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Abstract

In this paper, we consider the linear stability of ion-irradiated thin films where

the typical no-penetration boundary condition has been relaxed to a phase-

change or mass-conservation boundary condition. This results in the modification

of the bulk velocity field by the density jump across the amorphous-crystalline

interface as new material enters the film and instantaneously changes volume.

In other physical systems, phase change at a moving boundary is known to

affect linear stability, but such an effect has not yet been considered in the

context of continuum models of ion-induced nanopatterning. We also determine

simple closed-form expressions for the amorphous-crystalline interface in terms

of the free interface, appealing directly to the physics of the collision cascade,

which was recently shown to strongly modify the critical angle at which pattern

formation is predicted to begin on an irradiated target. We find that phase-

change at the amorphous-crystalline boundary imparts a strong ion-, target-

and energy- dependence and, alongside a precise description of the interfacial

geometry, may contribute to a unified, predictive, continuum-type model of ion-

induced nanopatterning valid across a wide range of systems. In particular,

we consider argon-irradiated silicon, where the presence of phase-change at the

amorphous-crystalline interface appears to predict an experimentally-observed,

strong suppression of pattern formation near 1.2keV for that system.

Keywords: pattern formation, continuum modeling, nano-patterning, ion-beam
sputtering, thin films
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1 Introduction

Self-organized nano-scale pattern formation has been observed on semiconductor sur-
faces irradiated by broad ion beams since at least the 1960s [1]. Most commonly, ripples
appear with wavevector oriented in the projected downbeam direction of the ion beam,
and with wavelengths in the tens or hundreds of nanometers depending on the energy
of the ion beam. Sometimes, especially on two-component or metal-seeded targets,
irradiation produces highly-ordered structures such as hexagonal arrays of nanoscale
dots [2]. The potential to understand and exploit these phenomena for high-precision
nano-scale engineering at low cost has fueled decades of theoretical and experimen-
tal work (see reviews such as [3–6]), especially given significant existing use of ion
beams in the semiconductor industry, and an ever-growing array of industrial applica-
tions that would benefit from low-cost control over nanometer length scales. However,
although the mathematical framework of pattern formation theory [7, 8] provides a
powerful tool to understand these phenomena at a general level, the large number
of experimental parameters and associated, competing physical mechanisms has frus-
trated the development of a first-principles model capable of unifying all experimental
observations [5].

Soon after the earliest observations of ion-induced self-organization, theoretical
approaches focused on modeling the “collision cascade” of atomic displacements that
result from an energetic ion impact [9, 10]. Some of these displaced atoms are sput-
tered away from the target entirely (“erosion”), at it was realized early on that this
process could destabilize the surface [10, 11]. Many other atoms remain within the tar-
get at new locations (“redistribution”), and in time it was discovered that these atoms
had their own complementary effect on stability [12, 13]. An advantage of this “atom-
istic” approach is that it exists within a long tradition of parallel inquiry through
computer simulation of single impacts, using, for example, full Molecular Dynamics
(MD) [14, 15] or the simplified, much faster Binary Collision Approximation (BCA)
[16, 17]. This synergy led eventually to the ”Crater Function Framework” [18–20] – a
“coarse-graining” approach that enables the determination of model terms and coeffi-
cients directly from the statistics of single ion impact simulations. However, despite its
advantages, this approach only considers the evolution of the free surface, and treats
the underlying irradiated film as completely static, likely omitting important physics.

In contrast, several recent developments have suggested the importance of cap-
turing sub-surface dynamics using continuum modelling [21–24], which appear to be
capable of significantly influencing pattern formation. In particular, it has been shown
that room-temperature bombardment of semiconductors destroys the crystal lattice
within a layer near the surface, creating an amorphized film atop the target [25–33],
and it has been proposed for some time that this film could be effectively modeled as
a Newtonian fluid with an “ion-enhanced” fluidity that, while remaining small com-
pared to typical liquids, is much larger than non-irradiated solids [21]. This fluidity
allows the relaxation of surface energy [22] as first analyzed by Orchard [34], as well
as of significant internal stresses that build up in the layer [35–41]. Although consid-
ered on a phenomenological basis, models based on this “hydrodynamic” approach
have led to striking agreement between theory and experiment within the continuum
literature for at least some experimental systems [23, 24, 42–45].
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As already noted, and as perhaps suggested by the two strongly contrasting
approaches just described, progress toward a unifying theoretical framework has been
slow, hampered by a large number of physical mechanisms operating simultaneously
(e.g. ion collision dynamics, defect generation and diffusion, stress buildup and relax-
ation, surface energy minimization), and a correspondingly large number of parameters
needed to characterize a given experiment (e.g. target species, ion species, ion energy,
ion flux, irradiation angle). Nevertheless, progress has been made by employing the
pattern-forming framework described by Cross, Hohenberg, and Greenside [7, 8] to
develop predictions on (a) the presence or absence of spontaneous pattern formation,
(b) the geometric characteristics of patterns when present, and (c) the critical param-
eter values at which patterns first appear. Our own group’s research has focused on
the development and study of increasingly comprehensive models of the early stages
of pattern formation, when surface amplitudes are small and governing equations
can accordingly be linearized, and, in general, we have found that models remain
incomplete, requiring additional physics to yield increased predictive power [5].

In this work, we present innovations at the modeling level consisting of an improved
treatment of both the location and the physics of the lower film boundary, at which the
solid target becomes amorphous under irradiation. Our analysis yields three primary
findings: (1) the improved modeling of this boundary produces a stark nonlinearity in
the dependence of the film stability on the irradiation parameters; (2) many param-
eters in the resulting model can be estimated directly from software packages that
simulate ion-solid interactions; and (3) the resulting predictions are consistent with
experimental observations of pattern suppression for certain ion-target combinations
when beam energy is increased above a certain value [46, 47]. These findings further
develop the insights provided by hydrodynamic models of stress build-up and relax-
ation, yet also highlight the need for greater experimental effort to understand the
behavior of important parameters within this framework.

2 Model

In this section we will present a continuum model for the ion-irradiated amorphous
semiconductor film, containing many of the physical mechanisms described above, and
giving special attention to the ways it deviates from a more traditional fluid model.

Conservation Laws.

We begin in typical fashion with the differential form of mass conservation,

∂ρ

∂t
+∇ · (ρ#v) = 0, (1)

where ρ = ρ(x, z, t) is the density of the amorphous film, and #v is the velocity field.
To accommodate the accumulation of radiation damage over time, we will not assume
that the density is constant. Next, we have the differential form of linear momentum
conservation,

ρ

(

∂#v

∂t
+ #v ·∇#v

)

= ∇ ·T, (2)
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where T is the stress tensor (we ignore body forces such as gravity in this treatment).
Because we expect the viscosity of the amorphous film to be very large even despite
its radiation-enhanced fluidity (see [47–49]; see also Chapter 6 of [41]), we take the
limit of small Reynolds number, which results in the simplified expression associated
with Stokes flow:

∇ ·T = 0. (3)

Stress Tensor: Anisotropic Plastic Flow.

We now define the stress tensor T, and in so doing, introduce the first of several
irradiation-specific modifications to a typical fluid mechanics model. We let

T = −pI+ 2η{Ė− Ėb}, (4)

where Ė = 1
2

(

∇#v +∇#vT
)

is the standard linear rate-of-strain tensor, but where the
additional term

Ėb = fADD(θ) ≡ fAD





3
2 cos(2θ)−

1
2 0 3

2 sin(2θ)
0 1 0

3
2 sin(2θ) 0 − 3

2 cos(2θ)−
1
2



 (5)

describes a phenomenon known as Anisotropic Plastic Flow (APF) [24, 37, 50–53].
Here f is the ion flux (through a plane perpendicular to the beam), AD is a propor-
tionality constant, and the matrix D describes a purely deviatoric flattening in the
direction 〈sin(θ), 0,− cos(θ)〉 of the ion beam, accompanied by expansion in the orthog-
onal direction. This simultaneous beam-oriented thinning and orthogonal expansion
is also sometimes known as “ion hammering” or a “pancake strain.”

Equation of State: Ion Induced Swelling.

Next, we turn to the equation of state, where we encounter a second irradiation-specific
feature of our model. As noted above, we do not assume the film to have a constant
density; instead, we let

ρ(∆) =
ρa

1 +∆(x, z, t)
, (6)

where the variable ∆ represents radiation-induced “volumization”, and obeys a simple
advection equation of the form

∂∆

∂t
+ #v ·∇∆ = fAI . (7)

with f again the ion flux, and AI a proportionality constant. Together, these equations
describe the phenomenon of Ion Induced Swelling (IIS) [54–61]. Here ρa is the ini-
tial density of the freshly-amorphized material, but over time, the accumulation of
radiation-induced damage results in an increase in film volume by a (relative) amount
∆(x, z, t), which accumulates at rate fAI . However, although we allow density to
depend on the ion-induced volumization, we omit any dependence on the pressure for
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mathematical convenience [59]. Hence, this formulation may be thought of as a quasi-
incompressibile approximation. As has been noted elsewhere [59, 60], this equation of
state will eventually have to be revisited, especially as stress saturation becomes an
important effect (e.g., the nonlinear dynamics of the thin film, see [62].) The determi-
nation of an equation of state appropriate for an amorphous solid is an active, open
research question at the time of writing; see, for example, [63].

Top Boundary Conditions: Sputtering.

At the free upper interface, z = h(x, t), we have

vI = #v · n̂− V (θ)
ρc
ρ

[T] · n̂ = −γκn̂,
(8)

where the first equation is the kinematic condition of mass conservation at an interface
moving with normal velocity vI , but modified to account for the process of ion-induced
sputter erosion at rate V (θ)ρc

ρ at the free surface (see the Appendix of [59] for a

derivation). The second is a typical statement of stress balance at a free surface with
surface energy γ and curvature κ.

Bottom Boundary Conditions: Amorphization

At the amorphous-crystalline interface, z = g(x, t), we have

∆ = 0 (9)

which implies via the equation of state that the density immediately on the amor-
phous side of the amorphous-crystalline boundary should be ρa, as newly-amorphized
material has had no time to be acted upon by IIS. Next, we have a mass-conservation
condition on the normal component of the velocity field:

[[ρ#v]] · n̂ = [[ρ]]vI , (10)

where [[·]] denotes the jump across the interface, and vI is the normal velocity of the
interface itself. This expression accounts for the fact that the amorphous-crystalline
boundary is associated with a phase change from crystalline to amorphous, and that
the density of the two phases may not be equal [64]. For instance, if the density of the
amorphous phase is lower than the density of the crystalline phase, then conservation
of mass requires that the velocity on the amorphous side of a moving interface be
nonzero. Finally, we need a condition on the tangential velocity, and we choose the
“no-slip” condition

#v · t̂ = 0. (11)

We refer the interested reader to [62] for a more general treatment involving a Navier
slip condition, which was found to have a negligible effect on predicted θC selection (see
Figure 4.3 of that work), while still possibly affecting angle-dependent wavelengths
λ(θ) due to the emergence of a new prefactor governed by the slip length. We neglect
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these considerations here for simplicity and in order to focus on the problem of θC
selection, which is better-suited to the longwave limit of our present interest anyway;
for a quantitative comparison of the longwave and full-spectrum analyses of a simpler
model, we refer the reader to discussion in [24].

Remarks.

From the perspective of traditional fluid mechanics models, the ion-irradiation sys-
tem we will study here has four major, unusual features. First, we deduct from
the Newtonian viscous stress tensor an ion-induced stress-free strain rate, describing
a phenomenon often called “ion-beam hammering” [37, 65–67] or “pancake strain”
[5, 41]. The resulting angle-dependent shear flow has been shown to be destabiliz-
ing for certain irradiation geometries [24]. Second, a modified equation of state [59]
is introduced to allow “volumization” due to irradiation damage; however, the model
remains “quasi-incompressibile” in the sense that the density remains independent on
the pressure. Third, the kinematic condition at the top free boundary must be modi-
fied to account for target sputtering – i.e. non-conservation of mass – at this surface.
And fourth, because amorphization of target material at the bottom boundary induces
an instantaneous increase in volume, conservation of mass requires a non-zero normal
velocity.

3 Lower Interface Position

Although the model described above is formulated with general upper- and lower-
boundary locations z = h(x, t) and z = g(x, t), a final unusual feature of ion-irradiated
films, in contrast with more typical fluid systems, is that the locations of these two
interfaces are not independent. Rather, they are linked by the irradiation process itself,
in which ions induce amorphization and fluidization over some domain relative to their
entry point through the free surface, and this domain moves deeper into the film as
the surface recedes due to erosion. Hence, variations in the height of the top, free
interface h(x, t) should induce corresponding variations in the height of the bottom,
amorphous-crystalline interface g(x, t). This correspondence is observable under cross-
section TEM imaging [42, 68]). In this section we review how this relationship has
been modeled in the past, and propose a meaningful improvement.

Motivation.

The first work to explicitly include this dependence appears to be [24, 69], which
placed the lower interface directly below the upper interface; i.e. a vertical translation.

g(x, t) = h(x, t)− h0 (12)

This relationship captures the general correspondence between upper and lower bound-
aries, and its initial application led to a predicted critical angle θC = 45◦, in good
agreement with experiments [24]. However, it does not exhibit any dependence on the
ion incidence angle θ, and in particular fails to describe the thinning of the amorphous
film that occurs as the the ion beam approaches grazing incidence (θ → 90◦).
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More recently, several authors have proposed an alternative approach [42, 59, 60,
70], in which the lower interface remains a simple translation of the top interface by
a distance h0, but the translation occurs in the direction of the ion beam , hence

g(x, t) = h(x− h0 sin(θ), t)− h0 cos(θ) (13)

This highly-plausible relationship does exhibit dependence on θ, and, indeed, corre-
sponds to a film that thins as θ → 90◦. However, whereas Equation (13) predicts that
the film thickness goes to zero at grazing incidence, experiments show that the film
retains a comfortably non-zero thickness in this limit [21, 42, 43, 68, 71]. Even more
worryingly, when this interface location is used, the predicted bifurcation angle drops
from 45◦ to only 30◦, far below the observed value [61].

These concerns motivate a more careful treatment than the simple geomet-
ric approaches described above, in hopes of obtaining a result somewhere between
Equations (12) and (13). We propose the following strategy:

1 characterizing the region ΩA(#xI , θ) amorphized by ions entering at #xI at angle θ;
2 constructing a union of amorphous regions ΩA for all entry points #xI on the surface;
3 and identifying the bottom boundary of the region so constructed.

An alternative way of describing this approach is to imagine “dragging” the region
ΩA(#xI , θ) over the free surface z = h(x, t), in which case, for every point 〈xT , zT 〉 on
the top surface, there will be a unique corresponding point 〈xB , zB〉 on the bottom
surface with the same slope, whose location must be determined.

2α

2β

a

2α

2β

a

t

( x , z  )2
B

2
B

( x , z  )1
T

1
T

( x , z  )2
T

2
T

n1

t 1

2 n2

( x , z  )1
B

1
B

n1

t1

t n2
2

Fig. 1 Schematic depicting Sigmund’s approximation of deposited energy using Gaussian ellipses,
and illustrating the method of locating the amorphous-crystalline interface that is implied by this
approximation.
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Formulation.

We begin by characterizing the amorphized region ΩA, and we follow the well-
established model of Sigmund [9, 10], who approximated the average distribution of
energy deposited by the collision cascade as a Gaussian ellipsoid oriented along the
ion beam (see Figure 1). Assuming an ion entry point at the origin, and ion penetra-
tion distance a, and standard deviations α and β of energy release in the downbeam
and crossbeam directions, the energy distribution for a single ion implantation event
is then

ED(x̃, z̃) =
1

2παβ
exp

(

−
(z̃ − a)2

2α2
−

x̃2

2β2

)

, (14)

where (x̃, z̃) are co-ordinates oriented in the “crossbeam” and “downbeam” directions,
respectively, which can be converted to lab-frame co-ordinates via the transformation

x̃ → x cos(θ) + z sin(θ)

z̃ → x sin(θ)− z cos(θ).
(15)

We then have, in laboratory (Cartesian) coordinates (x,z),

ED(x, z) =
1

2παβ
exp

(

−
[x sin(θ)− z cos(θ)− a]2

2α2
−

[x cos(θ) + z sin(θ)]2

2β2

)

, (16)

Now we consider the level curves of this function. If we introduce the constant E0 =
1

2παβ , and define another constant EA representing an amorphization threshold, then
the ellipse within which amorphization occurs is defined via the expression

F (x, z) =
1

2

(

(a+ z cos(θ)− x sin(θ))2

α2
+

(x cos(θ) + z sin(θ))2

β2

)

= ln

(

E0

EA

)

= 2

(17)

where we have set ln
(

E0

EA

)

= 2 to indicate that we expect amorphization within the

second standard deviation boundary. Finally, to find the point on the bottom interface,
we invoke the “dragging” analogy, and look for the location on the bottom half of this
level curve which has the same slope as the corresponding point on the top curve. This
can be stated

∇F · 〈1, hx〉 = 0, (18)

where hx denotes the slope of the free interface at the point where the ion enters the
film. Equations (17) and (18) represent a system of two equations for two unknowns.

A simplifying limit.

For any ion entry point
(

xT , zT
)

on the top surface, let us label the corresponding
point on the bottom surface

(

xB , zB
)

as depicted in Figure 1, and let us furthermore
characterize the horizontal and vertical distances between these points using functions
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X (θ, hx) and Z (θ, hx) as follows:

xB = xT +X (θ, hx) = xT +

[

X(θ, 0) +
∂X

∂hx
(θ, 0)hx +O

(

h2
x

)

]

zB = zT − Z (θ, hx) = zT −

[

Z(θ, 0) +
∂Z

∂hx
(θ, 0)hx +O

(

h2
x

)

] (19)

where we have expanded X and Z in the small slope hx, which is evaluated at x = xT ,
and where the quantity ∂Z

∂hx
(θ, 0) = 0 due to the geometry of the construction. Now,

because our upper and lower surfaces satisfy z = h(x, t) and z = g(x, t), respectively,
it follows from Eqs.(19) that

g
(

xB , t
)

= h
(

xT , t
)

− Z(θ, 0) + . . .

= h

(

xB −X(θ, 0)−
∂X

∂hx
(θ, 0)hx + . . . , t

)

− Z(θ, 0) + . . .
(20)

and from here, expanding the second expression in hx and keeping only leading order
terms gives

g
(

xB , t
)

= h
(

xB −X(θ, 0), t
)

− Z(θ, 0) + . . . (21)

Result.

Equation (21) indicates that to leading order in a small slope, the location of the
bottom boundary does not depend on that slope, and can be found by replacing the
tangent vector t̂ = 〈1, hx〉 with the coordinate vector î = 〈1, 0〉 in Equation (18).
Equipped with this knowledge, the solution for the displacement becomes straightfor-
ward. The linear Equation (18) yields an expression for X in terms of Z which can be
substituted into the quadratic Equation (17), for which the larger (i.e., more positive)
solution is chosen. The result is

x0(θ) = X(θ, 0) = a sin(θ) + 2





(α2 − β2) sin(θ) cos(θ)
√

α2 cos2(θ) + β2 sin2(θ)



 ;

h0(θ) = Z(θ, 0) = a cos(θ) + 2

(

√

α2 cos2(θ) + β2 sin2(θ)

)

,

(22)

which are surprisingly concise forms, and all parameters a,α,β may be obtained
directly from simulation software, such as SRIM [16]. In principle, we only require
that a,α,β describe a bivariate Gaussian that is associated with “damage” to the sub-
strate; we do not strictly require that it be the recoil distribution, power deposition,
or any other quantity. In the present work, we will use the distribution of the final
resting places of the bombarding ions as a proxy for the “damaged region”, reasoning
that an ion only stops moving once it has deposited all of its energy. Equations (21)
and (22) also indicate the strongly appealing feature that the lower interface remains a
direct translation of the upper interface, but in a more complex direction 〈x0(θ), h0(θ)〉
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than either the “vertical” case (12) or “diagonal” case (13). In fact, we can define an
“effective interface displacement angle”

Ψ(θ) = tan−1

(

x0(θ)

h0(θ)

)

(23)

that lies in between 0 and θ to characterize this direction.

Some interesting limits.

We note that the above expressions are easily specialized to previously-studied inter-
face relations by taking appropriate limits. First, a certain “angle-independence”
limit

lim
θ→0

x0(θ) = 0

lim
θ→0

h0(θ) = (a+ 2α)
(24)

yields the “vertical-translation” case used in [24, 69]. Next, the “vanishing cross-beam
width” limit

lim
β→0

x0(θ) = (a+ 2α) sin(θ)

lim
β→0

h0(θ) = (a+ 2α) cos(θ)
(25)

yields the “diagonal translation” relation used in [42, 59, 60]. Finally, the “spherical
collisions” limit

lim
β→α

x0(θ) = a sin(θ)

lim
β→α

h0(θ) = a cos(θ) + 2α
(26)

though receiving less attention recently, has been previously considered at least by
[12, 72] as a simplifying assumption broadly appropriate for low-energy noble gas ion
irradiation of Si.

Comparison to Data.

In Figure 2, we compare our ellipse-based displacements (22), along with “vertical”
and “diagonal” displacements (24)-(25), to angle-dependent data on film thickness
inferred from experiments for 1000 eV Ar+ → Si [43]. To determine the parameter
values a,α,β in Equation (22), we used the mean and standard deviations of final ion
locations as simulated by the Binary Collision Approximation code TRI3DST [17].
It is immediately evident that the predictions by the ellipse-based model, which lie
between the “vertical” and “diagonal” models, are much better than either.

4 Stability Analysis

We have now defined all aspects of our model, and are ready to analyze the predicted
stability of the irradiated film to perturbations. In this section we provide a concise
summary of our analysis and a statement of the stability result. Full details of the
analysis are described in the Appendix.
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Fig. 2 Film thickness prediction using theoretical expression h0(θ) from Equation (22) compared to
film thickness inferred from [43] for 1keV Ar+ → Si. Model parameters a = 3.45, α = 1.55, β = 1.38
were obtained from the final resting positions of ions using simulation software TRI3DST (“BCA”).
Also shown are the predictions of the “vertical” translation assumption (24) and the “diagonal”
translation assumption (25).

Conversion to Moving Frame.

Ion bombardment and the associated sputter removal of atoms causes the surface of
the target to gradually recede at a speed V that depends on the ion and target species,
the ion energy E and flux f , and the ion incidence angle θ. This speed may be expressed

V = fΩY (θ) (27)

where f is the ion flux, Ω is the atomic volume of the target species, and Y (θ) is
the sputter yield, which has units of sputtered atoms per incident ion. As described
above, the receding free interface z = h(x, t) causes an associated recession of the
amorphous-crystalline interface z = g(x, t), and it is convenient to perform analyses
in a frame of reference that recedes along with these interfaces. This is accomplished
via the substitutions

h → h− V t

g → g − V t

vI,h → vI,h − V (k̂ · n̂)

z → z − V t

#v → #v − V k̂,

(28)

The most notable consequence of this conversion is that at the amorphous-crystalline
interface z = g(x, t), the velocity in the bulk aquires an additional term V k̂ – that is,
in the moving frame of reference, material now appears to move through the bottom
boundary with velocity V k̂.
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Steady State Solution.

We next look for steady state solutions (∂/∂t → 0) consisting of flat surfaces (g(x, t) =
0, h(x, t) = h0) exhibiting translation symmetry (∂/∂x → 0). These assumptions lead
to a system of boundary value problems in the variable z, which admits solutions
#Φ0(z) = [ρ0(z), u0(z), w0(z), p0(z),∆0(z)] of the form

ρ0(z) =
ρa

√

1 + 2fAI
ρa

ρc

z
V

u0(z) = 2fADD13z

w0(z) = V

(

ρc
ρa

)√

1 + 2fAI
ρa
ρc

z

V

p0(z) =
2fAIη

√

1 + 2fAI
ρa

ρc

z
V

− 2fADηD33

∆0(z) =

√

1 + 2fAI
ρa
ρc

z

V
− 1,

(29)

where Dij simply denotes the component of the tensor described in Equation 5. We
note that (a) Anisotropic Plastic Flow causes a linear shear flow in the x direction,
(b) Ion-Induced Swelling induces a nontrivial z-dependence in most quantities, and
(c) Boundary Amorphization multiplies all instance of the velocity V by ρc

ρa
> 1. In

the “small swelling” limit discussed below and in our previous work [59–61], we find
that this steady state also has an associated steady in-plane stress of

T0,xx = 6fADη cos(2θ) + 2fAIη (30)

which we will refer to later. See also discussion in [61] where the above expression was
compared with experimental results due to [41].

Linearization in Normal Modes.

We now expand the governing equations described above in the neighborhood of
steady-state solutions, via the expressions

#Φ(x, z, t) → #Φ0(z) + ε#Φ1(x, z, t)

h(x, t) → h0(θ) + εh1(x, t)

g(x, t) → 0 + εg1(x, t),

(31)

representing small perturbations #Φ1 = [ρ1, u1, w1, p1,∆1] to the steady state fields
#Φ0(z). We seek solutions to the resulting linear equations using the ansatzes

#Φ1(x, z, t) →
#̃Φ1(z) exp

(

σt+ ikx
)

, (32)
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and
h1(x, t) → h̃1 exp(σt+ ikx)

g1(x, t) → g̃1 exp(σt+ ikx);
(33)

i.e., we exploit linear superposition to study a single Fourier mode with wavenumber
k, and look for a solution exhibiting exponential growth or decay at the rate σ. This
step leads to a system of boundary value problems for #Φ1(z) that include the growth
rate σ as an eigenvalue, implicitly defining σ = σ(k).

Simplifying Limits.

The resulting equations do not admit a simple closed-form solution, so for analyti-
cal tractability, we employ two simplifying limits that we have described more fully
elsewhere [61]:

• small dimensionless swelling rate fAIh0(θ)
V (θ) ' 1

• small dimensionless wavenumber kh0(θ) ' 1

The first limit is justified by the observation in Ref. [60] that the contribution to the
dispersion relation for arbitrary swelling rate AI – obtained computationally – very
closely resembles a constant multiple of the contribution in the small-swelling limit
AI → 0, as well as the evident smallness of the parameter as observed experimentally
[56–58]. The second limit is justified by the observation that in ion irradiation of pure
materials, the transition from stability to instability occurs first at long wavelengths
with wavenumbers near k = 0 (i.e. the bifurcation is of “Type II” in the classification
of Cross and Hohenberg [7, 8]) .

Dispersion Relation.

With the simplifications just described, the linearized governing equations become
tractable, and admit a solution #Φ1 with eigenvalue σ(k). Of primary interest to us is
the real part of σ:

Re (σ) =− f

[

3AD

(

ρa
ρc

)

cos (2θ +Ψ(θ))

cos (Ψ(θ))

+
AI

2

(

ρa
ρc

)2

+
ΩY (θ)

h0(θ)

(

1−
ρa
ρc

)

]

(

kh0(θ)
)2

+ . . .

(34)

where

tan (Ψ(θ)) =
x0(θ)

h0(θ)
(35)

is again the “effective interface displacement angle” Ψ(θ) defined in Eq. (23).
Equation (34) reveals the expected pattern-forming behavior of the irradiated sur-

face. If the term in brackets is positive, then longwave Fourier modes decay, and
patterns are suppressed. However, if the term in brackets is negative, then longwave
Fourier modes grow, and patterns are expected to appear. Furthermore, because the
term in brackets depends on the incidence angle θ, we can identify the critical angle
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θC at which the system transitions from stability (perturbations decay; no patterns
form) to instability (perturbations grow; patterns form).

Discussion.

Equation (36) is a generalization of previous results [24, 59–61], and can be interpreted
accordingly. The first term in Eqs. (36) describes the effect of Anisotropic Plastic Flow
(APF), modified here by the effect of differing phase densities and a generalized bottom
boundary location. In the limit of equal densities ρa = ρc and vertical boundary
displacement x0 = 0, we recover the long-wavelength limit of the result obtained
in Ref. [24]. Similarly, the second term describes the effect of Ion-induced Isotropic
Swelling (IIS), again modified by the effect of differing phase densities. In the limit of
equal densities we recover the longwave version of the result obtained in Ref. [59]. The
third term, which is new, describes an additional, direct effect of the density change
across the lower interface. Like the IIS term, this term is stabilizing for all incidence
angles, but unlike that term, its value increases with increasing angle.

We pause to note how Equation (34) cleanly illustrates the influence of the bottom
boundary location by way of the “effective interface displacement angle” Ψ(θ) appear-
ing the the APF term. At one extreme is the “vertical displacement” approximation
Ψ(θ) = 0; this leads to a term of the form cos(2θ) in Eqn. (34), which changes sign
(and hence stability) at 45◦ as seen in Ref. [24]. At the other extreme is the “diago-

nal displacement” approximation Ψ(θ) = θ; this leads to a term of the form cos(3θ)
cos(θ) in

Eqn. (34), which changes sign (and therefore stability) at 30◦, as seen in Ref. [61].
For the “ellipse-dragging” boundary location proposed here, we expect the APF

term to change sign at a intermediate values of θ between 30◦ and 45◦, depending
on the shape of the ellipse. Furthermore, even in the absence of IIS, the new stabi-
lizing term associated with boundary amorphization will increase the critical angle
θC somewhat above the value at which the APF term changes sign. Together, and in
marked contrast to the “diagonal” translation model, these features provide a means
to maintain agreement with experimental observations of θC ≈ 45◦ for the Ar+ → Si
system.

5 Results

In this section we explore the implications of the result (34), including comparison
with relevant experimental data, and using the TRI3DST software to estimate relevant
collision parameters.

Stability Boundary.

The growth rate in Equation (34) can be expressed more succinctly if we divide through
by fAD

ρa

ρc
, yielding the non-dimensional form

Re (Σ) =

[

− 3
cos (2θ +Ψ(θ))

cos (Ψ(θ))
−

1

2
P1 − P2R(θ)

]

(kh0)
2 , (36)
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Fig. 3 The critical angle θC as a function of the dimensionless phase-change parameter P2, for
various choices of the dimensionless swelling parameter P1.

where
Σ =

σ

fAD

ρc
ρa

P1 =
AI

AD

ρa
ρc

P2 =
ΩY (0)

ADh0(0)

(

ρc
ρa

− 1

)

R(θ) =
Y (θ)

h0(θ)

h0(0)

Y (0)

(37)

are all dimensionless. In this formulation, have separated the third term in brackets
into a constant P2 times an angle-dependent function R(θ). To determine the critical
angle θC separating stable parameter combinations (Σ < 0 for all k) and unstable
combinations (Σ > 0 for some k), we set the coefficient in brackets equal to zero and
plot the resulting level curves. This requires a functional form for R(θ), which contains
the yield Y (θ) and film thickness h0(θ). Because our predicted film thickness (19)
uses Sigmund’s Gaussian ellipse model [10], we also use that model’s predictions for
sputter yield. The resulting stability phase diagram is shown in Figure 3, with curves
depicting boundaries in (P2, θ)-space for different values of the parameter P1.

Comparison to Experiment.

We observe that the stability boundary in Fig. 3 is highly nonlinear, with a sudden
increase in the critical angle θc from around 50◦ to 75◦ in the vicinity of P2 ≈ 0.75.
This striking behavior may offer insight into some puzzling behavior of the commonly-
studied Ar+ → Si system [47]. At an energy of 1 keV, this system exhibits a critical
angle θc ≈ 45◦ [73], whereas at higher energies it has been reported that ripples are no
longer seen for any incidence angle below 65◦ [47]. At the time, this lack of patterning
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could not be explained by any existing models, leading authors to hypothesize the
existence of some missing, “unconditionally stabilizing” mechanism [47, 59–61].

As noted above, the new boundary-amorphization term P2R(θ) in Eq. (36) is
stabilizing for all angles of incidence. Moreover, according to Figure 3, the 45-degree
critical angle observed at 1 keV would imply a value of P2 ≈ 0.6, which is rather
near the sharp transition from low to high angles of incidence. Hence, if P2 were to
increase even modestly as the energy increases beyond 1 keV, the critical angle would
be expected to increase sharply, and could readily surpass the value of 65◦, which was
the most oblique incidence angle studied in [47].

To explore this possibility further, we attempt to construct energy-dependent esti-
mates for each parameter in the model, and present the associated critical angle
predictions. Values of the collision parameters Y , a, α, β are obtained using the sim-
ulation package TRI3DST [17], which allows Ψ(E, θ) and R(E, θ) to be determined
empirically. Based on the findings of [61] that Ion-Induced Swelling does not seem to
play a strong role in the Ar+ → Si system, we assume that AI ' AD and so set
P1 = 0. Finally, we need an estimate for P2(E). Within this parameter, the film thick-
ness h0 and yield Y can readily be determined using TRI3DST, but the Anisotropic
Plastic Flow parameter AD cannot.

The value of AD is much more difficult to estimate, and existing estimates in
the nuclear stopping regime vary quite a bit [39, 43, 74] (although estimates in the
electronic stopping regime are fairly well-developed [37, 75]). Here, we take an indirect
approach. As noted above in Eq. (30), our model predicts a steady stress of T0,xx =
6fADη cos(2θ) when AI = 0, implying that

AD ∼ η−1T0,xx (38)

i.e. a scaling for AD can be determined from those of fluidity and the steady stress.
Now, the work of Davis on ion-assisted deposition [76] has been used to argue that
T0,xx ∼ E−

7

6 for the case of pure ion irradiation without concurrent deposition [42].
Moreover, the work of Vauth and Mayr on ion-enhanced fluidity [48] has frequently
been used to argue that η−1 ∼ E

h0
[19, 47, 70, 73, 77]. If we combine these predictions,

we obtain

P2(E) ≈ P 1keV
2

Y (0, E)

Y (0, 1keV)

(

E

1keV

)
1

6

. (39)

If we further take P 1keV
2 ≈ 0.6 as discussed above, then we obtain the predicted

parameter values shown in Figure 4a. We see that P2 is, indeed, expected to increase
under these assumptions, and if we insert this result into Equation (36) and solve
numerically for θC , we obtain the behavior shown in Figure 4b. We observe that
the predicted critical angle increases around 1.5 keV for our hypothesized values of
P1 and P2, consistent with the disappearance of ripples at 65◦ observed in [47] for
Ar+-irradiated Si.

Physical Intuition.

We conclude this section by developing some physical intuition as to why, exactly,
the Boundary Amorphization mechanism is unconditionally stabilizing, and why it
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Fig. 4 (a) Predicted values of the dimensionless parameter P2 for various energies using the assump-
tions described in the main text. (b) Associated predicted critical angles obtained from Eq. (36). For
the value P 1keV

2 = 0.6 implied by experimental observations at 1 keV [73], the sharp increase in crit-
ical angle occurring around 1.5 keV is consistent with experimental observations at higher energies
[47].

and a correct model of interfacial geometry must be handled simultaneously. The
former follows directly from the nature of the amorphization boundary condition (10).
This condition induces an extra, inward-normal component of the velocity field at the
amorphous-crystalline boundary, with the magnitude of this extra velocity determined
by the amorphization rate— hence the erosion rate Y (θ). Because the extra velocity
component is directed in the normal direction, it has the effect of directing newly-
amorphized material away from the peaks of the lower interface. Now, although we
saw in Section 3 that the lower interface is not directly below the upper interface,
we also noted in Section 4 that ion-induced nanopatterns tend to exhibit “longwave”
behavior. Therefore, the peaks and valleys of the upper and lower interfaces are nearly
aligned, and so the “extra” flow due to amorphization moves toward the valleys of the
upper interface, which is stabilzing.

The mechanism just desrcibed is independent of the angle of the ion beam,
and hence, unconditionally stabilizing. Nevertheless, the angle-dependent film thick-
ness h0(θ) plays a crucial role. For a fixed inward-normal velocity profile along the
amorphous-crystalline interface, the stabilization just described is greatest when the
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film thickness is least (because the thinner the film, the less room this extra flow com-
ponent has to dissipate). When the film thickness is taken as a constant with respect

to the incidence angle (the “vertical translation” limit), the ΩY (θ)
h0(θ)

(

1− ρa

ρc

)

term must

under-predict stabilization, as the denominator is too large. Similarly, if the film thick-
ness is taken to decay as cos(θ) (the “diagonal translation” limit), this same term
grows too quickly in θ, developing a singularity at θ = 90◦, and dramatically over-
predicting stabilization in the approach to grazing incidence. Hence a proper treatment
of Boundary Amorphization and its contribution to thin-film stability requires a more
detailed treatment of angle-dependent film thickness.

6 Conclusions

Here we review the main contributions offered and questions highlighted in this
manuscript.

Improved interfacial modeling leads to better predictions.

As described above, the amorphous-crystalline interface has previously been been mod-
eled variously as flat [69, 78], a vertical translation of the free interface [24, 61], or a
“diagonal” translation of the free interface [42, 59]. However, as we have previously
shown, the choice of an interface relation leads to significant differences in predictions
for the critical angle θC , complicating the reconciliation of theory and experiment [61].
In response, we have derived an improved description of the lower interface position,
informed directly by collision cascade statistics that are obtainable from simulations.
This approach produces excellent agreement with experimentally-inferred film thick-
nesses for 1keV Ar+ → Si, and predictions of the critical angle in between those of
simple “vertical” and “diagonal” interface translations. Most importantly, this more
accurate boundary location eliminates a significant source of uncertainty from past
models.

At the same time, we have also considered a refinement in the treatment of the
amorphous-crystalline interfacial physics, by including the change in density accom-
panying the crystalline-to-amorphous phase change. This mechanism produces an
additional term in the dispersion relation, which is increasingly stabilizing as the inci-
dence angle θ increases. This term leads to a sudden, sharp increase in the critical
angle above a certain value of the dimensionless parameter P2. Subject to the hypothe-
ses on the energy dependence of P2 described above, this coincides quite well with
the energetic regime at which patterns appear to be strongly suppressed for Ar+ →
Si. Finally, we remark that the present model cannot explain the return of patterns
at much higher energies [47]; however, the assumptions of the Davis scaling [76] have
certainly broken down well-before these energies. This naturally provides an avenue
for future work.

Need for unified models of viscosity and stress.

While the modeling improvements described here appear to offer improved predictive
capability, they also highlight significant modeling uncertainties in the treatment of key
physical constants. Namely, the parametric dependence of the ion-enhanced fluidity
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η−1 and ion-induced stress AD remain largely unknown, frustrating efforts to unify
predictions across target species, ion species, ion energy (especially at much higher
energies, as noted immediately above), and ion flux.

Although the idea of an ion-enhanced fluidity dates to at least [21, 22], there
remains no experimentally-verified first-principles explanation for the origin of this
effect. Many works needing estimates of the fluidity extrapolate from a single molecular
dynamics study [48, 49], while a few others draw inferences from a limited number of
experiments on irradiated cantilevers [39, 41]. Within the ion-induced nanopatterning
literature, we are aware of only one model attempting to make predictions based on
underlying physics [40].

Similarly, the idea of an ion-induced stress has been used within the literature
since at least [36]. At high ion energies (the “electronic stopping” regime [16, 75, 79])
a plausible physical model of the effect exists [37, 52, 67], but at low energies (the
“nuclear stopping” regime [16, 75, 79]) its use is essentially phenomenological [5, 24].
Here, we have used the energy dependence proposed by Davis [76], an analogy first used
within the ion-induced nanopatterning literature by [42]. However, without a direct
physical model, the conditions under which this analogy holds remain speculative.

These two uncertainties are intimately related, because a fluid’s viscosity dictates
its ability to relax bulk stresses induced by the ion beam. This in turn affects the
steady stress predicted to arise due to Anisotropic Plastic Flow. As we saw above, this
stready stress takes the form |T0| = 6fADη – the product of the two unknown quan-
tities. In certain circumstances, an empirical measurement of this product is sufficient
to compare with theory [24]. However, a full understanding of ion-induced pattern
formation will require independent estimates of these distinct quantities.
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A Details of linear stability analysis

A.1 General equations

In what follows, we will require the linearization of momentum conservation in the
bulk:

−px + η(2uxx + uyy + vxy + uzz + wxz) = 0

−py + η(uxy + vxx + 2vyy + vzz + wyz) = 0

−pz + η(uxz + vyz + wxx + wyy + 2wzz) = 0.

(40)

It is noteworthy that we have not eliminated mixed partial derivatives. This is
because of the quasi-incompressibility condition, Equation (6), which replaces the
more-typical incompressibility condition in the present work. For the reader’s conve-
nience, we also describe in Appendix B the derivation of our non-standard boundary
condition from the usual statement of mass conservation across an interface, as well as
its linearization, which, together, result in several of the equations occurring at z = g
in what follows. We do not explicitly show all calculations leading up to the solution
here; however, we refer the interested reader to [61] where all calculations are shown
for a simplified version of the present system.

A.1.1 Steady state and first expansion: ε-small perturbations

We find the steady-state equations

∂

∂z
(ρ0w0) = 0

ηu0zz = 0

−p0z + 2ηw0zz = 0

ρ0 =
ρa

1 +∆0

w0∆0z = fAI .

(41)

At z=0, we have
∆0 = 0

u0 = 0

w0 = V

(

ρc
ρa

)

,

(42)

which represent the steady-state equations of the no-slip and mass-conservation
conditions respectively in the downward-translating frame. At z=h0, we have

0 = w0 − V
ρc
ρ0

u0,z = 2fADD13

p0 = 2η(w0z − fADD33),

(43)

as in [61], where the first equation is the steady-state equation of the modified kine-
matic condition, and the second two equations are due to the steady-state stress

27



balance T0 · n̂0 = 0 at the upper interface. At O(ε), we have the linearized equations
for the conserved mass and momentum, equation of state and the accumulation of
damage tracked via an advection equation, as in [59]:

ρ1t + ρ0u1x + ρ0zw1 + ρ0w1z + ρ1zw0 + ρ1w0z = 0

−p1x + η(2u1xx + u1zz + w1xz) = 0

−p1z + η(w1xx + 2w1zz + u1xz) = 0

ρ1 =
−ρ∗∆1

(1 +∆0)2

∆1t + u0∆1x + w0∆1z + w1∆0z = 0

(44)

Now at z = 0,
∆0,z(z; 0, h0)g1 +∆1(z; 0, h0) = 0

u0zg1 + u1 + g1x(w0 − V ) = 0

−g1xu0 + w0zg1 + w1 =

(

ρa − ρc
ρa

)

g1t

(45)

and we note that the last of these is due to conservation of mass at the interface,
representing one of the main contributions of the present work. At z = h0,

h1t = w1 − u0h1x + h1w0z +
V ρc
ρ20

(ρ0zh1 + ρ1)

η(u1z + w1x)− h1xT
11
0 = 0

−p1 + 2ηw1z + T 33
0z = 0,

(46)

where the first equation is due to the linearization of the kinematic condition modified
to reflect sputtering. For details of its derivation, we refer the reader to [59]. The second
two equations are due to the linearization of the stress balance at the free interface,

T0 · n̂1 +

[

∂T0

∂z
· h1 +T1

]

· n̂0 = #0, (47)

where n̂0 =< 0, 0, 1 > and n̂1 =< −h1x,−h1y, 0 >. As in [61], T 11
0 denotes the upper-

left component of steady-state stress tensor T0, and T 33
0 denotes the bottom-right

component. The component indices are denoted as superscripts to distinguish them
from the subscripts which elsewhere denote terms in the expansion.

A.1.2 Second expansion: small perturbative wavenumber k

We now seek the long-wave linear dispersion relation, since we anticipate that pattern
formation in this unary material should be governed by a so-called Type II bifurcation
[5]. This prompts the expansion of the dispersion relation σ ≈ 0 in small wavenumber
k as

σ = 0 + kσ1 + k2σ2 +O(k3), (48)

and we obtain the following systems at each order in k.
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At O(1):

ρ0zw̃10 + ρ0w̃
′

10 + ρ̃′10w0 + ρ̃10w0z = 0

ũ′′

10 = 0

−p̃′10 + 2ηw′′

10 = 0

ρ̃10 =
−ρa∆̃10

(1 +∆0)2

w0∆̃
′

10 + w̃10∆0z = 0.

(49)

At z = 0,

∆0zg1 + ∆̃10 = 0

ũ10 + u0z g̃1 = 0

w̃10 + w0z g̃1 = 0

(50)

At z = h0,

w̃10 + h̃1w0z +
V ρ∗

ρ20
(ρ0zh̃1 + ρ̃10) = 0

ηũ′

10 = 0

−p̃10 + 2ηw̃′

10 + T 33
0z = 0

(51)

At O(k):

σ1ρ̃10 + iρ0ũ10 + ρ0zw̃11 + ρ0w̃
′

11 + ρ̃′11w0 + ρ̃11w0z = 0

−ip̃10 + η(ũ′′

11 + iw̃′

10) = 0

−p̃′11 + η(2w̃′′

11 + iũ′

10) = 0

ρ̃11 =
−ρa∆̃11

(1 +∆0)2

σ1∆̃10 + iu0∆̃10 + w0∆̃
′

11 + w̃11∆0z = 0

(52)

At z = 0,

∆̃11 = 0

ũ11 + ig̃1(w0 − V ) = 0

−ig̃1u0 + w̃11 =

(

ρa − ρc
ρa

)

σ1g̃1

(53)

At z = h0,

σ1h̃1 = w̃11 − u0ih̃1 +
V ρc
ρ20

ρ̃11

η(ũ′

11 + iw̃10)− ih̃1T
11
0 = 0

−p̃11 + 2ηw̃′

11 = 0

(54)
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At O(k2):

σ1ρ̃11 + σ2ρ̃10 + iρ0ũ11 + ρ0zw̃12 + ρ0w̃
′

12 + ρ̃′12w0 + ρ̃12w0z = 0

−ip̃11 + η(−2ũ10 + ũ′′

12 + iw̃′

11) = 0

−p̃′12 + η(−w̃10 + 2w̃′′

12 + iũ′

11) = 0

ρ̃12 =
−ρa∆̃12

(1 +∆0)2

σ1∆̃11 + σ2∆̃10 + iu0∆̃11 + w0∆̃
′

12 + w̃12∆0z = 0

(55)

at z=0,

∆̃12 = 0

ũ12 = 0

w̃12 =

(

ρa − ρc
ρa

)

σ2g̃1,

(56)

and at z=h0,

σ2h̃1 = w̃12 +
V ρc
ρ20

ρ̃12

η(ũ′

12 + iw̃11) = 0

−p̃12 + 2ηw̃′

12 = 0.

(57)

A.1.3 Third expansion: small swelling rate fAI

A third expansion in small swelling rate fAI is motivated by two observations. First,
from previous results [60] it is known that the effect of even large swelling rates is
highly self-similar at all wave numbers, and uniformly stabilizing for long waves. Sec-
ond, as was seen in [59, 61], the expansion in small swelling rate is conducive to
analytical solution; while it may be possible to solve the long-wave equations for arbi-
trary swelling rate analytically (as in [60]), the Appendix in [61] suggests that the
linearized equations are substantially more complicated even in the long-wave limit.
Hence we take

α = α0 + fAIα1 + ...

ρ0 = ρ00 + fAIρ01 + ...

...

σ1 = σ10 + fAIσ11 + ...

ρ̃10 = ρ̃100 + fAI ρ̃111 + ...

...

(58)

In following with [61], we shall only write out explicitly the equations expanded in
fAI , as the equations for the leading order terms are obvious from the above (simply
by appending a “0” to the subscript of each term). We then obtain the following.
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Steady state at O(fAI):

∂

∂z
(ρ00w01 + ρ01w00) = 0

ηu01zz = 0

−p01z + 2ηw01zz = 0

ρ01 =
−ρa∆01

(1 +∆00)2

w00∆01z + w01∆00z = 1.

(59)

At z=0:

∆01 = 0

u01 = 0

w01 = 0.

(60)

At z=h0,

w01 + V ρc
ρ01
ρ200

= 0

u01z = 0

−p01 + 2ηw01z = 0.

(61)

At O(fAI):

ρ00zw̃101 + ρ01zw̃100 + ρ00w̃101z + ρ01w̃100z + ρ̃100zw01

+ ρ̃101zw00 + ρ̃100w01z + ρ̃101w00z = 0

ũ101zz = 0

−p̃101z + 2ηw̃101zz = 0

w00∆̃101z + w01∆̃100z + w̃100∆01z + w̃101∆00z = 0

ρ̃101 =
−ρa(∆00∆̃101 + ∆̃101 − 2∆01∆̃100)

(1 +∆00)3

(62)

At z=0:

∆01z g̃1 + ∆̃101 = 0

ũ101 + u01zg1 = 0

w̃101 + w01zg1 = 0.

(63)

At z=h0:

w̃101 + h̃1w01z + V ρc
(ρ00(ρ01zh1 + ρ̃101)− 2ρ01(ρ00zh1 + ρ̃100))

ρ300
= 0

ũ′

101 = 0

−p̃101 + 2ηw̃′

101 + T 33
01z = 0.

(64)
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At O(kfAI):

σ10ρ̃101 + σ11ρ̃100 + i(ρ00ũ101 + ρ01ũ100) + (ρ00zw̃111 + ρ01zw̃110)

+(ρ00w̃
′

111 + ρ01w̃
′

110) + (ρ̃′110w01 + ρ̃′111w00) + (ρ̃110w01z + ρ̃111w̃00z) = 0

−ip̃101 + η(ũ′′

111 + iw̃′

101) = 0

−p̃′111 + η(2w̃′′

111 + iũ′

101) = 0

σ10∆̃101 + σ11∆̃100 + i(u00∆̃101 + u01∆̃100) + w00∆̃
′

111

+w01∆̃
′

110 + w̃110∆01z + w̃111∆00z = 0

ρ̃111 =
−ρa(∆00∆̃111 + ∆̃111 − 2∆01∆̃110)

(1 +∆00)3

(65)

At z=0:

∆̃111 = 0

ũ111 + ig̃1w01 = 0

−ig̃1u01 + w̃111 =

(

ρa − ρc
ρa

)

σ11g̃1.

(66)

At z=h0:

σ11h̃1 = w̃111 − u01ih̃1 +
V ρc(ρ00ρ̃111 − 2ρ01ρ̃110)

ρ300

−ih̃1T
11
01 + η{ũ′

111 + iw̃101} = 0

−p̃111 + 2ηw̃′

111 = 0

(67)

At O(k2fAI):

σ10ρ̃111 + σ11ρ̃110 + (σ20ρ̃101 + σ21ρ̃100) + i(ρ00ũ111 + ρ01ũ110)

+(ρ00zw̃121 + ρ01zw̃120) + (ρ00w̃
′

121 + ρ01w̃
′

120)

+(ρ̃′120w01 + ρ̃′121w00) + (ρ̃120w01z + ρ̃121w00z) = 0

−ip̃111 + η(−2ũ101 + ũ′′

121 + iw̃′

111) = 0

−p̃′121 + η(−w̃101 + 2w̃′′

121 + iũ′

111) = 0

σ10∆̃111 + σ11∆̃110 + σ20∆̃101 + σ21∆̃100 + i(u00∆̃111 + u01∆̃110)

+w00∆̃
′

121 + w01∆̃
′

120 + w̃120∆01z + w̃121∆00z = 0

ρ̃121 =
−ρa(∆00∆̃121 + ∆̃121 − 2∆01∆̃120)

(1 +∆00)3

(68)

At z=0:

∆̃121 = 0

ũ121 = 0

w̃121 =

(

ρa − ρc
ρa

)

σ21g̃1.

(69)
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At z=h0:

σ21h̃1 = w̃121 + V ρc

(

ρ00ρ̃121 − 2ρ01ρ̃120
ρ300

)

ũ′

121 + iw̃111 = 0

−p̃121 + 2ηw̃′

121 = 0

(70)

A.2 Solution

In the limit of small cross-terms, the same as in [61] and discussed in the main text,
we obtain

σ = 0+σ10(kh0)+fAIσ11(kh0)+σ20(kh0)
2+fAIσ21(kh0)

2+O
(

(kh0)
3, (fAI)

2
)

(71)

where

σ10 =
−2fADiD13

[

1 + g̃1
h̃1

]

[

1−
(

1− ρc

ρa

)

g̃1
h̃1

] , (72)

σ11 = 0, (73)

σ20 =

[

− 2fAD

(

D11 −D33

)

+ g̃1
h̃1

V
h0

(

1− ρc

ρa

)]

[

1−
(

1− ρc

ρa

)

g̃1
h̃1

] (74)

and

σ21 =
−ρa

ρc

[

2 ρc

ρa
+
(

g̃1
h̃1

)2(
1− ρc

ρa

)(

1 + 2 ρc

ρa

)

− g̃1
h̃1

(

1 + 2 ρc

ρa
− 2 ρc

ρa

2)]

2
[

1−
(

1− ρc

ρa

)

g̃1
h̃1

]2 . (75)

Taking

g̃1

h̃1

= exp
(

− ikx0(θ)
)

, (76)

as described in the main text and collecting terms at each order of k recovers our main
result, Equation (36).

B Mass-conservation boundary condition

We may express conservation of mass as

d

dt

∫

Ω
ρ(#x, t)dV =

∫

∂Ω
ρ(#x, t)

[

vI−#v(#x, t) · n̂
]

dA+

∫

∂Ω
S1(#x, t)dA+

∫

Ω
S2(#x, t)dV, (77)

where ρ(#x, t) is the scalar density field, Ω is a control volume, VI is the normal velocity
of the interface ∂Ω whose differential surface element is dA, #v is the bulk velocity
field of the substrate that the interface moves through, and n̂ is the normal vector to
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the differential surface element dA. S1 represents a surface source and S2 represents
a bulk (volumetric) source. Because we are interested in the conservation of mass at
the amorphous-crystalline boundary z = g, and we expect no mass-sources either at
the surface or in the bulk, we take the sources S1, S2 → 0. Letting the control volume
Vol(Ω) → 0, conservation requires

∫

∂Ω
ρ(#x, t)

[

vI − #v(#x, t) · n̂g

]

dA = 0, (78)

hence

(

ρ(#x, t)
[

vI − #v(#x, t) · n̂g

]

)

amorphous

=

(

ρ(#x, t)
[

vI − #v(#x, t) · n̂g

]

)

crystalline

, (79)

or

(

ρa
[

vI − #va · n̂g

]

)

=

(

ρc
[

vI − #vc · n̂g

]

)

. (80)

Since the underlying crystalline substrate receives vanishingly little energy com-
pared to the amorphous layer, we anticipate that |#vc| ' |#va|, such that #vc ≈ #0 in
comparison. Then rearrangement leads to

#va · n̂ =

(

1−
ρc
ρa

)

vI (81)

at z=g, or, as a jump relation,

[[ρ#v] · n̂ = [[ρ]]vI,g, (82)

as in the main text. It is noteworthy that when [[ρ]] = 0, such that the density of the
crystalline and amorphous phases are assumed to be equal, we immediately restore the
more typical no-penetration condition. Equivalently, we point out that the common
use of the no-penetration condition throughout the literature on hydrodynamic-type
approaches to ion-induced pattern formation literature implicitly takes the crystalline
and amorphous phases to have the same density. One of the primary results of the
present work is that this irradiation-induced change of phase significantly affects the
linear stability of the film.

Next, we convert to the traveling frame via

#v → #v − V k̂. (83)

Then, we have

vI,g → vI,g − V k̂ · n̂g (84)
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due to ongoing erosion. These lead to

ρa#va · n̂g = (ρa − ρc)(vI,g − V k̂ · n̂g) + ρaV k̂ · n̂g

#va · n̂g =

(

ρa − ρc
ρa

)

(vI,g − V k̂ · n̂g) + V k̂ · n̂g

#va · n̂g =

(

1−
ρc
ρa

)

vI,g −

(

1−
ρc
ρa

)

V k̂ · n̂g + V k̂ · n̂g

#va · n̂g =

(

1−
ρc
ρa

)

vI,g +

(

ρc
ρa

)

V k̂ · n̂g.

(85)

We will now drop the subscript a as it is clear that the only bulk velocity field under
consideration is that of the amorphous layer. In principle, we have made the assump-
tion that the motion of the amorphous bulk is much faster than that of the underlying
crystalline substrate. It is also clear that when ρa = ρc (i.e., there is no density drop
across the interface), and if we assume the typical no-slip condition u = 0 at z = g,
we recover

#v = V k̂. (86)

This is as was seen in [59]. From

#v · n̂g =

(

1−
ρc
ρa

)

vI,g +

(

ρc
ρa

)

V k̂ · n̂g. (87)

we obtain the following expansions in Fourier modes. At O(k0),

g̃1w0z + w̃100 = 0. (88)

At O(k1),

−ig̃1u0 + w̃110 = σ10

(

1−
ρc
ρa

)

g̃1. (89)

At O(k2),

w̃120 = σ20

(

1−
ρc
ρa

)

g̃1. (90)

Expansion in fAI is straightforward. Then we arrive at the boundary conditions in
the main text. We note that this condition is more typical of the solidification theory
literature, and is featured prominently in Chapter 9 of [64] and elsewhere, while being
generally absent from most other resources of continuum mechanics (where phase
transitions are seldom of interest).

35


	Introduction
	Model
	Lower Interface Position
	Stability Analysis
	Results
	Stability Boundary.
	Comparison to Experiment.


	Conclusions
	Improved interfacial modeling leads to better predictions.
	Need for unified models of viscosity and stress.


	Details of linear stability analysis
	General equations
	Steady state and first expansion: -small perturbations
	Second expansion: small perturbative wavenumber k
	At O(1):
	At O(k):
	At O(k2):

	Third expansion: small swelling rate fAI
	Steady state at O(fAI):
	At O(fAI):
	At O(kfAI):
	At O(k2fAI):


	Solution

	Mass-conservation boundary condition

