Average pure-state entanglement entropy in spin systems with SU(2) symmetry
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We study the effect that the SU(2) symmetry, and the rich Hilbert space structure that it generates
in lattice spin systems, has on the average entanglement entropy of highly excited eigenstates of local
Hamiltonians and of random pure states. Focusing on the zero total magnetization sector (J, = 0)
for different fixed total spin J, we argue that the average entanglement entropy of highly excited
eigenstates of quantum-chaotic Hamiltonians and of random pure states has a leading volume-law
term whose coefficient s4 depends on the spin density j = J/(JL), with sa(j — 0) = In(2j + 1)
and sa(j — 1) = 0, where j is the microscopic spin. We provide numerical evidence that s4 is
smaller in highly excited eigenstates of integrable interacting Hamiltonians, which lends support to
the expectation that the average eigenstate entanglement entropy can be used as a diagnostic of
quantum chaos and integrability for Hamiltonians with non-Abelian symmetries. In the context of
Hamiltonian eigenstates we consider spins j = % and 1, while for our calculations based on random

pure states we focus on the spin j = % case.

I. INTRODUCTION

Entanglement is a foundational concept in quantum
mechanics. It provides crucial insights on phenomena
that occur across fields in physics, including black-hole
evaporation [1], quantum phase transitions [2], and quan-
tum dynamics [3, 4]. A commonly studied measure of
entanglement in pure states is the bipartite entangle-
ment entropy. In strongly interacting quantum many-
body systems, the behavior of the bipartite entanglement
entropy of highly excited energy eigenstates has become
a topic of much current interest (see Ref. [5] for a re-
view). In the absence of strong disorder, independent
of the integrable or quantum-chaotic nature of the inter-
acting model, the average entanglement entropy of such
states generally scales with the volume of the subsystem
of interest (when smaller than one-half of the volume of
the system) [5]. This is to be contrasted to the “area-law”
scaling of the entanglement entropy of ground states [2].
Recently, it was conjectured that the coefficient of the
volume in the average entanglement entropy of highly
excited energy eigenstates can serve as a diagnostic of
quantum-chaos and integrability [6]. The coeflicient is
expected to be maximal in quantum-chaotic systems ver-
sus sub-maximal and dependent on the ratio of the sub-
system to the system volume in integrable systems.

An analytic understanding of the numerically observed
behavior of the average entanglement entropy of highly
excited eigenstates of many-body Hamiltonians has been
gained using different classes of random states. The
(Haar-measure) average entanglement entropy of random
states [7] describes the observed leading-order behavior
of the average entanglement entropy of quantum-chaotic
Hamiltonian eigenstates [5], i.e., like many other proper-
ties of such highly excited eigenstates, the leading behav-
ior of their entanglement entropy is described by random
matrix theory [8]. Differences between the random-state
predictions and the numerical results for local Hamil-

tonian eigenstates have been observed at the level of
the subleading O(1) correction [9-12]. The volume-law
term in the (Haar-measure) average entanglement en-
tropy of random Gaussian states [13-15], on the other
hand, resembles the one in the average entanglement en-
tropy of highly excited eigenstates of integrable interact-
ing Hamiltonians [5]. A similar behavior of the lead-
ing volume-law term was observed, and rigorous bounds
were calculated, for many-body Hamiltonian eigenstates
of translationally invariant quadratic models [16-18].

Another question that has been explored is the role of
Abelian symmetries in the behavior of the average en-
tanglement entropy [5, 19]. Specifically, the presence of
U(1) symmetry in spin—% models (particle-number con-
servation in spinless-fermion models) was shown to in-
troduce a first subleading correction to the average en-
tanglement entropy that depends on the square root of
the volume [20]. Remarkably, the same first subleading
correction was found in random pure states with fixed
total magnetization or particle number [5, 20]. Energy
conservation was later argued to have a similar effect in
Hamiltonian eigenstates [21].

In this work we explore the effect that the non-Abelian
SU(2) symmetry has on the average entanglement en-
tropy of highly excited eigenstates of local Hamiltoni-
ans and of random pure states in lattice systems. Non-
Abelian symmetries are present in models studied across
fields in physics [22]. Recently, they have attracted sig-
nificant attention in the context of quantum-information
thermodynamics [23-27], and they have been identified as
a route to generating quantum many-body scars [28, 29].
Recent studies have also explored the effect that such
symmetries have on the eigenstate thermalization hy-
pothesis [30, 31].

We use numerical simulations to study the average
entanglement entropy of highly excited eigenstates of
quantum-chaotic and integrable interacting Hamiltoni-
ans with SU(2) symmetry. Our goal is to find how the
average entanglement entropy of energy eigenstates with



different total angular momentum scales with the vol-
ume of the subsystem of interest, and whether quantum-
chaotic and integrable Hamiltonian eigenstates exhibit
different behaviors (as they do in models without sym-
metries or with Abelian symmetries). A second goal of
our work is to carry out analytic calculations of the aver-
age entanglement entropy of random pure states that are
eigenstates of the SU(2) related conserved quantities to
determine whether such averages describe the behavior
observed numerically for the Hamiltonian eigenstates of
the quantum-chaotic models.

We focus on pure states with zero total magnetization
(J. = 0), and compute the average entanglement entropy
for different fixed values of the total spin J (and number
of lattice sites L). We argue that the average entangle-
ment entropy of highly excited eigenstates of quantum-
chaotic Hamiltonians and of random pure states has a
coefficient s4 of the volume that depends on the spin
density j = J/(GL), with s4 — Ind as j — 0 and s4 — 0
as j — 1, where j is the microscopic spin (notice the dif-
ference with the italic j used for the spin density) and
d = 2j 4+ 1 is the size of the Hilbert space of a lattice
site. For highly excited eigenstates of integrable inter-
acting Hamiltonians, on the other hand, we provide nu-
merical evidence that s, is smaller than for quantum-
chaotic Hamiltonians. We report numerical results for
eigenstates of spin j = 3 and 1 Hamiltonians, while for
our analytic and numerical calculations involving random
pure states we focus on the spin j = % case.

The presentation is organized as follows. In Sec. II, we
introduce the setup for our study of the entanglement en-
tropy and review previous results in the absence and pres-
ence of U(1) symmetry. The dimensions of the sectors of
the Hilbert space in the presence of SU(2) symmetry are
discussed in Sec. ITI. We introduce the Hamiltonians con-
sidered and report results for the average entanglement
entropy of their highly excited eigenstates in Sec. IV.
Section V is devoted to the study of the average entan-
glement entropy of random pure states. A summary and
discussion of our results is provided in Sec. VI.

II. ENTANGLEMENT ENTROPY AND
U(1) SYMMETRY

We study the bipartite entanglement entropy of pure
states 1)) € H) of j spins in a lattice with L sites, where

H = ()", (1)
for bipartitions
H =Hy©Hp=()"" ()%, (2)

involving L4 (L) contiguous j spins in the subsystem of
interest A (the complement B), with L = L4 + Lg. The
entanglement entropy of subsystem A is

Sa(l¥)) = =Tr(palnpa), (3)

where a mixed

pa = Trp(|y) (¥]) (4)

is obtained after tracing out the complement B.

The (Haar-measure) average entanglement entropy of
random pure states in such systems is known to be nearly
maximal. It has, for Ly < L/2, the form [7]

1
(SA>:LAlnd—§§f,%+0(l), (5)

where d = 2j+ 1, f = La/L is what we call the “sub-
system fraction,” and we use o(1) to refer to terms that
vanish in the thermodynamic limit (Landau’s little o no-
tation). The result for Ly > L/2 (f > 1) follows after
replacing Ly — L— L4 in Eq. (5). Note that, in Eq. (5),
the leading volume-law term is maximal. (S4) in Eq. (5)
is not maximal because of the O(1) correction (—3) that
appears at the subsystem fraction f = %

To understand how symmetries present in Hamiltoni-
ans of interest change the average entanglement entropy
of highly excited energy eigenstates, one can carry out
(Haar-measure) averages of the entanglement entropy of
random pure states that are eigenstates of the conserved
quantities associated to those symmetries. Before dis-
cussing the case of SU(2) symmetry, our interest here,
we summarize previous results for the U(1) case. The
conserved quantity associated to the U(1) symmetry is
the total magnetization J., which is also conserved in
the presence of the (higher) SU(2) symmetry.

For spin j = § systems with U(1) symmetry, as men-
tioned before, in Refs. [5, 20] it was shown that fixing the
total magnetization when carrying out the averages intro-
duces a subleading correction that scales with the square
root of L. These results are also of relevance to spin-
less fermion systems with particle number conservation,
in which the total particle number N plays the role that
the total magnetization J, plays for spin j = % systems,
N = J, + L/2. When (more conveniently) written in
terms of the fermion filling n = N/L, which is equivalent
to the total magnetization per site j, = J,/L,n = j,+ %,
the (Haar-measure) average entanglement entropy of ran-
dom pure states with fixed N has the form [5, 20]:

(Sa)n=—[nlnn+ (1 —n)In(l —n)] Ly

n(l —n) ln(ln)‘(;fl\/z
27 n 2
In(1 — 1
R TN

for Ly < L/2. The result for Ly > L/2 (f > 3) follows
from Eq. (6) after replacing L4 — L — L 4. Three points
to emphasize about (S4), in Eq. (6) are as follows: (i)
The coefficient of L4 in the first term depends on n |20,
32] and agrees with the one in Eq. (5) at n = 3; (ii) the
coefficient of v/L 4 in the second term vanishes at n = %,
i.e., it is only at half-filling that there is no square-root-
of-the-volume correction; and (iii) the O(1) correction



has one term that depends only on f [20] and a —3 that
appears only at n = 1 and f = 1 [5].

Equation (6) is a result of the fact that the Hilbert
space V) of the system at a fixed eigenvalue N of N is
a direct sum of tensor products

HN) = éé (MY @y (7)

NA=0

with N4 being the eigenvalues of N in subsystem A.
While the full derivation of Eq. (6) is lengthy (see
Ref. [5]), the leading volume-law term can be advanced
as follows. The Hilbert space of a system with L 4 sites
and N4 spinless fermions is

L
Dy, = dim HWN4) = <N’:>. (8)

Using Stirling’s approximation for the particular case in
which Na/La = N/L = n, one can write

1
Drva = V2rLay/n(l —n) .
9

The leading term in Eq. (6), is the same as the leading
term in In Dy, for Na/La = N/L = n, i.e., it is the
same as the leading volume-law term of the logarithm
of the Hilbert space dimension of subsystem A at the
same average site occupation as the entire system. This
is equivalent to taking the reduced density matrix p4 of
subsystem A to be that of a maximally mixed state of
N4 =nL 4 fermions in L4 sites. For L4 > L/2, the rele-
vant maximally mixed state is the one in the complement
of A, with Lg = L — L 4 sites and Ng = nL g fermions.

III. ENTANGLEMENT ENTROPY AND
SU(2) SYMMETRY

To account for the presence of SU(2) symmetry, one
can carry out (Haar-measure) averages of the entangle-
ment entropy of random states that are simultaneous

eigenstates of J? and J,. In this section we discuss the
dimensions of such sectors of the Hilbert space and what
those dimensions advance about the leading volume-law
term of the average entanglement entropy of the corre-
sponding random states.

The representation theory of SU(2) allows us to rewrite
the Lth tensor product of the spin-j representation in
Eq. (1) as a direct sum

jL jL
H = J& - @J= i 10
D Jeel= D w0
J=Jmin n), times J=Jmin

where the sum runs over integer (half-integer) spins J
starting at Jmin = 0 (Jmin = % for L > 1) for even (odd)
2jL, and n’J is the multiplicity of a spin J.

exp (— In [n"(l — n)l_”] LA) .

For large L, we can express J in terms of the spin
density

J
— 11
<. (1)

which allows us to write the asymptotic form of the mul-
tiplicities in the form

j:

exp [(7)L] , (12)

where the functions o/ (j) and 8'(j) can be computed us-
ing the group theory method of Weyl characters [33] (see
Appendix A). The key result is that 3'(j) = ¥;(z0(j))
can be found as a saddle point, where ;(2) is given in
Eq. (A5) and zp > 0 is the unique non-negative real so-
lution of the saddle point equation 9{(z0) = 0.

The dimension of the Hilbert space sector with fixed J
and the one with fixed (J,.J,) are given by

D, = dimH); = (2 +1)n); (13)
: . - nh |J|<J
D} ;. =dimH); ; = {OJ Llse‘: . (14)

We therefore see that both will have the same exponential
scaling from Eq. (12) encoded in 8(j).

Drawing the analogy to Dy, in Eq. (9) and (S4) in
Eq. (6), we thus expect that the leading order behavior of
the average entanglement entropy of random pure states
at fixed J will be given by

(Sa), = B'(j)La+o(La), (15)

regardless of whether we fix J, or not.

We focus next on the microscopic spin values j = % and
j = 1 restricted to the zero total magnetization sector
J, = 0, for which we carry out numerical calculations
of the average entanglement entropy of highly excited
eigenstates of quantum-chaotic and integrable interacting
Hamiltonians in the next section.

Spin j = % The multiplicity nLl/ % can be calculated
exactly for finite systems using the closed form expres-
sion of an integral in Appendix A, or the combinatorics
approach explained in Appendix B,

1/2 2(1—|—2J) L
T oL y2\L2-J)" (16)

When written in the asymptotic form in Eq. (12), one
finds that 5/2(j) has the form

12, |1+ 1+ 1—j 1-y
=[S () e ()
(17)
ﬂ1/2(j) will be used in our comparison to the numerical
results obtained for the average entanglement entropy of
highly excited Hamiltonian eigenstates in Sec. IV, and to
the analytical results obtained for the average entangle-

ment entropy of random pure states in Sec. V.
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FIG. 1. Hilbert space fraction n},/Q/D. (Main panel) Results
predicted by Eq. (16) vs J, rescaled using v/L, for L = 150,

1/2
500, and 1000. The solid line shows né VL = %672]2/[‘,

obtained from Eq. (18) as the leading order for J = O(v/L).
(Inset) Results predicted by Eq. (16) vs L for J = 0, VL,
and L/6. The solid lines show the leading order predicted by
Eq. (18) in each regime, where nb/z/D =al™ ', bL7Y?% and
ce” ' with a, b, ¢, d = 2, 0.54, 0.53, 0.057, respectively.

In Fig. 1, we show the rescaled fraction of states
1/ 2 /D x \F L with spin J in the zero magnetization sec-
tor vs the rescaled .J/v/L for three values of L. We refer
to the Hilbert space of the full J, = 0 sector as D, which
can be obtained using Eq. (8) replacing Ly — L and
N — L/2. As L increases, the rescaling used produces
a collapse of the curves for different values of L, with the
maximal nlJ/Q/D ~ 1.2/V/L for J ~ +/L/2. The collapse
in Fig. 1 makes apparent that as L increases the sectors
with J = O(v/L) account for an increasingly large frac-

tion of the entire Hilbert space.

The inset in Fig. 1 shows the scaling of nlJ/ ?/D with
1/2 1/2
L for: J = O(1), n/?/D < 1/L; J = O(VL), n}/*/D
1/VL; and J = O(L )7 J/ /D decays exponentially with
L. Those scalings can be obtained analytically using
that, for large values of L, n) J / D can be written as

/2 5 .
S~ J +
D V1—j2 <1+j
14
exp (— {—;J In(1+j)+

1—j
B +j>2L> . (18)

1;jln(1—j>] L) ,

where j = 2 is the spin density (j € [0,1]). When

J = O(VL), one obtains L\f = f e=27*/L which
describes the results in Fig. 1 for large values of L. One

can solve for the location of the maximum in n},/ 2 /D,

4

from d(nlJ/ ?/D)/dj = 0, via the transcendental equation
L1+ —1)—5(1 - j*arctan(j)L] = 0. (19)

This equation can be solved perturbatively in the limit
L — oco. We find j = = — 51 + 57572 + O(1/L?), which
is where the maximum was identified in Fig. 1.

Spin j = 1. For the microscopic spin j = 1 case, we
focus solely on the asymptotic behavior of dimensions
of the Hilbert spaces of interest. As discussed in Ap-
pendix A, for j = 1 one finds that 3'(j) [see Eq. (12)]
takes the form

1:y — 3

B (j) =In VA8 1
BY(j) will be used in our comparison to the results ob-
tained for the average entanglement entropy of highly
excited Hamiltonian eigenstates in the next section.

i YA (9p)

2(147)

IV. SU(2)-SYMMETRIC HAMILTONIANS

We study the spin j = % extended Heisenberg model
with nearest and next-nearest (with strength A) neighbor

interactions in chains with L sites

L ~
Z j;+2 ) (21)

>

K(l)
k«p

J

where J;, = (Jj’f,JZy7 Jf) is the spin—% operator at site ¢,
and we use periodic boundary conditions. This model is
integrable when A = 0, and quantum chaotic (noninte-
grable) when A # 0 (we set A = 3 in the latter regime,
see Appendix C).

We also study the spin j = 1 extended Heisenberg
model with nearest-neighbor interactions in a chain of

L sites with the Hamiltonian

Zf

Hv

N

L ~ ~
Z J-J (22)

where J! = (J;* ,le, J;?) is the spin-1 operator at site i,
also with periodic boundary conditions. As opposed to
its j = % counterpart with A = 0, the j = 1 Heisenberg
model in Eq. (22) with A’ = 0 (i.e., with only the first
term in the sum) is quantum chaotic. The second term
with A = 1 makes the model integrable [34, 35].

The Hamiltonians in Eq. (21) and (22) are translation-
ally invariant so the total quasimomentum is conserved.
We compute the average entanglement entropy of sectors
with different fixed spin J (J, = 0) using the central 20%
of the energy eigenstates in the total quasi-momentum
subsectors k,, = 2mn/L withn =1, 2, ..., L/2 — 1. The
results reported are the averages S4 over all those “com-
plex” sectors [11, 36].

In Fig. 2 (Fig. 3), we plot S4 vs j at subsystem frac-
tion f = % for the eigenstates of the extended Heisen-

berg model in Eq. (21) [Eq. (22)] withj =3 (i=1). We
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FIG. 2. Average entanglement entropy Sa at f = % for the
j = & Hamiltonian in Eq. (21). Sa vs j = 2J/L for quantum-
chaotic (A = 3) and integrable (A = 0) Hamiltonian eigen-
states in systems with L = 20 and 22. We also show re-
sults for the average entanglement entropy of random pure
states for L = 22 [see Eq. (23)]. The continuous line shows
the prediction for (SA)1J/2 from Eq. (15) with 8/2(j) from
Eq. (17). (inset) Sa vs 1/L at J = 0, for quantum-chaotic
and integrable Hamiltonian eigenstates, as well as for random
states. The solid line shows the prediction for (Sa),_, ; _
from Eq. (39). The error bars are the standard deviation of
the averages, and the dashed lines are linear (a + b/L) fits to
the Hamiltonian data shown.

show results for two system sizes both for the quantum-
chaotic and integrable points considered. We plot as
a continuous line in Fig. 2 [Fig. 3] the prediction for
(S4); from Eq. (15) with BY2(5) [B(5)] from Eq. (17)
[Eq. (20)]. The numerical results for S4 for the quantum-
chaotic points are distinct from their integrable counter-
parts away from j = 1 (At maximal total spin the Hilbert
space consists of a single state.). One can also see in
Figs. 2 and 3 that, with increasing L, S for quantum-
chaotic energy eigenstates approaches the (S 4)’; predic-
tions, while S4 for integrable energy eigenstates departs
from the (S4)’; predictions away from j = 1.

The aforementioned scaling behaviors with increasing
system size are better seen in the insets in Figs. 2 and 3,
in which we show finite-size scaling analyses for S, at
f= % and J = 0. Both for j = % and 1, we find evi-
dence that S, has a leading volume-law term no matter
whether the model is integrable or quantum chaotic. For
the quantum-chaotic energy eigenstates we find that the
coefficient of the volume law s4 = limy_,o, Sa/(L/2) is
consistent with the maximal value of Ind (with d = 2j+1)
as predicted by Egs. (17) and (20) for j = 0. For the inte-
grable energy eigenstates, on the other hand, s 4 appears
to be only slightly larger than one-half of the maximal
value, as found in Ref. [6] for the spin—% XXZ model,
which has only U(1) symmetry.

Having seen that the results for the leading volume-

Sy T ]

141 Y B J=0 |

L T L Tl ]

(‘,:\ 0.9j ~\‘A\ i

L.2r Q08 Tm
i IE: 0.7 IS L

! O'GPT—T_-—\— \ \ L]

e Yept st SR 0 002 0.04 006 008 0.1

I

F-=g--==

5 /l(L2)In3]
(=]

0.6 S
=2
— Eq. (20)
0.4 N=0(L=12)
raa)X=0(L=14)
021 N=1(L=12) P
-oN=1(L=14)
0 1 1 1
0 0.2 04 . 06 0.8 1

J

FIG. 3. Average entanglement entropy Sa at f = % for the
j =1 Hamiltonian in Eq. (22). Sa vs j = J/L for quantum-
chaotic (A = 0) and integrable (A = 1) Hamiltonian eigen-
states, in systems with L = 12 and 14. The continuous line
shows the prediction for (Sa)); from Eq. (15) with 8'(j) from
Eq. (20). (inset) Sa vs 1/L at J = 0, for quantum-chaotic
and integrable Hamiltonian eigenstates. The error bars are
the standard deviation of the averages, and the dashed lines
are linear (a + b/L) fits to the points shown.

law term of the average entanglement entropy of highly
excited eigenstates of SU(2) symmetric quantum-chaotic
Hamiltonians with j = % and 1 are consistent with the
prediction from a maximally mixed state in the relevant
sector of the Hilbert space in subsystem A, in what fol-
lows we use analytical and further numerical calculations
to address two questions. The first one is whether the di-
rect calculation of the average entanglement entropy of
random pure states produces the same leading volume-
law term as the maximally mixed state advances. Our
intuition on this matter was built based on the results
reviewed for the case of U(1) symmetry in Sec. II, so we
need to verify that this intuition also applies for the SU(2)
symmetry. The second question we address is the nature
of the subleading corrections depending on the value of
J. Our numerical calculations for Hamiltonian eigen-
states are restricted to system sizes that are too small
to gain an understanding of how the subleading correc-
tions change depending on the value of J, so an ana-
lytical treatment is needed to address this question. If
the nonvanishing (in the thermodynamic limit) sublead-
ing corrections for the average entanglement entropy of
highly excited quantum-chaotic Hamiltonian eigenstates
have the same form as those for random pure states, as
is the case for the U(1) symmetry, then our analytical
results for random pure states will provide insights into
what is to be expected for the subleading corrections in

Hamiltonian eigenstates.

For the analytic calculations in the rest of this work we
focus on the spin j = % case so, to lighten the notation, we
drop j from all the expressions that follow. A first indi-



cation that the leading behavior of the average entangle-
ment entropy of highly excited quantum-chaotic energy
eigenstates behaves similarly to that of the average en-
tanglement entropy of random pure states is provided by
the closeness of both averages in Fig. 2 for L = 22. The
purple circles in Fig. 2 show our numerical results for the
average over random states with spin J (J, = 0). The
random pure states are taken to have the form

rand Z C |J 0 (23)

where {|J,0),}:"7; is a basis generated by the eigenstates

of J2 and J. with eigenvalues J and J, = 0, respectively.
The random coefficients C; € R are drawn from a normal
distribution, and they are normalized to satisfy >, C? =
1. The scaling of the average over random pure states
is shown in the inset in Fig. 2 for J = 0, which one can
see is qualitatively similar to that of the quantum-chaotic
energy eigenstates, and follows the analytical prediction
for (Sa) ;¢ j.—o from Eq. (39). The latter shows that
the average entanglement entropy of random pure states
in the J = 0 sector produces the same leading volume-
law term as the corresponding maximally mixed state in
subsystem A.

Since all our analytical calculations are carried out us-
ing random coefficients C; € C (so that the states [¢), . 4
are Haar random in the respective Hilbert space) whereas
all our numerical calculations are carried out using ran-
dom coefficients C; € R (to reduce the computation
time), we stress that the difference between the results
for C; € R and C; € C is exponentially small in L (see
Appendix E), i.e., real vs complex coefficients results in
negligible differences in what follows.

V. ENTANGLEMENT ENTROPY FOR FIXED J
AND j=1

To compute the average over random states with j = %
analytically, we write H = H 4 ® Hp as a direct sum [see
Eq. (10)],

L/2 La/2 Lp/2
@HJ_ D Huo @D Hu. (24)

Ja=Jmin JB=Jmin

H Ha HB

where, Jyin =0 (%) if L4 is even (odd), and n?A(LA) =
dim?#;, [n% (L) = dimH ,] can be obtained using
Eq. (16) with L - L4 and J — Ju4 [L — Lp and J —
Jg]. Equation (24) can be interpreted as pairing, given
by the principle of angular momentum addition |J4 —
Jp| < J < Ja+ Jp, spins J4 and Jp within subsystems
A and B to produce total spin J. The range of values
of J4 and Jp (depending on L4 and Lp) that can be

paired are
max[Jyin, J — %] < Ja <

m
max[Juin, |[J — Ja|] < Jp < min[LE,J + J4]. (26)

Next, we study S4 separately for J = 0, J = O(1), and
J = O(L). As discussed in the context of Fig. 1, for
J = O(1) one has that n;/D o 1/L while for J = O(L),
ny/D decays exponentially with L.

A. SpinJ=0

We consider first J = 0, which is special as Jg = Jx

in Eq. (26). The no-dimensional sector H j—¢,s. =0 can be
represented as a direct sum [see Eq. (24)]
mln[LA LB]
7_[J—O == @ H]Aa (27)
J2=0 Ja=J
A=Jmin

where HY  C Hj, ® Hj, contains the n’}‘A X n?B states

that have identical J4 = Jg and zero total spin. We can
explicitly construct the basis for ”H,(}A as

Ja

W}ab> - Z

m=—Ja

m(JA) |JA7m>a ® |JA7 7m>b s (28)

where m is the J, eigenvalue within subsystem A, a (b)
labels the n4 (n% ) states with spin J4 within subsys—
tem A (B), and cm(JA) is the Clebsch-Gordan (CG) co-

efficient

(=1)7am
Ja,m;Ja,—m|J =0,J, =0 —— 29
(Ja,m; Ja, —ml ) = T (29)
Hence, the Haar-average entanglement entropy

(Sa)j_o.y.—o over random pure states in the spin sector
YUz .
H j=0,7.=0 can be computed using the Haar-average en-

tanglement entropy (S A)?,A over the restricted subspaces
HY, via [5, 19]

d
(Sa)g=o. = D = [{Sa)), + W(d+1) = (s, +1)
z= JA
(30)
where
I"(z)

U(x) = 1
@) = T (31)
is the digamma function, dj, = dim#Y,, and d =

ZJA dJA = dlm HJ—O,JZ—O
A random state in the subspace H
a superposition of base states [1)qp),

9 -, can be written as

ny,[La] ¥, [Ls]

WJJA Z Z Wap W}ab ) (32)



where W, are random numbers drawn from a fixed trace
ensemble Tr(WWT) = 1. The corresponding reduced
density matrix p4 = Trp [ ,) (15, | can be written as

/314 = Z Rz(zzl/) ‘JAv

a,a’,m

mhy (aml, . (33)

It is block-diagonal over spaces of fixed m, and the entries
in such blocks are R\ lem2(WWT)4e. The eigen-

value distribution is ta}(llus the product of the fixed distri-
bution of the CG coefficients |c,,(J4)|? = 1/(1 + 2J4)
and the eigenvalue distribution of WWT from the fixed-
trace ensemble, which is the well-known Page result [7]
(for subsystems of dimensions n4, and n% ). The en-
tropy of the product of two distributions is the sum of

the entropies of the distributions

(S4), = Sca(Ja) + Spage(ns,, n5,) (34)
Sca(Ja) = Z|cm J)P e (Ja)|? = In(1 + 2J4),

SPage(dAa dB) = \Il(dAdB + ) - \P[max(dAvdB) + 1}
_min(dA7dB) -1

Qmax(dA, dB)

Plugging Eq. (34) in Eq. (30), using that d;, = n7} n%,

and d = ng, yields an exact expression for (Sa);_, ; _o»

ny n
(Sa) =0, = Z JaJa [T(no+1) —¥(nf +1)
J.= no
# Ja=Jmin
ng —1
Toa 2 (1 +204)], (35)
2nJA

where we assumed that L, < Lg, without loss of gener-
ality due to the L4 <> Lp symmetry of (Sa);_ ; _-
We then obtain the asymptotic formula in the limit

L — oo for fixed f = Ly/L < % as follows. First, we

extract the asymptotic behavior of the density function

A B
p(Ja) = allla (36)

no
2J4°

We also extract the asymptotic behavior of

o(Ja) =

=1In(2)fL +

(Sa)], + W(no+ 1) — ¥(ng, 0¥, +1) (37)

3in(l—f)  2Ja% 1

Note that it is interesting that in the expansion of ¢ (J4)
the term In(1+2J4) is exactly canceled by a similar term

appearing in Spage(n?,,n%,), so that there is no In(L)
term at J = 0.
For large L, we can evaluate the sum as an integral

(2120, = S o(T0a) = [ p(Ia)elTa)dTa +o(0).

(38)
and then do a rescaling by introducing ja=Ja/ VL, so
that (Sa);_gs.—0 = I VLp( jA ©(ja)dja. The leading
orders terms for f = La/L <1 5 read

(Sa)g=0, =In(2)fL + w — 15f 1 +0o(1),
Jy= 2 2 /o2
(39)
where, as before, o(1) indicates corrections that vanish in
the thermodynamic limit. The first two terms in Eq. (39)
were obtained for a related problem away from f = % in
Ref. [37].

The exact result in Eq. (39) has some important prop-
erties that we would like to emphasize: (i) The leading
volume-law term has the expected maximal coefficient
advanced by Eq. (17) at J = 0. (ii) The first subleading
correction is O(1). It has the same structure as the one
in the presence of U(1) symmetry [see Eq. (6), for which
n= % is equivalent to J, = 0 here], with one term that
is a function of f and a —% that appears only at f = =
Note that the prefactor of the function of f is different
in Egs. (39) and (6).

Since all other sectors with J = O(1) have j — 0 as
L — o0, it is to be expected given Eq. (6) that all those
sectors will exhibit the same leading volume-law term.
This and the nature of the first subleading correction for
J = O(1) are explored next.

B. Spin J=0(1)

When J # 0, random states cannot be decomposed
into direct sums of tensor products because there are
many possible pairings between J4 [Eq. (25)] and Jg
[Eq. (26)]. A basis {|¢a)} of Hjj.=0, in terms of
|Ja,ma) ® |Jp,mp), can be written as

min[Ja,JB]

bar) = D> em(,Ja, JB) |,

m=—min[Ja,JB]

m>a ® ‘JB7 _m>b ?
(40)

with Cm(.], JA, JB) = <JA, m,Jpg,
responding CG coeflicient.

A random state |¢) in H s s, =0, and its reduced density
matrix p4 = Tr|¢) (4|, therefore take the form

—m/|J,0) being the cor-



min[ "8, T+ 5£ ] min[“f T+ 4]

) = > > > X

Tamtnaxl Ty J— ] T =l [T =Tall a=1 b=1

HliIl[LTA,J+LTB] Inin[LTB,J+JA,J+J:4]

pa = >

Ja,J =max[Jumin,J — 2£] TB=max[Jmin,|[ J=Jal,|J =41} a=1

where W(;’bAJB € C are Gaussian random variables with
zero mean and fixed variance drawn from the fixed trace
ensemble, i.e., the normalization of the state |¢) requires

> WaTm ) = 1, (43)

Ja,Js  a=l b=1

where the limits of the sums over J4 and Jp are given
by Egs. (25) and (26).

One can see that the matrix p4 is block-diagonal with
respect to the spin component m in the subsystem A,
but in principle has “interferences” between different J4
and J%. Only in the special case in which J = 0 we
effectively have §; A’Jﬁlé Ja,Jp, Which leads to the block
structure over Jy discussed for J = 0. If J is not ex-
tensive (j = 0 in the limit L — o0), i.e.,, J = O(1) or
J = O(VL), we expect that the entries of 4 have a
band structure around J4 = J).

In Figs. 4 and 5, we plot numerical results for the av-
erage entanglement entropy obtained for random pure
states using pa in Eq. (42) for J = 1 and 2, respec-
tively, at f = 3 (a) and 1 (b). [We use real coefficients
in the evaluation of Eq. (42), see Appendix E.] The re-
sults in the plots are normalized by the expected leading
volume-law term. We also plot in Figs. 4 and 5 numerical
results for the average entanglement entropy of highly ex-
cited eigenstates of the quantum-chaotic (nonintegrable)
Hamiltonian [Eq. (21) with A = 3]. For random pure
states for both values of J and f shown, and for Hamil-
tonian eigenstates for both values of J shown at f = %
(at f = ; we have insufficient data points), the numer-
ical results are consistent with the leading volume-law
term in S4 being the expected maximal result (the y-
axis intercept at 1/L = 0 is close to 1), and with the first
subleading correction being O(1) (the numerical results
follow linear a + b/L fits). Those results suggest that
Eq. (39) applies for J = O(1) > 0, but with an O(1)
correction that depends on J.

We note that Eq. (42) allows us to numerically com-
pute the entanglement entropy averages over random
pure states for larger system sizes than those accessi-
ble by the calculation involving Eq. (23), which requires
generating an exponentially large basis {|J,0),}:/; for
H . In order to carry out numerical calculations for ran-
dom pure states in even larger system sizes, as well as to

n# [Laln? [Lp]

A
n} [La] g, [Laln [Lg)

min[Ja,JB]

S WP (1, Ja, Tp) [Jam), @ B, —m),

m=—min[J4,JB]

(41)

min[Ja,J),JB]

2. 2.

b=1 m=—min[Ja,J),JB]

!
W E (W)

X Cm(Ja JA7 JB)C;En,(Jv ‘]1,4ﬂ JB) |JAam>a <J,,4am|a/ ; (42)

(

make analytic progress later for J = O(L), we introduce
an approximation to evaluate Eq. (42) that is motivated
by the J = 0 case. We call this approximation the “spin
decomposition 17, in short SD;. The SD; approximation
ignores the “interference” between different J4 and J'j,
i.e., it assumes that p, is also block diagonal with re-
spect to J4. This means that we include a Kronecker
delta 65, s, in the sum in Eq. (42).

The corresponding Hilbert space decomposition resem-
bles Eq. (27) and is given by

min[LTA,J+LTB]

SD; _
Higo=o = S,
Lp

Ja=max|Jmin,J — —£]

HT (44)

where HjA C Hj, ® Hp,s, contains the d;, = n’}A X
ng, 7, States that have fixed spin J4 in subsystem A and
total spin J. Here, Hp s, is a direct sum over all Jp
Hilbert spaces that can combine with J4 to give total
spin J and their number is given by

min[5E , J+J4]

Z n?B . (45)

JB:max[JminalJ_JAH

B —
nB,JA -

The average entanglement entropy can be obtained by
computing the (Haar random) average entanglement en-
tropy (S A>§A over the restricted subspace H7;, using
the equivalent of Eq. (34), plugging it into Eq. (30) in-
stead of (S A)?,A, and using the appropriate dimensions
dj, =n?, x ng g, andd=3; dj,.

In Figs. 4 and 5, we plot numerical results for the av-
erage entanglement entropy obtained for random pure
states using the SD; for J = 1 and 2, respectively, at
f =1 (a) and 1 (b). (We use real coefficients in the
evaluation of the SDq, see Appendix E.) For both values
of J, one can see that as the system size increases the
SD; results at f = i become indistinguishable from the
numerical evaluation of Eq. (42). At f = %, on the other
hand, the SD; results are always greater than those ob-
tained using Eq. (42), but the difference appears to be
O(1) because the linear fits intercept the y axes at points
close to 1, only the slopes are different. We show results
for the scaling of the differences between the numerical
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FIG. 4. Scaling of Sa for J =1. S4 vs 1/L for eigenstates of
the quantum-chaotic Hamiltonian (21), random pure states,
and the SD1, at f =  (a) and at f = 1 (b). The error bars
show the standard deviation of the averages, and the dashed
lines show linear (a+b/L) fits to all data sets in (a) and to the
SD; results in (b). (Insets) Relative differences between the
random states and the SD; results, which are consistent with
1/L and e~ " decays in (a) and (b), dashed lines, respectively.
The results for systems sizes that are even or odd multiples of
2 in (a) have a different slope in their finite-size scalings, but
approach a similar O(1) number (~ 0.27) as 1/L — 0. Fits
(a+0b/L) in that case are carried out using the results for the
largest 4 system sizes in each case.

calculation for random pure states and the SD; in the in-
sets in Figs. 4 and 5. They make apparent that at f = i
(and we expect the same for other values of f # 1) the
differences vanish exponentially with increasing system
size. At f = %, on the other hand, the differences appear
to converge to small O(1) numbers, ~ 0.27 for J =1 and
~ 0.35 for J = 2, in the thermodynamic limit.

Summarizing our results for J = O(1), we provided nu-
merical evidence that Eq. (39) applies for J = O(1) > 0,
but with an O(1) correction that depends on J. Further-
more, our results in the insets in Figs. 4 and 5 show that
at f # % using the SD; introduces an exponentially small
error when evaluating the average entanglement entropy
for J = O(1), while the error appears to be an O(1) error
at f = %

Since j = 0 in the thermodynamic limit also for
J = O(VL), we expect the leading volume-law term in
Eq. (39) to also apply to that case. The nature of the
subleading corrections for J = O(v/L) is something that
will need to be studied in future works.
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FIG. 5. Scaling of Sa for J = 2. Same as Fig. 4 but for
J = 2. In the inset in (a), the fits cross the y axis at ~ 0.35.

C. Spin J=0(L)

We conclude our study of the average entanglement
entropy of random pure states by considering the case
J = O(L). As discussed in Sec. III, in this case the ratio
ny/D decays exponentially with L.

We consider first J = L/2, which is the largest spin.
The sector Hj—r /2, 7.—0 contains only one state, with
Ja = La/2 = fJ and Jg = Lp/2 = (1 — f)J, such
that

min[JA,JB]

oy = >

m=—min[J4,JR]

Cm(J, Ja, JB) |JA,m) (39 |JB, —m) ,
(46)
where ¢,,,(J, Ja, Jp) is the CG coefficient:

<JA,m, JB, —m|J =Ja+ JB70>
= (-2 Yr\/2(Ja + Jp) +1 x (47)

(2J4)1(2J)12727A-2)B (J 4+ Jp)!
2(Ja+Jp+1)(Ja—m)!(Ja+m)(Jp—m)!(Jp+m)!

This state has a simpler form when written in terms of
the tensor product basis of individual J7?, that is, it is
a uniform superposition of all the base states with zero
total magnetization J* = 0 given by [38]

L
0~ (TE QI = —3) (15)



where JT = ZZL 1 j with the raising operators J+ =
JE +iJ} at site i.
The reduced density operator becomes

min[J4,JB]
pa= > lem(Ja JB)P[Ja,m) @ (Ja,ml,

m=—min[J4,JB]
(49)

and the entanglement entropy <SA>J:g,Jz:0 = Sa(|¥))

is thus the one of the CG coefficients (as probability dis-
tribution). In the limit of L — oo for fixed 0 < f < 1
the distribution of |¢,,(J, Ja, Jp)|? in m approaches a
normal distribution with average m = 0 and standard

fA-fL
-

deviation A closed form for the leading

term in the entanglement entropy of this state can be
obtained using the distribution of the CG coefficients
em(J, Ja, JB) = (Ja,m; Jg,—ml|J, J, = 0) [38], so that
for 0 < f <1,
(Sa),_z = 1 {wef(lf)L
120 2 2

} +o(l).  (50)

To make analytic progress for J = O(L) < L/2, we
introduce a “spin decomposition 2”7 (SD2) with an ex-
tra simplifying assumption on top of the SD; discussed
for J = O(1) > 0. In the SDs, we assume that the
leading contributions to the entanglement entropy come
from the terms in pu [Eq. (42)] where Jg = J — Jy,
which amounts to including a product of Kronecker deltas
0Jp,J—Ja07,,7, in the sum in Eq. (42). This assumption
is justified by the observation that for large L and fixed
Ja < J, the number nf? falls off exponentially as we
increase Jp from Jg = J — J4, i.e., most of the states
with fixed J, Ja, and Jp satisfy the relation J = Js+Jp
(the SDg is exact for J = L/2, for which there is only one
state). For the SDs, we thus only compute the average
entanglement entropy over those states.

This yields the Hilbert space

min[ 5, T+ £ ]
SDo J

HJJ =0 — @ HJA,J—JA ) (51)

Lp

Ja =maX[Jmin7J_ T]

where H“;A’J_JA C Hj, ® Hj_j, contains the dj, =
n‘j‘A X nJB_JA states with fixed Ja, Jg = J — J4, and J.

The resulting density matrix p4 of a Haar random
state is thus block diagonal over both J4 and m [sim-
ilar to Eq. (33)] with blocks given by

WJA,JfJA(WJA,JfJA)‘I“Cm(LL JA,J_JA)|2- (52)

The normalization of the original state is then equivalent
of requiring
min[LTA ,J+ L7B]
TI'(WJA,J?JAWJAﬂ]?JAT) — 1 (53)

Ja=max[Jmin,J — L7B]
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i.e., it is equivalent to setting W74:/8 = 0 in Eq. (41) for
Jp #J — Ja.

We can compute the (Haar random) average entangle-
ment entropy (S A>§A7 j_y, over the restricted subspace

”ij ..J—7, analytically, as it is the entropy associated to
a block of the form in Eq. (52), though with the simpler
constraint

Te(Ward —Japydad=Jaty — g (54)

as we only sample in the respective block. The resulting
entropy can be computed in full analogy to Eq. (34):

J
(S4)7,.5-7, = Scc(Ja) + Spage(n,,n7_;,).  (55)
The average entanglement entropy is then

d
<5A>?J,1?2 =) = [<SA>§A7J_JA+W(d+1)—qz(dJA+1)] ,
==0 g,

(56)

with dj, = nf, xnf_; . d =73, d;,. The leading-
order terms for large L are given by (see Appendix D)

V1-—752 ln(1 )
SAVSP2 = sa() L+ LS
( A>§;00(L), sa(j) f Ve f.1/2

+(Sa) =z +h(G, f) +o(1), (57)

S R ORI

. 253/2 1—2f(1—j) 1+3
h(J’f)m(W) (i)

N M LS )

(59)

Three points to emphasize about <SA>§220(L),JZ:O in
Eq. (57) are as follows: (i) The coefficient of the vol-
ume in the leading term is the one advanced in Eq. (17).
(ii) There is a v/L correction that appears at f = % when
j # 0,1. (iii) The subleading In L correction for j < 1
becomes the leading term at J = L/2.

In Figs. 6(a)-6(c), we show results for S for eigen-
states of the quantum-chaotic Hamiltonian [Eq. (21) with
A = 3|, random pure states, and the SDq, at J = L/3 [(a)
for f = ¢ and (b) for f = ] and at J = L/4 [(c) for
= %], all away from f = % As in Figs. 4(b) and
5(b), the random states and the SD; results become in-
distinguishable as L increases (because their difference
is exponentially small in L), and the Hamiltonian eigen-
states results are very close to them. The SDy results are
in all cases smaller, but they approach the others with
increasing L. The differences between the SD; and SDo
results are consistent with the SDy approximation intro-
ducing an O(1) error. This expectation is supported by
the fact that in Figs. 6(a)—6(c) we show that the same
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FIG. 6. Scaling of Sa for J = O(L). Sa vs 1/L for eigenstates of the quantum-chaotic Hamiltonian (21), random pure states,

the SD1, and the SD2 [Eq. (56) and numerical results|, at J = L/3 [(a) for f = %

f=13

and (b) for f = %] and J = L/4 [(c) for

6

and (d) for f = 1]. The inset in (d) is a zoom into the 1/L — 0 regime. The solid lines show the predictions of Eq. (57),

while the dashed lines are fits of the results (for the largest 4 values of L) of the SD1, and in (d) also of the random pure state
averages, to Eq. (57) plus an O(1) constant as the only fitting parameter.

equation that describes the SDy results with increasing
L [Eq. (57)], describes the SD; results for the largest sys-
tem sizes after we add an O(1) constant to Eq. (57) as
a fitting parameter. The same applies to the SD; and
random state results in Fig. 6(d) at J = L/4 and f = %

At f =1, the SD; already introduces an O(1) error, so
the SD; results are visibly greater from those obtained
using the full reduced density matrix for random pure
states. The SDs results, on the other hand, are smaller
than those for random pure states. With increasing sys-
tem size, all the numerical results in Fig. 6(d) approach
each other, which suggests that the leading volume-law
term is the same for all calculations. Having both a In L
and a /L correction at J = L/4 and f = % produces
finite-size effects that are non-monotonic as L — co. The
inset highlights the regime in which the v/L term becomes
the dominant subleading correction in SDs.

VI. SUMMARY AND DISCUSSION

We studied the effect of the SU(2) symmetry in the
average entanglement entropy of highly excited Hamil-

1

tonian eigenstates of spin j 5 and 1 models in the
J. = 0 subspace in sectors with different fixed spin J.
Our numerical results provide evidence that the leading
volume-law term in the average entanglement entropy
of highly excited eigenstates of quantum-chaotic (inte-
grable) Hamiltonians is the same as (different from) that
obtained from maximally mixed states in the appropriate
sectors of the Hilbert space of subsystem A. We also car-
ried out analytical and numerical calculations for random
pure states with spin j = % Our results indicate (prove
for J = 0) that the leading term in the average entangle-
ment entropy of random pure states is also the one pre-
dicted by the maximally mixed state in the appropriate
sector of the Hilbert space of subsystem A, as we find for
the average entanglement entropy of highly excited eigen-
states of quantum-chaotic Hamiltonians. Hence, our re-
sults suggest that the average entanglement entropy can
be used as a diagnostic of quantum chaos and integrabil-
ity in models with non-Abelian symmetries.

More specifically, for j = % in sectors where J = O(1),
whose dimension n; divided by the dimension D of the
J. = 0 subspace vanishes as ny/D o« 1/L, our results

indicate (prove for the average over random states with



J = 0) that the leading volume term in the average en-
tanglement entropy is maximal (identical to that of the
average over random states in the J, = 0 subspace), while
the first subleading correction is O(1). We advance that
the same is true about the leading term of the larger
J = O(VL) sectors, for which ny/D o 1/v/L. A di-
rect study of those sectors remains a challenge for future
analytical and numerical studies.

We find that the SU(2) symmetry plays its most dis-
tinctive role in sectors with J = O(L), for which n;/D
vanishes exponentially with increasing system size. Using
a spin decomposition (SD2) supplemented by numerical
results for random pure states with j = %, we showed that
in the J = O(L) sectors the coefficient s4 of the leading
volume-law term depends on the spin density j = 2J/L,
with s4(j = 0) =In2 and s4(j — 1) =0 [see Eq. (58)].
Away from f = %, we find the first subleading correc-
tion to be In L (this correction becomes the leading term
at j = 1). Subleading corrections of this form do not
appear in the presence of U(1) symmetry [see Eq. (6)],
and they may be a hallmark of non-Abelian symmetries.
Furthermore, at f = 3 and j # 1, we found that the first
subleading correction is VL.

Our numerical results indicate that Eq. (57), which is
one of the main analytical results of this work, differs
from the exact Haar-random average in the O(1) correc-
tion. A challenging task that we plan to tackle next is
computing the exact value of the O(1) correction for the
Haar-random average. As a first step to achieve this,
we intend to compute the equivalent of Eq. (57) in the
context of the SDy, which our numerical results indicate
approaches the exact result for f # % exponentially fast
with increasing L. Another interesting question that we
plan to explore is the effect of non-Abelian symmetries in
the symmetry-resolved entanglement entropy. The effect
of the Abelian U(1) symmetry in the symmetry-resolved
entanglement entropy was recently studied in Ref. [39].
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Appendix A: Hilbert space dimensions for spin j

Let us briefly review how to compute the multiplicity
n); introduced in Eq. (10) using group theory [33].

The character of a group element g € G in a repre-
sentation p : G — Lin(H’) is given by the trace function
x(g) = Trp(g). In the case of the spin-J representation
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of SU(2), we can use the Weyl character formula:

_sin(2J +1)0
o sin 6

xs(9) ; (A1)
where the group element is parametrized by a coordi-
nate 6 € [0,27] and two other coordinates, which x s(g)
does not depend on. The (invariant) Haar measure af-
ter integrating out the other two coordinates is given by
(sin® 0/7)d6.

A key property of characters is that they multiply
when taking tensor products of representations and add
up when taking direct sums of representations. More-
over, the character functions (on compact groups) are
orthonormal with respect to the normalized Haar mea-
sure. Therefore, to determine how often the representa-
tion J appears in the tensor product j®%, one can just
evaluate the integral

1

j _
™

nl; = n);(L) /XJ(O)Xj(G)L sin? 0d6 (A2)

where x 7(0) refers to the spin-J representation we want
to count and x; ()% is the character of the tensor product
representation j®L.

We can rewrite this integral using z = e~ as

_ : N L
n]J:Zj{ (22—1) (1427 _,~(+27)) (Z1+2;_27(1+21)) d=

4 z—z—1

. (22_1)Z1+2J Z1+2j_z—(1+2i) L
=1 — dz
2 z—z )

where the contour integral follows the unit circle counter
clockwise. There exist closed expressions for this integral
that can be evaluated using the residue theorem, such as
in the case of j = 1 in which one finds Eq. (16), which is
derived in Appendix B by other means.

To obtain the asymptotic behavior for large values of
L, it is better to express J in terms of the spin density
j= ]iL and apply the saddle point approximation. One
finds

(A3)

(A4)

2
nl, = ’f{ (Z“;Jewi(zwdz,
Y5

with

Ui(2) = 2ijIn(z) +In (=20 0 (A
The saddle point approximation then states that the in-
tegral in Eq. (A4) is approximately given by

2
n, =i H27T (25 — Dzo e (0L
_"/}j (20)L 2m

where 2z is the dominating saddle point, such that
¥;(20) = 0 and Re[t);(20)] is maximal. Here, this cor-
responds to the solution zy with ¢{(z9) = 0 that is non-
negative and real.

(A6)



For j = %, the dominating saddle point is zyg =

(1 —7)/(1 + 5), which gives rise to the 8/2(j) reported
in Eq. (17), and to the approximation in Eq. (18). For
j =1, the dominating saddle point is

V=32 —j

2(1+y5) 7

which gives rise to the 3!(j) reported in Eq. (20). While
one can compute «(j) based on Eq. (A6), understanding
B(j) suffices to advance the leading volume-law term of
the average entanglement entropy.

20(j) = (A7)

Appendix B: Hilbert space dimensions for j = %

For the specific case of j = %, one can find closed-form

expressions for the Hilbert space dimensions using com-
binatorics [40-42]. For completeness, next we summarize
how this is done. To lighten the notation, since we only
discuss the case j = %, we drop j from all the equations
in this appendix.

Once again, we construct the Hilbert space H as L
tensor products of the spin—% representation of SU(2):

1
—_—
L times
We can use the rule
Ji+J2
heh= P 7, (B2)
J=|J1—J2|
to write
B =0,
1_ 1
2 20
1o 1
5®5;=001,
1 olol__ 1,13
30303=39393, B3
;10;0i=00001010102, (B3)

AL =Jo.. . Jio 0. Jy.

njy, times

nJ; times &

The general form of the multiplicities n; can be deduced
from a generalization of Pascal’s triangle, where we cut
the triangle at the middle axis (corresponding to J = 0).

spinJ 0 513233
L=0 1

L=1 1

L=2 1 1

L=3 2 1
L=4 2 3 1
L=5 5 4 1
L=6 5 9 5 1
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The entries of the triangle represent the multiplicities n s,
where J consists of positive half-integers for odd L and
non-negative integers for even L.

One can find a closed formula for n; as a function of
L by identifying the process with a random walk on non-
negative integers (representing 2J) starting at 0, where
we jump from 0 to 1 with probability 1, while for all
other integers 2J, we jump either to 2J — 1 or 2J + 1
with probability % each. The number of paths leading
to integer 2J after L steps can then be calculated using
Bertrand’s ballot theorem [43, 44] (in the variant where
ties are allowed). In this context, the random walk is
yet again re-interpreted as counting ballots for two can-
didates with total votes p for the candidate 1 and ¢ < p
votes for candidate 2. Bertrand’s ballot theorem (ties al-
lowed) then states that the number of ways the votes can
be counted (one after each other), such that candidate 1
is never behind candidate 2 is given by

<p+q) B (p+q> p+1—q<p+q>
q q—1 p+1 q
In our case, we have p + ¢ = L (total votes) and 2J =

p—q (p represents right-steps and ¢ represents left-steps).
With this, we find

(B4)

200+2J) [ L
ny=ns(L)= 2+L+2J<L—J>'
2

Note that L/2 — J is always an integer, as J is a half-
integer whenever L is odd.

Based on this calculation, we can determine the dimen-
sions of the Hilbert spaces with fixed total spin J, fixed
spin J,, and fixing both J and J,. The corresponding
dimensions are then given by

(B5)

L
dim(J,) = ( > , (B6)
z %_’_JZ
. 2(1+2J)2 L
dim(J) = ———— B7
im(J) 2+L+2J<§J>’ (B7)
2(142J) [ L
dim(J., J) = 2+L+2J(§—J) J = || 7 (BS)
0 otherwise

and we see that, as long as J > |J.|, the dimension of
the Hilbert space for fixed (J,J.) is independent of J,.
Hence, the Hilbert space dimension of a sector with fixed
J within the J, = 0 subspace is dim(J, = 0,J) = n .

Appendix C: Maximally chaotic regime

In order to reduce finite-size effects in the comparison
between the average entanglement entropy of highly ex-
cited eigenstates of a one-dimensional quantum-chaotic
(nonintegrable) Hamiltonian and random pure states
with spin j = %, following the recent discussion in
Ref. [11] we set the Hamiltonian parameter A = 3 [see
Eq. (21) in the main text] to be in the maximally chaotic
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FIG. 7. Mazimally chaotic regime. Results for: (a) I' — /2
and (b) Sa at subsystem fraction f = % plotted as functions
of A for J =0, 1, and 2 in chains with L = 20 and 22, for the
microscopic spin j = 1.

regime. By maximally chaotic regime it is meant that, for
the system sizes that one can study using exact diagonal-
ization, sensitive probes of quantum chaos return results
that are closest to the random matrix theory predictions.
To locate the maximally chaotic regime, we use trans-
lational invariance to diagonalize the Hamiltonian in
the zero magnetization sector (J, = 0). Translational
invariance allows us to block diagonalize the Hamil-
tonian within sectors with total quasimomentum k =
2nm/L, n € [0,L/2]. We consider chains with L = 20
and 22, and focus on the “complex” sectors with n €
[1,L/2 — 1]. Those sectors lack the reflection symmetry
present in the “real” k = 0 and 7 sectors, and suffer from
smaller finite-size effects [6, 11]. We select the central 100
eigenstates with J = 0,1, and 2 in each of the complex
sectors, in each eigenstate we compute the two quantum
chaos indicators mentioned below, and then average the
results over all the eigenstates with a given value of J.
The two quantities that we compute in each eigenstate
are the “Gaussianity” and the entanglement entropy at
f=1La/L =% [11]. The Gaussianity is defined as

Lzl
— 92

(|

Lo

where x,(l") = Re[C&")], C,g") being the coefficient of to-
tal quasimomentum eigenstate |k,) (with the appropri-
ate Z eigenvalue within the J, = 0 sector) in the energy
eigenstate |Ey), |[E,) = >, i |ka). (We obtain sim-
ilar results, not shown, using Im[C&")].) The averages
in Eq. (C1) are computed over i, and then we further
average I, over all eigenstates with a given J to obtain
I' = T, reported in Fig. 7(a). Since the eigenstates of
random matrices are random unit vectors with normally
distributed coefficients, the random matrix prediction for
I'is FRM = 7T/2 [6]

Figure 7 shows our results for I'—7/2 [Fig. 7(a)| and for
S4 |Fig. 7(b)] as functions of A. The results in Fig. 7(a)
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show that I' is closest to the random matrix theory pre-
diction for the three values of J considered for L = 20
and 22, about A = 3. For the average entanglement en-
tropy in Fig. 7(b), we find that the maximum occurs
between A = 2 and 6 depending on the value of L and J.
Given those results, we selected A = 3 in the maximally
chaotic regime to carry out the finite-size scaling analyses
reported in the main text.

Appendix D: Asymptotics of SD2

We extract the large-L asymptotics of Eq. (56) as ex-
plained below. The general method is similar to the one
explained in detail in Ref. [5] to compute (S4) .

First, we compute the asymptotic d, in terms of L,
f, and the subsystem spin density j4 = 2J4/L, to find

bn=Sen{[re(2) - e E252)] 1),

(D1)
o — 8ja(j — ja)
T(1=f4+7—Jja)f +ja)
) (-1J
(f2=72)A=f=j+ja)Q—f+j—ja)
+o(1), (D2)
where s4(+) is defined in Eq. (58).
Second, we approximate p(ja) = %d"TA by a Gaus-

sian using a saddle-point approximation around the mean
ja = jf. We find that the variance is given by o2 =
(1—-32)f(1 - f)/L + O(1/L?). We Taylor expand the
exponent of d, up to cubic order around j4 and then
expand the exponential up to linear order to find

1 (ja —ja)?
exp |—
V2mo? 202

p(ja) =

x |1+ Z ae(ja —ja) +o(1)|, (D3)
=1,3

where 1/(v270?) normalizes the Gaussian, and the ex-
pansion coefficients o (note that the quadratic order is
absorbed in the definition of the Gaussian) are given by

a2t
M=o pna-gp) oW
(- 20)iL

(1= /)21 —-42)?

where the O(1) term in ag will only contribute towards
an o(1) term in the final result.

Third, we use that the CG coefficients ¢, (J, Ja, J—J )
follow a normal distribution with zero mean and variance

o = Ja(J = Ja)/(2]) = ja(j — ja)L/(4j) for large L.

(D4)

ag = + O(1> ) (D5)



The entropy of the normal distribution is

Sca(Ja) = In(V2meo,,) +o(1). (D6)

Fourth, we replace the sum in Eq. (56) over J4 by an
integral over the subsystem spin density j4, i.e., ZJA —

% f dj4 and split the summand, now an integrand, into
the product of p(j4), which includes the factor L/2, and

; : J—Ja
i) =L [sali) - (1= Ppsa( 1222
22(1— f+j 7jA)\/(1 -0 - ((jl:jf));)

(L=5)@+7)* —ja)

(D7)

+In

+

There is an important subtlety, namely, (j) is non-
analytical at je.it = %Jcm (defined as the point where
n‘}cm = nﬁm)’ such that for j4 > jeris, we need to re-
place f = 1— fand ja — j — ja.

Fifth and finally, we carry out the integration by ex-
panding ¢(j4) up to quadratic order in (ja — j4) to find
Eq. (57) for 0 < j < 1. Note that the v/ term with the
Kronecker delta at f = % stems from the alignment of
the center of the Gaussian js4 = fj and je, such that
the Taylor expansion of p(j4) is different for j4 < ja

and ja4 > ja.

Appendix E: Complex vs real random coefficients

To compute all the numerically obtained average en-
tanglement entropies S4 reported in the main text: for
random pure states, SD1, and SDy, we use Gaussian dis-
tributed real coefficients, as opposed to the Gaussian dis-
tributed complex coefficients implicit in the Haar-random
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averages carried out in our analytical calculations. Real
coefficients are used in the numerical calculations to re-
duce the computation time. As shown in Fig. 8, the rel-
ative differences between the results obtained using real
and complex coefficients decreases exponentially with in-
creasing L, and it is very small for the systems sizes con-
sidered in our study.

All the results reported for random pure states were
obtained by averaging over at least 1000 random states
for L < 20 and over at least 100 random states for
L > 20. All the results reported for the SD; and SDo
approximations were obtained by averaging over at least
1000 random states for L < 30, and over at least 100
random states for L > 30.
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FIG. 8. Gaussian distributed real vs complex coefficients. Rel-
ative difference between S obtained numerically by sam-
pling real (S%) vs complex (S9) coefficients for J = L/4.
The columns correspond to the results for random states [(a)
f=3%and (d) f=1],SD1 [(b) f =3 and (e) f = 1], and
SD2 [(c) f = 5 and (f) f = %]. In all cases the results are

consistent with an e %% decay with the number of lattice sites

L, as indicated by the dashed lines.
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