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Abstract 11 

Suppressor transfer RNAs (sup-tRNAs) are receiving renewed attention for their promising 12 
therapeutic properties in treating genetic diseases caused by nonsense mutations. Traditionally, sup-13 
tRNAs have been created by replacing the anticodon sequence of native tRNAs with a suppressor 14 
sequence. However, due to their complex interactome, considering other structural and functional 15 
tRNA features for design and engineering can yield more effective sup-tRNA therapies. For over two 16 
decades, the field of genetic code expansion (GCE) has created a wealth of knowledge, resources, 17 
and tools to engineer sup-tRNAs. In this Mini Review, we aim to shed light on how existing 18 
knowledge and strategies to develop sup-tRNAs for GCE can be adopted to accelerate the discovery 19 
of efficient and specific sup-tRNAs for medical treatment options. We highlight methods and 20 
milestones and discuss how these approaches may enlighten the research and development of tRNA 21 
medicines. 22 

1 Introduction 23 

An estimated 10% of human genetic diseases are caused by nonsense mutations (or premature 24 
termination codons, PTCs) (Mort et al., 2008). PTCs introduce a stop codon within a gene's protein-25 
coding region, prematurely terminating gene translation and producing truncated, non-functional 26 
proteins. Several debilitating and life-threatening conditions, such as cystic fibrosis and Duchenne 27 
muscular dystrophy, are caused by nonsense mutations (Stenson et al., 2020). In addition to inherited 28 
mutations, PTCs can originate from somatic mutations, causing diseases like cancer (Zhang et al., 29 
2021). Very few treatment options are available for patients suffering from PTC-related conditions. 30 
In recent years, suppressor tRNAs (sup-tRNAs) have regained notoriety as a promising therapeutic 31 
approach based on their ability to translate PTCs and restore protein synthesis (Porter et al., 2021; 32 
Dolgin, 2022; Lin and Glatt, 2022; Anastassiadis and Köhrer, 2023; Coller and Ignatova, 2024). The 33 
reinvigorated interest in sup-tRNAs is supported by exciting new evidence demonstrating their 34 
efficacy and safety in mouse models together with available RNA delivery strategies (e.g., lipid 35 
nanoparticles and adeno-associated virus) (Lueck et al., 2019; Wang et al., 2022; Albers et al., 2023). 36 
Despite recent progress, several challenges and knowledge gaps remain. Among them is the ability to 37 
design and engineer efficient and specific sup-tRNAs. Most sup-tRNAs tested for disease-related 38 
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applications have been created by introducing suppressor anticodon sequences into native tRNAs 39 
(Temple et al., 1982; Panchal et al., 1999; Sako et al., 2006; Bordeira-Carriço et al., 2014; Lueck et 40 
al., 2019; Wang et al., 2022). While this approach yields tRNAs capable of suppressing PTCs, they 41 
tend to display poor translation efficiencies and specificity. Thus, developing new and more effective 42 
sup-tRNAs remains a fundamental area of research.  43 

Coincidentally, for the past 20 years, research in genetic code expansion (GCE) has been at the 44 
forefront of sup-tRNA engineering. GCE is a powerful biotechnology that enables the synthesis of 45 
proteins with noncanonical amino acids at desired positions. GCE effectively increases the chemical 46 
diversity and functions of proteins (Chin, 2017). Notably, GCE applications have been successfully 47 
implemented in human-cultured cells and different model organisms, including whole animal models 48 
(Brown et al., 2018). The targeted incorporation of noncanonical amino acids via GCE requires an 49 
intentionally positioned PTC in the mRNA coding sequence of the protein of interest. Thus, sup-50 
tRNAs are a central component of GCE as they mediate the noncanonical amino acid incorporation 51 
(Reynolds et al., 2017). The central role of sup-tRNAs in GCE has promoted significant work 52 
towards creating and enhancing sup-tRNAs, which has enriched our knowledge of sup-tRNA 53 
engineering (Kim et al., 2024). Notably, the advances in GCE have led to the development of robust 54 
and high-throughput platforms for the design, engineering, and artificial evolution of sup-tRNAs 55 
(Kim et al., 2024). Paradoxically, despite their shared goals of developing sup-tRNAs, a gap exists 56 
between the fields of GCE and tRNA therapeutics. Here, we aim to bring attention to the available 57 
information and tools that have emerged from GCE studies that can contribute to the discovery and 58 
advancement of tRNA-based medicines. 59 

2 The universal role of tRNAs 60 

The principal role of tRNAs is to provide the ribosome with the amino acid building blocks for 61 
protein synthesis. tRNAs typically comprise 70-100 bases that fold into a strictly conserved L-shaped 62 
tertiary structure (Figure 1). With few exceptions, tRNAs are composed of 4-5 stems and 3-4 loops 63 
that form a cloverleaf secondary structure. During translation, tRNAs are ligated with their cognate 64 
amino acids by aminoacyl-tRNA synthetases (aaRSs) (Ibba and Söll, 2000). The elongation factor 65 
transports the resulting aminoacylated tRNAs to the ribosome, where codon-anticodon base pairing is 66 
established, and the incoming amino acid is incorporated into the nascent protein (Figure 2). Each of 67 
these steps involves highly choreographed interactions that contribute to the accurate translation of 68 
genetic information into proteins. Consequently, engineering effective sup-tRNAs requires 69 
individually and collectively considering the tRNA sequence or structural elements that define these 70 
interactions. 71 

3 Distinct engineering considerations for sup-tRNAs 72 

Sup-tRNAs for GCE and therapeutic applications are engineered to translate a targeted PTC with a 73 
desired amino acid. However, the requirements of the engineered sup-tRNAs differ. For GCE, the 74 
sup-tRNAs are introduced into an organism with a dedicated exogenous aaRS partner that only 75 
aminoacylates the sup-tRNA (Figure 2) (Vargas-Rodriguez et al., 2018). Importantly, the host cell’s 76 
aaRSs must not recognize the sup-tRNA. To meet this requirement, sup-tRNA-aaRS pairs in GCE 77 
are typically transplanted from organisms that are phylogenetically distant from the recipient species 78 
(Icking et al., 2024). For example, sup-tRNAs and aaRSs used in eukaryotic cells (including humans) 79 
usually have bacterial or archaeal origins (Italia et al., 2017b). In contrast, sup-tRNAs for therapeutic 80 
purposes are designed to be recognized by an endogenous aaRS, eliminating the requirement for a 81 
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dedicated aaRS partner (Figure 2). This stark difference simplifies the development of therapeutic 82 
sup-tRNAs relative to GCE.  83 

4 The intricacies of tRNA engineering: insights from GCE research 84 

Efforts in GCE to optimize translation of PTCs with noncanonical amino acids have relied on 85 
foundational knowledge of the dynamic interaction of tRNAs with different translation factors, 86 
including the ribosome, aaRSs, and elongation factor. As a result, GCE studies have validated some 87 
of the early knowledge while uncovering and defining intricacies that can be exploited to improve 88 
sup-tRNA aminoacylation, delivery, and decoding. In this section, we describe the key basis of tRNA 89 
interactions with translation factors and how their manipulation has led to the design and engineering 90 
of improved sup-tRNAs in GCE. 91 

4.1 Interactions with aaRSs 92 

Like native tRNAs, ideal sup-tRNAs must be ligated with an amino acid by a specific aaRS. Most 93 
aaRSs select their cognate tRNA substrates via interactions with two of the tRNA’s structural 94 
features: the anticodon loop and the acceptor stem (Figure 1). A dedicated anticodon binding domain 95 
generally mediates the anticodon recognition, while the aminoacylation domain recognizes the 96 
acceptor stem (Giegé and Eriani, 2023). The identity of tRNAs for a particular amino acid is defined 97 
by these unique sets of tRNA-aaRS interactions, preventing cross-reactions between non-cognate 98 
tRNAs and aaRSs. Due to the stringent anticodon recognition, converting the anticodon sequence of 99 
a canonical tRNA into a suppressor sequence significantly decreases the interaction and affinity with 100 
the cognate aaRS. However, some aaRSs do not directly interact with tRNA anticodon or depend 101 
little on the anticodon bases (Giegé and Eriani, 2023). For example, leucyl- and seryl-tRNA 102 
synthetase do not recognize the anticodon, while arginyl- and tyrosyl-synthetase tolerate changes in 103 
their tRNA substrates anticodons. Consequently, sup-tRNAs (natural and engineered) generally 104 
originate from tRNAs whose cognate aaRS partners accept mutation in the anticodon. 105 

Nonetheless, mutations in the anticodon can also affect aaRS’s catalytic function via distal 106 
communication within the tRNA manifested in its 3´-end (Ibba et al., 1996; Uter and Perona, 2004). 107 
The weaker tRNA-aaRS interaction results in low aminoacylation efficiency, a common feature of 108 
most engineered tRNAs (Vargas-Rodriguez et al., 2018). The intricacies of the tRNA-aaRS 109 
interactions go beyond the direct role of tRNA bases in binding and catalysis. Even changes in tRNA 110 
regions that do not directly contact the aaRS may influence aminoacylation (Giegé and Eriani, 2014). 111 
Finally, changes in the anticodon can cause unintended cross-reactions between aaRSs (Normanly et 112 
al., 1990; Zheng et al., 2017; Giegé and Eriani, 2023; Osgood et al., 2023). In bacteria, a tRNATrp 113 
with CUA, but not with UCA, is aminoacylated by glutaminyl-tRNA synthetase (Italia et al., 2017a). 114 
This cross-reactivity with noncognate aaRSs is also observed in engineered human sup-tRNAs 115 
(Wang et al., 2022). The complex interplay between tRNAs and aaRSs complicates the rational 116 
design of sup-tRNAs.  117 

Efforts in GCE have been aimed at overcoming these limitations. Using high-throughput screening 118 
and selection engineering platforms, sup-tRNAs with improved interactions with their aaRS partners 119 
that increase tRNA aminoacylation levels have been obtained (Wang and Schultz, 2001; Anderson et 120 
al., 2004; Guo et al., 2009; Chatterjee et al., 2012; Chatterjee et al., 2013b; Javahishvili et al., 2014; 121 
Jewel et al., 2023). Notably, the enhanced sup-tRNA-aaRS interactions are achieved by mutations in 122 
the acceptor stem, suggesting that fine-tuning interactions in other tRNA regions can compensate for 123 
a decrease in the anticodon binding. Similarly, sup-tRNAs have also been optimized to prevent 124 



 
4 

aminoacylation by noncognate aaRSs (Zhang et al., 2017; Grasso et al., 2022). This knowledge can 125 
aid and guide the sup-tRNA engineering efforts for therapeutic applications. 126 

4.2 Interactions with elongation factor 127 

In contrast to aaRSs, the elongation factor (EF-Tu in bacteria and eEF1A in eukaryotes) must interact 128 
with all aminoacylated tRNAs (except for initiator tRNAMet, which is recruited to the ribosome by 129 
initiation factors). This process involves the uniform recognition of tRNAs with diverse structural 130 
and sequence features attached to amino acids with different side chains. EF-Tu achieves uniform 131 
binding affinities using a compensatory thermodynamic mechanism in which the amino acid moiety 132 
and the tRNA body additively contribute to the overall binding (LaRiviere et al., 2001; Uhlenbeck 133 
and Schrader, 2018). As a result, EF-Tu exhibits a wide range of binding affinities toward tRNA 134 
isoacceptors. The tRNA affinity is determined by three base pairs located in the T-stem (49:65, 135 
50:64, and 51:63) (Figure 1) (Schrader et al., 2009). tRNAs with G51:C63, C50:G64, and G49:U65 136 
T-stems are preferred EF binding partners (Schrader et al., 2009; 2011). Notably, GCE studies have 137 
demonstrated that optimizing the T-stem sequence of the translation efficiency sup-tRNAs can 138 
drastically improve suppression efficiency (Guo et al., 2009; Young et al., 2010; Fan et al., 2015; 139 
Thyer et al., 2015; Serfling et al., 2018). For example, mutations in the T-stem of pyrrolysine tRNA 140 
(a natural sup-tRNA) increase suppression efficiency by 5-fold (Fan et al., 2015). However, defining 141 
the optimized T-stem for a particular sup-tRNA may require exploring permutations that consolidate 142 
the optimal binding to the elongation factor. Some tRNAs may have an inherently optimal T-stem, 143 
preventing further improvement (Jewel et al., 2023). This knowledge was recently applied to the 144 
design of human sup-tRNAs, confirming the critical role of the elongation factor in suppression 145 
efficiency (Albers et al., 2023). This study also corroborated that EF-Tu and EF1A share the tRNA 146 
T-stem recognition (Albers et al., 2023).  147 

4.3 Interactions with the ribosome 148 

The elongation factor delivers tRNAs through complex interactions with the ribosome that facilitate 149 
the tRNA anticodon to base pair with the mRNA. The formation of correct Watson-Crick interactions 150 
triggers a local conformational rearrangement mediated by ribosomal RNA bases A1492, A1493, and 151 
G530, promoting the selection of cognate tRNAs (Rodnina, 2023). Recent structural studies of the 152 
ribosome reveal that this interaction network and the tRNA selection mechanism in the A-site are 153 
maintained in natural and artificial sup-tRNAs (Fischer et al., 2016; Albers et al., 2021; Hilal et al., 154 
2022; Prabhakar et al., 2022). However, the movement of sup-tRNAs through the ribosome is 155 
moderately slower than native tRNAs (Prabhakar et al., 2022). In addition to the ribosomal structural 156 
features in the A-site, conserved base pairs in the tRNA anticodon stem may also contribute to 157 
establishing a faithful codon-anticodon base pairing (Ledoux et al., 2009; Murakami et al., 2009; 158 
Shepotinovskaya and Uhlenbeck, 2013). Enhancing these interactions has been proven to improve 159 
translation of targeted codons. For example, a mutation that optimizes the anticodon stem of a sup-160 
tRNA increases suppression efficiency by 2-fold (Anderson and Schultz, 2003; Chatterjee et al., 161 
2013a). Fine-tuning the anticodon stem-loop can improve affinity and translation efficiency (Katoh 162 
and Suga, 2024). Other anticodon structural and sequence features can also facilitate PTC 163 
suppression (Rogerson et al., 2015). For example, adenosines at positions 37 and 38 substantially 164 
increase suppression efficiency (Kleina et al., 1990; Normanly et al., 1990; Wu et al., 2004; Englert 165 
et al., 2017).  166 

tRNA modifications also play a crucial role in mRNA decoding. In GCE applications, anticodon 167 
modifications were shown to influence suppression efficiency of two distinct sup-tRNAs in bacteria 168 
(Baldridge et al., 2018; Crnković et al., 2018). Although the molecular mechanism remains unknown, 169 
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these studies underscore the importance of considering the fundamental role of modifications in sup-170 
tRNA engineering. 171 

Another notable observation in GCE is that some tRNA scaffolds are more suitable for a particular 172 
stop codon. For example, the natural suppressor tRNAPyl is more efficient at translating its cognate 173 
codon UAG than UGA. It can also mistranslate UAG, albeit with two times lower efficiency 174 
(Morosky et al., 2023). Moreover, intrinsic tRNA elements contribute to codon specificity, as shown 175 
for a synthetic sup-tRNA for selenocysteine with CUA anticodon that mistranslates UGA codons 176 
with similar efficiency as the cognate UAG (Morosky et al., 2023). However, the same sup-tRNA 177 
with UCA anticodon is specific for UGA. Understanding the molecular basis for these codon-178 
specificity behaviors requires further investigation. Nonetheless, these observations underscore the 179 
intricacies of sup-tRNAs during decoding. 180 

5 Translation deficiencies of sup-tRNA therapeutic candidates 181 

Like in GCE applications, most engineered human sup-tRNAs used to translate disease-causing 182 
PTCs fail to fully restore the synthesis of the target proteins to wild-type levels, achieving, on 183 
average, less than 40% suppression in recent studies (Bordeira-Carriço et al., 2014; Lueck et al., 184 
2019; Wang et al., 2022; Albers et al., 2023; Blomquist et al., 2023; Bharti et al., 2024). Notably, 185 
varying suppression efficiencies are observed for sup-tRNAs with different identities and nonsense 186 
anticodons. This may be due to the suboptimal interactions with their interacting partners, which 187 
likely hinder sup-tRNAs’ decoding capacity. As discussed in the previous section, poor 188 
aminoacylation by aaRSs, sup-tRNA delivery to the ribosome by EF1A, and interactions with the 189 
mRNA and ribosome during decoding contribute to the overall efficiency of synthetic human sup-190 
tRNAs. However, the specific contribution of each of these steps is generally obscured in most 191 
studies because the total output of a reporter protein is usually used to determine translation 192 
efficiency. Thus, unraveling the molecular mechanisms determining PTC translation by sup-tRNA 193 
will require additional detailed biochemical studies. These mechanistic details of PTC decoding will 194 
better inform engineering efforts to enhance sup-tRNAs. For example, tuning the interaction with 195 
EF1A improves sup-tRNA activity (Albers et al., 2023).  196 

6 Existing platforms for sup-tRNA design and development 197 

Developing and improving sup-tRNAs have been a major focus of GCE, resulting in several 198 
pioneering approaches for sup-tRNA engineering (Wang et al., 2001; Wang and Schultz, 2001; Guo 199 
et al., 2009; Maranhao and Ellington, 2017; DeBenedictis et al., 2021). Although efforts have 200 
focused on enhancing the interaction between tRNAs and their cognate aaRSs to increase 201 
aminoacylation levels, these platforms can be adapted to screen and select sup-tRNA variants with 202 
improved EF affinity or decoding efficiency (Wang and Schultz, 2001; Guo et al., 2009; Rogerson et 203 
al., 2015; DeBenedictis et al., 2021). These platforms integrate combinatorial approaches to create 204 
large tRNA mutant libraries that can be selected or screened in a high-throughput fashion with 205 
sensitive reporter proteins (Kim et al., 2024). A potential limitation is that these systems are mostly 206 
based on Escherichia coli. Therefore, retrofitting them to enable human sup-tRNA engineering will 207 
be needed. Nonetheless, given their robustness and tRNA sequence space that can be explored, 208 
efforts to repurpose these platforms may provide invaluable insights. Human aaRSs that function in 209 
E. coli cells and do not cross-react with bacterial tRNAs are ideal candidates to pursue this goal. 210 

While bacterial platforms remain the primary avenue for tRNA engineering, recent work established 211 
the virus-assisted directed evolution of tRNA (VADER) (Jewel et al., 2023; Jewel et al., 2024). 212 
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VADER facilitates the screening of >60000 unique tRNA variants in human cultured cells, offering a 213 
novel avenue for rapid human sup-tRNA discovery. Adapting VADER for human sup-tRNA 214 
engineering will require establishing sensitive reporters that signal the incorporation of the intended 215 
amino acid. This will avoid the need for mass spectrometry analyses that hinder the speed of sup-216 
tRNA discovery. 217 

A limitation of most tRNA engineering platforms is that they depend on producing a protein reporter, 218 
reflecting the combined outcome of aminoacylation and decoding. Thus, investigating how changes 219 
in tRNA affect aminoacylation and decoding separately will allow us to discern their direct 220 
contribution to PTC translation. This knowledge can aid in designing better engineering strategies. 221 

7 Discussion 222 

Sup-tRNAs represent a transformative pharmacological opportunity to treat human genetic diseases. 223 
The prospect of therapeutic sup-tRNAs requires a better understanding of the mechanism of PTC 224 
translation, how synthetic tRNAs are metabolized, and delivery strategies (Coller and Ignatova, 225 
2024). In the context of PTC translation, developing potent sup-tRNAs is critical and remains a 226 
fundamental area of research. The translation proficiency of sup-tRNAs can determine dosage 227 
indications. Moreover, effectively rescuing diverse pathogenic PTCs will depend on sup-tRNAs' 228 
ability to translate PTCs in different positions within the target mRNA. Sup-tRNAs are known to 229 
display varying decoding efficiencies based on the location of PTC within the mRNA coding region  230 
(Bossi, 1983; Atkinson and Martin, 1994; Bharti et al., 2024). Another consideration for sup-tRNA 231 
therapies is the identity of the amino acid they carry. To faithfully restore protein synthesis from a 232 
PTC-containing gene, the sup-tRNA must be aminoacylated with the corresponding amino acid. The 233 
PTC-related diseases involve all three stop codons, which generally emerge from mutations of Arg, 234 
Gln, Ser, Glu, Tyr, Lys, Trp, Gly, Leu, and Cys codons (Stenson et al., 2020). Correction of each 235 
PTC would require a panel of sup-tRNAs with identities for each amino acid. Only a few families of 236 
sup-tRNAs with Tyr, Ser, Trp, Gly, and Arg identities with varying translation efficiencies for 237 
specific PTCs have been validated in animal models (Lueck et al., 2019; Wang et al., 2022; Albers et 238 
al., 2023). These tRNAs have been generated using native human tRNAs as scaffolds. However, this 239 
strategy may not be suitable for developing potent sup-tRNAs or require further engineering. 240 

The innovation in GCE research can help guide the optimization of existing therapeutic sup-tRNA 241 
candidates and the creation of new ones. The implementation of GCE applications has gained 242 
substantial knowledge of how to design and engineer tRNAs. As discussed earlier, GCE has provided 243 
important mechanistic insights into the key elements that should be considered to improve sup-tRNA 244 
aminoacylation and decoding. GCE has also validated approaches to enhance sup-tRNA expression 245 
in mammalian cells (Zheng et al., 2017; Brown et al., 2018). The information gained regarding 246 
promoter designs and tRNA gene arrangement can be essential for establishing efficacious tRNA 247 
delivery using an adeno-associated virus or lipid nanoparticles (Zuko et al., 2021; Wang et al., 2022; 248 
Albers et al., 2023). Finally, given the need to treat different pathogenic PTCs, GCE has 249 
demonstrated that using tRNAs from other biological sources (i.e., species) in human cells can be a 250 
suitable and safe option for obtaining a panel of diverse sup-tRNAs capable of carrying desired 251 
amino acids. Integrating this knowledge collectively during human sup-tRNA engineering can 252 
accelerate the discovery of more proficient candidates. 253 
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FIGURE 1.  485 
tRNA structure. (A) Secondary (cloverleaf) structure. The anticodon and elongation factor’s 486 
recognition bases are numbered. Bases 37 and 38 are known to increase PTC translation. (B) Tertiary 487 
(L-shaped) structure. Figures 1A and 1B were created with BioRender.com and the tRNA crystal 488 
structure (PDB:1EVV), respectively.  489 
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 491 
 492 
FIGURE 2.  493 

Mechanistic differences and requirements between canonical, PTC, and GCE translation. For GCE 494 
translation, an orthogonal tRNA-aaRS pair is required. The orthogonal pair does not interact with 495 
endogenous tRNAs and aaRSs. The orthogonality requirement is achieved by introducing a tRNA-496 
aaRS pair from an organism distinct from the host species. Created with BioRender.com. 497 


