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Quantitative convergence of the “bulk” free boundary
in an oscillatory obstacle problem

Farhan Abedin and William M. Feldman

Abstract. We consider an oscillatory obstacle problem where the coincidence set and free bound-
ary are also highly oscillatory. We establish a rate of convergence for a regularized notion of free
boundary to the free boundary of a corresponding classical obstacle problem, assuming the latter is
regular. The convergence rate is linear in the minimal length scale determined by the fine properties
of a corrector function.

1. Introduction

Let U C R” be a smooth, bounded domain, and let ¢y € C2(U) N C(U) be an obstacle
that is positive somewhere in U, negative on dU, and satisfies the ellipticity condition

A= —Ago =27 M
for some 1 > A > 0. Consider the following obstacle minimal supersolution above ¢q:
up(x) :==min{v: Av <0in U, v > @o(x)inU, v > 00ndU}. )

Then, ug satisfies
min{AuO, Uog — gl)()} =0.

The non-contact set of ug is ¢ := {ug > ¢@o} N U, the contact (or coincidence) set of uq
is Ag := {up = ¢o} N U, and the free boundary is the set Iy := d{ug = @o} N U.

In this work we study a natural toy model for the behavior of an elastic membrane
resting on a rough surface. Let ¢ be Z"-periodic, with the normalization

i =-1 d =0, 3
Iﬁlﬂnlﬂ an Hﬂlﬁxw 3)

and let p € R be a given exponent. For each ¢ > 0, define the rough obstacle

9e(x) == @o(x) + Y (x/e).
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Figure 1. Left: simulation of the obstacle problem solution above a parabolic obstacle perturbed by
an oscillating sinusoid. Right: contact set of the solution with the obstacle.

Consider the obstacle minimal supersolution
ug(x) =min{v: Av <0in U, v > @o(x) + &Y (x/e) inU, v=00ndU} (4)

which satisfies
min{Aug, us — ¢} = 0.

The non-contact set of u, is Q. := {u, > ¢} N U, the contact (or coincidence) set of u,
is Ag := {u, = ¢} N U, and the free boundary is the set I'; := d{u, = ¢} N U.

Our goal is to quantitatively compare the functions u, and u, as well as the contact
sets Ag and Ay. Note that the obstacle ¢, and contact set A, may be highly oscillatory.
Generally speaking, when p < 2 the obstacle solution u, rests on the peaks of ¥ and
the contact set is effectively “discretized”; see Figure 1. Furthermore, as illustrated by the
example in Figure 1, one cannot expect the free boundary I'; of the oscillatory obstacle
problem to converge in Hausdorff distance to the free boundary I'y of the unperturbed
obstacle problem.

The purpose of this note is to show that certain analogues of the basic regularity theory
for the classical obstacle problem can be developed for the oscillatory obstacle problem
and used to define the notion of the bulk contact set A, and bulk free boundary T's, which
can be compared directly with the effective contact set Ao and Iy, respectively. The rate
of convergence of [, to Iy is determined by fine properties of a corrector-type function
arising from an appropriate cell problem, which is studied in Section 2.

Let us state our main result more precisely. We first introduce the corrector function.
For each pv > 0, let x,, be the Z"-periodic minimal supersolution of the problem

xp :=min{v: Av < pinR”, v = ¥(x) inR", v is Z"-periodic}. 5)

Since the zero function is a supersolution for each u > 0, we have ¢ < x, < 0in R".
Define

E(p) = —inf ), = [l xllco- (6
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We show in Section 2 that &(u) — 0 as u — 0, but the rate depends sensitively on the
behavior of Y near its maxima. In some cases this rate is linear in p, but it also may be
Holder or worse.

Next we define the minimal length scale coming from the corrector function; this is
the quantity that will determine the rate of convergence in our main result.

Definition 1.1. The minimal length scale of the e-oscillatory obstacle problem is
r(e) = (ePEA " 27P)) /2, (7

We will assume henceforth that lim,_,o r(¢) = 0; this is a requirement on the expo-
nent p. The condition p > 0 is always sufficient, but we may consider p < 0 as well. For
instance, when & (i) = O(u), this holds for all p € R, while when &(u) = O(u%), this
holds when (1 —a)p + 20 > 0.

Finally, we define the notion of the “bulk” free boundary for the e-oscillatory problem,
which we consider to be an appropriate proxy for the free boundary I'; when establishing
quantitative convergence results.

Definition 1.2. The bulk contact set of the ¢ obstacle problem, denoted Kg, is the union
of cubes in the 4(A~12n) 2 r(g)Z" lattice that intersect A .. The bulk free boundary of the &
obstacle problem is the set I'; := dA, N U.

‘We can now state our main result.

Theorem 1.1. Assume Ty consists only of regular points, in the sense of Caffarelli [8].
Then, there exists C > 1 depending on the solution of (2) such that for all ¢ <1,

dr (Ao, Ag) < Cr(s) and dp(To, Ty) < Cr(e).

We refer to Section 4 for the precise regularity properties of 'y that are assumed. We
also prove a rate of convergence of the gradients which can be found in Section 5.

Remark 1.3. The estimate dg (Ag, A¢) < Cr(e) also holds, and the notion of bulk coin-
cidence set / bulk free boundary are really needed for comparing the free boundaries.

1.1. Literature

The obstacle problem is a classical and much studied example of a PDE problem featuring
a free boundary. It was realized some time ago, maybe first by De Giorgi, Dal Maso,
and Longo [14], that the I'-limit of an obstacle-type minimization problem may be of
a different type depending critically on the capacity of the peaks of the obstacle. This
phenomenon has been studied significantly in [2,3,6,9-11, 13], although those results are
not quantitative.

There is also work on the stability of the obstacle problem under perturbations of the
obstacle [4, 5,7, 19]. The primary difference between these works and ours is that the
stability is measured with respect to strong norms on the Laplacian of the obstacle (L*°
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or L'). In our case the perturbation of the Laplacian of the obstacle is only small in a
weak- / negative-order sense.

One motivation for studying oscillatory obstacle problem (4) is its connection with
the Hele-Shaw flow in periodic media [15, 17, 18]. The obstacle problem studied in [18]
resembles (4) when p = 2, but the nature of the transformation from the Hele-Shaw prob-
lem precludes the kind of oscillatory contact set that we are interested in here.

The works that are closest to ours are [12] and [1]. Our results quantify the qualitative
convergence results obtained in [12], and we go further by establishing the convergence
of the bulk free boundary of the oscillatory obstacle problem to the free boundary of the
unperturbed problem. The recent work [1] establishes a large scale regularity theory for
the obstacle problem with an oscillatory divergence-form elliptic operator. They make an
assumption on “compatibility” of the obstacle with the operator, which avoids the kind of
oscillatory contact set that we study here. However, removing this compatibility assump-
tion in the context of oscillatory divergence-form PDE operator would result in a cell
problem that is more singular and apparently much more difficult than the one we study in
Section 2, so it is not clear if the notion of bulk contact set would be useful in that context.

We also mention the paper of the second author and Kim [16] which considers a capil-
lary problem on a rough surface. This is quite a different problem, but there are loose
analogies. In [16] the surface roughness also results in a singular oscillatory contact set
and contact line, and a notion of “bulk” can be used in a similar way to recover free
boundary regularity at large scales.

2. Correctors and a cell problem

This section is devoted to the study of a cell problem that is meant to describe the local
behavior of the g-obstacle solution u, above its contact set A.. Recall the corrector func-
tion y, defined in (5) and its height &() defined in (6). Our goal is to show (with a
quantitative estimate) that & () — 0 as u — 0. We point out that a simple integration-by-
parts argument yields the following bound on the Dirichlet energy in a unit cell:

L valax = [ nodnds < .

The rate of convergence & () — 0 is sensitive to the structure of ¥ near its zero level set,
particularly the co-dimension of the zero level set and the regularity of ¥ near the zero
level set.

We will assume that i satisfies the following growth bound near its maximum (recall
the normalization given in (3) on ¥):

Y (x) > —Bdist(x, {yy = 0})° forsome B, s > 0. (8)

Note that such a bound holds naturally with s = 2 when ¥ € C!'! near its maximum set,
or with s € (0,2] when ¢ e Csls=Is],
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Theorem 2.1. Assume assumption (8) holds. The corrector y,, — 0 as i — 0 with the
following estimates for p < 1:

(1) Forn = 2 there is a constant C depending on s and B so that
E(p) = Cu(l + [log ).
(2) Forn > 3 there is a constant C depending on s and B so that
E(p) < Cp=s.

In particular, when s = 2, ,
E(n) < Cun.
(3) If 9{y < 0} contains a regular submanifold X of codimensionk € {1,...,n}, then

Cu k=1,
E(u) <4 Cu(l+|logul) k=2,
Cps+i= 2<k<n,

where the constants C depend on B, s, and the regularity of the parametrization
of 3.

Example 2.2. If ¢ : R” — R is laminar, that is, it only depends on m < n variables, then

part (3) applies with k = m.

Proof. Let G(x) be the Green’s function for the Laplace operator on the torus T"” = R”

mod Z" solving
AG=1- )&
kezZn

and normalized so that min G = 0. Standard Green’s function estimates give

1
A= sup |G(x)+ —log|x|| < +o0 inn=2
B1/2(0) 27

and
A= sup |G(x)—au|x|*™"| < +o0 inn>3.
B1/2(0)

Recall the normalization of i given in(3). Suppose, without loss of generality, that
0 € {y = 0}. By (8),
V(x) = —B|x|.

Then define, for some r < 1/2 to be chosen,

h(x) = ;L(G(x) + % log(r) — A) — Br® when n =2
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or
h(x) = u(G(x) —onr®>™ — Ay — Br®  when n > 3,

so that
h(x) < ¥ (x) on dB,(0).

By the comparison principle,
h(x) < gu(x) in T"\ B,(0).
Note that, when n > 3,
—minh < a,ur®>™" + Au + Br®,

the right-hand side is minimized when r*+7"~2

= W, and
—minh < pLs+5t—2.

Whenn = 2,
—minh < i|logr| + Ap + Br*,
2

so we choose r* = p to get
—mink < pn(1+ |log ul).

Note that the power s only appears in the constants in this case.

36

The lower bound for y, obtained above only holds in T” \ B,(0), but in B,(0) we
still have y,, > ¥ > —Br® which is a lower bound of the same order given the choice of r.
Next we consider the case when d{y/ < 0} contains a regular submanifold X of co-

dimension k. Then, define
() = /E G(x — »)dS().

Then, Ag = 1in T” \ ¥ and standard integral estimates show that

C k=1,
g(x) = { C(l +[logd(x,Z)) k=2,
Cd(x, E)z_k 3<k<n.

Then, we do the same barrier argument as in the previous argument, replacing G with

g.

Remark 2.3. If {y/ = 0} consists of a finite number of points, and the lower bound given
in (8) comes with an upper bound of matching order, a similar barrier from the proof of
Theorem 2.1 can act as a supersolution to establish a matching asymptotic lower bound
of &(u). In general, it seems tricky to establish an exact asymptotic for &(u), as that
would depend, in a complicated manner, on the set {{f = 0} and the growth of i near

that set.
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3. L estimates for the obstacle solutions

Our goal in this section is to obtain L estimates for the difference of uy and u.; an
important result we will obtain along the way is the non-degeneracy property given by
Lemma 3.3. It will be convenient, at this stage, to work with appropriate height functions
for each of the obstacle problems given by (2) and (4).

Let wo := ug — o be the height function for obstacle problem (2). Then, wg solves
the obstacle problem

wo(x) = min{v tAv < —AgoinU, v>0in U, v > —¢y on BU}.

We note that Q¢ = {wg > 0} N U and Ay = {wo = 0} N U. From the theory for the
classical obstacle problem [8], we know that wy is C L1 and satisfies

Awg = —Agg in Qp and wo = |[Dwe| =0 on Ay.
Next consider the function w, := u, — ¢o which solves the obstacle problem
we(x) = min{v AV < —AgyinU, v > ey (x/e)in U, v > —¢p on BU}. )

Although w, can be negative, we refer to it as a “height function” for the oscillatory
problem. Note that

Qe = {we > PY(x/e)} NU and Ay = {we = PP (x/e)} N U.
Also, w, satisfies
Aw, = —Agy in Q.

Certainly, w, > ?v(x/¢), but there is actually a much stronger lower bound in terms of
the corrector, as presented in the next lemma.

Lemma 3.1. Let w, = u, — g as above. Then,
We(x) > &P ya-1,2-p(x/e) forall x € U.

Proof. Consider the function vg(x) = &? y;-1,2-p (x /&) — we(x) and the set V = {v, > 0}.
Since w, > 0 on dU, we have V CC U. Thus, v, vanishes on dV N U.
For any x € V, we have €? y;-1,2-5(x/8) > we(x) > ePyr(x/¢). So, by (5),

Ae" e (3) =27

Since w; satisfies Aw, < —Ag@(x) < A~ 1in U, it follows that v, is subharmonic in V
and vanishes on 9V, from which it follows that v, = 0 in V, implying that V' is empty. =

As a consequence, we have the next lemma, which is an estimate for the difference of
the height functions wg and w,. Note that, in many cases, this is a significant improvement
on the trivial L estimate between w, and wq of order ?; this is because, recalling the
definition of & (i) from (6), miny & y;-1,2-p(x/e) = —1(¢)? as long as U contains a
single Z" -periodic cell.
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Proposition 3.2. Let v(¢) be as defined in (7). Then,
wo —r(e)?> < we <wo inU.

Proof. To prove w, < wg, we observe that wg > 0> ¢y (x/¢) in U and wo = @¢ on oU.
Therefore, wg is admissible for the minimization given by (9), and so wg > wg.

Next, to show wg — r(s)2 < wg, we observe that, by translation invariance, the solution
of the obstacle problem on U with boundary condition —go — r(£)? and obstacle —1(g)?
is wo — r(e)?. Since we > €2y -1,2-r(x/€) > —1(e)? in U and w, = —@g > @ — 1(€)?
on dU, we conclude that wg — r(g)? < w, in U. n

3.1. Non-degeneracy

It is well known that the height function wy satisfies the following non-degeneracy prop-
erty: for all z € I'g and r > 0 such that B,(z) € U, we have
A oo
sup wo > —r-.
B (2) 2n
For the height function w, of the oscillatory problem, we will establish an analogous non-
degeneracy statement at scales larger than r(¢).

Lemma 3.3. Forall z € U with dist(z, A;) > (A_l2n)%r(8) and r > 0 such that B (z)
€ U, we have N

sup w, > —712 — r(e)>.

B, (2) 2n

Proof. On the set D := B,(z) N Q,, consider the function

A
Ce(x) 1= we(x) — E|X —z|2.

Then, by (1),
Al = Awg— A =—Apyg—A >0 in D.

The maximum principle implies {, attains its maximum on dD. Furthermore, since
L:(2) = we(z) > —1(e)?, we have maxp &, > —r(s)2.

Now let xx € 0D be such that {.(xy.x) = maxp (.. We decompose dD as the
disjoint union 0D = (9B,(z) N Q¢) U (Br(2) N Ag). If xmax € 0B,(z) N Q¢, we have
| Xmax — z| = r, and so

—I‘(8)2 = Cs(xmax) = wa(xmax) - ﬂrz-

Consequently, we(Xmax) > %ﬂ — 1r(¢)?, from which it follows that SUpPg, () We >
A2
Zr

sals = r(¢)?, as claimed.



Quantitative convergence in oscillatory obstacle problem 39

If, on the other hand, we have xm.x € By (z) N Ag, then
2 2 A 2
—I‘(S) 5 é‘e(xmax) = ws(xmax) - _|xmax - Z| S __|xmax - Z| .
2n 2n

This implies % |¥max — z|? < r(&)?, which contradicts the assumption that dist(z, A;) >
(A~12n)2v(e). n

Remark 3.4. The scale r(¢) is highly dependent on ; see Theorem 2.1 above. Of par-
ticular interest is when r(e) = O(e), which holds when & (1) = O(u) and for any value
of p € R. We believe that r(¢) is the “correct” length scale to measure the contact set.
This is essentially because we postulate that the dominant term in the asymptotic expan-
sion of the height function w, above the “bulk” contact set is the corrector &? y2-»(x/¢),
which has height scaling r(g)2. In order to grow away from this corrector via quadratic
non-degeneracy at this same height scaling, one needs to move distance r(¢) away from
the “bulk” contact set.

4. Distance estimates for the free boundaries

In this final section, we combine the results from the previous sections to prove The-
orem |.1. Before we can do this, it will be necessary to make precise the regularity
assumptions we make on the free boundary I'y.

A well-known consequence of the classical regularity theory for the obstacle prob-
lem [8] is the following C L1 estimate for the height function wy:

(i)  CY! bound: supy |D?wo| < M with M depending on the lower bound of —gq
on dU, on A, and on ||Agg|lcr.

We will also assume that 'y consists only of regular points in the sense of Caffarelli [8].
This leads to the following regularity properties:

(i)  Strong non-degeneracy: there exists ¢; > 0 such that if x € Qg, then wo(x) >
c1d(x,To)?.

(iii)) Uniform positive density of contact region: there exists a constant ¢, € (0, %)
such that for any r > 0 and x € Ay, there exists y € Ay N B,(x) such that
Be,r(¥) € Ao N Br(x).

Both properties follow from well-known regularity results for the classical obstacle
problem. We make some convenient citations: for property (ii), apply [I, Lemma 5.5];
and for property (iii), apply [8, Theorem 7] and a compactness argument.

We recall the definition of the bulk free boundary from Definition 1.2.

Definition. The bulk contact set of the & obstacle problem, denoted A ¢, 18 the union of
cubes in the 4(A_12n)%r(s)Z" lattice that intersect A .. The bulk free boundary of the &
obstacle problem is the set Iy := dA, N U.
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Note that if x € I, then x belongs to some 4(A~ 12n)5r(e)Z” lattice cube Q » and
there is a neighboring 4(A~ l211) 2v(g)Z" lattice cube Qx such that x €00, N 8Qx and
Oy C Q.. The center z of O then satisfies dist(z, Az) >2(A"12n)2v(e) > (A "12n) 2 v(e).
In particular, Lemma 3.3 can be applied at z.

The following non-degeneracy statement at the bulk free boundary is an immediate
consequence of Lemma 3.3; such a non-degeneracy property can be viewed as an essential
attribute of a “good” notion of bulk free boundary:

Corollary 4.1. There is c(n,A) > 0 so that forallr > 0, if x € Ty, then

sup wg > c(n, A)r? —2r(e)?.
B, (x)

Proof. Let z be as defined in the preceding paragraph. For r < 2|x — z|, use we > —1(¢)?;
and for r > 2|x — z|, use Lemma 3.3 centered at z. |

Properties (i), (ii), and (iii) of I'y are sufficient to derive an r(¢) rate of convergence
of T’y to T'p in the Hausdorff distance, thus proving Theorem 1.1.

Proposition 4.2. There exists C > 0 depending on n, A and the quantity ¢ from prop-
erty (ii) such that for all ¢ < 1 and x € T'y, we have

d(x,Ty) < Cr(e).

Proof. Letr = d(x,Tp). There are two possibilities:

Case 1: Br(x) C Q.

Let O, be the 4()&‘1211)%1'(8)2" lattice cube containing x. By definition of T, there
isa 4(/\_12;1)%1'(5)2” lattice cube Qx such that x € dQ and Q, N A, # @; that is, there
is z € Q4 such that wy(z) = Py (z/e) <O0.

Applying the strong non-degeneracy of wg at z, we have

c1d(z,To)? < wo(2) < 1(e)? 4+ we(2) < v(e)>.

Thus, d(z,Ty) < cl_l/zr(s). Since d(x,z) < c(n,A)r(g), it follows that d(x, y) < Cr(¢),
as claimed.

Case 2: B, (x) C Ay.

Applying Corollary 4.1, we get

cr? —2r(e)® < sup we = sup (we — wo) < r(e)>.
By (x) By (x)

It follows that d(x, I'g) < Cr(e). |

Proposition 4.3. There is C > 1 depending onn, A, and the parameters from properties (i)
and (iii) above so that for all x € T'y,

d(x,T,) < Cr(e).
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Proof. Fix e < ggandletr = d(x, fs). There are two possibilities:

Case I: Br(x) C U \ As.

By the uniform positive density of Ag, we know there exists y € Ag N B,(x) such
that Be,(y) € Ao N By(x). We may also assume that dist(y, A;) > ()L_IZn)%r(s), for
otherwise we would already have r < Cr(e). Applying Corollary 4.1 in Be,,(y), we find

c(car)®> —=2r(e)®> < sup we = sup (w, — wo) < r(e)>.
Beyr () Beyr ()
It follows that r < Cr(e).

Case 2: By(x) C As.

Suppose wy attains its maximum on B, (x) at Xy, € By (x). Assume without loss of
generality that r > r(g). By definition of A, we can find a point y such that |xynax — V|
< Cr(e) and we(y) < 0. Therefore, by the non-degeneracy of wy and the Lipschitz estim-
ate for wq (from property (i) above), we have

Crz < Sup wo = wO(xmax)

Br(x)
= (Wo (Xmax) — wo(¥)) + (wo(y) — we(y)) + we(y)
<2Mrr(e) + r(e)® < M + Drr(e).
Consequently, r < Cr(¢), as claimed. |

‘We remark that the Hausdorff distance estimate
dr(Ao. Ae) < Cr(e)

holds by the same arguments as in Case 1 of the previous two propositions.

5. Gradient convergence

In this section we show another notion of convergence at the level of the gradient. Spe-
cifically, we show that

1/2
][ |[Vwg — Vw8|2dy) <Cr(e) in{x €U :d(x,0U) > r(e)}.
Br(s)(x)

This can be considered as an L estimate at scales above r(¢).
First of all, note that w, — wy is harmonic in the complement of A, U Ay, so

[Vw(x) — Vwg(x)] < % sup |we(x) —we(x)| < %1‘(@9)2 for B, (x) CU \ (A U Ayp).

By (x)

We apply that estimate with r = r(¢) to obtain

|[Vwe(x) — Vwe(x)| < Cr(s) for d(x, A UAg) > r(e).
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If d(x, Ao U A;) < r(e), then the Hausdorff distance estimate established in the previous
section implies
d(x,Ao) < Cx(e).

The C 1! estimate of wq shows that
wo(x) < Cr(e)?,  |[Vwo(x)| < Cr(e)
and the L*° estimate of w, — wq also shows
we(x) < Cr(e)>.

We just need to establish an analogous supremum estimate of Vwg(x).
First of all, notice that if w,(x) > 0 then Aw,(x) = —A@o(x) s0 —we(x)Aw(x) <0,
while if w,(x) < 0, then

—we (X) Awg (x) < —we(x)(=Ago(x)) < Cr(e)?,

since Aw, < —Agg everywhere. Thus, —w,(x) Aws(x) < Cr(e)? in either case.

Now we apply a Caccioppoli-type estimate. Take a standard cut-off function { which
is 1 in By (x) and zero outside of By (x) with |V| < % The argument of the
previous paragraph shows that

][ —weAwgt?dy < Cr(e).
By (s)(x)
On the other hand, we can compute

f —weAw,L2dy =]L |Vw, |22dy +][ EVwg - 2w, Vidy.
Bjy(e)(x) Bjy(s)(x) Byy(6)(x)

By Young’s inequality

1
][ {Vug - 2w, Vidy > _5][ |Vw, |[*¢%dy — 2][ w§|V§|2dy
By () x) By () x) By () x)

and
1

r(g)2’

f w2 VEPdy < Cr(e)*
By (x)

Combining the previous inequalities leads to

1/2
(][ |Vw8|2dy) < Cr(s).
Br(s)(x)

Note that we have not proved a r(e) rate for the gradient in L* even for the corrector
problem, so this kind of averaged estimate is basically the best we can do without knowing
something more about corrector problem.
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