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Abstract
Least squares regression is a ubiquitous tool for building emulators (a.k.a. surrogate models) of prob-

lems across science and engineering for purposes such as design space exploration and uncertainty quantifi-
cation. When the regression data are generated using an experimental design process (e.g., a quadrature
grid) involving computationally expensive models, or when the data size is large, sketching techniques
have shown promise to reduce the cost of the construction of the regression model while ensuring accuracy
comparable to that of the full data. However, random sketching strategies, such as those based on lever-
age scores, lead to regression errors that are random and may exhibit large variability. To mitigate this
issue, we present a novel boosting approach that leverages cheaper, lower-fidelity data of the problem at
hand to identify the best sketch among a set of candidate sketches. This in turn specifies the sketch of the
intended high-fidelity model and the associated data. We provide theoretical analyses of this bi-fidelity
boosting (BFB) approach and discuss the conditions the low- and high-fidelity data must satisfy for a
successful boosting. In doing so, we derive a bound on the residual norm of the BFB sketched solution
relating it to its ideal, but computationally expensive, high-fidelity boosted counterpart. Empirical re-
sults on both manufactured and PDE data corroborate the theoretical analyses and illustrate the e�cacy
of the BFB solution in reducing the regression error, as compared to the non-boosted solution.

1 Introduction
Computational models are becoming central tools in analysis, design, and prediction. In these models,

input parameters are often modeled as a random vector p to account for either uncertainty in precise values
of these parameters, or as a means to model variability of parameters in order to assess robustness of an
output [LMK10; Smi13]. We consider such types of models given a (possibly non-linear) parameter-to-output
map,

b = T (p), T : Rq
æ R.

A canonical example is when T is a measurement functional (e.g., the spatial average) operating on the
solution to an elliptic partial di�erential equation (PDE) whose formulation contains random variables that,
e.g., parameterize the di�usion coe�cient. Hence, T is the composition of a measurement functional with

�Equal contribution.
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the solution map of a parametric PDE. By placing a probability distribution on p that reflects a model of
uncertainty, the goal of forward uncertainty quantification (UQ) is to quantify the resulting randomness in
b(p), frequently via statistics. Since explicit formulas revealing the dependence of b on p are typically not
available, one resorts to approximations. One such sampling-based approach that we focus on is that of
polynomial chaos (PC) methods [GS03; XK02] using variants of stochastic collocation [XH05].

In this paper we consider building emulators for forward UQ via a non-intrusive least squares-based PC
strategy. More precisely, we assume an a priori form for an emulator bV :

b(p) ¥ bV (p) :=
dÿ

j=1
x

ú
j Âj(p), V := span{Â1, . . . , Âd}, (1.1)

where Âj are fixed, known functions (in PC approaches they are multivariate polynomial functions of p), and
the coe�cients x

ú
j must be determined. We identify these coe�cients through data collected from evaluating

b on a prescribed quadrature rule {(pn, wn)}N
n=1, with quadrature nodes pn and positive weights wn. The

coe�cients x
ú
j are then chosen as the solution to a quadrature-based least squares problem,

xú = arg min
xœRd

ÎAx ≠ bÎ
2
2, A(n, j) =

Ô
wnÂj(pn), b(n) =

Ô
wnb(pn), (1.2)

where A œ RN◊d is referred to as the design matrix of the problem. Once xú is computed, the emulator bV is
easily manipulated and computationally analyzed to compute (approximate) statistics for b or the sensitivity
of b to each entry of p. The challenge with this approach is that when dimp = q ∫ 1, then designing an
appropriately accurate quadrature rule requires N ∫ 1 samples of b, which is prohibitively expensive when
such evaluations amount to PDE solutions. (For example a q-dimensional tensorized Gaussian quadrature
rule with n points per dimension requires N = n

q points.)
In this paper, we describe one strategy to mitigate this cost via a procedure that combines statistical

boosting ideas from theoretical computer science (see, e.g., [Mah11, Sec. 7.2] and [Woo14, Sec. 2.3]) with
bi-fidelity strategies in UQ. More precisely, our approach boosts on the randomness of a sketching operator
S œ Rm◊N that is used to approximately solve (1.2):

ˆ̂x = arg min
xœRd

ÎSAx ≠ SbÎ
2
2.

Without a priori knowledge of b, a deterministic sketch with m < N generally is not robust to adversarial
vectors b that result in a large residual for ˆ̂x relative to the residual for xú. However, in general scenarios
one can identify constructive probabilistic models for S where sketches of near-optimal size, m & d log d/(‘”),
ensure

ÎA ˆ̂x ≠ bÎ
2

Æ (1 + ‘)ÎAxú
≠ bÎ

2 with probability Ø 1 ≠ ”.

We provide a more detailed discussion of existing sketching guarantees in section 2.2, in particular for row
sketches, for which computing Sb requires knowledge of only m entries of b, rather than all N entries. While
random sketching provides attractive guarantees when m π N , it is still random and hence is subject to
randomness in performance, and “failure” events can occur with nonzero probability ”. Naive statistical
boosting mitigates this issue by generating several (say L) sketches and choosing the one that yields the
smallest residual. However, this requires generating Lm entries of b, which can be computationally expensive
when each evaluation is an expensive PDE solve. Our approach attacks this problem in the sketch selection
boosting phase by replacing b with an approximate, low-fidelity version from which collecting Lm samples
is computationally feasible. Once a “good” sketch is identified in the boosting phase, we solve the sketched
least squares problem using the corresponding sketch of the original data b.

Thus, we assume availability of and leverage a low-fidelity model Âb(p). For example, Âb may correspond to
using a discretized PDE solver with a mesh coarser than the one which produces accurate realizations of b,
or to model approximations such as Reynolds-averaged Navier Stokes solvers, or to solutions computed with
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arithmetic in lower precision compared to samples for b. Although Âb may be untrusted as a replacement for
b, it can be used to extract some useful information about b, as is done in by-now standard multi-fidelity
approaches [PWG18]. Throughout this paper, we assume the bi-fidelity setup, i.e., two levels of fidelity, and
also that the cost of evaluating Âb is much less than the corresponding cost for b; both of these are common
practical assumptions [DGRH07; NGX14; ZNX14; Fai+20; New+22].

1.1 Contributions of this article
The contributions of this article are as follows:

• We propose a new bi-fidelity boosting (BFB) algorithm to compute an approximation to xú. The
procedure, given in Algorithm 2, computes the solution of a sketched least squares problem, where
the sketch matrix is identified by a boosting procedure on a low-fidelity data vector Âb. The sketching
approach reduces the required sample complexity from N evaluations of b to ≥ d log d samples of b,
which can be a significant saving. The boosting procedure requires ≥ Ld log d evaluations of the low-
fidelity model Âb, where, in the language of statistical learning, L is the number of weak learners used
in the boosting procedure. When Âb costs substantially less than b, this cost for collecting the boosting
data is negligible.

• We provide a theoretical analysis of BFB under certain assumptions, which provides quantitative
bounds on the residual of the BFB solution x̂BFB relative to the full, computationally expensive solution
xú (see Theorems 3.2 and 3.4). We also provide some asymptotic bounds on the correlation between
the low- and high-fidelity solutions in a certain sense (see Theorem 3.5). Finally, we provide concrete
computational strategies to ensure that the required assumptions of BFB hold (see Theorem 3.11).

• We investigate the numerical performance of BFB when combined with several di�erent sampling
strategies and compare the performance to the corresponding sampling strategies without boosting.
We also demonstrate using real-world problems that the assumptions required for BFB’s theoretical
analysis frequently hold in practice.

The idea of sketching for least squares solutions has a substantial history in the computer science and
numerical linear algebra communities [Mah11; Woo14]. Our use of sparse row sketches of size ≥ d is identical
to existing methods for leverage score-based [Mah11], Gaussian-sketch based [MT20], and volume-maximizing
sketching [DW18; DWH18]. In addition, boosting for least squares problems is also not a new idea [HNP22].
However our combination of these approaches in a bi-fidelity setting is new to our knowledge, and our analysis
in this bi-fidelity context provides novel, non-trivial insight into the algorithm performance.

The rest of this manuscript is organized as follows. Section 2 introduces the notation we use and provides
some background material on various sketching approaches in least squares approximation. Section 3 presents
the BFB algorithm along with its theoretical analysis. Section 4 contains numerical experiments which
illustrate various aspects of the BFB approach. We conclude the present study in Section 5. The paper also
contains several appendices. Appendix A provides a brief introduction to the sampling approach that we
proposed in [Mal+22] and which we make use of in this paper. Appendices B and C contain some proofs
that have been left out of the main text.

2 Preliminaries
For the interest of clarity and completeness, we next introduce the notation used throughout the manuscript

and introduce four sampling strategies to sketch the least squares problem (1.2), namely, sampling via
column-pivoted QR, leverage scores, volume maximization, and Gaussian distribution.
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2.1 Notation
Matrices are denoted by bold upper-case letters (e.g., A), vectors are denoted by bold lower-case letters

(e.g., x) and scalars by lower case regular and Greek letters (e.g., a and –). Entries of matrices and vectors
are indicated in parentheses. For example, A(i, j) is the entry on position (i, j) in A and a(i) is the ith
entry in a. A colon is used to denote all entries along a mode of a matrix. For example, A(i, :) is the ith
row of A represented as a row vector. For a set of indices J , A(J , :) denotes the submatrix (A(j, :))jœJ
and a(J ) denotes the subvector (a(j))jœJ .

The compact SVD of a matrix A takes the form A = U⌃V €, where U and V have rank(A) columns
and ⌃ is of size rank(A) ◊ rank(A). The pseudoinverse of A is denoted by A† def= V ⌃≠1U€. For a matrix
U with orthonormal columns, we use U‹ to denote an orthonormal complement of U , i.e., U‹ is any matrix
such that [U , U‹] is square and has orthonormal columns. We use PA

def= AA† = UU€ to denote the
orthogonal projection onto range(A), where U = orth(A) is a(ny) matrix whose columns are an orthonormal
basis for range(A), e.g., via the compact SVD or QR decomposition of A. The determinant of A is denoted
by det(A). For a positive integer n, we use the notation [n] def= {1, 2, . . . , n}. We use aP to denote a vector
a ”= 0 rescaled to unit length:

aP = a

ÎaÎ2
.

We also introduce two notions of correlation: for given deterministic vectors a, b ”= 0, we define the
correlation between them as the cosine of the angle separating them:

corr(a, b) def= Èa, bÍ

ÎaÎ2ÎbÎ2
,

where È·, ·Í denotes the Euclidean inner product. We will also require Pearson’s correlation coe�cient, which
is widely used in statistics. For two (non-constant) random variables X and Y with bounded second moments
defined on the same probability space, their correlation is defined as

corr(X, Y ) def= E[(X ≠ E[X])(Y ≠ E[Y ])]
V[X]V[Y ]

,

where E[·] and V[·] are, respectively, the mathematical expectation and variance operators. Note that our
notation corr(·, ·) is overloaded, operating di�erently on vectors and (random) scalars. The context of use
in what follows should make it clear which definition above is used.

We will use the following notation to denote the minimum of the least squares objective in (1.2):

r(A, b) def= min
x

ÎAx ≠ bÎ2 = ÎAxú
≠ bÎ2, (2.1)

where xú is defined as in (1.2).

2.2 Sketching of least squares problems
Solving the problem (1.2) using standard methods (e.g., via the QR decomposition) costs O(Nd

2)1.
When N is large, this may be prohibitively expensive. A popular approach to address this issue is to apply
a sketch operator S œ Rm◊N where m π N to both A and b in (1.2) in order to reduce the size of the
problem:

x̂
def= arg min

xœRd

ÎSAx ≠ SbÎ2 . (2.2)

This approach has two benefits: (i) If S is a row-sketch, i.e., has only a small number of non-zero columns,
then Sb requires knowledge of only a small number of entries of b, and (ii) the cost of solving this smaller

1In our context, we have N > d; see Assumption 3.1.
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problem is O(md
2), a substantial reduction from O(Nd

2) when m π N . Analogously to (2.1), we will use
the following to denote the least squares objective value for the approximate solution:

rS(A, b) def= ÎAx̂ ≠ bÎ2. (2.3)

The goal is for the approximation x̂ to yield a residual “close” to the optimal residual of the full problem
(1.2),

r(A, b) ¥ rS(A, b),

which is typically achieved if m is “large enough”. The following definition makes this more precise.

Definition 2.1 ((Á, ”) pair condition). Let S œ Rm◊N be a random matrix. Given A œ RN◊d, b œ RN , and
Á, ” > 0, the distribution of S is said to satisfy an (Á, ”) pair condition for (A, b) if, with probability at least
1 ≠ ”, both conditions,

rank(SA) = rank(A) and rS(A, b) Æ (1 + Á) r(A, b), (2.4)

hold simultaneously, where r(A, b) and rS(A, b) are defined as in (2.1) and (2.3), respectively.

Note that one can only ask for the above condition with probability less than 1: For any sketch with
m < N , there are vectors b for which the residual bound condition in (2.4) can be violated. Such a condition
can be satisfied with m < N samples; see sections 2.2.2, 2.2.3, and 2.2.4. Sketching operators S that sample
a subset of the rows are of particular interest in UQ since Sb in (2.2) then requires knowledge of only a
subset of entries in the vector b, meaning that fewer samples need to be collected. In this paper, we consider
three di�erent sketching operators of this type, one of which is deterministic and two of which are random.
These are described in Sections 2.2.1–2.2.3. Another popular sketching operator is the Gaussian sketching
operator whose entries are appropriately scaled i.i.d. normal random variables. Applying such a random
matrix to b requires knowledge of all entries in b. While this makes the Gaussian sketch unsuitable for use
in practice for quadrature sampling, we still consider it in some of our theoretical results since it is easier to
analyze than the sampling-based sketches. Furthermore, since it is known to have excellent guarantees, it
provides a nice baseline. We introduce the Gaussian sketch in Section 2.2.4.

Much research has been conducted over the last two decades on randomized algorithms in numerical
linear algebra, including the problem of solving least squares problems. We only cover the basics that are
relevant for this paper. For a more in-depth discussion, we refer the reader to the surveys in [HMT11; Mah11;
Woo14; MT20] and the references therein.

2.2.1 Sampling via column-pivoted QR decomposition

Let A€P = A(J , :)€ = QR be a column-pivoted QR (CPQR) decomposition where J is a length-N
permutation vector. A simple deterministic heuristic for sampling m rows from A is to simply choose those
rows corresponding to the first m entries in J , i.e., A(J (1 : m), :). This corresponds to applying a sketch
S = (P (:, 1 : m))€ to A. Such an approach has been used to sub-sample points from either tensor product
quadratures [SNM17] or from random samples (approximate D-optimal design) [HD18a; DDH18; Guo+18]
in the context of least squares polynomial approximation.

Recall that A is an N ◊ d tall-and-skinny matrix. When m Æ d, the subsample is straightforward and
just takes the first m entries in J since the list J contains the entries in decreasing order of importance
(as approximated by the column-pivoting algorithm). When m > d, the situation is more subtle since the
remaining entries J (d + 1 : N) have no particular meaning and will not be useful in our row-sampling
procedure. To get around this, we use the heuristic in Algorithm 1 in order to sample m > d rows. The
heuristic chooses the first d rows indices to be the entries in J (1 : m) where J comes from the column-pivoted
QR decomposition of A€. The rows with indices in J (1 : m) are then removed from A. Another column-
pivoted QR decomposition is then computed for the updated A€, and the next set of d rows is chosen to be
the rows of A corresponding to the top-d entries in the new permutation vector J . Once again, the chosen
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Algorithm 1: Heuristic for sampling via column-pivoted QR decomposition
Input: A: design matrix; m: desired number of row samples
Output: As: matrix containing m rows of A

1: Initialize As to an empty matrix: As = [ ]
2: while m > 0 do

3: Compute column-pivoted QR of A€: A(J , :)€ = QR
4: Let k = min(d, m)
5: Append top-k rows from A to As: As = [As; A(J (1 : k), :)]
6: Remove top-k rows from A: A = A(J (k + 1 : end), :)
7: m = m ≠ k

8: end while

9: return As

rows are removed from A. This procedure is repeated until m rows have been chosen. It is straightforward
to formulate a sampling matrix S such that SA = As, where As is the output of Algorithm 1.

Since the approach in Algorithm 1 is deterministic, it cannot satisfy guarantees of the form in Defini-
tion 2.1. However, for the case m = d it is possible to prove bounds on the condition number of A(J (1 : d), :);
see Lemma 2.1 in [SNM17] for details.

2.2.2 Leverage score sampling

Let A = U⌃V € be a compact SVD. The leverage scores of A are defined as

¸i(A) def= ÎU(i, :)Î2
2 for i œ [N ]. (2.5)

They take values in the range ¸i(A) œ [d/N, 1] and indicate how important each row of A is in a certain
sense. The matrix U can be replaced with any matrix whose columns form an orthonormal basis for range(A)
without impacting the definition in (2.5) [Woo14, Sec. 2.4]. The coherence of A is defined as

“(A) def= max
iœ[N ]

¸i(A).

It takes values in the range “(A) œ [d/N, 1]; it is maximal when one of the leverage scores is 1 and minimal
when all leverage scores are equal to d/N . Let r

def=
q

i ¸i(A). The leverage score sampling distribution of
A is defined as

pi(A) def= ¸i(A)
r

for i œ [N ],

which is indeed a probability distribution as ¸i(A) > 0. Let f : [m] æ [N ] be a random map such that
each f(j) is independent and P{f(j) = i} = pi(A) for each j œ [m]. The leverage score sampling sketch
S œ Rm◊N is defined elementwise via

Sji = Ind{f(j) = i}
mpf(j)(A)

for (j, i) œ [m] ◊ [N ], (2.6)

where Ind{A} is the indicator function which is 1 if the random event A occurs and zero otherwise. Algo-
rithms and theory for leverage score sampling have been developed in a number of papers; see e.g., [DMM06;
DMM08; Dri+11; Mah11; LK20] and references therein. The distribution for the leverage score sketch in
(2.6) satisfies an (Á, ”) condition for (A, b) if

m & d log(d/”) + d/(Á”); (2.7)

see Theorem 3.11 for a more detailed and slightly stronger statement.

6



Choosing pi(A) = 1/N results in uniform sampling. For general matrices, there are no useful guarantees
when sampling uniformly in this fashion. However, if A has low coherence, then uniform sampling will be
close to the leverage score sampling distribution and guarantees similar to those for leverage score sampling
hold. More precisely, if ¸i(A) Æ Cd/N for some constant C Ø 1, then uniform sampling satisfies an (Á, ”)
condition for (A, b) if m is chosen as in (2.7) (this is a direct consequence of, e.g., Theorem 6 in [LK20]).
Notice that the di�erence from sampling according to the exact leverage scores is that there now is an
additional constant C hidden in the lower bound on m.

In addition to a parsimonious sampling of b, the computational complexity of the sketched least squares
approach in (2.2) is a consideration. Direct sampling of the leverage score distribution via the formula (2.5)
requires a matrix decomposition (e.g., QR or SVD), which costs O(Nd

2) e�ort, the same e�ort required
to solve the original least squares problem. Drineas et al. [Dri+12] propose a procedure for computing
leverage score estimates with cost O(Nd log N) for any matrix A. When A has particular structure it is
possible to improve this considerably. Malik et al. [Mal+22] propose such a method for the case when the
multivariate basis functions Âj in (1.1) are certain products of one-dimensional functions, which corresponds
to impose certain structure on the subspace V . In the polynomial approximation setting, those structural
conditions are satisfied by a large family of subspaces, including the popular tensor product, total degree,
and hyperbolic cross spaces. For example, if the multivariate basis polynomials for q-dimensional inputs
correspond to polynomials of at most degree k in each dimension and use n grid points per dimension (in
which case A has N = n

q rows), then the total cost of our method is at most O(qnk
2 + mq) for drawing

m samples. This sampling approach is an ingredient in our method, so we describe the key aspects of how
this sampling approach works in Appendix A and refer the reader to [Mal+22] for a more comprehensive
treatment.

2.2.3 Leveraged volume sampling

Volume sampling is a technique that samples a set J µ [N ] of m row indices of A with probability
proportional to the squared volume of the parallelepiped spanned by the columns of the submatrix A(J , :),
i.e., P(J ) Ã det

!
A(J , :)€A(J , :)

"
. This means that, unlike for leverage score sampling, the rows are

not sampled independently. This has several benefits, including that the sketched least square solution
A(J , :)†b(J ) is correct in expectation [DW17, Prop. 7]: E[A(J , :)†b(J )] = A†b. Leverage score sampling,
by contrast, may produce a biased estimate of the solution vector. Despite the apparent issue of sampling from
a combinatorial number of subsets of [N ], there are algorithms for volume sampling that run in polynomial
time. DereziÒski and Warmuth [DW18] propose two such algorithms, RegVol and FastRegVol. RegVol runs
in O((N ≠ m + d)Nd) time, and FastRegVol runs in O((N + log(N/d) log(1/”))d2) time with probability at
least 1 ≠ ”. The dependence on N can be prohibitive in quadrature sampling since the number of (tensor-
product) quadrature points N is exponential in the number of variables.

DereziÒski, Warmuth, and Hsu [DWH18] propose leveraged volume sampling which improves on standard
volume sampling in several ways. Importantly, it still retains the correctness in expectation but allows for
more e�cient sampling. In particular, the cost of sampling does not depend on N . Unlike standard volume
sampling, the sketch distribution satisfies an (Á, ”) condition for (A,y) if m & d log(d/”) + d/(Á”), which is
on par with what leverage score sampling requires for such guarantees. Leveraged volume sampling has two
stages. In the first stage, O(d2) rows are chosen from A using a combination of leverage score sampling and
rejection sampling. After that, the O(d2) subset is further reduced to O(d log(d/”) + d/(Á”)) via standard
volume sampling. In the experiments, we use FastRegVol from [DW18] for the second step. When FastRegVol
is used, the cost of leveraged volume sampling is O(((d2 + m)d2 + mCsamp) log(1/”)), where Csamp is the
cost of drawing one row index of A using leverage score sampling. As discussed in Section 2.2.2, the the cost
Csamp of leverage score sampling can be reduced drastically in our setting by using the structured sampling
techniques from [Mal+22].
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2.2.4 Gaussian sketching operator

The Gaussian sketching operator S œ Rm◊N has entries that are i.i.d. Gaussian random variables with
mean zero and variance 1/m. The Gaussian sketch satisfies an (Á, ”) condition if m & (d/Á) log(d/”). These
results also extend to the case when the entries of S are sub-Gaussian; see Theorem 3.11 for further details.

The main benefit of the Gaussian sketching operator is that it allows for simple and precise theoretical
analysis of procedures that use sketching as a subroutine [MT20, Remark 8.2]. This is our motivation for
considering the Gaussian sketch in this paper. Computationally, it is not e�cient to use Gaussian sketching
for least squares problems. The reason is that computing SA costs O(mNd) which is more than the O(Nd

2)
cost of solving the original least squares problem (recall that m > d). As discussed earlier, an additional issue
in bi-fidelity estimation is that computing Sb requires knowledge of all elements of b which is prohibitively
expensive when that vector contains high-fidelity data.

2.3 Bi-fidelity problems
The main goal of this paper is to propose a strategy that improves the accuracy of sketching via a boosting

procedure that employs a full vector b̃ corresponding to an inexpensive low-fidelity approximation to b.
Bi-fidelity frameworks assume the availability of a low-fidelity simulation ÂT ; that is, a map ÂT : Rq

æ R
such that ÂT is parameterically correlated with T in some sense, but need not be close to T in terms of sampled
values. Such properties arise, for example, in parametric PDE contexts when ÂT arises as the discretized PDE
solution operator on a spatial mesh that is coarser (and hence less trusted) than the mesh corresponding to
T . The decreased accuracy/trustworthiness of ÂT is balanced by its decreased cost, so that employment of ÂT
may not furnish precise high-fidelity information, but may provide useful knowledge in terms of dependence
on the parameter p with substantially reduced cost.

In the context of constructing our emulator (1.2), our core assumption is that the low-fidelity operator
ÂT is cheap enough so that full exploration of the response over the sampled parameter set {pi}iœ[N ] is more
computationally feasible, resulting in a vector b̃ œ RN with low-fidelity entries

b̃(n) =
Ô

wn
ÂT (pn). (2.8)

Of course, one may propose constructing the emulator T in (1.2) by simply replacing b by b̃, but this
restricts the accuracy of the emulator T to the potentially bad accuracy of ÂT . In this paper, we propose
a more sophisticated use of b̃, in conjunction with a single sparse sketch of b, that retains some accuracy
characteristics of xú.

3 Bi-fidelity boosting (BFB) in sketched least squares problems
In practice, one often requires the probability of successfully obtaining a good approximation xú associ-

ated with a random sketch from section 2.2 to be su�ciently close to 1, and one way to achieve this with fixed
sketch size is through a boosting procedure. Assuming the availability of a collection of sketching matrices
{S¸ œ Rm◊N

}¸œ[L], one computes the residual for the S¸-sketched solution (i.e., ÎA(S¸A)†(S¸b) ≠ bÎ2) for
each S¸ and then selects the one that yields the smallest residual for use. Even if each sketch is sparse, this
straightforward procedure inflates the required sampling cost of the forward model T by the factor L, which
may be computationally prohibitive. To ameliorate this boosting cost, we employ a bi-fidelity strategy.

In Section 3.1 we present our proposed algorithm for quadrature sampling which leverages sketching
BFB. Sections 3.2 and 3.3 give our pre-asymptotic and asymptotic analysis results, respectively. We collect
some preliminary technical results in section 3.4, and prove our pre-asymptotic results in section 3.5. The
asymptotic result is proven in Appendix B. We end with section 3.6 that provides results for random sketches
achieving the (‘, ”) condition in Definition 2.1.
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3.1 Proposed algorithm
A distinguishing feature of the least squares problem in our setup is that full information of the high-

fidelity data b is una�ordable due to computational restrictions; instead, we can only a�ord to generate
a small number of entries of b. Meanwhile, the low-fidelity data vector b̃ œ RN that exhibits some type
of correlation with b is readily available for repeated use. (This correlation-like condition is quantifying
through the parameter ‹ introduced in Theorem 3.2.) We propose a modified boosting procedure, where the
boosting phase of a sketched least squares problem replaces high-fidelity data with low-fidelity data to find
the “best” sketching operator and then employs this best sketch directly with high-fidelity data to compute
an approximate least squares solution. This procedure is outlined in Algorithm 2.

Algorithm 2: Bi-Fidelity Quadrature Boosting (BFB)
Input: design matrix A, low-fidelity vector b̃, method for computing entries of the high-fidelity

vector b, collection of sketches for boosting {S¸}¸œ[L]
Output: an approximate solution x̂BFB to (1.2)

1: for ¸ œ [L] do

2: compute the ¸-th sketched solution x̂¸ using the low-fidelity data:

x̂¸ = arg min
xœRd

..S¸Ax ≠ S¸b̃
..

2

3: end for

4: find the best low-fidelity sketch index ¸
ú using boosting:

¸
ú = arg min

¸œ[L]
ÎAx̂¸ ≠ b̃Î2

5: use sketch S¸ú to compute an approximate solution to (1.2):

x̂BFB = arg min
xœRd

ÎS¸úAx ≠ S¸úbÎ2 // Requires computing m entries of b

The oracle sketch in this scenario is the one identified by the boosting strategy operating directly on the
high-fidelity least squares problem, which is computationally una�ordable:

¸
úú = arg min

¸œ[L]
ÎA ˆ̂x¸ ≠ bÎ

2
2, where ˆ̂x¸ = arg min

xœRd

ÎS¸Ax ≠ S¸bÎ2. (3.1)

In the coming sections we will theoretically investigate the sketch transferability between high- and low-
fidelity boosting, i.e., when the residual associated to x̂BFB, the solution produced by Algorithm 2, is com-
parable to the residual associated to x̂¸úú .

We divide our analysis into two cases: Our first analysis frames performance of Algorithm 2 in terms
of an optimality coe�cient, defined in (3.2), which measures the quality of the least squares residual for a
particular sketch S; we provide pre-asymptotic analysis with quantitative results that provides qualitative
guidance on how the BFB algorithm behaves in terms of the tradeo� in the number of sketches L versus
the optimality coe�cient (see the discussion following Theorem 3.4). Our second theoretical result is an
asymptotic analysis with Gaussian sketches that confirms the intuition that the probabilistic correlations
between the low- and high-fidelity random sketches is high when b and b̃ have high vector correlations (see
the discussion around Theorem 3.5).

For analysis purposes we make the following assumption.

Assumption 3.1. Assume that neither b̃ nor b lie in range(A), i.e., we assume b̃, b ”œ range(A).
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This is a reasonable assumption. If b œ range(A), then it would be possible to solve the high-fidelity
least squares problem exactly by sampling m = d linearly independent rows of A and the corresponding
rows of b. In this case, it is therefore easy to solve (1.2) and only requires accessing d rows of b. Similarly,
if b̃ œ range(A) then it would be easy to compute a sketch S¸ which only samples m = d rows and achieves
zero error in Line 4 of Algorithm 2, therefore making the boosting procedure vacuous.

3.2 Pre-asymptotic analysis via optimality coe�cients
We introduce the following measure of relative error di�erence between the sketched and optimal solutions:

µA(b,S) def=

Û
r

2
S(A, b) ≠ r2(A, b)

r2(A, b)
(ú)= Î(SQ)†SQ‹QT

‹bÎ2
ÎQ‹QT

‹bÎ2
, (3.2)

where Q = orth(A), and the second equality marked (ú) is valid if rank(SA) = rank(A), which we establish
in Lemma 3.7. For notational simplicity we usually drop the subscript and write µ(b,S) when A is clear
from context, but we emphasize that µ does depend on A. Note that r(A, b) = ÎQ‹QT

‹bÎ2 > 0 due to
Assumption 3.1, so the denominator in (3.2) is nonzero. We call µ the optimality coe�cient. Smaller values
of µ are better in practice: µ = 0 implies the sketch achieves perfect reconstruction of the data relative to
the full least squares solution.

We provide two main theoretical results which shed light on the performance of Algorithm 2 from two
di�erent perspectives. The first result shows that with an appropriate choice of the sketches {S¸}¸œ[L],
Algorithm 2 produces a solution whose relative error is close to that of the oracle sketch solution in (3.1).
Note that it would be straightforward to provide such guarantees if rS(A, b̃) Æ rSÕ(A, b̃) implied rS(A, b) Æ

rSÕ(A, b), in which case ¸
ú = ¸

úú. This may happen, for instance, when b̃ and b di�er by a scaling. This
monotone property of r when replacing b with b̃ is unfortunately unlikely to hold in practice. Our result,
which appears in Theorem 3.2, identifies alternative conditions that ensure S¸ú is a “good” sketch for the
high-fidelity data.

Theorem 3.2. Fix a positive integer L and suppose ”, Á œ (0, 1]. If {S¸}¸œ[L] is a sequence of i.i.d. random
matrices whose distribution is an (Á,

”
L ) pair for (Q,h), where

h
def=

!
(PQ‹b)P ≠ (PQ‹ b̃)P

"
P and Q

def= orth(A),

then with probability at least 1 ≠ ”,

µ(b,S¸ú) Æ µ(b,S¸úú) + 2


6(1 ≠ ‹)Á, (3.3)

where ‹ denotes the absolute correlation coe�cient between PQ‹b and PQ‹ b̃:

‹
def=

--corr(PQ‹b,PQ‹ b̃)
-- . (3.4)

In addition, on the event where (3.3) is true, we also have that (2.4) holds with S = S¸ for every ¸ œ [L].
Theorem 3.2 shows that if a sketch satisfies an (Á, ”/L) condition for the pair Q and an element h of

range(Q‹), then we are able to prove bounds on the low-fidelity boosted optimality coe�cient µ(b,S¸ú)
relative to the oracle high-fidelity boosted optimality coe�cient µ(b,S¸úú). This is quite a general statement
that accommodates a wide range of sketching operators. The condition on the operators {S¸}¸œ[L] is, for
example, satisfied by all sketching operators in Sections 2.2.2–2.2.4 when the embedding dimension m is
su�ciently large. More precise statements for the leverage score and Gaussian sketches are provided in
Theorem 3.11.

In order to achieve a good approximate solution when applying sketching techniques in least squares
problems the sketching operator must preserve the relevant geometry of the problem. In particular, it is key
that Q and PQ‹b remain roughly orthogonal after the sketching operator has been applied. This importance
of preserving PQ‹b in the sketching phase when b is replaced by low-fidelity data b̃ manifests in Theorem
3.2 through the correlation parameter ‹.
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Remark 3.3. Equation (3.3) suggests that S¸ú is “good” when ‹ is large. This explicitly requires high
parametric correlation between the portions of b and b̃ that lie orthogonal to the range of A. A more subtle
su�cient condition ensuring large ‹ is furnished by our discussion following Proposition 3.8, which provides
a lower bound for ‹ in terms of other parameters.

Theorem 3.2 does not provide a concrete strategy for how the sketches used in boosting are chosen
or constructed. However, near-optimal sketches (in particular satisfying our required (‘, ”) pair condition)
are known to be produced through the well-known randomized approaches discussed in sections 2.2.2-2.2.4.
Precise statements for such sketch estimates are given later in by Theorem 3.11 in section 3.6, but it is
appropriate for us to establish here that combining Theorem 3.2 with good sketching techniques results in
explicit and illuminating theory for Algorithm 2. In particular, one expects a tradeo� between the values
of ‹ and L: boosting with a large number L of sketches should work up to a threshold determined by the
amount of correlation between b and b̃. I.e., any accuracy gained by BFB should be limited by how correlated
the low- and high-fidelity models are, and one expects this to manifest in a relationship between L and ‹.
The theory we develop below reveals this tradeo�. We focus on generating the sketches {S¸}¸œ[L] through
leverage score sampling, as described explicitly by (2.6) in section 2.2.2. We briefly discuss afterward that
one could generalize the result to more general sketches.

Theorem 3.4. Let ”, ‘ œ (0, 1/2) and L œ N be chosen, and assume

d Æ
”

4 exp
3

2
35‘”

4
. (3.5)

Now consider Algorithm 2, where {S¸}¸œ[L] are iid samples of a leverage score sketching operator defined in
(2.6), with the sampling requirement

m Ø
4dL

‘”
. (3.6)

Then each S¸ satisfies an (‘/L, ”/2) condition for the pair (Q,h), and with probability at least 1≠”, we have

r
2
S¸ú (A, b) Æ

Ë
1 + ‘

L
·

È
r

2(A, b), (3.7)

where

· = ·(‘, ”, ‹, L) = 24L(1 ≠ ‹) + ”

2

1
1 + 4


6(1 ≠ ‹)‘

2
.

The results above give explicit behavior of the BFB residual via a concrete sketching strategy for Algo-
rithm 2. Note in particular that the sampling requirement m = O(L/‘) in (3.6) means that without boosting
and simply generating one sketch S according to (3.6), which requires m high-fidelity samples (equivalent
to the number from BFB), we expect that the residual from this one sketch behaves like

r
2
S(A, b) ≥

1
1 + ‘

L

2
r

2(A, b).

Comparing the above to (3.7), note that the only di�erence is the appearance of · , and hence we expect
BFB to be useful (compared to an equivalent number of high-fidelity samples devoted to a non-boosting
strategy) when · Æ 1, which requires,

L . 1
1 ≠ ‹

.

I.e., boosting with L sketches is useful in BFB up to a threshold ≥ 1/(1 ≠ ‹). Boosting with more than
this threshold level of sketches causes the error bound to saturate at a level determined by 1 ≠ ‹. Since ‹ is
the correlation between the range(A)-orthogonal components of b and b̃, we conclude that highly correlated
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range-orthogonal residuals (large values of ‹ very close to 1) are optimal for BFB in the sense that sketching
with large L will be e�ective.

A second observation we make is that the the m ≥ L requirement (3.6) is theoretically suboptimal. In
particular, we show in Theorem 3.11 that stronger coherence-like conditions on the matrix A imply that
leverage score sketching with m ≥ log L is su�cient to achieve the requisite (‘/L, ”) condition, see (3.26) in
Theorem 3.11. We also note that Gaussian sketches only require m ≥ log L samples (see (3.23)), and one
can achieve the (‘, ”) condition on average using m ≥ log L samples (see, e.g., [Mal+22, Equation (2.18)].
Finally, if (3.5) is violated, then indeed m ≥ log L (see (3.24) and the intermediate computation in (3.8)) for
leverage score sketches. Thus, we expect in practice that m ≥ log L samples are su�cient.

We give the proof of theorem 3.4 below to demonstrate how it relies on Theorem 3.2; we will prove
Theorem 3.2 in the coming sections.

Proof of Theorem 3.4. We start by making two conclusions from the conditions (3.5) and (3.6). First, under
these conditions,

35 log
3

4d

”

4
Æ

2
‘”

=∆ m Ø d max
;

35 log
3

4dL

(”/2)

4
,

2L

‘(”/2)

<
, (3.8)

implying that condition (3.24) holds, so that result 2 from Theorem 3.11 guarantees that the distribution
from which the S¸ sketches are drawn satisfies and (‘, ”

2L ) condition. Thus, theorem 3.2 states that there is
an event E1 such that

Pr(E1) Ø 1 ≠ ”/2, On event E1, then (3.3) holds. (3.9)

The above is our first conclusion. For our second conclusion, we note that (3.6) and (3.5) imply,

m Ø
2dË

‘
L

!
”
2
"1≠1/L

È !
”
2
"1/L

,

so that again we satisfy (3.24) (employing a variation of the argument (3.8)), and so by Theorem 3.11, the
distribution from which S¸ is drawn satisfies an (‘̃, ”̃) condition for (A, b), where,

‘̃
def= ‘

L

3
”

2

41≠1/L

, ”̃
def=

3
”

2

41/L

.

Therefore with probability at least 1 ≠ ”̃,

r
2
S¸

(A, b) Æ (1 + ‘̃)r2(A, b),

so that a union bound implies that there is an event E2 on which our second conclusion holds:

Pr(E2) Ø 1 ≠
!
”̃
"L = 1 ≠ ”/2 On event E2, then min

¸œ[L]
r

2
S¸

(A, b) Æ (1 + ‘̃)r2
S¸úú (A, b). (3.10)

We now observe that for any ÷ > 0, the bound

|µ(b,S¸ú) ≠ µ(b,S¸úú)| Æ ÷

implies that

r
2
S¸ú (A, b) Æ r

2
S¸úú (A, b) + r

2(A, b)
!
÷

2 + 2÷µ(b,S¸úú)
"
.

Thus, E1flE2 occurs with probability at least 1≠”, and on this event (3.9) ensures that ÷ is given by the right-
hand side of (3.3). Also, on this event (3.10) implies that µ(b,S¸úú) = ‘̃, i.e., r

2
S¸úú (A, b) Æ (1 + ‘̃)r2(A, b).

Using these expressions in the above inequality, simplifying, and using (”/2)1≠1/L
Æ ”/2 yields the result

(3.7).

We emphasize that the proof above shows how Theorem 3.2 can be used to prove results like Theorem
3.4 for more general sketches.
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3.3 Asymptotic analysis via probabilistic correlation
We provide alternative analysis of Algorithm 2 motivated by the following intuition: If µ(b,S) and µ(b̃,S)

are probabilistically correlated in some sense, then we expect that Algorithm 2 should produce a sketching
operator S¸ú that is close to the oracle sketch S¸úú . We give a technical verification of this intuition below
in Theorem 3.5, providing an asymptotic lower bound on a certain measure of correlation between the two
optimality coe�cients when S is a Gaussian sketching operator.

Theorem 3.5. If S is a Gaussian sketch, then

lim inf
mæŒ

corr(µ2(b,S), µ
2(b̃,S)) Ø

ÎPQ‹bPÎ
2
2 ≠

Ô
6 min{ÎPQ‹(bP ± b̃P)Î2}

ÎPQ‹ b̃PÎ2
2

, (3.11)

where bP , b̃P are normalized versions of b and b̃, respectively, and the minimum is taken over the two ±

options. Moreover, if

Ï
def= |Èb, b̃Í|

ÎbÎ2Îb̃Î2
Ø

ÎPQbÎ2
ÎbÎ2

def= Ÿ, (3.12)

then we further have that

lim inf
mæŒ

corr(µ2(b,S), µ
2(b̃,S)) Ø (1 ≠ Ÿ

2) ≠


12(1 ≠ Ï)
(Ï ≠ Ÿ)2 . (3.13)

In Theorem 3.5 we restrict to Gaussian sketches and consider corr(µ2(b,S), µ
2(b̃,S)) (rather than the

more natural quantity corr(µ(b,S), µ(b̃,S))) in order to make analysis tractable. In general corr(µ(b,S), µ(b̃,S))
and corr(µ2(b,S), µ

2(b̃,S)) may have significantly di�erent statistical properties. However, if either of them
is close to 1, then that would indicate a monotonically increasing (although not necessarily linear) relation-
ship between µ(b,S) and µ(b̃,S), and when such a relationship holds we expect the boosting procedure in
Algorithm 2 to work well. While we restrict to Gaussian sketches, this probabilistic model is usually a good
indicator of how other sketches perform [MT20, Remark 8.2]. I.e., we expect the result to carry over to
the random sampling-based sketches (e.g., leverage scores) that we consider. We verify this numerically in
Section 4.

Remark 3.6. The lower bound in (3.13) is useful only when the right-hand side is close to 1, which roughly
requires Ï to be large and Ÿ to be small. See Remark 3.9 for how this condition relates to Theorem 3.2.

The rest of this section is organized as follows. Section 3.4 derives some preliminary technical results.
Section 3.5 then proves Theorem 3.2. Section 3.6 provides theoretical guarantees for when various sketches
satisfy the (Á, ”) pair condition in Definition 2.1 and discuss how this condition in turn ensures that those
sketching operators satisfy the requirements in Theorem 3.2. The proof of Theorem 3.5 is given in Ap-
pendix B.

3.4 Preliminary technical results
Our first task is to understand how the optimal residual r(A, b) compares to rS(A, b). Throughout this

section let Q = orth(A).

Lemma 3.7. Given a sketch matrix S, assume ker(S) fl range(A) = {0}, or, equivalently, rank(SA) =
rank(A). Then we have,

r
2
S(A, b) = r

2(A, b) + Î(SQ)†SQ‹QT
‹bÎ

2
2.

Proof. Under the assumption ker(S) fl range(A) = {0}, the sketched least squares problem reproduces
elements of range(A): For any c œ range(A),

A(SA)†Sc = c. (3.14)
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The solution to the sketched least squares problem (2.2) is (SA)†Sb. Combining this fact with (2.3) and
(3.14) yields

r
2
S(A, b) = Îb ≠ A(SA)†SbÎ

2
2 = Îb ≠ A(SA)†S(QQT + Q‹QT

‹)bÎ
2
2 = r

2(A, b) + Î(SQ)†SQ‹QT
‹bÎ

2
2.

We conclude that rS(A, b) is comparable to r(A, b) if and only if Î(SQ)†SQ‹QT
‹bÎ

2
2 is small.

The quantities ‹, Ï and Ÿ defined in (3.4) and (3.12) are related by the following inequality.

Proposition 3.8. Assume Ï Ø Ÿ. Then we have the two inequalities,

‹ Ø Ï ≠ Ÿ min
Ó

1,


2(1 ≠ Ï + Ÿ)

Ô
. (3.15)

‹ Ø Ï ≠ (ÏŸ̃ +


1 ≠ Ï2) min
;

1,

Ò
2(1 ≠ Ï + ÏŸ̃ +


1 ≠ Ï2)

<
. (3.16)

where
Ÿ̃

def= ÎPQb̃Î2

Îb̃Î2
,

measures the relative energy of the low-fidelity vector in the range of A.

Proof. We first prove (3.15). Since correlation coe�cients are scale-invariant, without loss of generality we
assume ÎbÎ2 = Îb̃Î2 = 1. Write down the orthogonal decomposition of b and b̃ in Q ü Q‹ as follows:

b = PQb
¸˚˙˝
b1

+PQ‹b¸ ˚˙ ˝
b2

,

b̃ = PQb̃
¸˚˙˝
b̃1

+PQ‹ b̃¸ ˚˙ ˝
b̃2

.

Notice that Îb1Î
2
2 + Îb2Î

2
2 = Îb̃1Î

2
2 + Îb̃2Î

2
2 = 1. It follows from the Cauchy–Schwarz inequality and the

definitions in (3.4) and (3.12) that

‹ = |Èb2, b̃2Í|

Îb2Î2Îb̃2Î2
Ø |Èb, b̃Í ≠ Èb1, b̃1Í| Ø Ï ≠ Îb1Î2Îb̃1Î2 = Ï ≠ ŸÎb̃1Î2 Ø Ï ≠ Ÿ. (3.17)

The last inequality can be replaced by a more accurate estimate for Îb̃1Î2:

Ï = |Èb, b̃Í| = |Èb1, b̃1Í + Èb2, b̃2Í| Æ Îb1Î2Îb̃1Î2 + Îb2Î2Îb̃2Î2 Æ Ÿ + Îb̃2Î2 =
Ò

1 ≠ Îb̃1Î2
2 + Ÿ, (3.18)

which can be reorganized as

Îb̃1Î2 Æ


1 ≠ (Ï ≠ Ÿ)2 =


(1 ≠ Ï + Ÿ)(1 + Ï ≠ Ÿ) Æ


2(1 ≠ Ï + Ÿ). (3.19)

Combining (3.17) and (3.19) finishes the proof of (3.15).
To show (3.16), we again assume ÎbÎ2 = Îb̃Î2 = 1, so that,

Ÿ = ÎPQbÎ2 = ÎPQ(Pb̃b + b ≠ Pb̃b)Î2 Æ ÏÎPQb̃Î2 + Îb ≠ Pb̃bÎ2 = ÏŸ̃ +


1 ≠ Ï2.

Plugging this into (3.15) and noting that the right-hand side of (3.15) is decreasing in Ÿ yields (3.16).

The main appeal of (3.16) is that the quantity Ÿ̃ involves only low-fidelity data, and hence can be
estimated. I.e., (3.16) gives a more practically computable lower bound for ‹, involving one quantity Ÿ̃ that
depends only on low-fidelity data b̃, and the correlation Ï between b and b̃.
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Remark 3.9. Recall that our main convergence result, Theorem 3.2, has more attractive bounds when ‹

is large. By (3.15), ‹ is large if Ï ¥ 1 and Ï ∫ Ÿ, which coincides with su�cient conditions to ensure
attractive bounds in (3.13) in Theorem 3.5. (Cf. Remark 3.6.) Thus, Ï ∫ Ÿ is a unifying condition under
which both of our main theoretical results, Theorem 3.2 and Theorem 3.5, provide useful bounds. The
condition Ï ∫ Ÿ means that the correlation between b and b̃ is high and strongly dominates the relative
energy of b in range(A). This condition may seem counterintuitive as it requires the high-fidelity solution
to have a relatively large residual. Since µ is defined relative to r(A, b), a small rS¸ú (A, b) may still result
in a large µ(b,S¸ú) even if rS¸ú (A, b) is small but relatively large compared to r(A, b).

3.5 Proof of Theorem 3.2
We first consider the case corr(PQ‹b,PQ‹ b̃) Ø 0. Fixing ¸ œ [L], S = S¸, consider the event E of

probability at least 1 ≠ ”/L where the rank condition in (2.4) holds. On this event, this rank condition with
Lemma 3.7 implies that,

r
2
S(A, b) ≠ r

2(A, b) = Î(SQ)†SQ‹QT
‹bÎ

2
2,

allowing us to directly estimate the di�erence between µ(b,S) and µ(b̃,S) as follows:

|µ(b,S) ≠ µ(b̃,S)| =

-----
Î(SQ)†SQ‹QT

‹bÎ2
ÎQ‹QT

‹bÎ2
≠

Î(SQ)†SQ‹QT
‹b̃Î2

ÎQ‹QT
‹b̃Î2

-----

Æ
..(SQ)†S

!
(PQ‹b)P ≠ (PQ‹ b̃)P

"..
2

= Î(PQ‹b)P ≠ (PQ‹ b̃)PÎ2Î(SQ)†ShÎ2

=
Ò

Î(PQ‹b)PÎ2
2 + Î(PQ‹ b̃)PÎ2

2 ≠ 2È(PQ‹b)P , (PQ‹ b̃)PÍ Î(SQ)†ShÎ2

=
Ô

2 ≠ 2‹ · Î(SQ)†ShÎ2

=
Ô

2 ≠ 2‹ · ÎQ(SQ)†ShÎ2,

(3.20)

where the first inequality follows from the reverse triangle inequality, the second to last equality follows (3.4),
and the final equality follows from unitary invariance of the operator norm. The case corr(PQ‹b,PQ‹ b̃) < 0
can be treated similarly by noting that the inequality on the second line of (3.20) still holds if the minus
sign on the right-hand side is changed to a plus sign. The rest of the computation is then done similarly to
the case with non-negative correlation.

Note that (SQ)†Sh is the S-sketched least squares solution to minx ÎQx ≠ hÎ2. Also, note that h œ

range(Q‹). Using the residual bound in (2.4), the following also holds on our probabilistic event E:

ÎQ(SQ)†ShÎ
2
2 + ÎhÎ

2
2 = ÎQ(SQ)†Sh ≠ hÎ

2
2 Æ (1 + Á)2 min

xœRd
ÎQx ≠ hÎ

2
2 = (1 + Á)2

ÎhÎ
2
2.

Rearranging terms and noting ÎhÎ2 = 1 yields ÎQ(SQ)†ShÎ Æ
Ô

3Á, which is substituted into (3.20),
implying that on an event E with probability at least 1 ≠ ”/L, we have

|µ(b,S) ≠ µ(b̃,S)| Æ


6(1 ≠ ‹)Á.

Taking a union bound over ¸ œ [L] yields that, with probability at least 1 ≠ ”,

max
¸œ[L]

|µ(b,S¸) ≠ µ(b̃,S¸)| Æ


6(1 ≠ ‹)Á. (3.21)

Conditioning on the probabilistic event in (3.21) and using the definition of ¸
ú and ¸

úú finishes the proof:

µ(b,S¸ú) Æ µ(b̃,S¸ú) +


6(1 ≠ ‹)Á Æ µ(b̃,S¸úú) +


6(1 ≠ ‹)Á Æ µ(b,S¸úú) + 2


6(1 ≠ ‹)Á.
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3.6 Achieving the (Á, ”) pair condition
We next show that, for a variety of random sketches of interest, the (Á,

”
L ) pair condition for (Q,h) in

Theorem 3.2 holds for su�ciently large m. We begin with a lemma that gives a su�cient condition for
verification of the (Á,

”
L ) pair condition for (Q,h), which can be deduced as a special case from [Dri+11,

Lemma 1]:

Lemma 3.10 (Drineas et al. [Dri+11]). Let Q and h be defined as in Theorem 3.2. The distribution of S is
an (Á,

”
L ) pair for (Q,h) if the following two conditions hold simultaneously with probability at least 1 ≠ ”/L:

‡
2
min(SQ) Ø

Ô
2

2 and ÎQTSTShÎ
2
2 Æ

Á

2 , (3.22)

where ‡min(·) denotes the smallest singular value of a matrix.

When the conditions in Lemma 3.10 hold, one can directly bound (3.20) using the submultiplicativity of
operator norms instead of resorting to an (Á, ”) argument as in the proof of Theorem 3.2, although the latter
is more general. Theorem 3.11 presents constructive strategies for generating sketch distributions – based
on sub-Gaussian random variables and leverage scores – that achieve appropriate (Á, ”) pair conditions. We
recall that a random variable X is called sub-Gaussian if, for some K > 0 we have E exp

!
X

2
/K

2"
Æ 2

[Ver18, Def. 2.5.6]. The sub-Gaussian norm of X is defined as ÎXÎÂ2
def= inf

)
K > 0 : E exp

!
X

2
/K

2"
Æ 2

*

[Ver18]. A proof of Theorem 3.11 is give in Appendix C. Variants of these results have appeared previously
in the literature [DMM06; DMM08; Dri+11; LK20].

Theorem 3.11. Let Q and h be defined as in Theorem 3.2. Write Q and ST as column vectors:

Q = [q1, · · · , qd], ST = [s1, · · · , sm],

and denote by qij
def= qi(j) and hj

def= h(j) the j-th component of qi and h, respectively.

1. Suppose S œ Rm◊N is a dense sketch whose entries are i.i.d. sub-Gaussian random variables with mean
0 and variance 1/m. Assume the sub-Gaussian norm of each entry of Ô

mS is bounded by K Ø 1.
Then the distribution of S is an (Á,

”
L ) pair for (Q,h) if

m Ø
CK

4

Á
d log

3
4dL

”

4
, (3.23)

where C is an absolute constant.

2. Suppose S œ Rm◊N is a row sketch based on the leverage scores of A, and 0 < Á, ” < 1/2; see
Equation (2.6). Then the distribution of S is an (Á,

”
L ) pair for (Q,h) if

m Ø max
;

35d log
3

4dL

”

4
,

2dL

Á”

<
. (3.24)

Moreover, if
max
iœ[d]

max
jœ[N ]:¸j>0

d|qijhj |

¸j
Æ C, ¸j =

ÿ

kœ[d]
q

2
kj (3.25)

for some constant C > 0, then the distribution of S is an (Á,
”
L ) pair for (Q,h) if

m Ø max
;

35,
4C

2

Á

<
d log

3
4dL

”

4
. (3.26)

The scalar ¸j in (3.25) is the leverage score associated to row j of A, and (¸j)jœ[N ] defines a (discrete)
probability distribution over the row indices [N ] of A; see (2.6).
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Remark 3.12. When Q is incoherent, i.e., when its leverage scores satisfy ¸i = O(d/N), the entries qij

satisfy qij = O(1/
Ô

N). For any h such that maxjœ[N ] |hj | . O(1/
Ô

N), the condition in (3.25) is satisfied
with C = O(1):

max
iœ[d]

max
jœ[N ]:¸j>0

d|qijhj |

¸j
.

d ·
1Ô
N

·
1Ô
N

d
N

= 1.

Remark 3.13. As noted in Section 2.2.3, leveraged volume sampling requires m & d log(d/”) + d/(Á”)
samples to satisfy the (Á, ”) pair condition. This result appears in Corollary 10 of [DWH18].

4 Numerical experiments
In this section we illustrate various aspects of the BFB approach using both manufactured data as well

as data obtained from PDE solutions. The codes used to generate the results of this section are available
from the GitHub repository https://github.com/CU-UQ/BF-Boosted-Quadrature-Sampling.

4.1 Verification of theoretical results on synthetic data
We first verify the theoretical results in Theorems 3.2 and 3.5. We do this by simulating di�erent values

for S, b and b̃. We generate a design matrix A œ R1000◊50 (i.e., N = 1000 and d = 50) with i.i.d. standard
normal entries and fix it in the rest of the simulations. For sketching matrices S, we choose the embedding
dimension to be m = 100 and consider both the Gaussian and leverage score sampling sketches. We generate
multiple di�erent versions of the vectors b and b̃ that correspond to di�erent values of Ÿ and Ï. Recall
that these parameters control how much of b is in the range of A and the absolute value of the correlation
between b and b̃, respectively. The vectors are generated via

b = ŸQz1 +


1 ≠ Ÿ2Q‹z2,

b̃ = Ïb +


1 ≠ Ï2b‹z3,

where Q = orth(A), and z1 œ Rd≠1, z2 œ RN≠d≠1 and z3 œ RN≠2 are generated by normalizing random
vectors of appropriate length whose entries are i.i.d. standard normal. In the experiment, the vectors z1,z2,z3
are drawn once and then kept fixed for the di�erent choices of Ÿ and Ï.

To check the upper bound in Theorem 3.2, we generate b and b̃ using 9 equi-spaced values for Ï and
Ÿ between 0 and 1, which will provide 81 plots for each sketching strategy. We use a sequence of L = 10
independent sketching operators in our BFB approach. After computing values of ‹ for every case, we
evaluate the optimality coe�cient di�erence µ(b,S¸ú) ≠ µ(b,S¸úú). Figure 1 illustrates the relation between
µ(b,S¸ú) ≠ µ(b,S¸úú) and the bound 2


6(1 ≠ ‹)Á. Due to the unknown constants in (3.23) and (3.24), an

exact value of Á corresponding to m = 100 is unavailable. Instead, we choose Á to be 0.01 heuristically. We
chose this particular value of Á since it illustrates how the green curve’s shape, which is independent with
the scalar Á, separates most of the scatter plots from the rest of the area. The result shows our purposed
BFB bound in Theorem 3.2 is e�ective and non-vacuous for both Gaussian and leverage score sketchings. It
is noticeable that all the dots out of our proposed bound (green) are leverage score sketch spots (blue). The
reason is because we set m = 100 for both sketch strategies, while leverage score sketch requires a higher
m to satisfy the (Á, ”) pair condition, which leads to a higher deviation in µ with fixed m; see details in
Theorem 3.11.

To further validate our theoretical results in Theorem 3.5, we consider four combinations of Ÿ and Ï as
listed in Table 1. For both the Gaussian and leverage score sketches we draw 100 sketches randomly. The
same set of sketches are used for each pair of the vectors b and b̃. Figure 2 shows scatter plots of the squared
optimality coe�cients for the four di�erent pairs of b and b̃ and two di�erent sketch types.

Table 1 provides the estimated correlations between µ
2(b,S) and µ

2(b̃,S) for each of the eight setups
based on the data points in Figure 2. For both sketches, a small value of Ÿ and a large value of Ï together
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Figure 1: Scatter plots of µ(b,S¸ú)≠µ(b,S¸úú) based on given values
of ‹ for Gaussian sketch (red) and leverage score sketch (blue). The
green curve is the bound we provide in Theorem 3.2 with Á = 0.01.

Table 1: Empirical correlation between µ
2(A, b) and µ

2(A, b̃) for four
di�erent parameters setups and two di�erent sketch types.

Ÿ Ï Sketch type Correlation
0.2 0.3 Gaussian 0.21
0.2 0.95 Gaussian 0.88
0.95 0.3 Gaussian 0.17
0.95 0.95 Gaussian 0.48
0.2 0.3 Leverage score 0.19
0.2 0.95 Leverage score 0.91
0.95 0.3 Leverage score 0.08
0.95 0.95 Leverage score 0.56

yield the highest positive correlation between µ
2(b,S) and µ

2(b̃,S). In this case, the sketch that attains
the smallest residual on the low-fidelity data also attains a near-minimal residual on the high-fidelity data.
This is indicative of the desired sketch transferability between the low- and high-fidelity regression problems.
These observations are consistent with the upper bound in (3.3) and the lower bound in (3.13), supporting
the idea of BFB.

4.2 Experiments on PDE datasets
In this section we verify the accuracy of Algorithm 2 on two PDE problems: Thermally-driven cavity

fluid flow (Section 4.2.1) and simulation of a composite beam (Section 4.2.2). In doing so, we consider
three random sketching strategies based on uniform, leverage score (Section 2.2.2), and leveraged volume
(Section 2.2.3) sampling. As a baseline, we also present results based on deterministic sketching via column-
pivoted QR decomposition (Section 2.2.1).

In both experiments, the high-fidelity solution operator takes uniformly distributed inputs p œ [≠1, 1]q.
We therefore consider approximations of the form in (1.1) with Âj : [≠1, 1]q ‘æ R chosen to be products of q

univariate (normalized) Legendre polynomials. Specifically, let j = (j1, . . . , jq), jk œ N fi {0}, be a vector of
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Figure 2: Scatter plots of the square of the optimality coe�cient for
high- and low-fidelity data for each of 100 di�erent sketches. Each
point is equal to (µ2(b̃,S), µ

2(b,S)) for one realization of the sketch
S. The top and bottom panels correspond to the sketches constructed
using Gaussian and leverage score sampling sketches, respectively.

non-negative indices and Âjk (pk) denote the Legendre polynomial of degree jk in pk such that E[Â2
jk

(pk)] = 1.
The multivariate Legendre polynomials are given by

Âj(p) =
qŸ

k=1
Âjk (pk).

The set of polynomials {Âj} is chosen so that it spans either a total degree or hyperbolic cross space. In
the former case this means all polynomials satisfying

qq
k=1 jk Æ ’, while in the latter case j is limited to

multi-indices with
rq

k=1(jk + 1) Æ ’ + 1, for some predefined ’ œ N fi {0}.
In order to construct a design matrix A as in (1.2), and data vectors b and b̃ in (1.2) and (2.8), respectively,

we also need to choose pairs of quadrature points and weights (pn, wn)nœ[N ]. While both deterministic and
random rules are possible, we here choose these quantities to be deterministic and of the form

pn = (p1,n1 , p2,n2 , . . . , pq,nq ),

wn =
qŸ

k=1
wk,nk ,

(4.1)

where each sequence (pk,nk , wk,nk )nkœ[Nk] consists of node-weight pairs in the Nk-point Gauss–Legendre
quadrature on [≠1, 1]. The resulting sequence (pn, wn)nœ[N ] contains N =

rq
k=1 Nk pairs. When A is

constructed in this fashion, it is possible to sample rows of that matrix according to the exact leverage score
using the e�cient method by [Mal+22]. Please see Appendix A for details on how this is done.

To measure the final performance, we use the relative error defined as

E
def= ÎAx̂BFB ≠ bÎ2

ÎbÎ2
,

where x̂BFB is the output from Algorithm 2.
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4.2.1 Cavity fluid flow

Here we consider the case of temperature-driven fluid flow in a 2D cavity [BC15; PHD14; HD15b; HD15a;
HD18b], with the quantity of interest being the heat flux averaged along the hot wall as Figure 3 shows.
The wall on the left hand side is the hot wall with random temperature Th, and the cold wall at the right
hand side has temperature Tc < Th. T̄c is the constant mean of Tc. The horizontal walls are adiabatic. The
reference temperature and the temperature di�erence are given by Tref = (Th + T̄c)/2 and �Tref = Th ≠ T̄c,
respectively. The normalized governing equations are given by

ˆu

ˆt
+ u · Òu = ≠Òp + Pr

Ô
Ra

Ò
2
u + Pr�ey,

Ò · u = 0,

ˆ�
ˆt

+ Ò · (u�) = 1
Ô

Ra
Ò

2�,

(4.2)

where ey is the unit vector (0, 1), u = (u, v) is the velocity vector field, � = (T ≠ Tref)/�Tref is normalized
temperature, p is pressure, and t is time. We assume no-slip boundary conditions on the walls. The
dimensionless Prandtl and Rayleigh numbers are defined as Pr = ‹visc/– and Ra = g·�TrefW 3

/(‹visc–),
respectively, where W is the width of the cavity, g is gravitational acceleration, ‹visc is kinematic viscosity,
– is thermal di�usivity, and · is the coe�cient of thermal expansion. We set g = 10, W = 1, · = 0.5,
�Tref = 100, Ra = 106, and Pr = 0.71. On the cold wall, we apply a temperature distribution with
stochastic fluctuations as

T (x = 1, y) = T̄c + ‡T

qÿ

i=1


⁄i„i(y)µi,

where T̄c = 100 is a constant, {⁄i}iœ[q] and {„i(y)}iœ[q] are the q largest eigenvalues and corresponding
eigenfunctions of the kernel k(y1, y2) = exp(≠|y1 ≠ y2|/0.15), and each µi

i.i.d.
≥ U [≠1, 1]. We let q = 2 (though

in general, this does not need to match the physical dimension) and ‡T = 2. The vector p = (µ1, µ2) is the
uncertain input of the model.
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Figure 3: A figure of the temperature driven cavity flow problem,
reproduced from Figure 5 of [Fai+17].

In order to solve (4.2) we use the finite volume method with two di�erent grid resolutions: a finer grid
of size 128 ◊ 128 to produce the high-fidelity solution and a coarser grid of size 16 ◊ 16 to produce the
low-fidelity solution. For our surrogate model, we choose the basis set {Âj}jœ[d] based on the total degree
and hyperbolic cross spaces of maximum order ’ = 4. The corresponding spaces have d = 15 and d = 10
basis functions, respectively. The quadrature pairs (pn, wn) used to construct A, b, and b̃ are defined as in
(4.1) and are based on the nodes and weights from a 10-point Gauss–Legendre rule, i.e., N1 = N2 = 10.
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We first repeat the test we ran on synthetic data in Section 4.1. Figure 4 shows the scatter plots of
(µ2(b̃,S), µ

2(b,S)) for the two di�erent polynomial spaces and three di�erent random sampling approaches.
Each plot is based on 100 sketches with m = 30 and m = 20 samples used for the total degree and hyperbolic
cross spaces, respectively. Table 2 presents the correlation coe�cients between µ

2(b,S) and µ
2(b̃,S) based

on the points in Figure 4. There is a discrepancy between the correlation observed for the total degree and
hyperbolic cross spaces. One possible explanation for this is that a greater portion of b is in the range of
A for the total degree space than for the hyperbolic cross space, i.e., Ÿ (see (3.12)) is larger for the former
space. Theorem 3.5 indicates that a larger Ÿ should be associated with lower correlation.

Figure 4: Scatter plots of the square of the optimality coe�cient
for high- and low-fidelity data from the cavity fluid flow problem
for di�erent polynomial spaces (top: total degree; bottom: hy-
perbolic cross) and types of sampling. Each point is equal to
(µ2(b̃,S), µ

2(b,S)) for one realization of the sketch S, and each sub-
plot contains 100 points (i.e., is based on 100 sketch realizations).
For the total degree space m = 30 samples are used and for the hy-
perbolic cross space m = 20 samples are used. The corresponding
correlation coe�cients are presented in Table 2.

Next, we run Algorithm 2 with L = 10 sketches and the number of samples m = 1.2d and m = 2d.
Figure 5 shows the relative error E in (4.2) from running the algorithm 1000 times for each of the di�erent
choices of polynomial space, sketch size m, and random sampling approach. We observe that in all cases
the BFB approach improves the error as compared to the non-boosted case. In particular, the improvement
is more considerable in the case of the hyperbolic cross basis, which is explained by the higher correlation
between µ

2(A, b) and µ
2(A, b̃), as reported in Table 2. Additionally, for the case of hyperbolic space, the

BFB results is comparable or better performance as compared to the column-pivoted QR decomposition
(blue line in Figure 5). Note that the computational cost of column-pivoted QR is higher than the BFB as
it requires the QR decomposition of the entire matrix A.
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Table 2: Correlation coe�cients between µ
2(A, b) and µ

2(A, b̃) for
di�erent sampling methods under total degree or hyperbolic cross
space. The correlation is computed based on the points shown in
Figure 4.

Polynomial Space Uniform Sampling Leverage Score Sampling Leveraged Volume Sampling
Total Degree 0.66 0.57 0.18
Hyperbolic Cross 0.99 0.98 0.98

Figure 5: Relative error for di�erent sampling methods and polyno-
mial spaces when fitting the surrogate model to the cavity fluid flow
data. Yellow lines show the relative error E in (4.2) for the unsketched
solution in (1.2). Blue lines show E when the coe�cients x are com-
puted via the QR decomposition-based method in Section 2.2.1. The
blue box plots shows the distribution of E based on 1000 trials when
x is computed as in (2.2). The orange box plots shows the same
things, but for the solution x̂BFB computed via Algorithm 2.

4.2.2 Composite beam

Following [Ham+18a; De+20; DD22], we consider a plane-stress, cantilever beam with composite cross
section and hollow web as shown in Figure 6. The quantity of interest in this case is the maximum dis-
placement of the top cord. The uncertain parameters of the model are E1, E2, E3, f , where E1, E2 and E3
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are the Young’s moduli of the three components of the cross section and f is the intensity of the applied
distributed force on the beam; see Figure 6. These are assumed to be statistically independent and uniformly
distributed. The dimension of the input parameter is therefore q = 4. Table 3 shows the range of the input
parameters as well as the other deterministic parameters.

h1

h2

h3

w

q

r

L

E1

E2

E3x

y !

"

Figure 6: Cantilever beam (left) and the composite cross section
(right) adapted from [Ham+18b].

Table 3: The values of the parameters in the composite cantilever
beam model. The center of the holes are at x = {5, 15, 25, 35, 45}.
The parameters f , E1, E2 and E3 are drawn independently and uni-
formly at random from the specified intervals.

H h1 h2 h3 w r f E1 E2 E3

50 0.1 0.1 5 1 1.5 [9, 11] [0.9e6, 1.1e6] [0.9e6, 1.1e6] [0.9e4, 1.1e4]

For the cavity fluid flow problem in Section 4.2.1, we created high- and low-fidelity solutions by changing
the resolution of the grid used in the numerical solver. For the present problem, we instead use two di�erent
models. The high-fidelity model is based on a finite element discretization of the beam using a triangle
mesh, as Figure 7 shows. The low-fidelity model is derived from Euler–Bernoulli beam theory in which the
vertical cross sections are assumed to remain planes throughout the deformation. The low-fidelity model
ignores the shear deformation of the web and does not take the circular holes into account. Considering the
Euler-Bernoulli theorem, the vertical displacement u is

EI
d

4
u(x)

dx4 = ≠f, (4.3)

where E and I are, respectively, the Young’s modulus and the moment of inertia of an equivalent cross
section consisting of a single material. We let E = E3, and the width of the top and bottom sections are
w1 = (E1/E3)w and w2 = (E2/E3)w, while all other dimensions are the same, as Figure 6 shows. The
solution of (4.3) is

u(x) = ≠
qH

4

24EI

31
x

H

24
≠ 4

1
x

H

23
+ 6

1
x

H

224
.
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Figure 7: Finite element mesh used to generate high-fidelity solutions.

The surrogate model is based on multivariate Legendre polynomials of maximum degree ’ = 2 with total
degree and hyperbolic cross truncation. The corresponding spaces have d = 15 and d = 9 basis functions,
respectively. As in the case of the cavity flow problem, the quadrature pairs (pn, wn) used to construct A,
b and b̃ are based on the nodes and weights from 10-point Gauss–Legendre rule appropriately mapped into
the ranges given in Table 3.

Figure 8 shows the scatter plots of (µ2(b̃,S), µ
2(b,S)) when repeating the experiment in Section 4.1 for

the two di�erent polynomial spaces and three di�erent random sampling approaches. Each plot is based on
100 sketches with m = 2d, i.e., m = 30 and m = 18 samples used for the total degree and hyperbolic cross
spaces, respectively. Table 4 reports the correlation coe�cient between µ

2(b,S) and µ
2(b̃,S), indicating an

overall high correlation in all cases.

Figure 8: Scatter plots of the square of the optimality coe�cient
for high- and low-fidelity data from the composite beam problem
for di�erent polynomial spaces (top: total degree; bottom: hy-
perbolic cross) and types of sampling. Each point is equal to
(µ2(b̃,S), µ

2(b,S)) for one realization of the sketch S, and each sub-
plot contains 100 points (i.e., is based on 100 sketch realizations).
For the total degree space m = 30 samples are used and for the hy-
perbolic cross space m = 18 samples are used. The corresponding
correlation coe�cients are presented in Table 4.
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Table 4: Correlation coe�cient between µ
2(A, b) and µ

2(A, b̃) for
di�erent sampling methods under total degree or hyperbolic cross
space. The correlation is computed based on the points shown in
Figure 8.

Polynomial Space Uniform Sampling Leverage Score Sampling Leveraged Volume Sampling
Total Degree 0.77 0.69 0.84
Hyperbolic Cross 0.72 0.73 0.82

Next, we run Algorithm 2 with L = 10 sketches and m chosen to be m = 1.2d and m = 2d. Figure 9
shows the results from running the algorithm 1000 times for each of the di�erent choices of polynomial space,
number of samples m, and random sampling approach. We observe that the BFB performance is superior
to that of the non-boosted implementation as it leads to smaller variance of the error and fewer outliers
with smaller deviation from the mean performance. In this example, the BFB leads to comparable accuracy
as the column-pivoted QR sketch, but with smaller sketching cost. As in the case of the cavity flow, the
results corroborate the discussion below Theorem 3.5, in that the BFB improves the regression accuracy
when corr(µ2(b,S), µ(b̃,S)) is large.
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Figure 9: Relative error for di�erent sampling methods and polyno-
mial spaces when fitting the surrogate model to the beam problem
data. Yellow lines show the relative error E in (4.2) for the unsketched
solution in (1.2). Blue lines show E when the coe�cients x are com-
puted via the QR decomposition-based method in Section 2.2.1. The
blue box plots shows the distribution of E based on 1000 trials when
x is computed as in (2.2). The orange box plots shows the same
things, but for the solution x̂BFB computed via Algorithm 2.

5 Conclusion
This work was concerned with the construction of (polynomial) emulators of parameter-to-solution maps

of PDE problems via sketched least-squares regression. Sketching is a design of experiments approach that
aims to improve the cost of building a least squares solution in terms of reducing the number of samples
needed — when the cost of generating data is high — or the cost of generating a least squares solution —-
when data size is substantial. Focusing on the former case, we have proposed a new boosting algorithm to
compute a sketched least squares solution.

The procedure consisted in identifying the best sketch from a set of candidates used to construct least
squares regression of the low-fidelity data and applying this optimal sketch to the regression of high-fidelity
data. The bi-fidelity boosting (BFB) approach limits the required sample complexity to ≥ d log d high-fidelity
data, where d is the size of the (polynomial) basis. We have provided theoretical analysis of the BFB approach
identifying assumptions on the low- and high-fidelity data under which the BFB leads to improvement of
the solution relative to non-boosted regression of the high-fidelity data. We have also provided quantitative
bounds on the residual of the BFB solution relative to the full, computationally expensive solution. We have
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investigated the performance of BFB on manufactured and PDE data from fluid and solid mechanics. These
cover sketching strategies based on leverage score and leveraged volume sampling, for truncated Legendre
polynomials of both total degree and hyperbolic cross type. All tests illustrated the e�cacy of BFB in
reducing the residual — as compared to the non-boosted implementation —- and validate the theoretical
results.

The present study was focused on the case of (weighted) least squares polynomial regression. When the
regression coe�cients are sparse, methods based on compressive sampling have proven e�cient in reducing
the sample complexity below the size of the polynomial basis; see, e.g., [DO11; ABW22]. As interesting
future research direction is to extend the BFB strategy to such under-determined cases, for instance, using
the approach of [DDH18].
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A E�cient leverage score sampling of certain design matrices
In this section, we describe the key elements of the sampling approach developed in [Mal+22] as it applies

to the problems we consider in this paper. The discussion here will consider the design matrices discussed in
Section 4.2. Using the same notation as in that section, define the matrices Ak for k œ [q] elementwise via

Ak(nk, jk) = Ô
wk,nk Âjk (pk,nk ), nk œ [Nk], jk œ [’].

Next, define
ATP

def= A1 ¢ · · · ¢ Aq,

where ¢ denotes the Kronecker product; see Section 12.3 of [GVL13] for a definition. The design matrices
corresponding to total degree and hyperbolic cross polynomial spaces discussed in Section 4.2 are made up
of a subset of the columns of ATP. In particular, using Matlab indexing notation, they can be written as

A = ATP(:,v),

where v is a vector containing distinct column indices of ATP. The sampling scheme we discuss requires the
additional assumption that the entries in v are arranged in increasing order. The columns of A can always
be permuted to ensure that this is possible when A corresponds to a total degree or hyperbolic cross space.
Such a permutation will not change the least squares problem since it will only permute the order of the
entries in the solution vector, and is therefore something that can always be done.

Note that a column index c of ATP corresponds to a multi-index (c1, . . . , cq) such that

ATP(:, c) = A1(:, c1) ¢ · · · ¢ Aq(:, cq).

Each row index r of ATP corresponds to a multi-index (r1, . . . , rq) in a similar fashion.
Algorithm 3 outlines the sampling algorithm. We provide some intuition for why the algorithm works and

refer the reader to [Mal+22] for a rigorous treatment. Note that A is full rank and therefore rank(A) = d.
Let QR = A be a compact QR decomposition (i.e., such that Q has d columns and R has d rows). Recall
that the leverage score sampling distribution satisfies

p(i) = ÎQ(i, :)Î2
2

d
.

Instead of drawing a sample according to the distribution above, we may instead draw a single column Q(:, j)
of Q uniformly at random and instead draw a sample according to the probability distribution defined by
p̃j(i) = (Q(i, j))2. To see this, let Ĩ be a random row index drawn according to this alternate strategy.
Moreover, let J ≥ Uniform([d]) be the random column index, and let Ĩj be a random row index drawn
according to p̃j . Then we have

P(Ĩ = i) =
dÿ

j=1
P(Ĩ = i | J = j)P(J = j) =

dÿ

j=1
P(Ĩj = i)P(J = j) =

dÿ

j=1
(Q(i, j))2 1

d
= ÎQ(i, :)Î2

2
d

= p(i).

This shows that the alternate sampling strategy indeed draws samples according to the leverage score sam-
pling distribution. This is the sampling strategy that our algorithm uses. Moreover, it uses two additional
fact:

(i) When A has the particular structure assumed in this section, then the cth column of Q satisfies

Q(:, c) = Q1(:, c1) ¢ · · · ¢ Qq(:, cq), (A.1)

where Q1, . . . ,Qq are defined in line 2 in Algorithm 3.

(ii) Due to (A.1), drawing a row index r according to p̃j is equivalent to drawing a multi-index (r1, . . . , rq)
according to a product distribution with each rk drawn independently according to the distribution
((Qk(rk, jk))2)rk where (j1, . . . , jq) is the column multi-index corresponding to j.
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Fact (i) makes it possible to sample according to the alternate sampling strategy without every needing
to compute the QR decomposition of the large matrix A. A more general version of this fact appears in
Proposition 4.4 of [Mal+22]. Fact (ii) further makes it possible to sample according to p̃j without needing
to form that probability vector which is of length

r
k Nk.

Algorithm 3: E�cient leverage score sampling of total degree and hyperbolic cross design matrices
Input: Matrices A1, . . . ,Aq, index vector v, number of samples m

Output: Vector s œ [
r

k Nk]m of m samples drawn from row indices of A
1: for k œ [q] do

2: Compute compact QR decomposition QkRk = Ak

3: end for

4: for i œ [m] do

5: Draw an entry j from v uniformly at random
6: Compute the multi-index (j1, . . . , jq) corresponding to j

7: for k œ [q] do

8: Construct the probability distribution p = ((Qk(rk, jk))2)rk œ RNk

9: Draw an index rk œ [Nk] according to the distribution p
10: end for

11: Set the ith sample s(i) equal the row index corresponding to the row multi-index (r1, . . . , rq)
12: end for

13: return Vector of samples s

B Proof of Theorem 3.5
The proof of Theorem 3.5 relies on the following lemmas:

Lemma B.1. Let X and Y be two (nonconstant) random variables defined on the same probability space.
The correlation coe�cient between X and Y , corr(X, Y ), is bounded from below as

corr(X, Y ) Ø

Û
V[X]
V[Y ] ≠

Û
V[Y ≠ X]

V[Y ] .

Proof. It follows from direct computation that

corr(X, Y ) = E[XY ] ≠ E[X]E[Y ]
V[X]V[Y ]

= E[X2] ≠ E[X]2
V[X]V[Y ]

+ E[X(Y ≠ X)] ≠ E[X]E[Y ≠ X]
V[X]V[Y ]

=

Û
V[X]
V[Y ] + corr(X, Y ≠ X)

Û
V[Y ≠ X]

V[Y ]

Ø

Û
V[X]
V[Y ] ≠

Û
V[Y ≠ X]

V[Y ] ,

where the last inequality uses corr(X, Y ≠ X) Ø ≠1.

Lemma B.2. Let ⇠ ≥ N (0, In) be a standard Gaussian vector in Rn. For any w,z œ Rn,

E[Èw, ⇠Í
2
Èz, ⇠Í

2] = 2Èw,zÍ
2 + ÎwÎ

2
2ÎzÎ

2
2. (B.1)
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Proof. The proof follows from a direct application of Wick’s formula [Wic50]. Denote X1 = Èw, ⇠Í and
X2 = Èz, ⇠Í. It is easy to verify that

3
X1
X2

4
≥ N (0,K), K =

3
ÎwÎ

2
2 Èw,zÍ

Èw,zÍ ÎzÎ
2
2

4
.

By Wick’s formula,

E[Èw, ⇠Í
2
Èz, ⇠Í

2] = E[X2
1 X

2
2 ] = 2E[X1X2]2 + E[X2

1 ]E[X2
2 ] = 2Èw,zÍ

2 + ÎwÎ
2
2ÎzÎ

2
2.

Proof of Theorem 3.5. Since correlation coe�cients are scale-invariant, and both b and b̃ are fixed,

corr(µ2(b,S), µ
2(b̃,S)) = corr

3
r

2
S(A, b) ≠ r

2(A, b)
ÎbÎ2

2
,

r
2
S(A, b̃) ≠ r

2(A, b̃)
Îb̃Î2

2

4
.

Without loss of generality, we assume ÎbÎ2 = Îb̃Î2 = 1, so that bP = b, b̃P = b̃.
Let

X = r
2
S(A, b) ≠ r

2(A, b) = Î(SQ)†SQ‹QT
‹bÎ

2
2

Y = r
2
S(A, b̃) ≠ r

2(A, b̃) = Î(SQ)†SQ‹QT
‹b̃Î

2
2.

To apply Lemma B.1, it su�ces to estimate V[X]/V[Y ] and V[Y ≠ X]/V[Y ].
First of all, due to the rotation invariance of joint Gaussians,

G1
def=

Ô
mSQ œ Rm◊d

,

G2
def=

Ô
mSQ‹ œ Rm◊(N≠d)

are independent Gaussian random matrices, i.e., (SQ)†SQ‹QT
‹ = G†

1G2QT
‹, and

E[X] = E
Ë
tr

1
G†

1G2Q
T
‹bbTQ‹GT

2 G
†
1

T
2È

= E
Ë
tr

1
G†

1E[G2Q
T
‹bbTQ‹GT

2 ]G†
1

T
2È

= ÎQT
‹bÎ

2
2E

Ë
tr

1
G†

1G
†
1

T
2È

= ÎQT
‹bÎ

2
2E

#
tr

!
(GT

1 G1)≠1"$
,

where we have used that E[G2QT
‹bbTQ‹GT

2 ] = ÎQT
‹bÎ

2
2Im.

Note GT
1 G1 is a Wishart matrix with dimension d and degrees of freedom m, i.e. W = GT

1 G1 ≥

Wd(Id, m). Consequently, E[W≠1] = 1
m≠d≠1Id if m > d + 1, and

E[X] = ÎQT
‹bÎ

2
2

d

m ≠ d ≠ 1 . (B.2)

Similarly,
E[Y ] = ÎQT

‹b̃Î
2
2

d

m ≠ d ≠ 1 . (B.3)

Note G†
1G2QT

‹a
D= ÎQT

‹aÎ2(GT
1 G1)≠1GT

1 ⇠ for every a œ RN , where ⇠ ≥ N (0, Im) is independent of G1. If
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we denote G = (GT
1 G1)≠1GT

1 , with rows denoted by gi, i œ [d], then

E[X2] = E[ÎÎQT
‹bÎ2G⇠Î

4
2]

= ÎQT
‹bÎ

4
2E

S

U
A

dÿ

i=1
Ègi, ⇠Í

2

B2T

V

= ÎQT
‹bÎ

4
2

Q

a
dÿ

i=1
E[Ègi, ⇠Í

4] +
ÿ

i ”=j

E[Ègi, ⇠Í
2
Ègj , ⇠Í

2]

R

b

(B.1)= ÎQT
‹bÎ

4
2

Q

a3
dÿ

i=1
E[ÎgiÎ

4
2] +

ÿ

i ”=j

(2E[Ègi, gjÍ
2] + E[ÎgiÎ

2
2ÎgjÎ

2
2])

R

b

= ÎQT
‹bÎ

4
2

1
2E[ÎGGT

Î
2
F ] + E[tr

!
GGT

"2]
2

= ÎQT
‹bÎ

4
2

1
2E[Î(GT

1 G1)≠1
Î

2
F ] + E[tr

!
(GT

1 G1)≠1"2]
2

.

(B.4)

To explicitly compute (B.4), we use the following moments formulas of inverse Wishart distributions [Kol05,
Theorem 2.4.14]:

E[W≠1W≠1] =
3

d

(m ≠ d)(m ≠ d ≠ 3) + d

(m ≠ d)(m ≠ d ≠ 1)(m ≠ d ≠ 3)

4
Id

Cov(W≠1
ii ,W≠1

jj ) = 2 + 2(m ≠ d ≠ 1)”ij

(m ≠ d)(m ≠ d ≠ 1)2(m ≠ d ≠ 3) .

Therefore,

E[Î(GT
1 G1)≠1

Î
2
F ] = tr

!
E[W≠1W≠1]

"
= d

2

(m ≠ d ≠ 1)(m ≠ d ≠ 3) ƒ
d

2

(m ≠ d ≠ 1)2

and

E[tr
!
(GT

1 G1)≠1"2] =
ÿ

i,jœ[d]
E[W≠1

ii W≠1
jj ]

=
ÿ

i,jœ[d]
(Cov(W≠1

ii ,W≠1
jj ) + E[W≠1

ii ]E[W≠1
jj ])

= d
2

(m ≠ d ≠ 1)2 + 2d

(m ≠ d ≠ 1)2(m ≠ d ≠ 3) + 2(d2
≠ d)

(m ≠ d)(m ≠ d ≠ 1)2(m ≠ d ≠ 3)

ƒ
d

2

(m ≠ d ≠ 1)2 ,

where am ƒ bm if limmæŒ am/bm = 1. Substituting these back into (B.4) yields

E[X2] ƒ ÎQT
‹bÎ

4
2

3d
2

(m ≠ d ≠ 1)2 . (B.5)

Replacing b by b̃ in the above computation gives a similar estimate for E[Y 2]:

E[Y 2] ƒ ÎQT
‹b̃Î

4
2

3d
2

(m ≠ d ≠ 1)2 . (B.6)
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Combining (B.5), (B.6) with (B.2) and (B.3) produces

V[X] ƒ ÎQT
‹bÎ

4
2

2d
2

(m ≠ d ≠ 1)2 ,

V[Y ] ƒ ÎQT
‹b̃Î

4
2

2d
2

(m ≠ d ≠ 1)2 ,

which implies
V[X]
V[Y ] ƒ

ÎQT
‹bÎ

4
2

ÎQT
‹b̃Î4

2
.

On the other hand, using Cauchy–Schwarz inequality, Moreover, we have

V[Y ≠ X] Æ E[(Y ≠ X)2]

= E
#
(X 1

2 + Y
1
2 )2

· (X 1
2 ≠ Y

1
2 )2$

= E
#
(X 1

2 + Y
1
2 )2

· (ÎG†
1G2Q

T
‹bÎ2 ≠ ÎG†

1G2Q
T
‹b̃Î2)2$

Æ E[(X 1
2 + Y

1
2 )2

· ÎG†
1G2Q

T
‹(b ± b̃)Î2

2],

(B.7)

where the last inequality follows from the reverse triangle inequality. Furthermore, using the inequality of
arithmetic and geometric means followed by the Cauchy–Schwarz inequality, we have

E[(X 1
2 + Y

1
2 )2

· ÎG†
1G2Q

T
‹(b ± b̃)Î2

2

Æ 2E[(X + Y ) · ÎG†
1G2Q

T
‹(b ± b̃)Î2

2]
= 2E[X · ÎG†

1G2Q
T
‹(b ± b̃)Î2

2] + 2E[Y · ÎG†
1G2Q

T
‹(b ± b̃)Î2

2]

Æ 2
Ò
E[X2] · E[ÎG†

1G2QT
‹(b ± b̃)Î4

2] + 2
Ò
E[Y 2] · E[ÎG†

1G2QT
‹(b ± b̃)Î4

2].

(B.8)

Combining (B.7) and (B.8) yields

V[Y ≠ X] Æ 2
Ò
E[X2] · E[ÎG†

1G2QT
‹(b ± b̃)Î4

2] + 2
Ò
E[Y 2] · E[ÎG†

1G2QT
‹(b ± b̃)Î4

2]. (B.9)

A similar argument as (B.5) shows that

E[ÎG†
1G2Q

T
‹(b ± b̃)Î4

2] ƒ ÎQT
‹(b ± b̃)Î4

2
3d

2

(m ≠ d ≠ 1)2 . (B.10)

Plugging (B.10) into (B.9) together with the previous estimates yields that, asymptotically,

V[Y ≠ X]
V[Y ] Æ

2
!
ÎQT

‹bÎ
2
2 + ÎQT

‹b̃Î
2
2
"

ÎQT
‹(b ± b̃)Î2

2
ÎQT

‹b̃Î4
2

·
3d

2

2d2 Æ
6ÎQT

‹(b ± b̃)Î2
2

ÎQT
‹b̃Î4

2
,

where the last inequality follows from ÎbÎ2 = Îb̃Î2 = 1. Appealing to Lemma B.1,

lim inf
mæŒ

corr(X, Y ) Ø
ÎQT

‹bÎ
2
2 ≠

Ô
6 min{ÎQT

‹(b ± b̃)Î2}

ÎQT
‹b̃Î2

2
.

(3.11) follows by noting ÎQT
‹aÎ2 = ÎPQ‹aÎ2 for a œ RN .

To prove (3.13), we use Proposition 3.8 (i.e. (3.18)) to lower bound ÎQT
‹b̃Î

2
2:

Ï Æ ÎQT
‹b̃Î2 + Ÿ =∆ (Ï ≠ Ÿ)2

Æ ÎQT
‹b̃Î

2
2 Æ Îb̃Î

2
2 = 1.
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Also, ÎQT
‹bÎ

2
2 = 1 ≠ Ÿ

2 and

min{ÎQT
‹(b ± b̃)Î2} Æ min{Îb ± b̃Î2} =


2 ≠ 2Ï.

Hence,

lim inf
mæŒ

corr(X, Y ) Ø (1 ≠ Ÿ
2) ≠


12(1 ≠ Ï)
(Ï ≠ Ÿ)2 ,

completing the proof.

C Proof of Theorem 3.11
We first prove the case of the sub-Gaussian sketches. According to Lemma 3.10, it su�ces to verify the

conditions (3.22).
Note

Ô
mSQ œ Rm◊d is a random matrix whose rows are i.i.d. isotropic random vectors in Rd, with

the sub-Gaussian norm . K (this follows from Definition 3.4.1 and Proposition 2.6.1 in [Ver18]). Applying
[Ver18, Theorem 4.6.1] to the matrix

Ô
mSQ and using the fact that ‡min(

Ô
mSQ) =

Ô
m‡min(SQ), we

find that if m & K
4
d log (4L/”), then with probability at least 1 ≠ ”/(2L), the first condition in (3.22) is

satisfied.
For the second condition in (3.22), we write the i-th component of QTSTSh as

qT
i S

TSh = 1
m

ÿ

jœ[m]
È
Ô

msj , qiÍÈ
Ô

msj ,hÍ, i œ [d]. (C.1)

Both È
Ô

msj , qiÍ and È
Ô

msj ,hÍ are sub-Gaussian random variables [Ver18, Proposition 2.6.1]. Therefore,

ÎÈ
Ô

msj , qiÍÈ
Ô

msj ,hÍÎÂ1 Æ ÎÈ
Ô

msj , qiÍÎÂ2ÎÈ
Ô

msj ,hÍÎÂ2 Æ Î
Ô

msjÎ
2
Â2 . K

2
,

where the first inequality follows from [Ver18, Lemma 2.7.7], the second inequality follows from [Ver18,
Definition 3.4.1], and the final inequality follows from an application of [Ver18, Proposition 2.6.1]. More-
over, since h ‹ range(Q) it is easy to verify that the summands in (C.1) are all zero-mean. By Bern-
stein’s inequality [Ver18, Corollary 2.8.3], if m & K

4
d log(4dL/”)/Á, with probability at least 1 ≠ ”/(2dL),

|qT
i S

TSh| Æ


Á/(2d). Taking a union bound over i œ [d] yields that, with probability at least 1 ≠ ”/(2L),

max
iœ[d]

|qT
i S

TSh| Æ

Ú
Á

2d
. (C.2)

Note that (C.2) implies ÎQTSTShÎ
2
2 Æ

Á
2 . Consequently, combining the results we have that there exists an

absolute constant C, such that if m Ø CK
4
d log(4dL/”)/Á, then with probability at least 1 ≠ ”/L,

‡
2
min(SQ) Ø

Ô
2

2 and ÎQTSTShÎ
2
2 Æ

Á

2 ,

which are the conditions in (3.22). This completes the proof for the sub-Gaussian sketch.
We next prove the case for the leverage score sampling matrices, and the proof is again based on Lemma

3.10. Note that leverage score sampling can be viewed as a special case of induced measure sampling. The
first condition in (3.22) is implied by ÎQTSTSQ ≠ IÎ2 Æ 1 ≠

Ô
2

2 , which, according to [Mal+22, Lemma
A.1], is satisfied with probability at least 1≠”/2L if m Ø 35d log(4dL/”). For the second condition in (3.22),
the only di�erence is that one uses Markov’s inequality in place of Bernstein’s inequality due to the lack of
information on the tail of qT

i S
TSh, and the details are omitted. Under additional assumptions in (3.25),

Markov’s inequality can be replaced by Hoe�ding’s inequality to yield an improved bound (3.26):

qT
i S

TSh = 1
m

ÿ

jœ[m]
È
Ô

msj , qiÍÈ
Ô

msj ,hÍ, i œ [d],
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with each summand È
Ô

msj , qiÍÈ
Ô

msj ,hÍ centered and bounded as

|È
Ô

msj , qiÍÈ
Ô

msj ,hÍ| Æ max
iœ[d]

max
jœ[N ]:¸j>0

r|qijhj |

¸j
Æ max

iœ[d]
max

jœ[N ]:¸j>0

d|qijhj |

¸j
Æ C,

where r is the rank of A. By Hoe�ding’s inequality, for t > 0,

P
!
|qT

i S
TSh| Æ t

"
Ø 1 ≠ 2 exp

3
≠

mt
2

2C2

4
.

Setting t =


Á/2d and taking a union bound over i yields that, for m Ø 4C
2
d log(4dL/”)/Á, with probability

at least 1 ≠ ”/2L, ÎQTSTShÎ
2
2 Æ Á/2.
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