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I. INTRODUCTION

In Paper III of our two-paper series, we introduced a new theoretical framework that can
be used to decompose the energy dissipated in the open quantum system dynamics into
contributions from individual components of the bath. The new framework, referred to as
MQME-D, targets the Markovian quantum master equations derived from the Nakajima-
Zwanzig projection operator technique.EE By using it, we recovered the formulae for quan-
tifying dissipation pathways reported in our earlier vvork,E which were developed in the
context of Forster resonance energy transfer (FRET). We also derived and presented the
expressions for other types of subsystem-bath interactions such as linearly coupled spin envi-
ronment. In addition, the framework also allowed us to construct rigorous analytical proofs

on thermodynamic principles such as energy conservation and detailed balance.

Here, we investigate the accuracy and computational efficiency of MQME-D as a method
to decompose the overall dissipation during the open quantum system dynamics. An initial
assessment of the strategy was done in Ref. 4 based on a comparison with a mixed-quantum
classical (MQQC) method.E However, the accuracy of the MQC method was limited by the
zero-point energy leak and partial neglect of the interplay between the subsystem and bath,EE

which both originate from the classical treatment of the trajectories.

Such an experience led us to develop alternative methods that do not rely on classical
description of the bath. As a result, we successfully constructed a computational me’chodIé to
quantify dissipation by individual bath modes based on numerically exact simulation meth-
ods such as hierarchical equations of motion (HEOM)Ié or quasi-adiabatic propagator path
integral (QUAPI). Using this method, we now can systematically assess the reliability
of MQME-D by employing a numerically exact benchmark.

In this paper, we thoroughly examine the performance of MQME-D in various Hamil-
tonian models and simulation conditions with different subsystem-bath coupling strengths
and temperatures. We find that, even when the subsystem dynamics is quite accurate, the
dissipation predicted by MQME-D exhibits some disagreements with the benchmark cal-
culation. Careful analysis reveals that a significant portion of the error is caused by the
Markov approximation behind MQME, which does not properly reflect the response of the
bath during the dynamics. We then incorporate non-Markovianity in the simulation by

combining MQME-D with the time scale separation (TSS) method,IE and demonstrate that
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the combination can substantially enhance the accuracy of the decomposition of the dissi-
pation in some cases. In TSS, one separates the bath modes into slow and fast components
depending on their characteristic frequencies. Only the fast component directly participates
in the dynamics, while the effect of the slow component manifests as the static disorder
which introduces the non-Markovianity. In the end, MQME-D with TSS (MQME-D+TSS)
achieves nearly quantitative resolution of the dissipated energy in the frequency domain,
demonstrating its capability to elucidate the key DOFs that govern the dynamics of realistic
systems such as photosynthetic complexes or extended molecular aggregates.

The structure of the paper is as follows. Section [[I provides a brief overview of MQME-
D and the Hamiltonian models used in this work. Section [[II applies the bare MQME-D
to the Hamiltonian of a molecular dimer and contrasts the results against a numerically
exact method. Section [[V introduces the TSS strategy and benchmarks the accuracy of
MQME-D+TSS by using different types of Hamiltonian models such as molecular dimer
and spin-boson model. Section [V| presents a brief comparison between the computational
efficiencies of MQME-D+TSS and numerically exact methods. Finally, Sec. [VI concludes
the paper by summarizing the main findings and discussing conceivable research directions

for the future.

II. THEORETICAL BACKGROUND

The MQME-D theory was developed and discussed in Paper IE For convenience, below we
summarize the main ideas as needed to introduce the simulation strategy and subsequent
discussion. First, Sec. [[LAl introduces the Hamiltonian models used in this work. Then,
Sec. [IBlpresents the key equations of MQME-D for simulating the dissipation in the models
presented in Sec. [T Al

A. Model Hamiltonian

To test the numerical accuracy of the theory, we study the dissipation in prototypical
models of open quantum systems involving harmonic bath modes. However, as discussed in
Ref. E|, the MQME-D framework is applicable to any (harmonic or anharmonic) environment

as long as it is composed of independent bath degrees of freedom. The Hamiltonian of an



open quantum system is written as

H = Hsub+Hbath+Hint> (]-)
where f[sub, f[bath, and f[mt are the Hamiltonian components describing the subsystem, the
bath, and the subsystem-bath interaction, respectively. By denoting the subsystem states
as {|A)}, Hyy is written as

How =Y EalA) (Al +) Y Vas(|4) (B| +|B) (A]), (2)
A

A B<A
where F4 is the energy of the subsystem state |A) and V4p is the coupling between the
subsystem states |A) and |B). The harmonic bath modes and their interaction with the
subsystem are described by
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In the above, w; is the characteristic frequency of the j-th bath mode, whose momentum and

position are described by operators p; and ;, respectively. The state-dependent parameter
da; quantifies the strength of the subsystem-bath coupling and corresponds to the location
of the minimum in the potential energy surface (PES) hy = (A| H |A) along the coordinate
xj. Overall, Eq. () assumes that the bath only couples to diagonal part of Haou, (Con-
don approximation) with linear dependence in {Z;}. The strength of the subsystem-bath
interaction is collectively described by the bath spectral density (BSD), which is defined as

widaidp;
Tap(w) = Y LW —wy), (5)
J

which is related to the generalized reorganization energy A, p via

2d a:dns 00
AAB:ZM:/O JABi(w)dw. (6)
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Analytical expressions of the BSD are frequently used as approximate models for describ-
ing realistic systems. One widely used form of the BSD is the Drude-Lorentz distribution

expressed as
2N ww
T w?+w?’

JDL(W> = (7)



which is often used to model the slow relaxation of the solvent due to the exponential
form of the corresponding bath time correlation function in the high-temperature limit.Iﬂ
In Eq. (@), A is the total reorganization energy of the bath and w. is the cutoff frequency
which determines the relaxation time of the bath. Another model that will be used in this
work is the Brownian oscillator whose BSD is expressed as

2Ay 2wiw

o (w) = T (W2 —wd)? + 492w

(8)

Here, wy is the characteristic frequency of the oscillator and ~ is the strength of the damping.
The time correlation function associated with Eq. (8) resembles the behavior of a damped
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harmonic oscillator,** which makes Jpo(w) a realistic model for describing molecular vibra-

tions and photonic cavities.

B. MQME-D for a Bath of Harmonic Oscillators

According to Eq. (15) of Paper I,II the populations of the subsystem states in MQME are

governed by a set of coupled first-order rate equations

Pa(t) = Y [~ KpaPa(t) + KapPp(t)], (9)
BAA

where P4(t) is the population of the state |A), and Kp4 is the rate constant for the popu-

lation transfer from |A) to | B) whose explicit expression is

Kpa

Q‘VABP /OO ( it/(EB—EA+AAA—2AAB—|—ABB))
= TRQ exp | — .

(10)
x exp[—gaa(t') +2g45(t") — gpp(t')] dt'.

Here, gap(t') is the line broadening function defined as

an(t) = & /OOO Jap(w) lcoth <5Zw) 1—coset) Sin(m/); Wt/} do,  (11)

h w? w

where 5 = 1/kgT is the inverse temperature. With the state populations propagated ac-
cording to Eq. (I0), the rate of dissipation F;(t) into the j-th bath mode can be evaluated
by

Ej(t) =Y Y [KhaPalt) + KhpPa(1)], (12)

A B<A



where the dissipation rate constants {IC 4} are calculated as

. Q‘VABP . . .
BA = 2 (Maa = 2Ny + App)
/OO ( it/(EB—EA+AAA—2AAB+ABB))
x Re exp | — N
0

x exp[—gaa(t’) +2945(t) — gp5(t")]
« [cos(wjt') _ i coth (ﬁ fiw; ) sin(w;t )] dt'

In the above, )\QB = w?dAdej/Q is the reorganization energy associated with the j-th bath

mode. At this point, we introduce specific Hamiltonian models which will be employed in

the simulations in Sec. [IIl and Sec. [[V]

1. Local Bath Model

In this model, each bath mode only couples to a single subsystem state, and the Hamil-
tonian can be derived from Eqs. ({l)-([) by setting da;dp; = 0 when A # B. As a result,

Hy.n and Hiye are reduced to
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where we have introduced the notation j € A to express that the j-th bath mode exclusively

belongs to |A). For this model, the frequency-resolved rate of dissipation can be calculated
by Eq. (75) of Paper IE,
Da(w.t) = Y [TEa(w)Pa(t) + Tip(w) Po(t)]. (16)
B#A
With this, D(w, t) dw becomes the rate of dissipation through the frequency window |w, w+
dw] at time ¢ for the vibrational modes coupled to molecule A. For future reference, we also

define the cumulative dissipation density as

Alw,t) = /Ot Da(w,t') dt’, (17)

which yields the total dissipated energy at ¢ when integrated over the frequency axis. We
note that the subscript A in Dy (w,t) and E4(w,t) will be omitted when it is not needed for

clarity.



The frequency-dependent profiles {75,(w)} in Eq. (I6) are given by

sl = Aael e, ) (18)

where C'is either A or B. This quantity, which was called “dissipative spectral density” in our
earlier Work,lé captures how the energy dissipated by the transfer of state population from | A)
to |B) is distributed among the bath modes coupled to |C). Moreover, as Joc(w)/w is the
density of reorganization energy along the frequency domain [Eq. (@)], the quantity Zpa(w)
in Eq. ([I8) reflects the ability of the bath to induce dissipation per unit reorganization

energy. For this reason, Zp4(w) was named as “dissipative potential” and is expressed as

oo it'(Egp — Ea+ Agaq + A
Tpa(w) = Re/ exp (— it (B 2 3 o2 55) _ gaa(t') — gBB(t/>)
0

X [cos(wt’) — i coth (@) Sm(wt/)] " (19)

An interesting consequence of Egs. (I6)—(19) is that, for two-level subsystems, the dissipation
by both molecules become completely identical when J4(w) = Jp(w). This is because
T (w) = JE(w) and JTis(w) = JE;(w) under such a condition [Eq. (I8)], and inserting
these relations in Eq. ([I6) gives Da(w,t) = Dp(w,t). The validity of this corollary will be
scrutinized in Sec. [I1D.

2. Spin-Boson Model

In this model, a two-level subsystem is coupled to a single group of bath modes in an anti-
correlated fashion. If we denote the two subsystem states as |[4+) and |—), the Hamiltonian

components Hg,, and H;, are written as

~

E
Hsub - 562' + Va—:ca (20)

. ) w?d?
Hintzaz® [;(_wjdjxj—i_#)}’ (21>
where we have used the Pauli spin operators ¢, = |+) (—| + |—) (+| and &, = |+) (+]| —

=) (=1



III. MARKOVIAN DISSIPATION

We now assess the accuracy of MQME-D by comparing its predictions with those obtained
by using the numerically exact HEOM method.lé Our aim is to conduct a quantitative
and systematic study on the extent to which the second-order perturbation theory and
Markov approximation underlying MQME-D affect its reliability. In analogy with MQME-
D, we call the decomposition of the dissipation into individual bath components based on
HEOM as “HEOM-D.” In HEOM-D, the dissipation induced by a particular bath mode
is indirectly elucidated by introduction of an additional “probe mode,” whose Hamiltonian

8

closely resembles that of the mode we are interested in.® The introduction of the probe

mode enables us to extract the dissipation by using the conventional protocol based on
507

the extended subsystem,

HEOM. Details of this exact method are included in Appendix [Al

without disturbing the analytical BSD required to construct

For definitiveness, we focus on the dynamics of the local bath model (Sec. [IB1)) whose
subsystem just consists of two states which we will denote as |1) and |2). This model can be
used to describe the dynamics within the single-excitation manifold of a molecular dimer,
by mapping |1) (|2)) onto the instance in which molecule 1 (2) is in its excited state while
molecule 2 (1) remains in the ground state. When the electronic coupling arises from weak
dipole-dipole interaction between the chromophores, the migration of excitation between

them is referred to as Forster resonance energy transfer (FRET).IE

A. Simulation Procedure for Molecular Dimer Model

We use Planck atomic unit system for which A = kg = 1. Table [[ summarizes the
simulation conditions employed for the molecular dimer model. We examine the accuracy of
MQME-D by either varying A while keeping the temperature constant as 7" = 1.0 (conditions
(i)=(iv) in Table [[) or varying T for a fixed reorganization energy A = 0.2 (conditions (ii),
(v), and (vi) in Table[[). From now on, we will refer these two sets of simulation conditions
as “const-T" and “const-A” series, respectively. For each simulation condition in Table [[, we
also studied the effect of the energy gap AE = E; — F5 on the accuracy by varying AE as
0, 1 and 2, generating a total of 18 different simulation conditions. We fix Vi3 = 0.25 for
the electronic coupling and w, = 0.5 for the cutoff frequency of the Drude-Lorentz BSDs
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[Eq. ([@)] that couple to the chromophores. We also assume that the electronic excitation is
initially localized at molecule 1 unless noted otherwise.

For MQME and MQME-D simulations, each BSD was discretized into 2000 harmonic
oscillator modes by using the scheme described in Appendix[B, which was originally reported
in Ref. . We used wpax = 15 as the upper limit of frequency, which recovered 97.9% of the
pristine reorganization energy of the analytical BSD. The time integrals required to calculate
electronic [Eq. (I0)] and dissipation [Eq. (I8])] rate constants were evaluated by using the
trapezoidal method with an integration grid size of 0.01 and the upper limit of integration
of 5 x 103. The rate equations for electronic populations [Eq. (Q)] and dissipation [Eq. (IG])]
were propagated by using the fourth-order Runge-Kutta method with the time step of 0.01.

Numerically accurate benchmarks for dissipation were extracted by combining HEOM
with the approach described in Ref. I8, along with the efficient low-temperature correction
scheme recently reported in Ref. . Table [ lists the number of hierarchy tiers Ny, the
number of Matsubara low-temperature correction terms Nypaisu, and Huang-Rhys (H-R) fac-
tor of the probe mode s, [Eq. (A7)] used for the individual simulation conditions. For
HEOM calculations, larger Ny, and Nyasu are required for stronger subsystem-bath in-
teraction and lower temperature, respectively, while sy, is exclusively used for HEOM-D
and must be small enough to satisfy the weak-coupling limit [Eq. (AG)]. We scanned the
frequency of the probe mode in the range of [0.1,3.0] with a constant spacing of 0.05. For
all data points w > 0.2, the number of vibrational quantum states used for describing the
probe modelg was determined to make the initial bath density captures 99.9% of the total
Boltzmann population. In the case of w < 0.2, the above criterion was slightly relaxed to
99.0% to cope with the steeply increasing computational burden of HEOM-D as w decreases
(Sec. V).

The steady state limits (¢ — oo) were practically chosen as some finite time t,,, which
is differently defined for each simulation condition by visually inspecting the evolution of
electronic population. The reduced density matrix (RDM) of the subsystem and the aux-
iliary density matrices (ADMs) in HEOM are propagated by using the adaptive RKF45
integrator. The error function used for tuning the time step was determined as how much
the trace of the RDM deviates from unity, which must be maintained as nought in the exact
dynamics. To further improve the stability of the calculation near the steady state, we also

prevented the time step from increasing beyond a pre-determined maximum value Aty



which is also listed in Table[L for all simulation conditions.

TABLE I. Summary of the simulation conditions used for the molecular dimer model. The quan-
tities A and 7' define the subsystem-bath interaction. The other parameters specify the HEOM
procedure. Each of the 6 simulation conditions in the table was combined with three different

values of the energy gap AF = Ey; — F»s to yield 18 different conditions in total.

Simulation condition (1) (ii) (iii) (iv) (v) (vi)
Reorganization energy (A) 0.05 0.2 1.0 2.0 0.2 0.2
Temperature (77 1.0 1.0 1.0 1.0 0.5 0.25
Maximum time step (Atmax) 0.02 0.1 0.05 0.05 0.1 0.1
Number of hierarchy tiers (NVpjer) 4 7 10 13 7 7

Number of Matsubara terms (Nyatsu) 30 30 30 30 100 100

H-R factor of the probe mode (spp) 2x 1076 1x 107 1x107% 1 x107° 1 x 107° 1 x 107°

When the dynamics approaches the steady state, we observe that the total amount of dis-
sipated energy computed with HEOM-D artificially increases at a constant rate for HEOM-D
simulations even after the electronic dynamics has become stationary, violating energy con-
servation. Such a spurious behavior tends to become more severe when A increases. A
detailed numerical analysis of the drift is presented in the Supplementary Material for the
case of A = 1.0 [condition (iii)]. As shown, the drift cannot be eliminated by simply increas-
ing Nhier OF Nyfatsu, OF decreasing Atyay Or Spp. We therefore conclude that the dissipation
does not arise from insufficient numerical convergence. In our results, we removed this ar-
tificial drift by applying a procedure similar to the one described in Ref. u [Eq. (S1) in
the Supplementary Information|. This correction scheme assumes the linearity of the drift
throughout the entire simulation, whose validity is also discussed in the Supplementary Ma-
terial. Figure S4 of the Supplementary Material demonstrates that the corrected dissipation
is robust to the choice of the simulation parameters, as long as the state population achieves

convergence.
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— MQME —— MQME + TSS --- HEOM
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FIG. 1. Comparison between the dynamics of the state population represented as the population
inversion (6), calculated by MQME (solid black) and HEOM (dashed purple) for the const-7" series
(T = 1.0). The results calculated by combining MQME with the time scale separation (gray) is
also presented, which will be discussed in Sec. [V.B 1l

B. Electronic Dynamics

We first assess the reliability of MQME on describing the evolution of the state popula-
tions, which is the prerequisite for accurately calculating the dissipation. Before we present
the results from the simulation, it is worthwhile to address how the applicability of MQME
depends on the parameters related to the dynamics. According to Sec. II A of Paper I,E
MQME is based on the assumption that the inter-state coupling is sufficiently weak so that
it can be treated to second-order in perturbation. This implies that MQME will become
accurate either when |AE| > |Vis| in H,, or when H,, induces strong thermal fluctuation
arising from high 7" or large A.

We now analyze the accuracy of MQME based on the results obtained from the sim-
ulations. Figures [I and 2] visualize the time-dependent population inversion (4.(t)) =
Pi(t) — Py(t) calculated for the const-7" and const-A series, respectively, by using both
MQME and HEOM. For Fig. [l most of the cases [Fig. [[c)—(1)] show good agreement be-
tween MQME and HEOM results, even though MQME slightly overestimates the rate of
population transfer when AFE > 1 [Fig. [[e)—(1)]. The most noticeable disagreement be-
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FIG. 2. Same as in Fig. [1, but for the const-A series (A = 0.2).

tween MQME and HEOM is observed for A = 0.05 and AE = 0 |Fig. [[la)], for which
HEOM shows oscillations in (6,(¢)) while MQME does not. Such oscillations occur when
the eigenstates of Heou undergo significant delocalization due to low |AF|, and the coherence
between these eigenstates can persist for relatively long time due to weak subsystem-bath
interaction [Fig. [l[a) and (b)]. It is easily expected that the accuracy of MQME will de-
teriorate under such conditions if we recall the discussions made above. The observed lack
of oscillation actually shows a fundamental limitation of the MQME, as it can only predict
monotonous, exponential dynamics. This can be explicitly shown by solving the coupled
differential equations for the state populations [Eq. (@)] for our dimer model. As a result,

we can derive the analytical expression for the population inversion as
(6()) = (2(00)) + [(6:(0)) — (3. (00)) e~ Hrat o), (22)

As the rate constants K4p calculated by Eq. (I0) are always real, the state populations in
MQME can only undergo a simple exponential decay without any oscillations.

The results for const-A series in Fig. Rl exhibit a similar trend as observed in Fig. [1
Namely, MQME accurately describes the population transfer when AE > 1 [Fig. 2(d)—(k)]
with slight overestimations in the rate, although the performance becomes poor for the
cases with AE = 0 [Fig. 2l(a)—(c)|. The discrepancy between MQME and HEOM becomes

more provoked as the temperature decreases, due to the reduced strength of the thermal
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fluctuation induced by the subsystem-bath interaction.

C. Dissipation Dynamics

Having confirmed the reliability of MQME for the electronic dynamics, we now examine
the dissipation. Figure[3shows how the dissipated energy is distributed along the frequency
axis for const-T series, calculated by using both MQME-D and HEOM-D. As we have seen in
Sec. [[LBl, MQME-D predicts the dissipation into both molecules to be exactly identical when
Ji(w) = JQ(OJ)J; With HEOM-D we can now put this statement under a close inspection,
which was not attempted in Ref. u due to the limited accuracy of the benchmark simulation
method employed therein. We therefore avoid the redundancy by plotting the dissipation for
only one molecule for MQME-D simulations, while separately plotting for either molecules

for HEOM-D simulations.

— MQME-D —=-= HEOM-D mol 1 === HEOM-D mol 2

A = 0.05 A=0.2 A=1.0 A =20
0.2 - \
0 A (a) P (b) < (c) See 1|
YT 7 7 i &
—0.2 / ] ! )
— 04 I I o
: - .
= | (e) (f) ' )
= 0.50 N ) . o
8 0251-% \ ! [ I
- I —_
3 0.00 -
S, (i) §) O
. N BN ! 1 &
0.5 \ _ I
0.0 : : = . : . w

FIG. 3. Steady-state cumulative dissipation density £(w, c0) calculated for const-T" series by using
both MQME-D and HEOM-D. For MQME-D, the results for both molecules are identical and
therefore plotted as a single profile. For HEOM-D, the results for the two molecules are plotted

separately.

The dissipation can be conveniently visualized in the frequency domain by using the
cumulative dissipation density defined in Eq. (IT7). Figure [ shows &(w,o0) for const-T'
series obtained by both MQME-D and HEOM-D. When AE = 0 [Fig. Bl(a)-(d)], MQME-
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D predicts vanishing dissipation for all w, although HEOM-D results clearly demonstrate
net energy transfer from the subsystem to bath for all four values of A. Such an incorrect
behavior of MQME-D arises because E4 = Ep makes J5y(w) = Jiz(w) [Egs. (I8) and
([@3)], while the detailed balance condition also imposes J34(w) = —T45(w) (Sec. I C of
Paper IE) These two conditions can be simultaneously met only when both Ji;(w) and
Ji(w) vanishes for all w, leading to the absence of dissipation as shown in Fig. Bl(a)—(d). In
reality, however, energy is dissipated from the subsystem to the bath due to the population
relaxation between the eigenstates of f[sub. While such an aspect is naturally incorporated
in HEOM-D, MQME-D cannot handle the effects arising from delocalized eigenstates due
to its focus on the projected system density under second-order perturbation (Sec. II A of
Paper IE)

When AFE becomes larger, we observe much better qualitative agreement between the
predictions of MQME-D and HEOM-D. Of particular interest are the cases with AE = 2,
for which MQME-D exhibits semi-quantitative accuracy |Fig. Bl(i)—(1)] with slight overesti-
mation (underestimation) of the dissipation when w is small (large). With a relatively small
reorganization energy of A = 0.05 [Fig. BIi)], we observe that a substantial portion of the
dissipation occurs through the region around Aiw = AFE, which can be related to the vibronic
resonance. Increasing A makes the contribution of this channel gradually disappear while
the dissipation becomes more concentrated near w = 0. However, the MQME-D calculations
predict that £(w, c0) monotonously increases as w approaches zero, which contradicts the
steep drops observed in the HEOM-D counterparts [Fig. Blk) and (1)]. Our previous studyI;
clarified that the discrepancy at the low frequency is caused by the Markov approximation
behind MQME-D, which neglects the quasi-static nature of the bath modes that delays their

participation in the dynamics.

Finally, we inspect the effect of temperature on dissipation by looking into Fig. 4l which
summarizes £(w, 00) for const-A series calculated by both MQME-D and HEOM-D. As in
Fig. Bl MQME-D erroneously predicts zero dissipation for AE = 0 [Fig. l(a)—(c)]. Never-
theless, the accuracy of MQME-D increases with AFE and reaches semi-quantitative level for
AE = 2 |Fig.l(g)—(i)]. Apparently, lowering 7" from 1.0 to 0.25 enhances the influence of the
vibronic resonance in dissipation, which is due to the reduction of the thermal fluctuation
induced by the subsystem-bath interaction. Similar to what we have seen from Fig. B the

dissipation calculated by MQME-D tends to be concentrated toward slightly lower frequency
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FIG. 4. Same as in Fig. 3] but for the const-A series.

compared to the HEOM-D results. Again, this is because MQME-D is based on Markov ap-
proximation and therefore overestimates the contribution of the low-frequency bath modes

on the dissipation.

D. Asymmetry of the Dissipation between Molecules

As we have stated earlier, MQME-D predicts the dissipation into the two molecules in
a dimer to be exactly identical.lz According to Figs. Bl and (] this prediction is satisfied for
large w and small A. However, HEOM-D calculations also show that some asymmetry do
exist between & (w,00) and & (w, 00), especially when AFE is small [Figs. Bla)—(d)] or A
is relatively large [Figs. Blk) and (1)]. The most dramatic cases are the conditions with
AE =0 [Figs. 3(b)-3(d) and Figs. 4(a)-4(c)], where the directions of dissipation in the two
molecules become completely opposite for low-frequency bath modes. This shows that the
low-frequency modes of molecule 1 only lose energy from the reorganization, while those of
molecule 2 actively absorb energy from the subsystem. It would be meaningful to conduct
a further inspection about the origin of this asymmetry to clarify how it is connected to the
approximations underlying MQME-D.

As the asymmetry becomes more pronounced when w is small, we can speculate that the

phenomenon is related to non-Markovianity. A possible source of the non-Markovianity in
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our dimer system is the non-equilibrium motion of the bath triggered by Franck-Condon
transition to the excited state PES. To elaborate further on this phenomenon, we separately
examine the behavior of the bath density in MQME and HEOM dynamics. In Sec. II B of
Paper I,E we explained that MQME focuses only on the projected component of the density
matrix for the system p(t)

exp(—ﬁiLA) )7 (23)

Ppt) = (PA“) A A (=B

A

where hy = (A| H|A) and Try, denotes the trace over the subspace spanned by the bath
DOFs. If we combine this condition with the explicit expressions for H and its components
[Egs. (I)-@)], we can observe that the molecular vibrational modes in MQME dynamics are
always in the thermal equilibrium associated with the PES of the relevant electronic state.
As the shape of the PES for the ground and excited states are identical in our Hamiltonian
model [Egs. (I4) and (IT)], the excited state bath density is identical to the ground state
density except its center is shifted to the minimum of the excited state PES. Under such a
condition, the relative dissipation rates for the vibrational modes are solely determined by
the distance between the minima of ground and excited state PESs. Because these distances
are identical for both molecules when their spectral densities [Eq. (B)] are the same, the
dissipation by the two molecules must be symmetric as already proven in Sec. [IBl

In contrast to MQME, HEOM assumes that the initial system density to be in the direct
product form p(0) = 6(0) ® Ry, where &(0) is the initial subsystem density and

f{ _ eXP(—ﬁﬁbath)
¢ Try, [exp(— 5 Hpath)]

(24)

is the equilibrium bath density on the PES of the electronic ground state. Because we have
set the initial electronic populations as P;(0) = 1 and P»(0) = 0, the bath modes coupled
to molecule 1 undergo Franck-Condon excitation and start oscillating in the excited state
PES while those coupled to molecule 2 do not. We can easily expect that such a difference
in the dynamics of the bath density would cause asymmetry in the dissipation by affecting
microscopic energy flows between vibronic quantum states.

To corroborate our explanation further, we directly calculate and visualize how the asym-
metry in the dissipation is affected by the initial electronic populations. For this purpose,

we have specifically chosen the case of w = 0.2 and A = 1.0 which exhibits a noticeable
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difference between &;(w,00) and & (w,00) |Fig. Blk)]. We calculated the time-dependent
dissipation £(0.2,t) for two different initial conditions: (i) P1(0) = 1, P,(0) = 0 and (ii)
Pi(0) = P»(0) = 0.5. The results plotted in Fig. @l illustrate that the asymmetry under
the original initial condition [Fig. [Bla)| disappears as expected when we induce the same
amount of Franck-Condon excitation for both molecules by setting their initial electronic
populations as equal [Fig. Bl(b)|. Hence, it supports our claim that the asymmetry in the
dissipation is indeed linked to the difference between the non-equilibrium motion of the
bath. Intriguingly, although &£(0.2,¢) in the early stage of the dynamics clearly exhibits
oscillations arising from nuclear motions, such a feature is not visible in £,(0.2,t) even with

some amount of excitation initially residing in molecule 2 [Fig. Bl(b)].

IV. NON-MARKOVIAN DISSIPATION VIA TIME SCALE SEPARATION
(TSS)

In this section, we conduct extensive tests on MQME-D+TSS. Section [V Alintroduces the
principles of TSS. Section [[VB uses MQME-D+TSS to compute the dissipation in different
types of Hamiltonian models with a wide range of simulation parameters. The results are

then compared with HEOM-D to appraise the accuracy of our theory.

A. Introduction to Time Scale Separation

In Sec. [[ILCl, we have seen that one source of inaccuracy in MQME-D is the Markov
approximation. This suggests that the reliability of MQME-D may be increased if we can
somehow include non-Markovianity in the simulation. This task can be accomplished by
employing TSS, which divides the BSD J(w) into “slow” Jyew(w) and “fast” Jeg(w)
components, respectively. The desired non-Markovianity is introduced in the simulation by
prohibiting the bath modes in Jyo(w) from directly participating in the dynamics. This is
practically achieved by defining the BSD components as

Jsiow(w) = S(w,w")J(w), (25a)
Jrast(w) = [1 = S(w, w")]J(w). (25b)

Here, S(w,w™) is the splitting function which monotonically decays as w increases, with the

speed of decay controlled by the cutoff frequency w*. In our simulations, by following the
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FIG. 5. Densities of accumulated dissipation at w = 0.2, separately obtained for both molecules by
using HEOM-D under simulation condition (iii) (Table[l) for AE = 2. Two different initial electronic
populations were employed to demonstrate that the asymmetry between the two molecules are

related to non-equilibrium motion of the bath modes.

similar approach as in Ref. , we use the splitting function of the form

1 — *\2 2’ < *’
0, w > w*,

where we have added an extra scaling factor n < 1 to the original expression to ensure the

numerical convergence of the improper integrals [Eqgs. (I0) and (I9)].

18



We now treat Jyow(w) as a source of static disorder, and modulate the state energies of

the subsystem {E4} by adding Gaussian random noise whose standard deviation is

Oslow — 1/ Jslow(w) COth (@) dwa (27>
h /g 2

while Jgs(w) governs the dissipation in individual realizations of the disorder. The final
result is calculated by averaging over sufficiently large number of realizations. Each noise
trajectory follows MQME whose BSD is Jp.s(w), and therefore exhibits the characteristics of
the bare MQME such as exponential time-dependence and detailed balance P(w)/Pg(w) =
exp|B(Ep—FE,4)]. However, because the static disorder induces variation in the state energies,

such properties are not satisfied after averaging over the entire set of trajectories.

B. Dissipation Dynamics

We now benchmark the accuracy of MQME-D+TSS against different types of model
Hamiltonians for open quantum systems. In Sec. [VB1l we first explore the performance
of MQME-D + TSS for the molecular dimer model which was already employed to bench-
mark the original MQME-D in Sec. [[1Il Section [V B2 applies MQME-D to the spin-boson

Hamiltonian with Brownian oscillator BSD.

1. Molecular Dimer

We examine the same molecular dimer model used in Sec. [ILCl defined by the local
bath Hamiltonian [Eqs. (), ([I4), and (I3)]. We apply TSS by constructing the splitting
function |Eq. ([26)] with n = 0.99 and w* = 0.2, and averaging over 10° noise trajectories for
conditions (ii)—(vi) in Table[L. For the condition (i) with A = 0.05, the number of trajectories
was increased to 10? to ensure numerical convergence. Figure [f illustrates how TSS splits
the Drude-Lorentz BSD used in our simulations. All other simulation procedures remain
the same as those explained in Sec. [[ILAl

We first examine the effect of T'SS in population dynamics. Figure[lplots (7, (t)) obtained
from both bare MQME and MQME~+TSS obtained for const-7" series. It is observed that
TSS modifies the rate of population relaxation, although the direction and magnitude of

the influence show complicated dependence on both A and AFE. Nevertheless, there are
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FIG. 6. Split of the Drude-Lorentz BSD [Eq. (7)] into slow and fast components by employing
Eqgs. (25) and (26) with n = 0.99 and w* = 0.2.

cases for which TSS substantially increases the accuracy of MQME. In particular, nearly
perfect matches between MQME-TSS and HEOM are observed for Figs. (i) and (j). In
Figs. [[l(e) and (f), T'SS also leads to better agreements with HEOM-D results by prolonging
the relaxation. Nevertheless, the accuracy of MQME-D+TSS may become further improved
by using different values of w*. On the other hand, Figs. Il (¢) and (d) also demonstrate that
TSS does not always positively effect the accuracy. Similar trends are observed for const-A
series (Fig. 2).

We now examine the dissipation predicted by MQME-D+TSS to see how the added non-
Markovianity affects the accuracy of the method. We note that TSS does not save the
lack of asymmetry in MQME, as we are applying the same S(w,w*) to the BSDs of the
two molecules. We therefore compare the resolved dissipation against the HEOM-D results
averaged over the two molecules.

Figures [[ and [ display £(w,t) calculated by MQME-D-+TSS, along with the averaged
E(w,t) obtained from HEOM-D simulations. Compared to the results obtained without
TSS (Figs. 2 and B), it is apparent that T'SS improves the accuracy of MQME-D for both
const-T" (Fig. [[) and const-A (Fig. ) series, especially for the cases with AFE = 2 [Figs. [[)(i)—-
(1) and B(g)—(i)]. In particular, the agreement near w = 0 became remarkably better as
Jrast(w) does not exhibit strong subsystem-bath interaction anymore in that region. The
dissipation originally in this region is redirected toward higher frequencies, which alleviates

the underestimation of £(w,t) near w = 2 by MQME-D. Such an effect is also pronounced
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FIG. 7. Cumulative dissipation density at the steady state £(w, c0), calculated for const-T" series
by combining MQME-D+TSS with the cutoff frequency w* = 0.2. The averages of the HEOM-D
results (dashed purple) for both BSDs in Fig. [3l are plotted together to benchmark the accuracy of

the results.
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HEOMS-D results in Fig. 4l
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for AE =1 |Figs. [M(e)—(h) and B(d)—(f)], although some discrepancy still remains.

Finally, for the homodimer case of AE = 0 [Figs. Da)—(d) and Rl(a)—(c)], we observe
some amount of dissipation in contrast to the vanishing dissipation in Figs. [[l and 2l This
is because the individual noise trajectories exhibit nonzero AFE due to the static disorder
arising from Jgow(w). However, because MQME loses its reliability when AE = 0, MQME-D
is also not accurate enough to make meaningful predictions of dissipation.

Overall, we can expect MQME-D+TSS will accurately decompose the dissipated energy
when MQME qualitatively accounts for the dynamics of state populations (large AE or A),

and TSS leads to an additional increase in the accuracy at the quantitative level.

2. Spin-boson Model with Brownian Oscillator Bath

We now test how MQME-D+TSS performs for the Hamiltonian models involving Brown-
ian oscillator BSD Jpo(w) [Eq. ([8)]. We examine the dissipation induced by an underdamped
bath mode whose frequency is tuned to achieve resonance with the subsystem. By mod-
ulating the reorganization energy A and damping parameter v, we conduct a systematic
investigation on how the strength of subsystem-bath interaction and memory time of the

bath affect the accuracy of our method.

TABLE II. Summary of the simulation conditions used for the spin-boson model with Brownian
oscillator bath. The first parameter is for both MQME and HEOM calculations, while the rest are
specifically for HEOM. Each of the 3 simulation conditions in the table was combined with three

different values of the damping constant w, to yield 9 different conditions in total.

Simulation condition (i) (ii) (iii)
Reorganization energy (A) 0.05 0.25 1.0
Maximum time step (Atmax) 0.01 0.05 0.05
Number of hierarchy tiers (Nyjer) 5 7 12
Secondary Npjer for we = 0.05 10 15 25
H-R factor of the probe mode (spp) 2 x 1076 1x107° 1x107°

We simulate the dynamics of a spin-boson Hamiltonian defined by Eqgs. [3), (20), and (21]).
The subsystem parameters are £ = 2 and V' = 0.25. For the BSD, we use three different
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FIG. 9. Shapes of Jpo(w) used in the simulations of spin-boson model, for different values of the
damping strength . The inset in panel (c¢) shows how TSS splits the BSD into Jgjow(w) (dashed
red) and Jeast(w) (dashed blue) when v = 1.0.

values of A as 0.05, 0.25 and 1.0 as listed in Table [[Il and vary the damping strength ~ as
0.05, 0.25, and 1.0 (Fig.[)) for each value of A to make a total of 9 simulation conditions. The
characteristic frequency of the BSD was set as wy = 2.062 to match the difference between
the eigenenergies of H..p. The temperature of the bath was kept constant as 7' =1 for all

simulation conditions.

For MQME and MQME-D simulations, the rate constants for population transfer and
dissipation were calculated according to Eqgs. (I0) and (I3]) by setting d.; = £d; in Eq. ({@).
The BSD was discretized into 5000 harmonic oscillator modes based on the scheme described
in Appendix [B for all simulation conditions in Table [[Il except the case of A = 0.05 and
~v = 0.05, which required 20000 oscillators to guarantee numerical convergence. The upper
limit of frequency wpa.x and the integration scheme were the same as what we used for the
dimer model (Sec. [ITA). The TSS was applied by using the same cutoff w* = 0.2 as in the
Drude-Lorentz BSDs in the dimer model (Sec.[[V B 1), while the scaling factor n was reduced
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from 0.99 to 0.6 due to the increased difficulty of achieving detailed balance condition for
Jpo(w). The number of individual noise trajectories was always kept as 1000.

For HEOM and HEOM-D simulations, we implemented the Brownian oscillator BSD
based on the efficient framework reported in Ref. 14 and combined it with the perturbative
low-temperature correction with Nyatsu = 30. The depth of hierarchy Ny, was adjusted
depending on the reorganization energy as listed in Table [I. When ~ = 0.05, deeper hier-
archy was needed for the numerical convergence near w = wy due to the strong resonance
arising from the subsystem-bath interaction. We scanned the frequency of the probe mode
in the range of [0.2, 1.9) and (2.2, 3.0] with a constant spacing of 0.05, while a finer grid of
0.005 was used for the range of [1.9, 2.2] for capturing the detailed structure of £(w, t) near

the resonance.
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FIG. 10. Comparison between the evolution of population inversion (6,) for the spin-boson model,

calculated by MQME (solid black), MQME-+TSS (solid gray), and HEOM (dashed purple).

In Fig. 10, we have presented the calculated (G,(t)) for all 9 simulation conditions listed
in Table [[Il The results for v = 0.05 [Figs. [0(a)—(c)] show that it is challenging for MQME
and MQME-+TSS to describe highly non-Markovian character of the bath originating from
the small damping. However, the agreement becomes much better as v increases, and show
nearly quantitative match for |[Figs. [[0[(d)—(i)]. Meanwhile, in contrast to the molecular
dimer model coupled to Drude-Lorentz BSD (Sec.[[V B 1), there is almost no visible difference
between MQME and MQME-+TSS. This is because Jpo(w) takes relatively small value near
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FIG. 11. Steady-state cumulative dissipation density £(w,c0) calculated for the spin-boson model
by using MQME-D (solid black), MQME-D+TSS (solid gray), and HEOM-D (dashed purple).
For the conditions with v = 0.05, we increased the hierarchy depth for HEOM-D (dashed red) in
the frequency domain [1.9, 2.2| to guarantee the convergence under strong resonance between the

subsystem and bath modes.

w = 0, which makes Jqow(w) have only a minute contribution to the overall BSD |Fig. [Qi(c)]

in our simulation conditions.

We now examine Fig. [[Tand discuss how the dissipation by the Brownian oscillator BSD
looks like. For small (v = 0.05) and intermediate (v = 0.25) damping [Figs. [[I(a)—(f)],
HEOM-D results show that most of the dissipation occurs through the resonant channel
around w = 2. What is interesting is that £(w, c0) for v = 0.05 [Figs. [[Il(a)—(c)| does not
form a single peak as in the Brownian BSD (Fig. []) but instead a pair of peaks closely lying
together. Such a structure arises from the interaction between the upper subsystem state |+)
and the first excited state of the underdamped bath mode, as in the formation of a polaritonic
state pair. Nevertheless, this behavior soon disappears as the effect of resonance is diluted
due to the increased damping [Figs. [[I[(d)—(i)]. For all panels in Fig. [[1 both MQME-D
and MQME-D+TSS qualitatively reproduce the results from HEOM-D calculations. The
predictability becomes better with increasing A and v which enhances the adequacy of

second-order perturbation and Markov approximation, respectively.

25



In contrast to the population dynamics for which TSS had virtually no effect, averaging
over the TSS noise trajectories removes rapid oscillations in the dissipation, which appears
near the resonance frequency (w =~ 2) in the bare MQME-D [Figs. [[1(b)—(e)|]. These os-
cillations arise from incomplete numerical convergence, and it is possible to mitigate them
to some extent by extending the upper limit of integration in Eq. (I3]). However, we found
out that the convergence without TSS was extremely slow and the oscillations were still
prevalent even after integrating up to 5 x 105 (100 times the limit used in the main calcu-
lations). Therefore, TSS offers a convenient way to achieve converged results under strong
subsystem-bath resonance, which can be also straightforwardly parallelized by distributing
the propagation and averaging procedure over multiple processors.

As seen from Figs. [I(d), (e), (g), and (h), MQME-D+TSS tends to overestimate the
dissipation near the region where subsystem-bath resonance occurs. This is likely because
the dissipated energy cannot return to the subsystem in MQME due to the second-order
approximation, although such re-absorption of energy by subsystem does occur when the

underdamped bath mode exerts strong subsystem-bath resonaunce.E

V. COMPUTATIONAL EFFICIENCY OF MQME-D

In this paper, we obtained exact decompositions of dissipation in our Hamiltonian models
by combining the numerically exact HEOM methodIé with a technique for extracting the
statistics of a particular bath mode.Ig However, such computations become exponentially
more costly as the number of subsystem DOFs increases. Most of the other numerically
exact simulation methods exhibit similar exponential scaling for propagating the subsystem
RDM, although we are aware of a recently reported method that could potentially overcome
this issue.

In addition, the computational cost of HEOM-D also depends on the temperature of
the bath and the characteristic frequency of the harmonic bath mode whose dissipation
we want to calculate. As explained in Appendix [A], HEOM-D extracts the dissipation by
merging the subsystem with an extra bath mode which acts as a probe for monitoring the
dynamics of the bath mode of interest. The probe mode must have the same frequency
as the mode we want to monitor, and should be described by large enough number of

quantum states to represent the thermal properties during the dynamics. Therefore, the
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number of required vibrational quantum states drastically increases as we reduce the energy
spacing hw below kg7 and move toward zero. If n quantum states are used to describe
the probe mode, the cost of propagating the reduced density matrix and auxiliary density
matrices of the extended subsystem would approximately depend on O(n?), as it involves
matrix-matrix multiplications arising from commutators and anti-commutators. Moreover,
the perturbative low-temperature correction described in Ref. % requires diagonalizations
of the super-operators represented in the Liouville space, whose cost would exhibit the
dependence of O(n%). Such a steep growth of the computational burden was the reason why

we always needed to terminate HEOM-D calculations at a certain lower limit for w.

On the other hand, the aforementioned issues pose much less difficulty for MQME-D.
Namely, it is less problematic to apply MQME-D to large systems as the cost for evaluation
of the dissipation rate constants and time propagation only grows as O(N?) where N is
the dimension of the subsystem, if we assume that all subsystem DOFs are coupled to
an identical number of bath modes. In addition, MQME-D can be trivially parallelized
by distributing the load of evaluating the rate constants and propagating T'SS-based noise
trajectories across multiple processors. This is in contrast to HEOM@ and tensor-train-
based simulation method@ whose equations-of-motion are usually densely coupled and
therefore require substantial amounts of communication for propagation. Furthermore, the
cost of evaluating the dissipation rate constants based on Eq. (I3) does not depend on w,
which allows us to conveniently access the dissipation in low-frequency region without any

additional burden.

Finally, when one employs numerically exact simulation methods to calculate the dissi-
pation into individual bath modes, only one mode is usually monitored at a time to keep
the dimension of the subsystem RDM within a viable extent. As a result, the formation
and propagation of the extended subsystem needs to be repeated for every bath mode to
obtain a complete decomposition of the dissipation. On the other hand, provided that the
rate constants have been already computed, MQME-D captures all information regarding
the dissipation in a single propagation. Based on these observations, we expect MQME-D
with TSS to have a promising utility in studying the role of individual bath modes to the
quantum dynamics in large molecular systems, whose details cannot be easily accessed by

numerically exact simulation methods.
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VI. CONCLUSION

In this paper, we investigated the accuracy of MQME-D, a theoretical method that
enables us to decompose the dissipation under MQME dynamics into contributions from
individual bath modes. The theory was applied to multiple types of Hamiltonian models and
the outcomes from the simulations were compared against numerically exact results provided
by HEOM. We have demonstrated that the dissipation calculated by MQME-D offers a
qualitatively correct view of the dissipated energy by individual bath modes. However, it can
quantitatively differ from the exact results even in the limit where MQME exhibits accurate
population dynamics. We have provided detailed arguments that support Markovian origin
of the observed discrepancies, and demonstrated that the accuracy of the calculation is
indeed significantly increased by inclusion of non-Markovianity via T'SS. In the end, despite
the inherent limitation arising from second-order perturbation approximation, MQME-D
combined with TSS offers an efficient way to obtain semi-quantitative decompositions of
the dissipation in wide range of subsystem-bath couplings and temperatures. Even for the
Brownian oscillator bath for which TSS does not significantly affect the BSD, TSS offered
a useful way to improve the numerical convergence of MQME-D. However, TSS could not
reproduce the asymmetry between the dissipation by two molecules, which becomes more
pronounced toward the low-frequency region. We expect the asymmetry may be realized in
our method by using separate scaling functions for different BSDs or extending our method

a1

to include non-equilibrium motion of the bath modes.

MQME-D shows quadratic scaling of the computational cost with the size of the system,
and its parallelization across multiple processors is also straightforward. Moreover, the cost
of MQME-D does not depend on the characteristic frequency of the bath mode, in contrast
of HEOM-D which shows rapid increase of the burden as w decreases. We therefore expect
the usefulness of MQME-D to grow with larger systems for which the computational costs of
numerically exact methods become expensive due to their exponential scaling and challenges

in parallelization.

We anticipate that applying the framework outlined in Paper IE to a range of quan-
tum master equations would lead us to corresponding dissipation theories in the near fu-
ture. Upon rigorous validation as demonstrated in this paper, these theories can be inte-

grated with realistic Hamiltonian models extracted by using state-of-the-art experimental
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and computational techniques.@ We envisage that such efforts would lead us to deeper
understandings on the quantum dynamics in a wide range of systems including photosyn-
thetic complexes,@4§ artificial excitonic systems, plasmonic systems, and molecular
and solid-state qubits.@

SUPPLEMENTARY MATERIAL

See the Supplementary Material for comprehensive discussion and analysis on the artificial
drift in the cumulative dissipation density &£(w,t), which demonstrate that £(w,t) from

HEOM can be reliably used as a quantitative benchmark after calibrating the drift.
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Appendix A: A Brief Introduction to HEOM-D Method

In this section, we present a minimal explanation about the motivation and formulation of
HEOM—D,Ig a technique we used for calculating the dissipation into a specific bath component
in HEOM simulations. In HEOM, the RDM of the subsystem o(t) is propagated by coupled
equations of motion which connect o(t) to the hierarchy of ADMs. It was reported that
ADMs encode the consequence of subsystem-bath interaction during the dynamics, and
therefore one can extract the statistics related to the bath from the ADMS.@ However,
such methods could only handle the bath modes in the entire BSD collectively, and does

not allow isolation of the information regarding a single bath mode. Moreover, the widely
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used approach which re-classifies the bath mode of interest as the subsystemlEJEH is not
allowed for HEOM. This is because the subtraction of a bath mode from a BSD converts its
analytical quantum time correlation function to a form which cannot be handled by HEOM
without drastically increasing the complexity of the Calculation.

The HEOM-D methodIé overcomes this challenge by introducing an extra bath mode
(“probe mode”) that weakly couples to the subsystem through the same channel as the bath
mode under examination (“target mode”). Under such a setting, the dynamical information
regarding the target mode can be elucidated from that of the probe mode. To formulate the
method, we first divide the full Hamiltonian [Eq. ()] into contributions of the target mode

and the rest,

IA{ - f{bt + ﬁresb (A]-)

respectively, where H,; can be factorized as § ® b with § and b representing the subsystem
and bath part of I:Ibt, respectively. For example, if we want to examine the k-th bath mode

in the spin-boson Hamiltonian [Eqs. @0)—-(2I)], § and b needs to be set as

n2 2

R > D Wk /o
S= ) (H = 1) (=], b= e — di?, (42)
We now modify the system Hamiltonian according to
=+, (A3)

where we added a new Hamiltonian component ﬁbp = aﬁbt for the probe mode. The scaling
constant « is the ratio between the coupling strengths of the target and probe modes, whose
value should be small enough to ensure that the dynamics under H’ remains almost identical
to that under H. As f[bp was not a part of the original BSD and therefore does not alter
the structure of HEOM, it can now be freely included in the subsystem and monitored
over time. At the start of the dynamics, the density matrix py,(0) for the probe mode is
constructed as the same thermal equilibrium associated with the target mode. Then, the
initial density 6'(0) for the extended subsystem Hp + ﬁbp is set to be ¢(0) ® ppp and
propagated by the same structure of HEOM used for the original subsystem RDM &(t).
Practically, ppp is implemented by using a finite number n of bath quantum states which
faithfully represent the thermal equilibrium. The value of n should be chosen carefully so
as not to excessively increase the computational burden, as the time spent for applying

perturbative low-temperature correction and RDM propagation increases with the order of
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O(n®) and O(n?), respectively (Sec.[V)). After propagating ¢/(t) for a certain amount of time,
the time-dependent dissipation AFEy,(t) induced by the probe mode can be calculated by

ALy (t) = Tr[Hrp {0'(1) — 6(0)}]. (A4)

In Ref. , we proved that AE,,(t) is related to the dissipation AEy(t) induced by the target
mode via

L ABL(t)
AEw(t) = lim 0z (A5)
For harmonic oscillator bath, Eq. (A3]) can be converted to the dissipation density by com-

bining it with the definition of the BSD [Eq. ([@)],

E(wp, t) = lim I (wry)
sbp—0 T Sty

AE,(t), (A6)

where wry = wpp is the frequency of the target and probe modes, and sy, is the H-R factor

of the probe mode
Wh d2b
Sbp = %' (A7)
with the corresponding PES displacement dy,,. Equation (IA—ﬁD states that sp, must be
sufficiently small to mimic the sy, — 0 limit. In practice, however, reducing the value of
spp too much negatively affects the accuracy of the calculation due to the limited machine
precision. Therefore it is required to seek the balance between these two aspects by checking
the convergence of the calculation with different values of sp,.
As a final remark, we note that the applicability of the approach illustrated in this
Appendix is not limited to HEOM and is compatible with any numerically exact simulation

methods for open quantum system dynamics,@@@ whenever it is not possible to construct

the extended subsystem by directly using the target mode.

Appendix B: Discretization of the Bath Spectral Densities

In this Appendix, we elaborate on how the BSDs are discretized for the MQME and
MQME-D simulations. For the Drude-Lorentz spectral density [Eq. (7)], we follow Ref. ,
where the individual bath modes are placed at the frequencies

2
¥ .
Wi = Nzwmax’ J = ]-7 27 T N7 (B]')
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with N being the total number of bath modes in a spectral density, and wpy., the upper
limit of the frequency. Equation (B1) makes the bath modes more densely packed in the
low-frequency region to reflect the increase of the reorganization energy density Jpr(w)/w
therein. If we now define a function fpr(w) which connects the discretized |Eq. ([@)] and

continuous [Eq. ()] forms of the BSD via

wid?  Jpy(w))

= , B2
2 for(w;) (B2)
its explicit expression becomes
N

= B3

which renders the reorganization energies of the individual bath modes as
DY APl (B4)

2 JT Wi+ w2

Meanwhile, the reorganization energy arising from the corresponding region of the continuous
spectral density is

/(wj+wj+1)/2 JpL(w) s = Jpr(w;) [(wj +wj+1) _ (M)]
(

wj—1+w;)/2 w Wi 2 2
o 4A WeWj

(B5)
gmw el

where the approximation becomes exact at the limit of N — oo. The equality between the

last expressions of Eqs. (B4) and (B5) indicates the validity of fpr(w) defined by Eq. (B3).

For the Brownian oscillator [Eq. (§))], we set wy < wmax and calculate the frequency €

where the reorganization energy density Jpo/w is maximized within [0, wyayx], which is

Q= \/maX[O, wd — 272]. (B6)

If Q =0, we can apply the same scheme as the Drude-Lorentz BSD [Egs. (B1)-(B3)] with
JpL(w) in Eq. (B2) replaced by Jpo(w). Otherwise, we divide the frequency domain into
two separate windows [0, 2] and (€2, wmax] and describe each region by using half of the
bath modes under separate discretization schemes. This is achieved by setting the bath
frequencies {w;;} ({ws;}) and the connecting function fgoi(w) |feoz2(w)| for the former

(latter) window as
25\’ N N
wi,j = [1_ <1_N]) :|Qa fBOl(w):i, ]:1, 2, Tty 5—1, (B?a)
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4i2w —Q BO2\W) = N
N2( max )a .f O( ) \/(w—Q)(wmax—Q)

Equation (BT) lacks the case of w = Q where both fgoi(w) and fpoz(w) diverge. Neverthe-

N
CUQJ':Q—F ) ]:1>2>a5 (B7b)

less, we can solve this issue by setting the reorganization energy of the discrete bath mode at
w =  equal to that calculated from the continuous BSD Jgo(w) [Eq. ([8)] in the frequency
window [(€2 — wi n/2-1)/2, (w21 — Q2)/2]. As a result, we get

2N Wpaxw?
Mg = maxto | B8
T AN y(WE — 2) (B8)

The discretization scheme defined by Eqs. (B7) and (B8) makes the bath modes more con-
centrated around w = ) compared to the rest of the frequency domain. As a result, more
emphasis is put on the region which contributes larger to the overall subsystem-bath cou-

pling, as we did for Jpp,(w).
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