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1. INTRODUCTION

The modeling of complex systems, which are composed of
many interconnected components, can be challenging, espe-
cially when there is little knowledge about the system before-
hand.Modeling, simulation, and control design all rely on sys-
tem identification, which refers to the process of constructing
models from observed data. This is a critical step, as inaccurate
models may lead to inaccurate predictions and poorly designed
controlled devices (Elinger and Rogers, 2019). A variety of
approaches are available, ranging from black-box modeling
with no prior knowledge of the system structure to estimating
parameters under known or assumed model structures (Wang,
2017; Martin et al., 2015; Carnerero et al., 2022; Khosravi and
Smith, 2021).

It is particularly relevant to traffic modeling, which is an ex-
ample of complex systems where group-level features, such as
self-organization and phase transition arise from local interac-
tions among vehicles (Tadaki et al., 2013). The structure of a
traffic model is not always known, and as a result modelers
rely on assumptions. For example, the majority of car-following
models assume interactions between vehicles are restricted only
to the immediate front vehicle (Treiber et al., 2000), and due to
a lack of adequate traffic data, these assumptions are difficult to
validate (Aghabayk et al., 2015). If multiple vehicles influence
the system dynamics, a traffic model that only includes influ-
ences from the front vehicle will be inaccurate. On the other
hand, there is an over-fitting problem when the model contains
too many terms for vehicles that do not affect the dynamics.

In this regard, system identification techniques can help de-
termine the structure of a model. By collecting data from
multiple vehicles traveling in a controlled environment (which
eliminates the presence of any confounding factors) and using
appropriate data analytic tools it may be possible to detect
how many preceding and following vehicles influence a subject
vehicle. By focusing on the variables associated with vehicles
that directly influence a subject, we can determine the correct
model.

Identifying which vehicles influence a subject is even more
difficult when nature of interactions are nonlinear. Information-
theoretic (IT) metrics may be suitable for this application
as they have emerged as a powerful tool to detect relation-
ships among components in complex systems. IT metrics are
model-free measures, can capture non-linear relationships and
characterize relevant properties of time-series processes and
have found diverse applications including human brain activity
(Wibral et al., 2014), animal collective behavior (Roy et al.,
2019), climate network (Hlinka et al., 2013), and even policy-
making (Barak-Ventura et al., 2022).

The application of IT metrics for studying interactions in traffic
systems is limited (Roy, 2020; Zhe et al., 2022), despite their
popularity in collective behavior modeling. It is critical to val-
idate these metrics in the context of traffic systems since these
systems have lane-based maneuvers unlike fish schools or bird
flocks. In the present study, we examine the effectiveness of IT
tools to characterize interactions among vehicles in the pres-
ence of two different traffic conditions - jammed flow (where
vehicles experience stop-and-go events) and free flow (where
no stop-and-go events occur). Our previous study (Roy, 2020),
used one such IT metric with empirical data to identify rela-
tionships among vehicles. However, data being collected from
human drivers from real experiments, the results show a lot of
variability due to drivers’ heterogeneity, and the true relation-
ships between vehicles are unknown. In this study, we instead
use two different traffic simulation models as toy systems with
the known directions of influence in order to test and verify
the effectiveness of two IT metrics. Validation of these tools
is crucial for their appropriate use in real-world systems and
for correctly interpreting the empirical findings. It is expected
that the accuracy of these tools in correctly identifying the
directionality in toy systems will find confidence in real-world
applications to determine what variables need to be included in
models, thus eliminating assumptions and enabling data-driven
discovery of traffic models. When applied to real-world data,
IT analysis may provide a deeper understanding of driver-driver
interactions, contributing new insights into human driving be-
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havior that can be applied to autonomous and connected cars to
mimic human drivers.

2. METHODS

In this section, we present two well-studied deterministic time-
continuous traffic models: the Intelligent Driver Model and
the Optimal Velocity Model, which we utilize in the present
study, and the information-theoretic tools we use to analyze the
resulting data.

2.1 Intelligent Driver Model (IDM)

IDM is a car-following model, where a car is influenced by the
distance headway (s) and the relative speed (∆v) with respect to
its immediate front car. The car-following behavior is defined
in terms of the acceleration function as

dv

dt
= a
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( v
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)

−a

(

s�(v,∆v)

s

)2

, (1)

where v and v0 are the current velocity and desired velocity,
respectively; a is the maximum car acceleration, and δ is accel-
eration exponent. In the first part of the equation, acceleration
decreases from a to zero when approaching the desired velocity,
v0. Interaction with the front car is introduced in the second
term through braking phenomenon (aint = −a(s�(v,∆v)/s)2)
where the distance headway s is compared to the desired head-
way s�. The desired headway is given by

s� = s0 +max(0,vT +
v∆v

2
√
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),

where s0 is the minimum allowed gap, T is time headway, and
b is a positive quantity denoting comfortable braking deceler-
ation (Treiber and Kanagaraj, 2015). To numerically solve the
equations, a fixed update time interval ∆t = 0.05 is considered
to integrate. The new speed and new positions are updated as

v(t +∆t) = v(t)+
dv

dt
∆t and

x(t +∆t) = x(t)+ v(t)∆t +
1

2

dv

dt
∆t2.

In the case of a stopped vehicle in front, IDM updates may
result in a negative acceleration and hence a negative speed in
the next time step. This is avoided by imposing the following
update rules, i.e., if v(t)+(dv/dt)∆t < 0, then

v(t +∆t) = 0 and x(t +∆t) = x(t)− 1

2
v2(t)/

dv

dt
.

For simulation, we consider circular roads with a circumference
L, and impose a periodic boundary condition that x → x − L
when x > L. In our simulation, we choose typical parameter
values (Treiber et al., 2000), as T = 1.5, a = 0.3, b = 3, δ =
4, s0 = 2, and based on the experimental studies (Tadaki et al.,
2013), as L = 314 meters and v0 = 30 km/hr. We set the initial
conditions by placing the cars at equal intervals along the
circular track and all the cars are assigned an initial speed of 30
km/hr. In the simulations, vehicle trajectory data are recorded
at one second interval for a total of 3000s.

2.2 Optimal Velocity Model (OVM)

OVM is another car-following model, where each vehicle is
influenced only by the distance headway s to the vehicle imme-

diately in front, and is formulated in terms of the acceleration
function as

dv

dt
= ah

[

V (s)− dx

dt

]

, (2)

where vehicle acceleration is proportional to the difference be-
tween optimal vehicle speed V (s) and its own speed. The pa-
rameter constant ah represents drivers’ heterogeneity as well as
performance profile of individual vehicles (Bando et al., 1995).
Here, we assume this parameter is constant for all vehicles. The
optimal velocity (OV) function V (s) is a hyperbolic tangent
function of headway s given by

V (s) = α tanh[β (s− so)]+ vo (3)

The use of the hyperbolic tangent function allows a given
vehicle to accelerate towards a maximum allowed velocity
when the headway distance s is sufficiently large. A decrease in
headway reduces the optimal velocity to avoid collisions. We
use parameter values of ah = 1.8, α = 5.5, β = 0.37, so = 9.1,
and vo = 4.9 based on empirical evidence (Nakayama et al.,
2016). To generate the trajectory data, simulation conditions
(length of circular track, etc.) are set similarly to those of IDM.

2.3 Information-theoretic (IT) tools:

To measure the directional relationships or coupling between
time-series processes, we will consider the notion of trans-
fer entropy (TE) and conditional transfer entropy (CTE), also
known as causation entropy (Sun and Bollt, 2014). The idea of
pairwise (also called apparent) transfer entropy is to quantify
information flow between two time-series processes (Schreiber,
2000; Palus et al., 2001). The idea originates from Shannon
entropy, which measures the average amount of uncertainty
according to the probability of occurrence of events (Schreiber,
2000). Transfer entropy extends this concept and computes
information transfer between two time-series processes X and Y
to measure coupling. Specifically, TY→X measures the average
amount of uncertainty resolved to predict the future of X from
its present, using the additional knowledge of Y at present, and
is defined as

TY→X =

〈

log
p(xn+1|x(k)n ,y

(l)
n )

p(xn+1|x(k)n )

〉

, (4)

where 〈.〉 denotes average over all samples, n is the time index,

p(xn+1) is the probability of xn+1, p(xn+1|x(k)n ) is the probability

of xn+1 conditioned on its past k states x
(k)
n , and k is the order for

the Markov processes. The unit of TE depends on the logarithm
base selected, i.e., bits (base 2) or nats (base e). If there is no

influence from Y on X , p(xn+1|x(k)n ,y
(l)
n ) = p(xn+1|x(k)n ), and

hence TY→X equals zero. Transfer entropy is by construction an
asymmetric quantity, so that TX→Y is not equal to TY→X . This
concept identifies the dominant direction of information flow,
and thus direction of coupling (Butail and Porfiri, 2019).

When there are more than two time-series processes (X , Y and
Z), conditional transfer entropy can be considered. Specifically,
conditional transfer entropy CY→X |Z measures the direct influ-
ence of Y on X taking Z into account and is defined as

CY→X |Z =

〈

log
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(m)
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where p(xn+1|x(k)n ,z
(m)
n ,y

(l)
n ) is the probability of xn+1 condi-

tioned on past of xn, yn and zn. When Y does not influence X ,
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the conditional probabilities in the numerator and the denom-
inator are equal, and thus CY→X |Z equals zero. To determine
the coupling between time-series variables, this measure can be
computed between all pairs, conditioning other variables.

To infer coupling from empirical TE and CTE results measured
from a finite number of samples, a statistical significance test
using surrogate data can be conducted to determine whether it
is statistically different from zero (Roy, 2020). In this paper,
we implement the information-theoretic measures and perform
a test of significance by using the Java Information Dynamics
Toolkit for Matlab (Lizier, 2014). The Kraskov, Stogbauer, and
Grassberger method is used to estimate probability distribution
functions (PDFs) (Kraskov et al., 2004).

3. RESULTS AND DISCUSSION

Driving in traffic involves continuously gathering and respond-
ing to information from the environment and surrounding ve-
hicles, making it an example of a complex system with several
coupled components. Discovering traffic models purely from
data without prior assumptions and being able to accurately
capture driving behavior is a challenging task and a topic of
system identification.

To construct a data-driven traffic model for a single-lane sce-
nario, we may start by collecting vehicle-level data (position,
speed, etc.) from both the subject vehicle and its neighboring
vehicles. In the next step of developing the model of the subject
car, the question arises whether to include variables related to
all the neighboring cars or just those related to the immediate
front car. Generally, traffic models rely on assumptions and
are developed by restricting such directional relationships only
from the immediate front car to the subject, ignoring any po-
tential influence from the rear car or any other adjacent cars.
This study examines whether IT tools can effectively answer
this question in the presence of two different traffic conditions -
free and jammed flow. If these tools prove effective, we can
then determine the minimum number of candidate variables
that need to be included in developing a sparse traffic model.
Our goal here is to test and validate the effectiveness of the
IT tools using two different traffic simulation models as toy
systems with known ground truth of directional relationships.
Both IDM and OVM are based on the assumption that vehicles
respond only to the immediate front car.

We start by simulating vehicles traveling on a single-lane cir-
cular track. With this setup, we can record the trajectories for a
long time as the vehicles are constrained to remain in the simu-
lation arena and the single-lane traffic eliminates any potential
presence of lateral influences from vehicles in the adjacent
lanes. The accuracy of PDF estimations requires large samples
of data from each car, which is possible within this setup. To
simulate jammed traffic with stop-and-go events, we consider
the total number of vehicles (Nv) equal to 30, and to simu-
late free-flow, we consider Nv equal to 15, while keeping the
circumference of the track constant between simulations. Car
trajectory data are measured along the circumference. Figure 1
shows a visualization of the traffic setup for our simulations.
Next, a total of three observables are computed. For i-th car
at a given instant, we compute the distance headway between
car i and its immediate front car (Di

F ), the distance from its

immediate rear car (Di
R), and the distance the car i travels in the

next ∆t time interval (Di
∆t ). Consistent with the previous work

(Roy, 2020), for our analysis we re-sample the trajectory data

with a sampling interval of one second based on the drivers’
reaction time.

Fig. 1. Visualization of the simulation setup for jammed (Nv =

30) and free (Nv = 15) traffic, and the three observables
used in the IT analysis to detect the influence of the front
and rear cars on a subject car.

As a next step, we employ the IT measures to analyze direc-
tional relationships between the time-series variables to detect
the influence of the front and rear cars on a subject car. The
results of our analysis are presented in Figure 2. Sub-figures in
the left column refer to jammed traffic (Nv = 30), and those
in the right column refer to free traffic (Nv = 15). On the
plots, the vertical axes represent the TE and CTE values in
nats. The cross symbol indicates results that are not statistically
significant, meaning that there is no evidence of coupling. Each
sub-figure displays the transfer entropy values calculated from
the immediate front car and the immediate rear car to a target
car, which will be used to infer front-to-target and rear-to-target
coupling, respectively.

3.1 Pairwise transfer entropy analyses

We conduct pairwise transfer entropy analyses using data from
IDM simulation and the results are shown in the sub-figures (2a
and 2b). The dominant direction of coupling between two time-
series variables is detected by comparing the level of asymme-
try in the TE values (Butail and Porfiri, 2019). For a selected
‘target’ vehicle, to detect its interaction with the vehicle im-
mediately in front of it and the vehicle immediately behind it,
we compute TF→T and TR→T, respectively. For example, for the
target vehicle i = 1, TF→T refers to the pairwise transfer entropy
value from its front car (i = 2) to itself, which is 0.24 nats (sub-
figure 2a) and TR→T refers to the pairwise transfer entropy value
from its rear car (i = 30) to itself, which is 0.18 nats.

For each target vehicle, we observe TF→T is greater than TR→T

(both in free and jammed flow). Thus, TE results correctly infer
that the dominant coupling direction is from front to target.
However, it fails to capture that there is no influence from
the rear car, since TR→T �= 0 and the results are identified as
statistically significant. This is because as TE fails to differ-
entiate the indirect influences from the direct influences (Sun
and Bollt, 2014; James et al., 2016; Bossomaier et al., 2016).
Here, indirect influences arise when the distance with the front
car changes (as the front car accelerates or decelerates), which
influences the target car to update its position accordingly, thus
indirectly affecting its distance from the rear car. As the dis-
tance from the front car (acts as a ‘common driver effect’) is
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Pairwise TE (a-b) and CTE (c-d) results computed on simulated IDM data, and CTE results (e-f) computed on simulated
OVM data. Sub-figures on the left and the right columns correspond to jammed flow (Nv = 30) and free flow (Nv = 15),
respectively. The symbol cross denotes that the empirical measurements are not statistically different from zero.

not taken into account in TR→T calculation, pairwise TE detects
a false coupling from rear-to-target.

Furthermore, we observe that the transfer entropy values be-
tween vehicles in both jammed and free traffic remain nearly
constant. This is due to the fact that the simulated behavior
of all the vehicles is analogous. Next, we measure the level of
asymmetry (TF→T−TR→T) to examine whether the front car ex-
erts a different level of influence on a target under jammed and
free traffic. We calculate this difference and average it across
all the vehicles. In the jammed flow, the value is 0.0547 nats,
while in the free flow, it is 0.0420 nats. Thus, the asymmetric
quantity infers that in jammed traffic, more information is being
transmitted from the front car to the target, indicating a stronger
front-to-target coupling compared to free-flow.

In summary, the transfer entropy analysis accurately identifies
the dominant coupling from the front to the target. It also
indicates that the front-to-target influence is stronger in jammed
traffic. However, it incorrectly infers a significant coupling from
rear to target as it fails to distinguish the indirect dependencies.
Next, we examine the CTE measure to see if it can overcome
these limitations and also confirm the stronger front-to-target
coupling in jammed traffic.

3.2 Conditional transfer entropy analyses

Figures 2c and 2d present the results of CTE analysis of IDM
data and Figures 2e and 2f present those of OVM data.

CTE analysis of IDM data In both jammed (Figure 2c) and
free traffic (Figure 2d), the CTE results correctly identify sig-
nificant coupling from the front vehicle to every target vehi-
cle. Furthermore, the results corresponding to jammed traffic
(Figure 2c) accurately indicate that vehicles are not influenced
by the rear cars, as shown by the cross symbols since CR→T|F
values are not statistically different from zero. The results are
consistent with how interactions are modeled in IDM, which
only includes influence from the immediate front car.

However, in the free traffic (Figure 2d), rear-to-target results
appear to be significant, although the values are almost close
to zero, with an average of 0.0071 nats computed over all
15 vehicles. Based on this finding, we comment that inferring
coupling requires combined knowledge of both the significance
test along with the actual values of the CTE results. In this case,
despite rear-to-target coupling being identified as statistically
significant, its value of almost near zero indicates that such
couplings are not truly present, and thus can be ignored.
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Consistent with the TE results, we observe that there is not
much variation in the CTE values between vehicles in either
jammed or free traffic because of the analogous simulated
behavior. We further observe an increasing trend in the CF→T|R
values in the jammed flow when compared with the free flow.
These findings are in agreement with our pairwise TE results,
which also indicate greater front-to-target influence in jammed
traffic. This may be a consequence of an increased number of
‘stop-and-go’ events, where a vehicle is forced to stop during a
jam. In information theory, there is a high degree of information
associated with less likely events. During the entire span of
the simulation, these ‘stop-and-go’ events occur less frequently,
and during the occurrence of such events, a higher amount of
information is transmitted from the front car to the target, which
is reflected in the CTE values. Since ‘stop-and-go’ events are
not observed in the free flow, as all the vehicles move smoothly,
CF→T|R values decrease. We further investigate the basis of
these results in the below subsection 3.2.3.

CTE analysis of OVM data According to the results of
the CTE analysis of the OVM data (Figure 2e), it correctly
identifies that the significant coupling is from front-to-target
and no significant coupling from rear-to-target (with near zero
values) in the presence of jammed traffic. Interestingly, in the
free flow (Figure 2f), the CTE results indicate that neither
the front nor the rear is influencing the target as a lack of
statistical significance is observed across all the vehicles in
either direction. To determine whether front-to-target coupling
is truly absent, we next examine the models.

Examining interaction levels in the simulation models OVM
incorporates interactions through the optimal velocity function
as given in equation 2, which is determined by the vehicle’s
distance headway, s. The OV function (equation 3) with pa-
rameters from our simulation as a function of s is shown in
Figure 3a (black solid line), which demonstrates that a vehicle
will maintain its allowed maximum speed if its distance head-
way exceeds a threshold. When headway decreases below the
threshold, interactions occur as the following vehicle responds
by reducing its speed, which is determined by the OV function.
To determine the interaction regimes associated with free and
jammed traffic corresponding to our simulations, we compute
the headway of all the vehicles as a function of time. The
vertical lines represent the mean headway (µ) averaged over
all vehicles and over the entire simulation time (dashed line for
jammed flow, dotted line for free flow), and shaded regions in-
dicate one standard deviation (σ ). For jammed flow, µ = 10.47
and σ = 4.67; and for free flow µ = 20.93 and σ = 0.046.
We notice that the free flow vehicles follow maximum desired
speed and are thus not influenced by their immediate front cars,
hence there is no interaction. This illustrates the observed CTE
results, which accurately revealed the lack of coupling from
the front car (Figure 2f). We further observe that the jammed
regime is well within the interaction region of the OV function,
and thus CTE correctly identified influence from the front car
(Figure 2e).

Similarly, we examine the IDM in order to verify the CTE
results. Different from the OVM, IDM incorporates interaction
through braking term (aint in equation 1), and is shown in
Figure 3b. As can be seen from the mean and standard deviation
(µ = 10.47 and σ = 8.35 for jammed flow; and µ = 20.93
and σ = 0.0008 for free flow), interactions among vehicles
are always present in our IDM simulations, but are weaker for

(a)

(b)

Fig. 3. The interaction regimes of free and jammed traffic in (a)
OVM and (b) IDM

the free flow. Thus, the results of the CTE are consistent with
these observations. When the models are known beforehand,
observing the interaction regimes is easier. With IT tools,
however, even without knowledge of the underlying model, we
can gain an understanding of the nature of interactions and
isolate the interaction regimes.

4. CONCLUSIONS AND FUTURE WORK

Because the models used in our study are structurally differ-
ent, they incorporate interactions differently. Nonetheless, CTE
analysis detects and interprets interactions correctly and thus
provides useful insights into model structure. Using the present
results from IT measures, it can be inferred that only the vari-
ables associated with the immediate front car should be used
to identify models, whereas variables from the remaining cars
may be ignored. It is evident from our analysis that the drivers’
simulated behaviors are analogous, and as such, less variation is
observed in IT measures. When compared to our previous study
(Roy, 2020), which uses empirical data, it demonstrates that
real-world human driving behaviors are heterogeneous. In some
instances, there is directional influence from both front and
rear cars on a target, and the values vary significantly between
drivers (Roy, 2020).

Furthermore, the present study compares both TE and CTE and
concludes that CTE can distinguish indirect influences better
than TE. By comparing and validating the IT measures, the
present work opens up the possibility of applying them in fu-
ture empirical studies. The CTE analysis requires conditional
independence test on all the potential variables which is diffi-
cult to conduct with small sample sizes (which is mostly true
for real-world traffic data). In such scenarios, the pairwise TE
measures can still be used to determine the dominant direction
of coupling, and thus inferring the interaction network. By
identifying the correct interaction network, we can identify the
correct model structure, which may further help to identify the
library of candidate variables for model discovery (Brunton
et al., 2016; Champion et al., 2019; Kaheman et al., 2020). A
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number of questions still to be addressed, including whether IT
measures are effective when there is insufficient data or signif-
icant noise in the system, when both front and rear coupling
are present (Hossain et al., 2021), and whether IT measures can
be combined with model discovery algorithms. In our future
work, we will expand the framework to incorporate empirical
data obtained from our laboratory setup. This will allow us to
gather a large sample of data, as we have recognized that the IT
tools are data-hungry methods.
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