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Abstract. Improving the scalability of probabilistic model checking (PMC) tools
is crucial to the verification of real-world system designs. The STAMINA infinite-
state PMC tool achieves scalability by iteratively constructing a partial state space
for an unbounded continuous-time Markov chain model, where a majority of the
probability mass resides. It then performs time-bounded transient PMC. It can
efficiently produce an accurate probability bound to the property under verifica-
tion. We present a new software architecture design and the C++ implementation
of the STAMINA 2.0 algorithm, integrated with the STORM model checker. This
open-source STAMINA implementation offers a high degree of modularity and
provides significant optimizations to the STAMINA 2.0 algorithm. Performance
improvements are demonstrated on multiple challenging benchmark examples,
including hazard analysis of infinite-state combinational genetic circuits, over
the previous STAMINA implementation. Additionally, its design allows for future
customizations and optimizations to the STAMINA algorithm.
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1 Introduction

Continuous-time Markov Chain (CTMC) can represent real-time probabilistic systems
(e.g., genetic circuits [15], Dynamic Fault Trees (DFTs) [20]). Unfortunately, proba-
bilistic model checking (PMC) may not always be feasible due to their infinite or fi-
nite but large state spaces. For instance, one might prefer to have unbounded species
molecule count in a genetic circuit model due to insufficient information at design time,
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which results in an infinite state space. Furthermore, the required explicit-state represen-
tation challenges scalable CTMC numerical analysis for verifying time-bounded tran-
sient properties. Existing PMC tools such as PRISM [13] and STORM [9] can efficiently
analyze reasonably-sized finite-state CTMCs. INFAMY [8] approximates state-spaces
with breadth-first search to some depth k and truncates any state beyond it. STAR [14]
and SeQuaiA [5] approximate the most probable behavior for population Markov mod-
els of biochemical reaction networks. The STORM-DFT library [20] implements an
approximation algorithm for DFTs based on partial state space generation of CTMCs.

STAMINA [16, 17, 19] performs on-the-fly state truncation using estimated state
reachability probability to enable efficient PMC of CTMCs with an extremely large
or infinite state space. STAMINA differentiates from the aforementioned techniques as
follows: It can analyze both bounded and unbounded CTMCs and is not restricted to
specific input models such as DFTs or biochemical population models. Specifically,
DFTs typically incur an acyclic state space, whereas cycles commonly exist in genetic
circuit models. Also, STAMINA does not truncate the state space with a fixed depth.
Contributions. This paper presents a new software architecture of STAMINA and a
first re-implementation in C++ that interfaces the STORM model checker. Modular-
ity plays a central role in STAMINA at both the core model builder class and other
specialized classes. It allows optimized heuristics for state-space truncation and clean
compartmentalization of functionality. Additionally, it includes memory optimizations
tailored to the STAMINA 2.0 algorithm [19]. STAMINA demonstrated marked perfor-
mance improvements on multiple challenging benchmarks, including hazard analysis of
infinite-state genetic circuits, over the previous STAMINA implementation, due to both
the speed of STORM’s internals, and increased opportunities for optimization within
STAMINA during its integration with STORM. STAMINA and STORM are both licensed
under the GPLv3 license.

2 Overview of STAMINA

STAMINA takes an unbounded CTMC model in the PRISM modeling language and
generates and truncates its state space where the probability mass resides. It calculates
a probability bound [Pmin,Pmax] based on a partial state space. STAMINA 1.0 [16, 17]
truncates the state space by preventing expansion of states whose reachability fall below
a threshold κ; and 2.0 [19] supports state re-exploration to obtain more accurate proba-
bility estimates. Both are written in Java and interface with the PRISM model checker.
STAMINA has now been rewritten in C++ to integrate with STORM. It is available on
GitHub and https://staminachecker.org with extensive documentation. It is now avail-
able via REST API for web-based usage.

The state truncation algorithm in STAMINA 1.0 [16, 17] performs breadth-first state
expansion in multiple iterations. In every iteration, it terminates a state-transition path
exploration on-the-fly when the estimated state reachability probability π̂(s) of state s,
also called terminal state, falls below a user-specified bound κ. It walks through the ex-
plored state space at the end of each iteration to find all terminal states to be re-explored
in the next iteration. It repeats this process until the change in state space size between
iterations becomes sufficiently small. This method has the following main drawbacks:
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(1) Inefficiency in repeatedly re-exploring the state space to find terminal states, and
(2) inaccurate state space truncation due to its inability to update state reachabilities of
previously visited non-terminal states in each iteration. STAMINA then interfaces the
PRISM CTMC transient analysis engine to compute a probability bound [Pmin,Pmax]
that encloses the actual probability of the property under verification. STAMINA ac-
cepts non-nested time-bounded until CSL formulas. It computes Pmax by assuming the
unexplored state space, abstracted as one artificial absorbing state, satisfies the property
and Pmin by assuming it violates the property. If Pmax − Pmin ̸⩽ w, STAMINA reduces
κ in order to further expand the state space until Pmax − Pmin ⩽ w. The user-specified
probability window w allows the user to control the tightness of the result.

The STAMINA 2.0 algorithm [19] balances re-exploring states to distribute their es-
timated state reachability probabilities π̂ and the number of states to re-explore. Specif-
ically, it addresses both drawbacks in STAMINA 1.0 by repeatedly pushing the updated
π̂(s) of state s to its successor states sufficiently frequently so that it prevents π̂ from
being ignored for states in a cycle in the state space. To optimize the performance, it
limits the number of states to re-explore by setting a smaller amount to reduce κ in
each iteration. It also reduces the expensive CTMC model checking procedure from
two to one. Additionally, STAMINA 2.0 provides reasonable defaults for both κ and w,
relieving the end-user’s burden in guessing their appropriate values. The STAMINA tool
presented in this work interfaces the STORM model checker, described next.

The STORM Model Checker. STORM [9] is a probabilistic model checker that sup-
ports the analysis of discrete- and continuous-time variants of both Markov chains and
Markov decision processes. STORM is written in C++, open-source, and publicly avail-
able at stormchecker.org. It is one of the state-of-the-art tools for probabilistic model
checking as witnessed in the Quantitative Verification Competition (QComp) [4]. The
performance of STORM stems from its modular design where solvers, model represen-
tations, and model checking algorithms can easily be exchanged and combined. Lastly,
STORM provides a rich C++ API which allows fine-granular access to its model check-
ing algorithms and underlying datastructures. This allows other tools such as STAMINA
to tightly integrate with STORM and benefit from its model checking performance.

Models such as CTMCs can be provided to STORM in many modelling languages
including the PRISM and JANI modelling languages, DFTs, or generalized stochas-
tic Petri nets. The Markov models can be built both in an explicit matrix-based or a
symbolic decision-diagram-based representation. STAMINA uses the explicit represen-
tation based on an efficient sparse matrix data structure. State space generation within
STORM is performed via the NextStateGenerator interface which iteratively gen-
erates successors states for a given state. Analysis of CTMC models can be performed
with respect to CSL using efficient algorithms [3]. Time-bounded properties are solved
via transient analysis of the CTMC using uniformisation and the approach by Fox
and Glynn [7] for approximating Poisson probabilities. Time-unbounded properties are
solved on the underlying discrete-time model using algorithms such as value iteration
or via linear equation system solvers.

https://stormchecker.org
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3 Software Architecture

STAMINA has been modularized as shown in Figure 1. It has a CLI entry point, but
STAMINA/S’s modularity allows alternate entry points into the program, which in the
future will facilitate rapid development of a GUI. This entry point instantiates an in-
stance of the Stamina class, which contains all of the information needed to run
STAMINA. The static Options class allows the CLI and GUI to specify input parame-
ters, such as w and κ. From there, the Stamina class instantiates one ModelModify
and StaminaModelChecker objects, whose functions are explained below.
Model Building. The core of STAMINA is the StaminaModelBuilder base class.
Although only one type is presented in this paper, this polymorphism allows multiple
types of model builders, which reuse code for shared functionality. Since STORM re-
quires that the CTMC transition rate matrix entries to be inserted in order, this base
class orders transitions, connects terminal states to the artificial absorbing state, and
keeps track of all other data needed for model checking with STORM. It employs a
ProbabilityState data type to store the estimated state reachability probability
and the state status, including whether the state is new, terminal, or deadlock.

To support different types of model builders, StaminaModelBuilder easily al-
lows sub-classes to explore (and re-explore) states without enforcing an exploration
order. For example, StaminaReExploringModelBuilder implements the algo-
rithm in STAMINA 2.0 discussed in this paper. While it’s exploration order is similar to
breadth-first, other sub-classes, such as StaminaIterativeModelBuilder and
its cousin StaminaPriorityModelBuilder explore states in a different order by
nature of their heuristics. Additionally, generic design of the StaminaModelBuilder
can eventually allow multithreading, which is under active development.
Specialized Classes. A number of specialized classes are delegated certain actions in
order to compartmentalize functionality and increase modularity. The ModelModify
class takes the non-nested time-bounded CSL property on time interval I , P=?(φU

Iϕ)
under verification, extracts the path formula ϕ, and automatically generates ϕ ∧ ¬ŝ and
ϕ ∨ ŝ, respectively. ŝ is the artificial absorbing state created by STAMINA. These are
passed to the StaminaModelChecker class responsible for calling STORM to com-
pute Pmin = P=?(φU I ϕ∧¬ŝ) and Pmax = P=?(φU I ϕ∨ŝ), respectively. Finally, there
are static StateSpaceInformation and StaminaMessages classes which read
information from the generated state-space and write log messages respectively.
Memory Optimization. Throughout its execution, STAMINA creates many small state-
probability objects in memory. While in Java this is fairly fast (due to the built-in mem-
ory management), in C++ this is delegated to the OS, making it slower. One solution to
this is to use a memory pool. Rather than using a memory-pool library data structure,
STAMINA is cognisant of object lifetime. Since each state exists for the lifetime of the
entire state space, the memory pool does not have a method to deallocate a single state,
reducing bookkeeping and CPU usage.

The custom memory pool (StateMemoryPool) is optimized for the STAMINA
algorithm. It makes one allocation request to the OS per “page” of size Bmp = 2bmp ×
sizeof(s) — where bmp is an integer chosen at compile time based on system re-
sources — and allocating the next Bmp instances from that block. These requests only
occur when a particular “page” is full. Bmp is chosen to be reasonably large so that such
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Fig. 1: Architecture of STAMINA: Arrows indicate object instantiations and data own-
ership. Classes in the red box are static and accessible everywhere.

requests do not happen frequently during state-space construction when state instances
are allocated. All states are deallocated the end of StateMemoryPool’s lifetime.
This, in tandem with the StateIndexArray class, allows STAMINA to access states
by index in O(N/Bmp). Due to the high value of Bmp, while linear, this averages close
to constant time on most models.

While some optimizations, such as keeping active tally of terminal states for w-
estimate, are more general, many are possible due to differences in STORM and PRISM.
PRISM provides an easy-to-use Java API which does most of the work under the hood,
and STORM exposes more of its internals, allowing STAMINA to optimize more exten-
sively. We acknowledge the importance of both tools during STAMINA’s development;
PRISM’s coherent Java API allowed the first two versions of STAMINA to be developed
quickly, and STORM’s modularity was the inspiration for STAMINA’s.

4 Results

All results were obtained on an AMD Ryzen Threadripper machine with a 16-core
3.5 GHz processor with 64 GB of RAM, running Debian 11 (Linux 5.10). Default
parameters were used for all user-specifiable variables except where indicated. Both
versions of STAMINA limit the probability window (w = Pmax−Pmin) to be w ⩽ 10−3

for all models, as was used in [19]. The STAMINA 2.0 algorithm was tested in both
STAMINA/PRISM and STAMINA/STORM for comparison. Note that STAMINA 1.0 was
not implemented in STAMINA/STORM, because of the marked advantage of STAMINA
2.0 already demonstrated in [19]. The source code for STAMINA is available at [1].
Hazard Analysis in Genetic Circuits. The emerging genetic design automation (GDA)
tools enables the design of genetic circuits. However, due to the inherent noisy behav-
ior of biological systems, the predictability of genetic circuits remains largely unad-
dressed. The state space of models of genetic circuit designs are infinite, and therefore
great case studies to test STAMINA. For this work, circuit 0x8E was selected to ver-
ify STAMINA’s functionality. The circuit is part of 60 combinational genetic circuits
designed and built as part of the development of the genetic design automation tool
cello [18]. It has three inputs and one output, indicated by yellow fluorescence pro-
teins. The circuit was specifically chosen since it exhibits an unwanted output behavior.
While the output is supposed to be high throughout an entire input transition, it turns
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Table 1: Probability comparisons. Digits in bold font show differences in
STAMINA/PRISM and STAMINA/STORM.

Model STAMINA/PRISM 2.0 STAMINA/STORM 2.0

Pmin Pmax w Pmin Pmax w

010to100 0.395048522 0.395115209 6.66874E-05 0.39505093 0.395100628 4.96987E-05
010to111 0.016594466 0.01678343 0.000188964 0.016474768 0.020078199 0.003603431
100to111 0.016627243 0.016822966 0.000195723 0.016504701 0.020246672 0.003741971
111to010 0.694656523 0.694808764 0.000152241 0.694661415 0.694745396 8.39815E-05
100to010 0.455029708 0.455120325 9.06176E-05 0.455034656 0.455085702 5.10458E-05
111to100 0.735722567 0.735846036 0.00012347 0.735725864 0.735790289 6.44251E-05
000to011 0.826019153 0.826159295 0.000140142 0.825468467 0.827041855 0.001573389
011to101 0.989516179 0.989742961 0.000226783 0.98923085 0.990289532 0.001058682
000to101 0.990235688 0.990472905 0.000237217 0.990019346 0.990893279 0.000873933
101to000 0.864410883 0.864464495 5.36124E-05 0.864417637 0.864456068 3.84307E-05
011to000 0.857436475 0.857504873 6.83981E-05 0.857436475 0.857504873 6.83981E-05
101to011 0.989490726 0.989802643 0.000311917 0.989025011 0.990641893 0.001616882

TQN2047 0.498962403 0.498968523 6.11917E-06 0.498962404 0.498968523 6.11917E-06
TQN4095 0.499263342 0.499269661 6.3189E-06 0.499263342 0.499269661 6.3189E-06
Polling20 1 1 0 1 1 0
JQN 4/5 0.865393696 0.865546456 0.00015276 0.865436981 0.865452685 1.57041E-05
JQN 5/5 0.819441133 0.820159054 0.000717921 0.819599345 0.819810381 0.000211036

off briefly before returning to a high output. Analysis by Fontanarrosa et al. showed
that the behavior is explained due to a function hazard (i.e., a property of the function
being implemented) [6]. To validate STAMINA, twelve models representing the 12 input
transitions, shown as the first 12 rows in Tables 1 and 2, were analyzed to calculate the
likelihood of that unwanted switching behavior.
Other Benchmarks. STAMINA was also evaluated on the same subset of examples
from the PRISM benchmark suite [12] and the INFAMY case studies [2] as in [19],
shown in the last few rows in Tables 1 and 2. One exception is the grid-world robot ex-
amples, since STAMINA does not yet support nested properties. The Tandem Queueing
Network (TQN) models [10] consist of two interconnected queues with capacity 2047
and 4095, respectively, whose property queries the probability that the first queue is full
before 0.23 time units. The Jackson Queuing Network (JQN) [11] models both have 5
as the arrival rate and contain 4 and 5 interconnected queuing stations, respectively. The
property queries the probability that at least 4 and 6 jobs are in the first and the second
queue, within 10 time units. Note that the property is satisfied in the initial state in the
polling model, so the probability is always 1.0 and the runtime is negligible.

5 Discussion

In all but four tests, state count and probabilities, namely Pmin and Pmax, were differ-
ent between both tools. However, all cases are comparable and the probability win-
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Table 2: State count and runtimes (in seconds) comparison for STAMINA 2.0.
Model State Count Runtime

STAMINA/P STAMINA/S STAMINA/P STAMINA/S Improve.(%)

010to100 85160 87902 47.79 28.67 40.00
010to111 3527020 2479199 3337.96 2843.89 14.8
100to111 3568525 2510758 3280.53 2873.05 12.42
111to010 467635 490145 283.53 236.78 16.49
100to010 165043 175194 100.78 73.61 26.95
111to100 406424 425443 216.10 210.31 2.68
000to011 2543695 1839612 2393.88 2109.79 11.87
011to101 2813395 2234057 2612.57 2262.65 13.39
000to101 2829690 2331091 2417.28 2557.20 -5.79
101to000 327687 337394 193.00 136.80 29.12
011to000 381372 381372 230.41 156.23 32.19
101to011 3006113 2302933 2896.84 2452.61 15.33

TQN2047 21293 21293 15.59 3.44 77.90
TQN4095 42469 42469 52.80 6.80 87.12
JQN4/5 187443 257265 33.38 59.88 -79.39
JQN5/5 1480045 1896415 419.47 577.40 -37.65

dows w always overlap as shown in Table 1. That is, Pmin
P ⩽ Pmax

S where Pmin
P

is the lower bound provided by STAMINA/PRISM and Pmax
S the upper bound from

STAMINA/STORM. This is also true for the condition Pmin
S ⩽ Pmax

P , the lower bound
from STAMINA/S and the upper bound from STAMINA/P, respectively. In order for the
actual probability to exist within these bounds, both conditions must—and did—hold.
Although the core algorithm is the same, the different but overlapping bounds may be
due to differences such as property-based truncation and CTMC numerical analysis that
exist in PRISM and STORM. There were several cases which STAMINA/STORM did not
meet the requirement, i.e., w ⩽ 10−3, due to a limit of 10 iterations in the outer while-
loop in [19]. Since PMC occurs in each iteration of that loop, this limit exists in [19] and
both versions of STAMINA to prevent excessive PMC with diminishing returns. How-
ever, after lifting this iteration limit, STAMINA/STORM was able to meet the window
requirement. Increasing this limit resulted in the windows of the two reactions which
transition to 111 to be 8.4×10−4 and 8.7×10−4, in 16 iterations (4669.08 and 4754.01
seconds), respectively. While this increased runtimes, the worst case being the 100 to
111 circuit transition, modifying other parameters, such as a smaller κ, would reduce
the number of iterations. All of these results are available online.

Table 2 shows that, STAMINA/STORM outperformed STAMINA/PRISM in most cases,
with substantial reductions in runtime, except for the two JQNs, and one circuit model.
However, for the JQN models, the runtime improved by over two times as the model
scaled from 4/5 to 5/5. State counts are generally comparable. More optimization op-
portunities presented when interfacing STAMINA with STORM, although more consid-
erations such as the order of state insertion into the transition matrix had to be made.

https://staminachecker.org/results/qest23


8 J. Jeppson et al.

6 Conclusion

This paper presents the first C++ implementation of the infinite-state CTMC model
checker STAMINA with increased modularity in software architecture and memory opti-
mizations. By interacting with the CTMC analysis engine in STORM, STAMINA further
improved model checking efficiency over the previous implementation, while maintain-
ing comparable scalability. Future improvements to STAMINA may involve additionaly
algorithmic efficiency, further optimizations with respect to STORM integration, tuning
the algorithm for rare events, and more challenging benchmarks or requirements, such
as bounding w ⩽ 10−7. We also are working on several user-experience improvements
to STAMINA, such as its REST API and a GUI, the former currently available for public
use and the latter under active development.

Data availability. An artifact with both versions of STAMINA, as well as STORM and
PRISM, and the testing suite used in this paper is provided in the open virtual appli-
ance (OVA) format. It has been submitted to the QEST 2023 artifact evaluation, and is
publicly available on STAMINA’s website.
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