Then, the integrand of Eq. (BL) can be simplified by using

Eq. (80) and explicitly applying p; based on Eq. ([25h),

]5]'75]'_21 exp(—it/ﬁo/h ,CA 75 Z Z [|VAB| |A |
A B#A (B2)
® (pAu)TrmeszU;] _ pB@)TrmegBm) ® RA] CHe
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We now insert this result in Eq. (B1) and use Eq. ([I6) to relate the integrals to the rate
constants. The result is
b S Piep®] =2 > (1 ( —KpaPa(t) + KapPs(t)]|A) (A ®RA)

A B#A (Bg)
_ZPA )|A) (A ® Ra,

where the last equality follows from Eq. (I5). Equation (33]) can now be proven by connecting
Eq. (B3) to the time derivative of Eq. (I0).
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