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Abstract: Migdal-Eliashberg theory is one of the state-of-the-art methods for describing conventional su-
perconductors from first principles. However, widely used implementations assume a constant density of states
around the Fermi level, which hinders a proper description of materials with distinct features in its vicinity. Here,
we present an implementation of the Migdal-Eliashberg theory within the EPW code that considers the full elec-
tronic structure and accommodates scattering processes beyond the Fermi surface. To significantly reduce com-
putational costs, we introduce a non-uniform sampling scheme along the imaginary axis. We demonstrate the
power of our implementation by applying it to the sodalite-like clathrates YH6 and CaH6, and to the covalently-
bonded H3S and D3S. Furthermore, we investigate the effect of maximizing the density of states at the Fermi
level in doped H3S and BaSiH8 within the full-bandwidth treatment compared to the constant-density-of-states
approximation. Our findings highlight the importance of this advanced treatment in such complex materials.

INTRODUCTION

Discovering and designing new and technologically rele-
vant superconductors is one of the grand challenges of mod-
ern science [1]. Conventional superconductivity arises from
an intricate interplay between the electrons and the vibra-
tional modes of the lattice, which can be condensed into a
single parameter known as the electron-phonon (el-ph) cou-
pling strength λ. This interaction leads to pairing electrons
with opposing spins below the critical temperature Tc, creat-
ing an energy gap at the Fermi surface and resulting in a zero-
resistance superconducting condensate. Since the pioneering
work of Bardeen, Cooper, and Schrieffer (BCS) [2], advance-
ments in computational and theoretical techniques have al-
lowed accurate calculations of λ and fully ab-initio predic-
tions of Tc [3]. The density-functional theory for supercon-
ductors [4–6] and the anisotropic Migdal-Eliashberg theory
(AME) [7, 8] are state-of-the-art examples of such techniques
that have contributed significantly in unraveling the proper-
ties of the superconducting states of seminal materials like
MgB2 [9–11] and NbS2 [12] in unprecedented detail, and
in predicting entirely novel classes of superconductors from
first principles [13]. One of the most topical examples is
the class of the high-pressure superhydrides [14–16], which
have revolutionized the search for high-Tc superconductiv-
ity by demonstrating that detailed calculations of the elec-
tronic structure, phonon dispersion, and el-ph coupling can
guide experiments in the search for new superconducting ma-
terials. Prominent examples would be LaH10, theoretically
predicted in 2017 [17, 18] and experimentally confirmed two
years later [19], YH6 [20–23] and CaH6 [24–26], or most re-
cently, LaBeH8, the first successfully synthesized ternary su-
perhydride [27, 28].

The AME formalism is particularly useful in describ-
ing the order parameter of weak and strong coupling su-

perconductors. However, computing the el-ph matrix el-
ements and numerically solving the Eliashberg equations
requires extremely dense electron and phonon meshes in
the Brillouin zone (BZ) to overcome the strong sensitiv-
ity to the sampling of the el-ph scattering processes involv-
ing states around the Fermi level [29]. The AME imple-
mentation of the EPW code [30, 31], which was developed
by some of the present authors [32], enables the interpo-
lation of a small number of el-ph matrix elements to arbi-
trary electron and phonon wave vectors in the Bloch repre-
sentation using maximally localized Wannier functions [33].
This has helped to bridge the gap between experiments
and theory and has been widely used in the last few years
to determine, among other superconducting properties, the
momentum- and band-resolved superconducting order param-
eter of various anisotropic bulk materials [34–38], layered
compounds [39–41], and two-dimensional systems [42–46].

Despite the extraordinary success of the AME implemen-
tation in EPW, its main shortage comes from the assumption
that the density of states (DOS) is constant for a finite energy
window around the Fermi level εF (of the order of the Debye
energies) where the superconducting coupling occurs [32].
This approximation, widely employed in literature, is valid
for a broad range of compounds but will break down for ma-
terials with narrow bands or critical points in the vicinity of
εF [47, 48], such as van Hove singularities (VHSs) and Lif-
shitz transitions.

With the present work, we remedy this shortcoming. Our
implementation goes beyond the limitations of the previous
approach, by explicitly incorporating scattering processes of
electrons with energies and momenta beyond the confines of
the Fermi surface. This is made possible through the self-
consistent determination of the mass renormalization func-
tion, energy shift, and order parameter at every temperature
while ensuring the system’s charge neutrality (see Supplemen-
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tary Method 1). The corresponding theoretical considerations
and equations are detailed in the methods section and in Sup-
plementary Method 1. As this leads to an increased compu-
tational workload, we have also implemented a sparse, non-
uniform sampling scheme over the imaginary axis, consider-
ably lowering the number of Matsubara frequencies needed
compared to the uniform sampling scheme, which, in prac-
tice, highly decreases the computational costs (see methods
section).

We apply this implementation to two different classes of
topical superhydrides, the sodalite-like clathrates YH6 and
CaH6, and the covalently-bonded H3S and D3S. Results
and discussion are provided under General applications and

benchmarking and material-specific computational details can
be found in the methods section. Moreover, we present com-
pelling evidence that the commonly used approach of compu-
tationally optimizing Tc by maximizing the DOS at εF (N(εF))
is often ineffective, as the reported enhancements in Tc are,
in fact, artifacts resulting from the constant-DOS approxima-
tion. To support this claim, we conduct a detailed study of
electron- and hole-doping effects in H3S and BaSiH8 using
our full-bandwidth implementation (see Application to doped

hydrides). The results shed light on the limitations of the
maximizing-N(εF) strategy, emphasizing the need for a more
comprehensive and accurate approach in predicting supercon-
ducting properties, as provided with our implementation.

RESULTS

General applications and benchmarking

The emergence of superconductivity at record-breaking
temperatures has reignited the hope of achieving supercon-
ductivity at ambient conditions [1]. Indeed, the discoveries of
near-room temperature superconductivity in H3S [49, 50] and
LaH10 [18, 19, 51] at megabar pressures constitute a new land-
mark for superconductivity and for the prediction of entirely
new materials with advanced functionalities fully ab-initio.

Among the numerous already predicted and experimen-
tally confirmed superhydrides, H3S and D3S have received
particular attention from the scientific community. Multiple
independent experimental groups employing different char-
acterization techniques have confirmed the existence of the
cubic Im3m-H3S structure at pressures around 100-200 GPa
and its superconducting state near room temperature [52–59].
Furthermore, after the prediction of stable body-centered cu-
bic structures of hydrogen that form sodalite-like cages con-
taining Ca [20] and Y [24] atoms above 150 GPa, YH6

and CaH6 have also been comprehensively studied by many
independent theoretical [17, 18, 60, 61] and experimental
groups [21–23, 25, 26], paving the way for the search for the
holy grail of superconductivity [27, 37, 62–64]. Many hy-
drides exhibit interesting features, such as van Hove singular-
ities near εF and metallic hydrogen states with strong el-ph

coupling [1], which make them a unique condensed matter
platform to study superconductivity.

Due to their topical relevance and the amount of experi-
mental data available, we have employed the full-bandwidth
method to the sodalite-like clathrates YH6 and CaH6, and to
the covalently-bonded H3S and D3S. In the following, we
will consider two levels of approximation when solving the
AME. The first is the Fermi-surface-restricted approximation
(FSR) [30], which, as discussed in detail in the methods sec-
tion, assumes that the DOS around εF is constant. The second,
and main object of interest in this work, is the full-bandwidth
method (FBW), which takes into account the full energy de-
pendence of the DOS and thus allows for the inclusion of el-ph
scattering processes away from εF [31].

Furthermore, our implementation of FBW comes in two
different flavors: (i) updating the chemical potential, µ, while
solving self-consistently the AME equations to maintain the
charge neutrality of the system (referred to as FBW+µ hence-
forth); and (ii) keeping the chemical potential fixed (referred
to simply as FBW) to lighten the computational load. We
will also compare our results for Tc to the values given by
the commonly employed semi-empirical modified McMillan
equation [65, 66] and the recently proposed machine-learned
SISSO model [67].

YH6 and CaH6

To benchmark our implementation, we first take a look at
YH6 and CaH6, two hydrides whose variation in the DOS
around εF is rather small, i.e., they are materials for which
the FSR approach should be reasonably accurate.

In the following, we summarize the important physical
properties to understand the emergence of a high-Tc in these
materials: The electronic band structures and DOS for YH6

and CaH6 at a pressure of 200 GPa are presented in Figs. 1(a)

and (d). The corresponding phonon dispersions and phonon
DOS along with the isotropic Eliashberg spectral function
α2F(ω) and the cumulative el-ph coupling strength λ(ω) are
reported in Figs. 1(b) and (e). The relatively high el-ph cou-
pling is associated primarily with the Kohn anomalies ob-
served in the phonon dispersion along the Γ–H direction for
YH6 and the H–N direction for CaH6 [24]. For YH6, numer-
ous modes between 90 meV and 220 meV significantly con-
tribute to the total el-ph coupling strength. Conversely, the
primary contribution for CaH6 is localized in the energy range
of 100-160 meV, derived from the T2g and the Eg modes at the
Γ-zone center belonging to the vibrations of the H4 units [20].
By integrating α2F(ω), the total el-ph coupling strengths for
both YH6 and CaH6 are close to 2.0. This value and the
α2F(ω) functions are in excellent agreement with the calcu-
lations presented in Refs. [20, 60].

Figures 1(c) and (f) depict the anisotropic superconduct-
ing gap ∆nk as a function of temperature for YH6 and CaH6

at 200 GPa using the FSR, FBW, and FBW+µ implementa-
tions, with µ∗ = 0.16. YH6 exhibits two well-defined super-
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Figure 1. Electron, phonon, and superconducting properties for sodalite-like clathrates: Panel (a) shows the calculated electronic band
structure and DOS with respect to the Fermi energy εF for YH6 at 200 GPa. The solid blue lines represent the DFT bands, the dashed red lines
the Wannier bands, the solid black line the total DOS, the shaded green area the projected DOS for hydrogen s states (H-s), and the dashed
black line indicates εF. Panel (b) shows the phonon dispersion (solid blue), the phonon density of states (PDOS, solid black) and its elemental
contributions (shaded green and purple), the isotropic Eliashberg spectral function α2F(ω) (shaded ochre), and the cumulative electron-phonon
coupling parameter λ(ω) (solid black). Panel (c) displays the distribution of the values of the anisotropic superconducting gap ∆nk on the Fermi
surface according to the FSR (blue), FBW (red), and FBW+µ (green) implementations for the Migdal-Eliashberg equations. Panels (d)-(f)
show the corresponding results for CaH6 at 200 GPa.

conducting gaps on the Fermi surface; a larger, broad energy
gap ranging from 35 meV to 56 meV at low temperatures, and
a smaller gap at approximately 28 meV, the latter originated
from the small zone-centered Fermi surface pockets [12]. The
gaps of YH6 close at Tc ≈ 250 K within the FSR approxi-
mation and at Tc ≈ 238 K within the FBW approach, inde-
pendent of whether the chemical potential is updated self-
consistently or not. CaH6 is a single-gap superconductor fea-
turing a well-defined gap energy with a maximum of approx-
imately 45 meV and broadness of about 5 meV; the Tc value
is around 200 K in all three implementations, FSR, FBW, and
FBW+µ.

Experimentally, the critical temperature of YH6 varies de-
pending on the synthesis route. Maximum values for Tc rang-
ing from 220 K at 183 GPa [21] to 224 K at 166 GPa [23] have
been reported. In contrast, CaH6 exhibits a wider transition
width of approximately 25 K, with an onset Tc of 195 K at
185 GPa [25]. A maximum Tc of 215 K for CaH6 has been ob-
served at 172 GPa [26]. At 200 GPa experiments report a Tc of
about 211 K for YH6 and about 204 K for CaH6. Considering
the considerable variation of Tc with respect to different sam-
ples and the uncertainties for a particular measurement, the
agreement between experimental values and our numerically
determined ones is quite satisfactory. We expect that by in-

cluding corrections from quantum anharmonic effects, which
can be sizeable in hydrides [68–70], the difference between
experiment and theory could be even further reduced, which
will be a topic of future investigation.

As mentioned before, both YH6 and CaH6 exhibit a slowly
varying DOS around εF and in such cases, the FSR approx-
imation is reasonable for describing the el-ph scattering pro-
cess around the Fermi level. This is also evident from the fact
that the chemical potential remains almost constant through-
out the self-consistent solution within FBW+µ. Nevertheless,
it is important to note that the FBW implementation offers
a better agreement with experiments even for these simple
cases.

H3S and D3S

In contrast to the XH6 materials described above, the behav-
ior of the DOS around εF is quite different in the covalently
bonded H3S and D3S hydrides. As indicated in Fig. 2(a), the
Fermi level is located right at the shoulder of a marked peak
in the DOS, which will give rise to considerable differences
between the FSR and FBW approaches.
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Figure 2. Electron, phonon, and superconducting properties for the covalently-bonded materials: Panel (a) shows the calculated elec-
tronic band structure and DOS with respect to the Fermi energy εF for H3S and D3S at 200 GPa. The solid blue lines represent the DFT bands,
the dashed red lines the Wannier bands, the solid black line the total DOS, the shaded coloured areas the projected DOS for hydrogen s (H-s)
and sulfur s and p states (S-s, S-p), and the dashed black line indicates εF. Panel (b) shows the phonon dispersion (solid blue), the phonon den-
sity of states (PDOS, solid black) and its elemental contributions (shaded green and purple), the isotropic Eliashberg spectral function α2F(ω)
(shaded ochre), and the cumulative electron-phonon coupling parameter λ(ω) (solid black). Panel (c) displays the distribution of the values of
the anisotropic superconducting gap ∆nk on the Fermi surface according to the FSR (blue), FBW (red), and FBW+µ (green) implementations
for the Migdal-Eliashberg equations. Panels (d) and (e) show the corresponding results for D3S at 200 GPa.

Figures 2(b) and (d) report the phonon dispersion, the
phonon DOS, α2F(ω), and the cumulative λ(ω) for H3S and
D3S at a pressure of 200 GPa. The corresponding α2F(ω)
functions possess two main peaks in both compounds. For
H3S, the dominant one is centered around 120 meV, and the
second one, less intense, around 190 meV. For D3S, the peaks
are shifted to lower frequencies, as expected due to the greater
mass of deuterium atoms, with maxima centered around
90 meV and 130 meV, respectively. In both hydrides, the
whole optical spectra from 30-40 meV to the Debye frequency
contribute to the total electron-phonon coupling, which is
found to be λ = 2.3 for H3S and λ = 2.2 for D3S, respectively.
These values and the corresponding α2F(ω) functions are in
excellent agreement with those reported in Refs. [49, 71, 72].

The solution of the AME equations reveals that H3S and
D3S are single-gap superconductors with a broad energy gap
distribution. Compared to the FSR treatment, the FBW cal-
culation with fixed µ lowers the gap energy [see Figs. 2(c)

and (e)]. This effect is even more pronounced when updat-
ing µ self-consistently (FBW+µ), as the chemical potential
is shifted to higher energies, moving the Fermi level away
from the peak of the van Hove singularity. These results em-
phasize the critical role of the VHS on the superconducting
properties of H3S, as has been pointed out in other works as
well [48, 71, 73–75].

The highest measured Tc in the study of Drozdov et al. [50]
is 203 K at 155 GPa for H3S and 152 K at 173 GPa for D3S,

with a variation of Tc for different samples of up to 15 K.
Samples with better crystallinity for H3S were later obtained
by Mozaffari et al. [57] with a Tc of 201 K at 155 GPa and a
small transition width of 5.5 K; and also by Nakao et al. [56],
where a sharp drop of the resistance was measured at Tc =

200 K at 150 GPa. Minkov et al. [59] have used the same
direct in-situ synthesis from elemental S and excess H2 as
in Refs. [56, 57] to obtain better homogeneous samples for
D3S, revealing that D3S reached a maximum Tc of 166 K at
157 GPa, significantly higher (≈ 10 % difference) than previ-
ously reported values [50].

As can be appreciated in Tab. I, FBW+µ performs best
in approaching the experimental critical temperatures Tc

exp

among the different implementations for solving the AME
equations. For H3S, our calculations provide Tc = 232 K
at 200 GPa, a percentage difference of 23-30 % compared
to the experimental values of 172-184 K at 200 GPa from
Refs. [50, 53, 59]. The rather large differences originate from
anharmonicity and the quantum motion of the nuclei, which
are known to play a crucial role in H3S [68]. Incorporating
these effects is, in principle, possible within EPW, as demon-
strated in Refs. [70, 76] for example, but beyond the scope
of the current work. Here, it is important to point out that
FBW+µ provides a much better estimate for Tc than FSR. The
performance of FBW+µ in reproducing the experimental val-
ues is notably better for D3S, where anharmonic and quantum
ionic effects are smaller. The full-bandwidth treatment only
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Table I. Summary of the obtained superconducting properties for YH6, CaH6, H3S, and D3S: The table lists the DOS N(εF) and the H
partial DOS NH(εF) at the Fermi level, the electron-phonon coupling parameter λ, the logarithmic average of the phonon frequencies ωlog, and
the superconducting critical temperature Tc according to the modified McMillan formula (mMc), the University of Florida machine-learning
model (UF), the Fermi-surface-restricted approximation (FSR), and the full-bandwidth implementation without (FBW) and with (FBW+µ) the
self-consistent chemical potential update scheme, and all experimental critical temperatures Tc

exp at 200 GPa available in the literature. The
Tc

exp of Ref. [21] and Ref. [26] are used as reference for YH6 and CaH6, respectively; and the Tc
exp of Refs. [50, 53, 59] are used as reference

for H3S and D3S.

N(εF) [NH(εF)] λ ωlog Tc
mMc Tc

UF Tc
FSR Tc

FBW Tc
FBW+µ Tc

exp

(eV−1) (meV) (K) (K) (K) (K) (K) (K)

YH6 0.69 [0.32] 2.0 108 154 202 250 239 238 208-214
CaH6 0.31 [0.27] 2.0 104 148 188 205 200 198 ∼ 204
H3S 0.53 [0.27] 2.3 108 173 232 256 250 232 172-184
D3S 0.53 [0.27] 2.2 80 127 166 190 182 170 144-148

slightly modifies the structure of the superconducting gap ∆nk,
i.e., the gap distributions are shifted to lower energies while
retaining the overall shape at each temperature.

The isotope effect coefficient, according to the BCS theory,
is given by

α = −
ln T

D3S
c − ln T

H3S
c

ln MD − ln MH
, (1)

where MH and MD are the atomic mass of hydrogen and deu-
terium. The experimental values obtained for α are around
0.47 at 150 GPa [52]. Within FSR, we obtain α = 0.54 at
200 GPa; for FBW we have α = 0.48; and for FBW+µ we
have α = 0.45.

These results demonstrate that the full-bandwidth method
is imperative for accurately describing these systems within
the Eliashberg formalism. As already pointed out by other
authors [48, 71, 73], the conventional Eliashberg formalism
within the FSR framework partially fails to accurately de-
scribe the Tc behavior in H3S due to a substantial variation of
the DOS near εF originating from the van Hove-type singular-
ity present there. The strong el-ph coupling of λ = 2.3 for H3S
and λ = 2.2 for D3S, and the broad distribution of α2F over the
vibrational spectra makes this scenario even more dramatic
since the region around εF, where the phonon scattering dom-
inates over the Coulomb repulsion, is strongly enhanced by
the el-ph interactions. Lastly, these results highlight the im-
portance of updating the chemical potential while solving the
AME equations within the FBW treatment.

At the end of this section, we also want to shortly dis-
cuss the modified McMillan [65, 66] formula and a recent
machine-learning approach to improve upon it [67], both of
which can be used as an almost instant way to predict Tc, but
do not offer insight into other properties of the superconduct-
ing state. The modified McMillan formula (mMc, see Sup-
plementary Note 1) is obtained from the Eliashberg theory by
defining moments of the α2F spectral function and fitting an
equation to match the experimental Tc, taking into account
a bit more than 200 data points. As the data set consisted
of the (low-Tc) superconductors known at the time and a few
pure model calculations, it does not reproduce the experimen-
tal critical temperatures of the extreme cases of contemporary

highly-compressed high-Tc materials, as is also evident for the
materials chosen in this study [66].

The machine-learned equation proposed by a group of the
University of Florida (UF), on the other hand, has been trained
to match the solutions of the Migdal-Eliashberg equations
with a dataset of thousands of real and artificially generated
α2F functions, including high-pressure, high-Tc hydrides as
well. It thus performs much better than the mMc formula and
matches the results obtained with AME fairly well. It is there-
fore a viable tool to determine an accurate value for Tc quickly
but does not offer insight into the superconducting gap func-
tion and its energy distribution, the superconducting DOS, and
so on. We also observe shortcomings when trying to simulate
the effects of doping, as detailed in the next section.

Application to doped hydrides

Doping can be a powerful method to tailor and fine-tune
specific material properties, especially in electronic applica-
tions. It has been used to metallize semiconducting phases,
induce superconductivity, and optimize specific properties of
the superconducting phase [41, 42, 77–80]. In particular, this
approach has been employed to increase the Tc in known su-
perconducting systems and is claimed to be a route to obtain
(or to be the source of) room-temperature superconductivity
in recently reported hydrides [64, 81–87].

The doping of hydrogen-rich superconductors and its ten-
tatively beneficial effect on Tc has been extensively studied
in various works [83, 84, 88–98], however, most of the theo-
retical predictions for an enhancement of Tc rely on calcula-
tions based on the McMillan/Allen-Dynes formulas, or on the
ME equations within the constant-DOS approximation, and
hence focus mainly on maximizing the value of the DOS at
the Fermi level and thereby that of λ. In particular, in systems
with VHS-like peaks close to the Fermi level, this approach
might severely overestimate the contribution of the electronic
states available for the superconducting pairing and thus also
the critical temperature. Furthermore, the exact value of the
DOS close to a VHS-like shape is subject to large variations,
which makes predictions even more error-prone [73].
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Figure 3. Doping effects on the critical temperature in different approaches: Effects of doping (shifting the Fermi level) in H3S at 200 GPa
(panels (a) and (b)) and BaSiH8 at 30 GPa (panels (c) and (d)). Panel (a) shows the superconducting critical temperature Tc as a function of
the Fermi level shift ∆εF, obtained within the mMc formula (green), the UF equation (orange), the FSR approximation (blue), and the FBW
approach (red). The smaller subpanels on top show the corresponding DOS in a range of ±2 eV around the unshifted Fermi energy εF, where
the dashed lines mark the position of εF + ∆εF and the shaded red areas highlight the included electronic energy range of εF + ∆εF ± 1 eV.
Panel (b) displays the distribution of the values of the anisotropic superconducting gap ∆nk on the Fermi surface within the FSR (blue) and
FBW (red) approach for H3S with ∆εF = -0.1 eV, where we find the maximum absolute difference between the FSR and FBW Tc (see blue and
red lines in (a)). The inset shows the corresponding DOS subpanel from (a). Panels (c) and (d) show the corresponding results for BaSiH8 at
30 GPa, where we find the maximum Tc difference for ∆εF = +0.1 eV.

With the FBW implementation, we overcome these prob-
lems and limitations as demonstrated for H3S and BaSiH8,
two materials exhibiting considerable variation in the DOS
around the Fermi level. Applying doping via a rigid band
shift, we explore the different regions of increased, maximal,
and lowered DOS, and discuss the effects on Tc within the
mMc and MD formulas, and the FSR and FBW methods. We
want to note here that for these calculations we do not update
the chemical potential, as an explicit shift in the Fermi level
can also be interpreted as a shift in the chemical potential,
and hence such a calculation can be reproduced by one with a
(slightly) different effective shift.

H3S

The well-studied hydride superconductor H3S is a perfect
candidate material where doping to optimize Tc appears very
tempting due to the VHS-like peak in the DOS in close prox-
imity to the Fermi level, as shown in Fig. 3(a)-(b). Many
theoretical works have considered doping of H3S to increase
its Tc estimates, choosing dopants to bring the system’s Fermi
level closer to the maximum of the VHS-like peak. The sta-
bility of the Im3m H3S structure with incorporation of var-
ious elements has been systematically investigated using ei-
ther the direct supercell approach with substitutional dop-
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ing or the virtual crystal approximation, followed by Tc es-
timates based on the mMc formula or the isotropic FSR
approach [83, 88–93, 95, 98–100].

While adding dopants may increase the Tc by also en-
hancing the el-ph coupling, we want to specifically address
the effect of a change in the number of available electronic
states. To this end, we solved the AME equations in the FSR
and FBW frameworks for shifts of the Fermi level ∆εF be-
tween −0.5 eV and 0.1 eV in steps of 0.1 eV, corresponding
to changes in the electron number ∆elec of -0.30, -0.26, -0.20,
-0.13, -0.06, and +0.05.

In Fig. 3(a), we present the Tc values obtained within the
FSR and FBW treatments of the AME equations and the re-
sults obtained using the mMc and UF semi-empirical formulas
mentioned earlier. The Tc values are plotted as a function of
∆εF demonstrating that all approaches show a clear correla-
tion between Tc and DOS with the maximum Tc occurring at
around ∆εF ∼ −0.1 eV to −0.2 eV, as highlighted in Fig. 3(b).

However, within the FSR approximation, there is a notable
and unphysical increase in Tc values around the maximum
of the DOS. This behavior can be attributed to the limita-
tion of the constant-DOS assumption in the FSR approach.
Similarly, the UF model exhibits a strong dependence on dop-
ing. In contrast, the AME solutions in the FBW approach,
which consider the full energy dependence of the DOS, ex-
hibit a much less pronounced effect of doping on Tc. Finally,
the semi-empirical mMc formula consistently underestimates
Tc for strongly coupled systems when compared to results ob-
tained from the AME equations.

In the context of our analysis of a doped H3S system, we
would like to address the topic of speculated room tempera-
ture superconductivity within this system [101]. Considering
that the experimental Tc values for pure H3S are around or be-
low 200 K, and that the FBW calculations only show a maxi-
mum increase in Tc of about 5-10% upon doping (see Fig. 4),
achieving a conventional superconducting state at room tem-
perature in the H3S parent phase remains elusive; at least
within the assumption that the slight doping leaves the elec-
tronic structure unaltered.

On a more technical note, we want to add that VHS-like
features also pose other problems when trying to arrive at ro-
bust numerical results. For example, the exact value of the
DOS at the VHS-like peak is difficult to converge and re-
quires extremely dense k-grids and small smearing values.
To demonstrate this, we examined the VHS region by per-
forming additional calculations with two different smearing
values σ for the energy-conserving δ-functions. The results
are shown in Figure 4. The critical temperature obtained
with the FSR approximation is very sensitive to the smear-
ing value chosen, the largest deviation in Tc reaching up to
70 K, whereas the FBW implementation is considerably more
robust, with at most a 10 K difference between the differ-
ent smearing values tested. The reason for that is that the
only quantity impacted by smearing in the FBW implemen-
tation is the screened Coulomb interaction term in Eq. (15),
whereas smearing impacts all FSR equations via N(εF) and

Figure 4. Dependence of the doped Tc results on the elec-

tronic smearing: Influence of the smearing value σ for the energy-
conserving δ-functions on the Tc of doped H3S within the FSR (blue)
and FBW (red) approach as a function of the Fermi energy shift ∆εF.
The solid lines represent the corresponding results shown in Fig-
ure 3(a) for a smearing value of σ = 25 meV, the dashed (dotted)
lines represent the results for σ = 50 (100) meV.

δ(εmk+q − εF) (see Eqs. 18 and 19). As a result, besides be-
ing more rigorous, the FBW implementation also consider-
ably improves convergence behavior for materials exhibiting
a strongly varying DOS.

BaSiH8

The Fm3m phase of BaSiH8 was recently predicted and
described in detail by some of the current authors [37, 70].
This ternary hydride has the crystal structure of the XYH8

template first introduced for LaBH8 [63], also assumed
by other high-Tc superhydrides that are stable at moder-
ate pressures [27, 102], like the recently synthesized LaBe-
compound [28]. Up to now, BaSiH8 is the XYH8 compound
with the lowest predicted pressure of dynamical stability of
5 GPa within the harmonic phonon theory. A more real-
istic estimate for the critical pressure of stability and syn-
thesizability is provided by considering the kinetic stability
of the compound, which places stability at a pressure above
30 GPa [37, 70].

Independent of the actual critical pressure, this material ex-
hibits a step-like feature around the Fermi level, with an al-
most constant region of high DOS below the Fermi level and
a sharp drop to a region of very low DOS above εF, as can be
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appreciated in Fig. 3(c), making it another perfect test bed to
compare the FSR and FBW approaches.

We solved the AME equations within FSR and FBW ap-
proaches for shifts of the Fermi level ∆εF between −0.5 eV
and 0.5 eV in steps of 0.1 eV, corresponding to changes in
the electron number ∆elec of -0.52, -0.42, -0.31, -0.21, -0.10,
+0.09, +0.15, +0.18, +0.20, and +0.22. In Figs. 3(c) and (d),
we show the Tc values obtained for the two levels of approx-
imations as a function of ∆εF. As before, Tc roughly follows
the shape of the DOS, but, in contrast to H3S, we observe
a considerable increase in Tc for BaSiH8 when employing
the more rigorous FBW approach. Already in the undoped
case the Tc is raised to 87 K, which can be further increased
by doping to about 92 K when shifting the Fermi level by
-0.1 eV. This would place the critical superconducting tem-
perature of BaSiH8 above the technologically extremely im-
portant threshold set by the boiling temperature of nitrogen.

The behaviour of Tc with respect to Fermi level shifts for
the different methods is quite complex: For a shift of -0.1 eV
or below the AME results are similar and also agree with the
UF model, while mMc gives considerably lower values for
Tc. In a region around 0.1 eV shift, the FBW implementation
predicts a larger value for Tc than FSR, and the simple mMc
and UF formulas provide an even smaller estimate. For εF-
shifts larger than 0.2 eV, mMc and UF actually give the largest
values for Tc and FBW the smallest. In other words, while
the dependence of Tc with respect to Fermi level shifts was
smallest in FBW for H3S, it is actually varying the strongest
within FBW for BaSiH8.

These intricate results underscore the importance of taking
into account the energy dependence of the electronic DOS
around the Fermi level, in particular for systems where the
DOS is either strongly peaked close to εF [84, 86, 103–105],
as for H3S, or highly asymmetric [76, 106–109], as for
BaSiH8. In that light, we believe that the agreement be-
tween experimental measurements and theoretical predic-
tions can be considerably improved by employing the FBW
method not only for the class of superhydrides but also
for other material systems showing similar features in the
DOS [42, 45, 110–118].

DISCUSSION

In summary, we have employed the anisotropic Migdal-
Eliashberg formalism within the full-bandwidth formulation
utilizing maximally-localized Wannier functions as imple-
mented in the EPW suite. This approach enables us to calcu-
late the momentum- and band-resolved superconducting gap
more accurately, taking into account the electron-phonon scat-
tering processes around the Fermi level, and not only re-
stricted to the Fermi surface. In addition, we introduced
a sparse, non-uniform sampling scheme over the imaginary
Matsubara frequencies, which shows similar accuracy and
much-improved efficiency compared to the uniform sampling
scheme.

To validate the robustness of our methodology, we con-
ducted comprehensive tests on two representative classes of
superhydrides: the sodalite-like clathrates YH6 and CaH6, as
well as the covalent hydrides H3S and D3S. To assess the ac-
curacy of our approach, we compared our results with pre-
vious ab-initio calculations and experimental data. Our re-
sults unequivocally demonstrate the indispensable role of the
full-bandwidth formulation, particularly for compounds char-
acterized by narrow bands or critical points in proximity to
the Fermi level. A noteworthy illustration of the importance
of employing the FBW formulation is evident in the case of
H3S, which possesses a van Hove singularity. Our methodol-
ogy effectively captures the intricate behavior of such systems,
highlighting the superiority of the FBW approach in these crit-
ical scenarios. Furthermore, we emphasize the crucial impact
of the chemical potential updating scheme within the FBW
formulation, which substantially contributes to accurately de-
scribing the superconducting phase in these challenging cases.
This aspect proves to be a vital component in achieving a com-
prehensive understanding of the superconducting properties of
these complex materials.

In addition, we applied the FBW approach to investigate
electron- and hole-doped hydride superconductors, namely
H3S and the recently predicted low-pressure BaSiH8. These
materials serve as prime examples of systems with distinct
DOS features that deviate significantly from the constant-
DOS assumption made in the FSR approximation. Previous
studies have often focused on maximizing the DOS specifi-
cally at the Fermi level, aiming to design high(er)-Tc super-
conductors by doping the system to shift εF to the maximum
of a VHS-like structure. Our calculations reveal significant
pitfalls associated with such a simplistic FSR-based approach.
We find instances of pronounced under- or overestimation of
Tc, highlighting the critical importance of adopting the FBW
method, particularly in scenarios with strongly peaked DOS
or closely adjacent DOS regions exhibiting extremely high
and low values. By employing the FBW approach, we can
accurately capture the intricate interplay of DOS features and
better predict the behavior of superconductors in these com-
plex cases. This sheds light on the limitations of the FSR
approach and underscores the significance of our advanced
methodology in studying and engineering novel supercon-
ducting materials with tailored properties for real-world ap-
plications.

METHODS

Anisotropic Migdal-Eliashberg theory

The Eliashberg theory is a powerful many-body perturba-
tion approach for describing conventional superconductors,
where the Cooper pairing between two electrons stems from
the interplay between the attractive el-ph coupling and the re-
pulsive screened Coulomb interaction [8, 119]. The Nambu-
Gor’kov’s formalism [120, 121] with a generalized matrix
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Green’s function can be used to formulate the Eliashberg the-
ory. The on- and off-diagonal elements of the 2 × 2 Green’s
function matrix describe the single-particle excitations in the
normal state and Cooper-pair amplitudes in the supercon-
ducting state, corresponding to the standard and anomalous
Green’s functions, respectively [11, 32, 120–124]. The tran-
sition from normal to superconducting state manifests in
anomalous Green’s functions becoming nonzero below a ma-
terial specific critical temperature.

The matrix Green’s function is obtained from the Dyson
equation

Ĝ−1
nk (iω j) =

[

Ĝ0
nk(iω j)

]−1
− Σ̂

pa
nk

(iω j), (2)

where Ĝ0
nk

(iω j) is the non-interacting Green’s function in the
normal state with band index n and wavevector k, Σ̂pa

nk
(iω j)

is the pairing self-energy, and iω j = i(2 j + 1)πT is the
fermionic Matsubara frequency with T being the absolute
temperature and j an integer. An expression for the self-
energy in terms of the electron Green’s function can be ob-
tained with the el-ph and electron-electron contributions given
by the Migdal [7, 123] and GW [125, 126] approximations,
respectively:

Σ̂
pa
nk

(iω j) = Σ̂
ep
nk

(iω j) + Σ̂c
nk(iω j). (3)

Using the Pauli matrices, τ̂0 =
( 1 0

0 1
)

, τ̂1 =
( 0 1

1 0
)

, τ̂2 =
( 0 −i

i 0
)

, τ̂3 =
( 1 0

0 −1
)

, the el-ph and Coulomb contributions to
the self-energy can be expressed as

Σ̂
ep
nk

(iω j) = −T
∑

m j′ν

∫

dq

ΩBZ
τ̂3Ĝmk+q(iω j′ )τ̂3

× |gmnν(k,q)|2 Dqν(iω j − iω j′ ), (4)

and

Σ̂c
nk(iω j) = −T

∑

m j′

∫

dq

ΩBZ
τ̂3Ĝod

mk+q(iω j′ )τ̂3Vnk,mk+q, (5)

where ΩBZ is the BZ volume, Dqν(iωl) = 2ωqν/[(iωl)2 − ω2
qν]

is the dressed phonon propagator for phonons with wavevec-
tor q and branch index ν, iωl = i2lπT is the bosonic Mat-
subara frequency with l an integer, gmnν(k,q) is the screened
el-ph matrix element for the scattering between the electronic
states nk and mk + q through a phonon of frequency ωqν, and
Vnk,mk+q is the static screened Coulomb interaction between
electrons [123, 127]. In Eq. (5), only the off-diagonal com-
ponents of the Green’s function Ĝod

nk
(iω j) are retained in order

to avoid double counting the Coulomb effects that are already
included in Ĝ0

nk
(iω j) [123].

The anisotropic el-ph coupling strength is described as

λnk,mk+q(ω j − ω j′ ) = N(εF)
∑

ν

2ωqν |gmnν(k,q)|2

(ω j − ω j′ )2 + ω2
qν

, (6)

with N(εF) the DOS per spin at the Fermi level. Eq. (6) can
be used to rewrite the el-ph self-energy in Eq. (4), which can

then be taken together with Eq. (5) and inserted into Eq. (3).
The pairing self-energy then becomes:

Σ̂
pa
nk

(iω j) =
T

N(εF)

∑

m j′

∫

dq

ΩBZ

×

{

λnk,mk+q(ω j − ω j′ )τ̂3Ĝmk+q(iω j′ )τ̂3

−N(εF)Vnk,mk+qτ̂3Ĝod
mk+q(iω j′ )τ̂3

}

(7)

To replace Ĝnk(iω j) in Eq. (7), we expand the two components
of the Dyson equation (2) in terms of the Pauli matrices as

[

Ĝ0
nk(iω j)

]−1
= iω jτ̂0 − (εnk − µ)τ̂3, (8)

where εnk are the Kohn-Sham eigenenergies, and

Σ̂
pa
nk

(iω j) = iω j

[

1 − Znk(iω j)
]

τ̂0 + χnk(iω j)τ̂3

+ φnk(iω j)τ̂1 + φ̄nk(iω j)τ̂2. (9)

In Eq. (9), we introduced the mass renormalization function
Znk(iω j), the energy shift χnk(iω j), and the order parameter
φnk(iω j). Inserting Eqs. (8) and (9) into Eq. (2), and invert-
ing the resulting matrix leads to the following expression for
Ĝnk(iω j):

Ĝnk(iω j) =
1

det[Ĝ−1
nk

(iω j)]

{

iω jZnk(iω j)τ̂0

+
[

εnk − µ + χnk(iω j)
]

τ̂3 + φnk(iω j)τ̂1 + φ̄nk(iω j)τ̂2

}

(10)

It can be easily verified that φnk(iω j) and φ̄nk(iω j) are pro-
portional within an arbitrary phase, and without loss of
generality, one can choose the relative phase such that
φ̄nk(iω j) = 0 [30, 123]. Eq. (10) with φ̄nk(iω j) = 0 can be
used to rewrite Eq. (7) for the pairing self-energy as:

Σ̂
pa
nk

(iω j) = −
T

N(εF)

∑

m j′

∫

dq

ΩBZ

1
θmk+q(iω j′ )

×

{

iω j′Zmk+q(iω j′ )λnk,mk+q(ω j − ω j′ )τ̂0

+
[

εmk+q − µ + χmk+q(iω j′ )
]

λnk,mk+q(ω j − ω j′ )τ̂3

− φmk+q(iω j′ )
[

λnk,mk+q(ω j − ω j′ ) − N(εF)Vnk,mk+q

]

τ̂1

}

,

(11)

where

θnk(iω j) = − det[Ĝ−1
nk (iω j)]|φ̄nk(iω j)=0

=
[

ω jZnk(iω j)
]2
+

[

εnk − µ + χnk(iω j)
]2

+
[

φnk(iω j)
]2
. (12)
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Equating the different components of the Pauli matrix ele-
ments in Eqs. (9) and (11) leads to a system of three coupled
non-linear equations:

Znk(iω j) = 1 +
T

ω jN(εF)

∑

m j′

∫

dq

ΩBZ

ω j′Zmk+q(iω j′ )

θmk+q(iω j′ )

× λnk,mk+q(ω j − ω j′ )

(13)

χnk(iω j) = −
T

N(εF)

∑

m j′

∫

dq

ΩBZ

εmk+q − µ + χmk+q(iω j′ )

θmk+q(iω j′ )

× λnk,mk+q(ω j − ω j′ )

(14)

φnk(iω j) =
T

N(εF)

∑

m j′

∫

dq

ΩBZ

φmk+q(iω j′ )

θmk+q(iω j′ )

×
[

λnk,mk+q(ω j − ω j′ ) − N(εF)Vnk,mk+q

]

(15)

This set of equations is supplemented with an equation for
the electron number, which determines the chemical poten-
tial µ [127, 128]:

Ne =
∑

n

∫

dk

ΩBZ

















1 − 2T
∑

j

εnk − µ + χnk(iω j)

θnk(iω j)

















, (16)

where Ne is the number of electrons per unit cell (see Supple-
mentary Method 1 for a discussion about the electron number
equation).

Equations (13)-(16) involve electronic states that are not
restricted to the Fermi surface or its immediate vicinity;
hence, labeled as anisotropic full-bandwidth (FBW) Migdal-
Eliashberg equations [129]. We have recently implemented
the above-described anisotropic FBW approach in the EPW
code [31].

The set of coupled equations can be solved self-consistently
at various temperatures for the temperature-dependent super-
conducting gap ∆nk, given by:

∆nk(iω j) =
φnk(iω j)

Znk(iω j)
. (17)

The Padé approximation [130, 131] can then be used to ob-
tain the continuation of ∆nk(iω j) from the imaginary to the
real axis. The superconducting temperature Tc is the highest
temperature at which φnk(iω j) , 0 has a nontrivial solution.

The contribution of the Coulomb interaction to the Eliash-
berg equation, through matrix elements Vnk,mk+q, can be eval-
uated at the same level as the el-ph interaction for the simpler
versions of the Eliashberg formalism [48, 69, 72, 132, 133].
To reduce the computational cost, however, the common ap-
proach is to replace the N(εF)Vnk,mk+q terms with the semi-
empirical Morel-Anderson pseudopotential µ∗ [134]. In prac-
tice, the numerical value of this parameter is connected with

the cutoff frequency ωmax of the Matsubara frequencies. With
a typical choice of ωmax being ten times the maximum phonon
frequency ωph, a value of µ∗ = 0.1–0.2 results in a satisfac-
tory agreement with experiment for many applications. The
µ∗ can also be calculated from first-principles, using the dou-
ble Fermi surface average of Vnk,mk+q [12, 43, 60, 63].

The numerical solution of the anisotropic FBW Migdal-
Eliashberg equations is computationally very demanding.
A common simplification of these equations consists in
restricting the energy range close to the Fermi level
by introducing the unity factor

∫ +∞

−∞
dε δ(εnk − ε), and

to assume that the DOS within this energy window is
constant [11, 32, 123, 127, 135–138]. It can be shown that,
within these approximations, the energy shift χnk vanishes and
the requirement in Eq. ((16)) is automatically satisfied. As a
result, only two equations for Znk(iω j) and φnk(iω j) need to be
solved self-consistently:

Znk(iω j) = 1 +
πT

N(εF)ω j

∑

m j′

∫

dq

ΩBZ

ω j′

√

ω2
j′
+ ∆2

mk+q
(iω j′ )

× λnk,mk+q(ω j − ω j′ )δ(εmk+q − εF) (18)

Znk(iω j)∆nk(iω j) =
πT

N(εF)

∑

m j′

∫

dq

ΩBZ

∆mk+q(iω j′ )
√

ω2
j′
+ ∆2

mk+q
(iω j′)

×
[

λnk,mk+q(ω j − ω j′ ) − N(εF)Vnk,mk+q

]

δ(εmk+q − εF)

(19)

Equations (18) and (19) are the anisotropic FSR Migdal-
Eliashberg equations. They have been the basis for the super-
conductivity calculations in the EPW code prior to the recent
developments [30, 32].

Sparse sampling of Matsubara frequencies

All calculated quantities in the Migdal-Eliashberg equa-
tions depend on Matsubara frequencies, which are propor-
tional to the absolute temperature. This results in a computa-
tional challenge since solving these equations at low temper-
atures (e.g., necessary for low-Tc superconductors) requires a
larger number of frequencies within the same energy range.
As discussed in the previous section, for the FBW+µ method,
one needs a Matsubara frequency cutoff 6-12 times the Fermi
energy window in order to converge the chemical potential
and, consequently, the superconducting gap energy, leading to
a considerable increase in computational cost. While a fre-
quency cutoff of 4 eV has been found to be sufficient for cal-
culations with FSR and FBW with fixed chemical potential at
the Fermi level in the case of H3S, adopting FBW+µ required
a Matsubara frequency 2-3 times larger as shown in Supple-
mentary Figure 1.

The computational cost can be reduced by pruning the Mat-
subara frequencies [132]. We implemented a sparse sampling
scheme, described in the following, in the EPW code as an
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alternative to uniform sampling over the Matsubara frequen-
cies. Denoting with integer N j the numerical index for the jth

Matsubara frequency, iω j = i(2N j + 1)πT , the uniform and
sparse grids can be obtained as:

N j = j; j = 0,±1,±2,±3, · · · (20)

and

N j =N j−1 + INT
[

exp
(

j

NmaxW

)]

N0 = 0 and j = 1, 2, 3, · · · (21)

where INT[ ] is the rounding to the closest integer, W is an
adjustable weight factor, and Nmax is the maximum Matsubara
index for a given energy cutoff ωmax and temperature T :

Nmax = INT
[

1
2

(

ωmax

πT
− 1

)

]

(22)

Eq. ((21)) can be used to generate a Matsubara frequency grid
with indices N j ≤ Nmax. For negative indices, the correspond-
ing frequency can be easily obtained as ω−( j+1) = −ω j (with
j > 0). The resulting mesh is uniform at lower frequen-
cies, contributing the most to the summation in the Migdal-
Eliashberg equations, and becomes logarithmically sparser
with increasing the Matsubara frequency index.

Increasing (decreasing) W results in a denser (sparser) grid
sampling. With the default setting of W = 1.0, the sparse sam-
pling scheme produces approximately 30% fewer Matsubara
frequencies than the uniform one, while the first ∼40% points
of the grid are still uniformly distributed. Numerical tests
show that this approach maintains the accuracy of more ex-
pensive calculations that use the full uniform grid.

We systematically evaluated this sampling approach by
computing the superconducting gap function within the
FBW+µ method using both the uniform and sparse sam-
pling scheme over Matsubara frequencies up to 6 eV for
H3S, D3S, YH6, and CaH6. The primary outcomes are pre-
sented in Supplementary Figure 2, where the temperature-
dependent behavior of ∆nk is plotted for FBW+µ (blue lines)
and FBW+µ+sparse (red lines). The results indicate that the
sparse sampling method can accurately reproduce the super-
conducting gap structure obtained using the uniform sampling
scheme. In summary, no significant difference was observed
across all the compounds analyzed. Among all the hydrides,
the largest deviation was observed for D3S, with a difference
of only 3 K compared to the uniform sampling, corresponding
to a percentage difference of 1.8 %. For all other hydrides,
the difference between the sparse and uniform schemes was
only 1 K. Thus, the sparse sampling can quantitatively repro-
duce the results obtained with the uniform sampling, but with
a computational cost of approximately 40 % lower.

Computational details

The electronic structure calculations are performed within
the Kohn-Sham scheme [139] of the density functional

theory [140] as implemented in the Quantum ESPRESSO
suite [141–143]. The exchange and correlation effects
are treated within the Perdew-Burke-Ernzerhof parametriza-
tion [144] using scalar-relativistic optimized norm-conserving
Vanderbilt pseudopotentials [145, 146]. The Kohn-Sham or-
bitals are expanded in a plane-wave basis set with a kinetic-
energy cutoff of 100 Ry for H3S, D3S, and CaH6, and 80 Ry
for YH6 and BaSiH8. The charge density is computed using
Γ-centered Monkhorst-Pack k-meshes [147] of 243 k-points
for H3S, D3S, and CaH6, 163 k-points for YH6, and 123 k-
points for BaSiH8. The Brillouin-zone integration employs a
Methfessel-Paxton smearing [148] of 0.01 Ry for H3S, D3S,
and BaSiH8, and 0.04 Ry for YH6 and CaH6. All lattice pa-
rameters and internal degrees of freedom were fully relaxed
to reach a ground-state convergence of 10−7 Ry in the total
energy and 10−6 Ry/a0 for forces acting on the nuclei. BaSiH8

is relaxed to a pressure of 30 GPa, all other compounds to
200 GPa.

The dynamical matrices and the linear variation of the
self-consistent potential are calculated within the density-
functional perturbation theory [149] on a regular phonon grid
of 43 q-points for H3S, D3S, and 63 q-points for YH6, CaH6,
and BaSiH8. The threshold for self-consistency is set to 10−14

or lower.

The maximally localized Wannier functions (MLWFs) are
constructed using the Wannier90 code [33, 150]. In the case of
H3S and D3S, 10 Wannier functions are used to describe the
electronic states near the Fermi level. The Wannier orbitals
are three H-s-like functions and seven functions with s, p, dxy,
dxz, and dyz angular momentum states associated with the S
site, with a spatial spread ranging from 0.77 Å2 to 1.53 Å2.
For YH6, six H-s-like projections and five Y-d-like functions
are used to construct the initial guess, resulting in a spatial
spread between 1.74 Å2 and 1.86 Å2. For CaH6, besides the
six H-s-like projections, we also use sp and sp3 hybrid orbital
functions associated with the Ca site to construct the initial
guess, yielding a spatial spread between 0.80 Å2 and 1.20 Å2.
For BaSiH8, we use H s, Si s, p, dz2 , dx2−y2 , and Ba p, d

orbitals, giving a total of 22 Wannier functions, resulting in
spatial spreads between 1.04 Å

2
and 1.79 Å

2
.

The fully anisotropic Migdal-Eliashberg equations [32] are
solved using the EPW code [30, 31]. Electron energies,
phonon frequencies, and electron-phonon matrix elements are
computed on fine grids containing 483 k- and q-points for
H3S, D3S, YH6, and CaH6, and 303 k- and q-points for
BaSiH8. The lower boundary for the phonon frequency is set
to 5 cm−1 for H3S and D3S, and 15 cm−1 for YH6, CaH6, and
BaSiH8. The width of the Fermi window is set to 2 eV for
H3S, D3S, YH6, CaH6, and BaSiH8. We set the Matsubara
frequency cutoff to ωmax = 6 eV. The smearing values for the
energy-conserving δ-function and for the sum over q-space in
the el-ph coupling are set to 25 meV and 0.05 meV, respec-
tively, for H3S and D3S, 150 meV and 0.15 meV for YH6 and
CaH6, and 100 meV and 0.1 meV for BaSiH8. We solved the
equations adopting a Coulomb pseudopotential of µ∗ = 0.16
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for all materials except BaSiH8, where a value of 0.1 was
chosen to be consistent with our previous works [37, 70].
The continuation of the superconducting gap along the imag-
inary axis to the real energy axis is determined by apply-
ing the approximate analytic continuation using Padé func-
tions [130, 131].

The doping calculations within rigid band model are per-
formed by shifting the Fermi level in EPW before interpo-
lating the el-ph matrix elements. All anisotropic Migdal-
Eliashberg calculations are performed for electronic energies
of ±1 eV around the (shifted) Fermi level and a Matsubara
cutoff of ωmax = 4 eV, if not stated otherwise.
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[30] S. Poncé, E. Margine, C. Verdi, and F. Giustino, Epw: Elec-
tron–phonon coupling, transport and superconducting proper-
ties using maximally localized Wannier functions, Computer
Physics Communications 209, 116 (2016).

[31] H. Lee, S. Poncé, K. Bushick, S. Hajinazar, J. Lafuente-
Bartolome, J. Leveillee, C. Lian, J.-M. Lihm, F. Macheda,
H. Mori, H. Paudyal, W. H. Sio, S. Tiwari, M. Zacharias,
X. Zhang, N. Bonini, E. Kioupakis, E. R. Margine, and
F. Giustino, Electron-phonon physics from first principles us-
ing the EPW code, npj Computational Materials 9, 156 (2023).

[32] E. R. Margine and F. Giustino, Anisotropic Migdal-Eliashberg
theory using Wannier functions, Phys. Rev. B 87, 024505
(2013).

[33] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza, and D. Van-
derbilt, Maximally localized Wannier functions: Theory and
applications, Rev. Mod. Phys. 84, 1419 (2012).

[34] M. Gao, Z.-Y. Lu, and T. Xiang, Prediction of phonon-
mediated high-temperature superconductivity in Li3B4C2,
Phys. Rev. B 91, 045132 (2015).

[35] J.-J. Zheng and E. R. Margine, Electron-phonon coupling and
pairing mechanism in β − Bi2Pd centrosymmetric supercon-
ductor, Phys. Rev. B 95, 014512 (2017).

[36] R. Lucrezi and C. Heil, Superconductivity and strong anhar-
monicity in novel Nb–S phases, Journal of Physics: Con-
densed Matter 33, 174001 (2021).

[37] R. Lucrezi, S. Di Cataldo, W. von der Linden, L. Boeri, and
C. Heil, In-silico synthesis of lowest-pressure high-Tc ternary
superhydrides, npj Computational Materials 8, 119 (2022).

[38] G. P. Kafle, C. R. Tomassetti, I. I. Mazin, A. N. Kolmogorov,
and E. R. Margine, Ab initio study of Li-Mg-B superconduc-
tors, Phys. Rev. Mater. 6, 084801 (2022).

[39] G. P. Kafle, C. Heil, H. Paudyal, and E. R. Margine, Electronic,
vibrational, and electron–phonon coupling properties in SnSe2

and SnS2 under pressure, Journal of Materials Chemistry C 8,
16404 (2020).
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