

1 Suppressor tRNAs at the interface of genetic code expansion and 2 medicine

3 **Aya Awawdeh⁺, Alexander A. Radecki⁺, Oscar Vargas-Rodriguez^{*}**

4 Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine,
5 Farmington, CT, United States

6 *** Correspondence:**

7 vargasrodriguez@uchc.edu

8 ⁺ These authors contributed equally to this work.

9 **Keywords: tRNA, translation, genetic code expansion, synthetic biology, premature
10 termination codons, nonsense mutations, RNA therapeutics.**

11 **Abstract**

12 Suppressor transfer RNAs (sup-tRNAs) are receiving renewed attention for their promising
13 therapeutic properties in treating genetic diseases caused by nonsense mutations. Traditionally, sup-
14 tRNAs have been created by replacing the anticodon sequence of native tRNAs with a suppressor
15 sequence. However, due to their complex interactome, considering other structural and functional
16 tRNA features for design and engineering can yield more effective sup-tRNA therapies. For over two
17 decades, the field of genetic code expansion (GCE) has created a wealth of knowledge, resources,
18 and tools to engineer sup-tRNAs. In this Mini Review, we aim to shed light on how existing
19 knowledge and strategies to develop sup-tRNAs for GCE can be adopted to accelerate the discovery
20 of efficient and specific sup-tRNAs for medical treatment options. We highlight methods and
21 milestones and discuss how these approaches may enlighten the research and development of tRNA
22 medicines.

23 **1 Introduction**

24 An estimated 10% of human genetic diseases are caused by nonsense mutations (or premature
25 termination codons, PTCs) (Mort et al., 2008). PTCs introduce a stop codon within a gene's protein-
26 coding region, prematurely terminating gene translation and producing truncated, non-functional
27 proteins. Several debilitating and life-threatening conditions, such as cystic fibrosis and Duchenne
28 muscular dystrophy, are caused by nonsense mutations (Stenson et al., 2020). In addition to inherited
29 mutations, PTCs can originate from somatic mutations, causing diseases like cancer (Zhang et al.,
30 2021). Very few treatment options are available for patients suffering from PTC-related conditions.
31 In recent years, suppressor tRNAs (sup-tRNAs) have regained notoriety as a promising therapeutic
32 approach based on their ability to translate PTCs and restore protein synthesis (Porter et al., 2021;
33 Dolgin, 2022; Lin and Glatt, 2022; Anastassiadis and Köhrer, 2023; Coller and Ignatova, 2024). The
34 reinvigorated interest in sup-tRNAs is supported by exciting new evidence demonstrating their
35 efficacy and safety in mouse models together with available RNA delivery strategies (e.g., lipid
36 nanoparticles and adeno-associated virus) (Lueck et al., 2019; Wang et al., 2022; Albers et al., 2023).
37 Despite recent progress, several challenges and knowledge gaps remain. Among them is the ability to
38 design and engineer efficient and specific sup-tRNAs. Most sup-tRNAs tested for disease-related

39 applications have been created by introducing suppressor anticodon sequences into native tRNAs
40 (Temple et al., 1982; Panchal et al., 1999; Sako et al., 2006; Bordeira-Carriço et al., 2014; Lueck et
41 al., 2019; Wang et al., 2022). While this approach yields tRNAs capable of suppressing PTCs, they
42 tend to display poor translation efficiencies and specificity. Thus, developing new and more effective
43 sup-tRNAs remains a fundamental area of research.

44 Coincidentally, for the past 20 years, research in genetic code expansion (GCE) has been at the
45 forefront of sup-tRNA engineering. GCE is a powerful biotechnology that enables the synthesis of
46 proteins with noncanonical amino acids at desired positions. GCE effectively increases the chemical
47 diversity and functions of proteins (Chin, 2017). Notably, GCE applications have been successfully
48 implemented in human-cultured cells and different model organisms, including whole animal models
49 (Brown et al., 2018). The targeted incorporation of noncanonical amino acids via GCE requires an
50 intentionally positioned PTC in the mRNA coding sequence of the protein of interest. Thus, sup-
51 tRNAs are a central component of GCE as they mediate the noncanonical amino acid incorporation
52 (Reynolds et al., 2017). The central role of sup-tRNAs in GCE has promoted significant work
53 towards creating and enhancing sup-tRNAs, which has enriched our knowledge of sup-tRNA
54 engineering (Kim et al., 2024). Notably, the advances in GCE have led to the development of robust
55 and high-throughput platforms for the design, engineering, and artificial evolution of sup-tRNAs
56 (Kim et al., 2024). Paradoxically, despite their shared goals of developing sup-tRNAs, a gap exists
57 between the fields of GCE and tRNA therapeutics. Here, we aim to bring attention to the available
58 information and tools that have emerged from GCE studies that can contribute to the discovery and
59 advancement of tRNA-based medicines.

60 **2 The universal role of tRNAs**

61 The principal role of tRNAs is to provide the ribosome with the amino acid building blocks for
62 protein synthesis. tRNAs typically comprise 70-100 bases that fold into a strictly conserved L-shaped
63 tertiary structure (Figure 1). With few exceptions, tRNAs are composed of 4-5 stems and 3-4 loops
64 that form a cloverleaf secondary structure. During translation, tRNAs are ligated with their cognate
65 amino acids by aminoacyl-tRNA synthetases (aaRSs) (Ibba and Söll, 2000). The elongation factor
66 transports the resulting aminoacylated tRNAs to the ribosome, where codon-anticodon base pairing is
67 established, and the incoming amino acid is incorporated into the nascent protein (Figure 2). Each of
68 these steps involves highly choreographed interactions that contribute to the accurate translation of
69 genetic information into proteins. Consequently, engineering effective sup-tRNAs requires
70 individually and collectively considering the tRNA sequence or structural elements that define these
71 interactions.

72 **3 Distinct engineering considerations for sup-tRNAs**

73 Sup-tRNAs for GCE and therapeutic applications are engineered to translate a targeted PTC with a
74 desired amino acid. However, the requirements of the engineered sup-tRNAs differ. For GCE, the
75 sup-tRNAs are introduced into an organism with a dedicated exogenous aaRS partner that only
76 aminoacylates the sup-tRNA (Figure 2) (Vargas-Rodriguez et al., 2018). Importantly, the host cell's
77 aaRSs must not recognize the sup-tRNA. To meet this requirement, sup-tRNA-aaRS pairs in GCE
78 are typically transplanted from organisms that are phylogenetically distant from the recipient species
79 (Icking et al., 2024). For example, sup-tRNAs and aaRSs used in eukaryotic cells (including humans)
80 usually have bacterial or archaeal origins (Italia et al., 2017b). In contrast, sup-tRNAs for therapeutic
81 purposes are designed to be recognized by an endogenous aaRS, eliminating the requirement for a

82 dedicated aaRS partner (Figure 2). This stark difference simplifies the development of therapeutic
83 sup-tRNAs relative to GCE.

84 **4 The intricacies of tRNA engineering: insights from GCE research**

85 Efforts in GCE to optimize translation of PTCs with noncanonical amino acids have relied on
86 foundational knowledge of the dynamic interaction of tRNAs with different translation factors,
87 including the ribosome, aaRSs, and elongation factor. As a result, GCE studies have validated some
88 of the early knowledge while uncovering and defining intricacies that can be exploited to improve
89 sup-tRNA aminoacylation, delivery, and decoding. In this section, we describe the key basis of tRNA
90 interactions with translation factors and how their manipulation has led to the design and engineering
91 of improved sup-tRNAs in GCE.

92 **4.1 Interactions with aaRSs**

93 Like native tRNAs, ideal sup-tRNAs must be ligated with an amino acid by a specific aaRS. Most
94 aaRSs select their cognate tRNA substrates via interactions with two of the tRNA's structural
95 features: the anticodon loop and the acceptor stem (Figure 1). A dedicated anticodon binding domain
96 generally mediates the anticodon recognition, while the aminoacylation domain recognizes the
97 acceptor stem (Giegé and Eriani, 2023). The identity of tRNAs for a particular amino acid is defined
98 by these unique sets of tRNA-aaRS interactions, preventing cross-reactions between non-cognate
99 tRNAs and aaRSs. Due to the stringent anticodon recognition, converting the anticodon sequence of
100 a canonical tRNA into a suppressor sequence significantly decreases the interaction and affinity with
101 the cognate aaRS. **However, some aaRSs do not directly interact with tRNA anticodon or depend**
102 **little on the anticodon bases (Giegé and Eriani, 2023). For example, leucyl- and seryl-tRNA**
103 **synthetase do not recognize the anticodon, while arginyl- and tyrosyl-synthetase tolerate changes in**
104 **their tRNA substrates anticodons. Consequently, sup-tRNAs (natural and engineered) generally**
105 **originate from tRNAs whose cognate aaRS partners accept mutation in the anticodon.**

106 Nonetheless, mutations in the anticodon can also affect aaRS's catalytic function via distal
107 communication within the tRNA manifested in its 3'-end (Ibba et al., 1996; Uter and Perona, 2004).
108 The weaker tRNA-aaRS interaction results in low aminoacylation efficiency, a common feature of
109 most engineered tRNAs (Vargas-Rodriguez et al., 2018). The intricacies of the tRNA-aaRS
110 interactions go beyond the direct role of tRNA bases in binding and catalysis. Even changes in tRNA
111 regions that do not directly contact the aaRS may influence aminoacylation (Giegé and Eriani, 2014).
112 Finally, changes in the anticodon can cause unintended cross-reactions between aaRSs (Normanly et
113 al., 1990; Zheng et al., 2017; Giegé and Eriani, 2023; Osgood et al., 2023). In bacteria, a tRNA^{Trp}
114 with CUA, but not with UCA, is aminoacylated by glutamyl-tRNA synthetase (Italia et al., 2017a).
115 This cross-reactivity with noncognate aaRSs is also observed in engineered human sup-tRNAs
116 (Wang et al., 2022). The complex interplay between tRNAs and aaRSs complicates the rational
117 design of sup-tRNAs.

118 Efforts in GCE have been aimed at overcoming these limitations. Using high-throughput screening
119 and selection engineering platforms, sup-tRNAs with improved interactions with their aaRS partners
120 that increase tRNA aminoacylation levels have been obtained (Wang and Schultz, 2001; Anderson et
121 al., 2004; Guo et al., 2009; Chatterjee et al., 2012; Chatterjee et al., 2013b; Javahishvili et al., 2014;
122 Jewel et al., 2023). Notably, the enhanced sup-tRNA-aaRS interactions are achieved by mutations in
123 the acceptor stem, suggesting that fine-tuning interactions in other tRNA regions can compensate for
124 a decrease in the anticodon binding. Similarly, sup-tRNAs have also been optimized to prevent

125 aminoacylation by noncognate aaRSs (Zhang et al., 2017; Grasso et al., 2022). This knowledge can
126 aid and guide the sup-tRNA engineering efforts for therapeutic applications.

127 **4.2 Interactions with elongation factor**

128 In contrast to aaRSs, the elongation factor (EF-Tu in bacteria and eEF1A in eukaryotes) must interact
129 with all aminoacylated tRNAs (except for initiator tRNA^{Met}, which is recruited to the ribosome by
130 initiation factors). This process involves the uniform recognition of tRNAs with diverse structural
131 and sequence features attached to amino acids with different side chains. EF-Tu achieves uniform
132 binding affinities using a compensatory thermodynamic mechanism in which the amino acid moiety
133 and the tRNA body additively contribute to the overall binding (LaRiviere et al., 2001; Uhlenbeck
134 and Schrader, 2018). As a result, EF-Tu exhibits a wide range of binding affinities toward tRNA
135 isoacceptors. The tRNA affinity is determined by three base pairs located in the T-stem (49:65,
136 50:64, and 51:63) (Figure 1) (Schrader et al., 2009). tRNAs with G51:C63, C50:G64, and G49:U65
137 T-stems are preferred EF binding partners (Schrader et al., 2009; 2011). Notably, GCE studies have
138 demonstrated that optimizing the T-stem sequence of the translation efficiency sup-tRNAs can
139 drastically improve suppression efficiency (Guo et al., 2009; Young et al., 2010; Fan et al., 2015;
140 Thyer et al., 2015; Serfling et al., 2018). For example, mutations in the T-stem of pyrrolysine tRNA
141 (a natural sup-tRNA) increase suppression efficiency by 5-fold (Fan et al., 2015). However, defining
142 the optimized T-stem for a particular sup-tRNA may require exploring permutations that consolidate
143 the optimal binding to the elongation factor. Some tRNAs may have an inherently optimal T-stem,
144 preventing further improvement (Jewel et al., 2023). This knowledge was recently applied to the
145 design of human sup-tRNAs, confirming the critical role of the elongation factor in suppression
146 efficiency (Albers et al., 2023). This study also corroborated that EF-Tu and EF1A share the tRNA
147 T-stem recognition (Albers et al., 2023).

148 **4.3 Interactions with the ribosome**

149 The elongation factor delivers tRNAs through complex interactions with the ribosome that facilitate
150 the tRNA anticodon to base pair with the mRNA. The formation of correct Watson-Crick interactions
151 triggers a local conformational rearrangement mediated by ribosomal RNA bases A1492, A1493, and
152 G530, promoting the selection of cognate tRNAs (Rodnina, 2023). Recent structural studies of the
153 ribosome reveal that this interaction network and the tRNA selection mechanism in the A-site are
154 maintained in natural and artificial sup-tRNAs (Fischer et al., 2016; Albers et al., 2021; Hilal et al.,
155 2022; Prabhakar et al., 2022). However, the movement of sup-tRNAs through the ribosome is
156 moderately slower than native tRNAs (Prabhakar et al., 2022). In addition to the ribosomal structural
157 features in the A-site, conserved base pairs in the tRNA anticodon stem may also contribute to
158 establishing a faithful codon-anticodon base pairing (Ledoux et al., 2009; Murakami et al., 2009;
159 Shepotinovskaya and Uhlenbeck, 2013). Enhancing these interactions has been proven to improve
160 translation of targeted codons. For example, a mutation that optimizes the anticodon stem of a sup-
161 tRNA increases suppression efficiency by 2-fold (Anderson and Schultz, 2003; Chatterjee et al.,
162 2013a). Fine-tuning the anticodon stem-loop can improve affinity and translation efficiency (Katoh
163 and Suga, 2024). Other anticodon structural and sequence features can also facilitate PTC
164 suppression (Rogerson et al., 2015). For example, adenosines at positions 37 and 38 substantially
165 increase suppression efficiency (Kleina et al., 1990; Normanly et al., 1990; Wu et al., 2004; Englert
166 et al., 2017).

167 tRNA modifications also play a crucial role in mRNA decoding. In GCE applications, anticodon
168 modifications were shown to influence suppression efficiency of two distinct sup-tRNAs in bacteria
169 (Baldridge et al., 2018; Crnković et al., 2018). Although the molecular mechanism remains unknown,

170 these studies underscore the importance of considering the fundamental role of modifications in sup-
171 tRNA engineering.

172 Another notable observation in GCE is that some tRNA scaffolds are more suitable for a particular
173 stop codon. For example, the natural suppressor tRNA^{Py1} is more efficient at translating its cognate
174 codon UAG than UGA. It can also mistranslate UAG, albeit with two times lower efficiency
175 (Morosky et al., 2023). Moreover, intrinsic tRNA elements contribute to codon specificity, as shown
176 for a synthetic sup-tRNA for selenocysteine with CUA anticodon that mistranslates UGA codons
177 with similar efficiency as the cognate UAG (Morosky et al., 2023). However, the same sup-tRNA
178 with UCA anticodon is specific for UGA. Understanding the molecular basis for these codon-
179 specificity behaviors requires further investigation. Nonetheless, these observations underscore the
180 intricacies of sup-tRNAs during decoding.

181 **5 Translation deficiencies of sup-tRNA therapeutic candidates**

182 Like in GCE applications, most engineered human sup-tRNAs used to translate disease-causing
183 PTCs fail to fully restore the synthesis of the target proteins to wild-type levels, achieving, on
184 average, less than 40% suppression in recent studies (Bordeira-Carriço et al., 2014; Lueck et al.,
185 2019; Wang et al., 2022; Albers et al., 2023; Blomquist et al., 2023; Bharti et al., 2024). Notably,
186 varying suppression efficiencies are observed for sup-tRNAs with different identities and nonsense
187 anticodons. This may be due to the suboptimal interactions with their interacting partners, which
188 likely hinder sup-tRNAs' decoding capacity. As discussed in the previous section, poor
189 aminoacylation by aaRSs, sup-tRNA delivery to the ribosome by EF1A, and interactions with the
190 mRNA and ribosome during decoding contribute to the overall efficiency of synthetic human sup-
191 tRNAs. However, the specific contribution of each of these steps is generally obscured in most
192 studies because the total output of a reporter protein is usually used to determine translation
193 efficiency. Thus, unraveling the molecular mechanisms determining PTC translation by sup-tRNA
194 will require additional detailed biochemical studies. These mechanistic details of PTC decoding will
195 better inform engineering efforts to enhance sup-tRNAs. For example, tuning the interaction with
196 EF1A improves sup-tRNA activity (Albers et al., 2023).

197 **6 Existing platforms for sup-tRNA design and development**

198 Developing and improving sup-tRNAs have been a major focus of GCE, resulting in several
199 pioneering approaches for sup-tRNA engineering (Wang et al., 2001; Wang and Schultz, 2001; Guo
200 et al., 2009; Maranhao and Ellington, 2017; DeBenedictis et al., 2021). Although efforts have
201 focused on enhancing the interaction between tRNAs and their cognate aaRSs to increase
202 aminoacylation levels, these platforms can be adapted to screen and select sup-tRNA variants with
203 improved EF affinity or decoding efficiency (Wang and Schultz, 2001; Guo et al., 2009; Rogerson et
204 al., 2015; DeBenedictis et al., 2021). These platforms integrate combinatorial approaches to create
205 large tRNA mutant libraries that can be selected or screened in a high-throughput fashion with
206 sensitive reporter proteins (Kim et al., 2024). A potential limitation is that these systems are mostly
207 based on *Escherichia coli*. Therefore, retrofitting them to enable human sup-tRNA engineering will
208 be needed. Nonetheless, given their robustness and tRNA sequence space that can be explored,
209 efforts to repurpose these platforms may provide invaluable insights. Human aaRSs that function in
210 *E. coli* cells and do not cross-react with bacterial tRNAs are ideal candidates to pursue this goal.

211 While bacterial platforms remain the primary avenue for tRNA engineering, recent work established
212 the virus-assisted directed evolution of tRNA (VADER) (Jewel et al., 2023; Jewel et al., 2024).

213 VADER facilitates the screening of >60000 unique tRNA variants in human cultured cells, offering a
214 novel avenue for rapid human sup-tRNA discovery. Adapting VADER for human sup-tRNA
215 engineering will require establishing sensitive reporters that signal the incorporation of the intended
216 amino acid. This will avoid the need for mass spectrometry analyses that hinder the speed of sup-
217 tRNA discovery.

218 A limitation of most tRNA engineering platforms is that they depend on producing a protein reporter,
219 reflecting the combined outcome of aminoacylation and decoding. Thus, investigating how changes
220 in tRNA affect aminoacylation and decoding separately will allow us to discern their direct
221 contribution to PTC translation. This knowledge can aid in designing better engineering strategies.

222 7 Discussion

223 Sup-tRNAs represent a transformative pharmacological opportunity to treat human genetic diseases.
224 The prospect of therapeutic sup-tRNAs requires a better understanding of the mechanism of PTC
225 translation, how synthetic tRNAs are metabolized, and delivery strategies (Coller and Ignatova,
226 2024). In the context of PTC translation, developing potent sup-tRNAs is critical and remains a
227 fundamental area of research. The translation proficiency of sup-tRNAs can determine dosage
228 indications. Moreover, effectively rescuing diverse pathogenic PTCs will depend on sup-tRNAs'
229 ability to translate PTCs in different positions within the target mRNA. Sup-tRNAs are known to
230 display varying decoding efficiencies based on the location of PTC within the mRNA coding region
231 (Bossi, 1983; Atkinson and Martin, 1994; Bharti et al., 2024). Another consideration for sup-tRNA
232 therapies is the identity of the amino acid they carry. To faithfully restore protein synthesis from a
233 PTC-containing gene, the sup-tRNA must be aminoacylated with the corresponding amino acid. The
234 PTC-related diseases involve all three stop codons, which generally emerge from mutations of Arg,
235 Gln, Ser, Glu, Tyr, Lys, Trp, Gly, Leu, and Cys codons (Stenson et al., 2020). Correction of each
236 PTC would require a panel of sup-tRNAs with identities for each amino acid. Only a few families of
237 sup-tRNAs with Tyr, Ser, Trp, Gly, and Arg identities with varying translation efficiencies for
238 specific PTCs have been validated in animal models (Lueck et al., 2019; Wang et al., 2022; Albers et
239 al., 2023). These tRNAs have been generated using native human tRNAs as scaffolds. However, this
240 strategy may not be suitable for developing potent sup-tRNAs or require further engineering.

241 The innovation in GCE research can help guide the optimization of existing therapeutic sup-tRNA
242 candidates and the creation of new ones. The implementation of GCE applications has gained
243 substantial knowledge of how to design and engineer tRNAs. As discussed earlier, GCE has provided
244 important mechanistic insights into the key elements that should be considered to improve sup-tRNA
245 aminoacylation and decoding. GCE has also validated approaches to enhance sup-tRNA expression
246 in mammalian cells (Zheng et al., 2017; Brown et al., 2018). The information gained regarding
247 promoter designs and tRNA gene arrangement can be essential for establishing efficacious tRNA
248 delivery using an adeno-associated virus or lipid nanoparticles (Zuko et al., 2021; Wang et al., 2022;
249 Albers et al., 2023). Finally, given the need to treat different pathogenic PTCs, GCE has
250 demonstrated that using tRNAs from other biological sources (i.e., species) in human cells can be a
251 suitable and safe option for obtaining a panel of diverse sup-tRNAs capable of carrying desired
252 amino acids. Integrating this knowledge collectively during human sup-tRNA engineering can
253 accelerate the discovery of more proficient candidates.

254 8 Conflict of Interest

255 *The authors declare that the manuscript was prepared in the absence of any commercial or financial*
256 *relationships that could be construed as a potential conflict of interest.*

257 **9 Author Contributions**

258 AA, AAR, and OV-R wrote and edited the manuscript. OV-R conceptualized the manuscript.

259 **10 Funding**

260 Work in the Vargas-Rodriguez laboratory is partly supported by a National Science Foundation grant
261 (IOS-2151063 to O. V-R.).

262 **11 Acknowledgments**

263 We thank Dr. Jeffery Tharp (Indiana University School of Medicine) for his insightful comments.

264 **12 References**

265 Albers, S., Allen, E.C., Bharti, N., Davyt, M., Joshi, D., Perez-Garcia, C.G., et al. (2023). Engineered
266 tRNAs suppress nonsense mutations in cells and in vivo. *Nature* 618(7966), 842-848. doi:
267 10.1038/s41586-023-06133-1.

268 Albers, S., Beckert, B., Matthies, M.C., Mandava, C.S., Schuster, R., Seuring, C., et al. (2021).
269 Repurposing tRNAs for nonsense suppression. *Nat Commun* 12(1), 3850. doi:
270 10.1038/s41467-021-24076-x.

271 Anastassiadis, T., and Köhrer, C. (2023). Ushering in the era of tRNA medicines. *J. Biol. Chem*
272 299(10), 105246. doi: 10.1016/j.jbc.2023.105246.

273 Anderson, J.C., and Schultz, P.G. (2003). Adaptation of an orthogonal archaeal leucyl-tRNA and
274 synthetase pair for four-base, amber, and opal suppression. *Biochemistry* 42(32), 9598-9608.
275 doi: 10.1021/bi034550w.

276 Anderson, J.C., Wu, N., Santoro, S.W., Lakshman, V., King, D.S., and Schultz, P.G. (2004). An
277 expanded genetic code with a functional quadruplet codon. *Proc Natl Acad Sci U S A*
278 101(20), 7566-7571. doi: 10.1073/pnas.0401517101.

279 Atkinson, J., and Martin, R. (1994). Mutations to nonsense codons in human genetic disease:
280 implications for gene therapy by nonsense suppressor tRNAs. *Nucleic Acids Res* 22(8), 1327-
281 1334. doi: 10.1093/nar/22.8.1327.

282 Baldridge, K.C., Jora, M., Maranhao, A.C., Quick, M.M., Addepalli, B., Brodbelt, J.S., et al. (2018).
283 Directed Evolution of Heterologous tRNAs Leads to Reduced Dependence on Post-
284 transcriptional Modifications. *ACS Synth Biol* 7(5), 1315-1327. doi:
285 10.1021/acssynbio.7b00421.

286 Bharti, N., Santos, L., Davyt, M., Behrmann, S., Eichholtz, M., Jimenez-Sanchez, A., et al. (2024).
287 Translation velocity determines the efficacy of engineered suppressor tRNAs on pathogenic
288 nonsense mutations. *Nat Commun* 15(1), 2957. doi: 10.1038/s41467-024-47258-9.

289 Blomquist, V.G., Niu, J., Choudhury, P., Al Saneh, A., Colecraft, H.M., and Ahern, C.A. (2023).
290 Transfer RNA-mediated restoration of potassium current and electrical correction in
291 premature termination long-QT syndrome hERG mutants. *Mol Ther Nucleic Acids* 34,
292 102032. doi: 10.1016/j.omtn.2023.102032.

293 Bordeira-Carriço, R., Ferreira, D., Mateus, D.D., Pinheiro, H., Pêgo, A.P., Santos, M.A., and
294 Oliveira, C. (2014). Rescue of wild-type E-cadherin expression from nonsense-mutated
295 cancer cells by a suppressor-tRNA. *Eur J Hum Genet* 22(9), 1085-1092. doi:
296 10.1038/ejhg.2013.292.

297 Bossi, L. (1983). Context effects: translation of UAG codon by suppressor tRNA is affected by the
298 sequence following UAG in the message. *J Mol Biol* 164(1), 73-87. doi: 10.1016/0022-
299 2836(83)90088-8.

300 Brown, W., Liu, J., and Deiters, A. (2018). Genetic Code Expansion in Animals. *ACS Chem Biol*
301 13(9), 2375-2386. doi: 10.1021/acschembio.8b00520.

302 Chatterjee, A., Sun, S.B., Furman, J.L., Xiao, H., and Schultz, P.G. (2013a). A versatile platform for
303 single- and multiple-unnatural amino acid mutagenesis in *Escherichia coli*. *Biochemistry*
304 52(10), 1828-1837. doi: 10.1021/bi4000244.

305 Chatterjee, A., Xiao, H., and Schultz, P.G. (2012). Evolution of multiple, mutually orthogonal prolyl-
306 tRNA synthetase/tRNA pairs for unnatural amino acid mutagenesis in *Escherichia coli*. *Proc
307 Natl Acad Sci U S A* 109(37), 14841-14846. doi: 10.1073/pnas.1212454109.

308 Chatterjee, A., Xiao, H., Yang, P.Y., Soundararajan, G., and Schultz, P.G. (2013b). A tryptophanyl-
309 tRNA synthetase/tRNA pair for unnatural amino acid mutagenesis in *E. coli*. *Angew Chem Int
310 Ed Engl* 52(19), 5106-5109. doi: 10.1002/anie.201301094.

311 Chin, J.W. (2017). Expanding and reprogramming the genetic code. *Nature* 550(7674), 53-60. doi:
312 10.1038/nature24031.

313 Coller, J., and Ignatova, Z. (2024). tRNA therapeutics for genetic diseases. *Nat Rev Drug Discov*
314 23(2), 108-125. doi: 10.1038/s41573-023-00829-9.

315 Crnković, A., Vargas-Rodriguez, O., Merkuryev, A., and Söll, D. (2018). Effects of Heterologous
316 tRNA Modifications on the Production of Proteins Containing Noncanonical Amino Acids.
317 *Bioengineering (Basel)* 5(1). doi: 10.3390/bioengineering5010011.

318 DeBenedictis, E.A., Carver, G.D., Chung, C.Z., Söll, D., and Badran, A.H. (2021). Multiplex
319 suppression of four quadruplet codons via tRNA directed evolution. *Nat Commun* 12(1),
320 5706. doi: 10.1038/s41467-021-25948-y.

321 Dolgin, E. (2022). tRNA therapeutics burst onto startup scene. *Nat. Biotechnol.* 40(3), 283-286. doi:
322 10.1038/s41587-022-01252-y.

323 Englert, M., Vargas-Rodriguez, O., Reynolds, N.M., Wang, Y.S., Söll, D., and Umebara, T. (2017).
324 A genomically modified *Escherichia coli* strain carrying an orthogonal *E. coli* histidyl-tRNA
325 synthetase-tRNA(His) pair. *Biochim Biophys Acta Gen Subj* 1861(11 Pt B), 3009-3015. doi:
326 10.1016/j.bbagen.2017.03.003.

327 Fan, C., Xiong, H., Reynolds, N.M., and Söll, D. (2015). Rationally evolving tRNAPyl for efficient
328 incorporation of noncanonical amino acids. *Nucleic Acids Res* 43(22), e156. doi:
329 10.1093/nar/gkv800.

330 Fischer, N., Neumann, P., Bock, L.V., Maracci, C., Wang, Z., Paleskava, A., et al. (2016). The
331 pathway to GTPase activation of elongation factor SelB on the ribosome. *Nature* 540(7631),
332 80-85. doi: 10.1038/nature20560.

333 Giegé, R., and Eriani, G. (2014). "Transfer RNA Recognition and Aminoacylation by Synthetases,"
334 in *Encyclopedia of Life Sciences*, ed. J.W.S. In eLS, Ltd (Ed.), 1007-1030.

335 Giegé, R., and Eriani, G. (2023). The tRNA identity landscape for aminoacylation and beyond.
336 *Nucleic Acids Res.* 51(4), 1528-1570. doi: 10.1093/nar/gkad007.

337 Grasso, K.T., Singha Roy, S.J., Osgood, A.O., Yeo, M.J.R., Soni, C., Hillenbrand, C.M., et al.
338 (2022). A Facile Platform to Engineer *Escherichia coli* Tyrosyl-tRNA Synthetase Adds New
339 Chemistries to the Eukaryotic Genetic Code, Including a Phosphotyrosine Mimic. *ACS Cent
340 Sci* 8(4), 483-492. doi: 10.1021/acscentsci.1c01465.

341 Guo, J., Melançon, C.E., 3rd, Lee, H.S., Groff, D., and Schultz, P.G. (2009). Evolution of amber
342 suppressor tRNAs for efficient bacterial production of proteins containing nonnatural amino
343 acids. *Angew Chem Int Ed Engl* 48(48), 9148-9151. doi: 10.1002/anie.200904035.

344 Hilal, T., Killam, B.Y., Grozdanović, M., Dobosz-Bartoszek, M., Loerke, J., Bürger, J., et al. (2022).
345 Structure of the mammalian ribosome as it decodes the selenocysteine UGA codon. *Science*
346 376(6599), 1338-1343. doi: 10.1126/science.abg3875.

347 Ibba, M., Hong, K.W., Sherman, J.M., Sever, S., and Söll, D. (1996). Interactions between tRNA
348 identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the
349 cognate amino acid affinity of the enzyme. *Proc Natl Acad Sci U S A* 93(14), 6953-6958. doi:
350 10.1073/pnas.93.14.6953.

351 Ibba, M., and Söll, D. (2000). Aminoacyl-tRNA Synthesis. *Annual Review of Biochemistry*
352 69(Volume 69, 2000), 617-650. doi: <https://doi.org/10.1146/annurev.biochem.69.1.617>.

353 Icking, L.S., Riedlberger, A.M., Krause, F., Widder, J., Frederiksen, A.S., Stockert, F., et al. (2024).
354 iNClusive: a database collecting useful information on non-canonical amino acids and their
355 incorporation into proteins for easier genetic code expansion implementation. *Nucleic Acids
356 Res* 52(D1), D476-d482. doi: 10.1093/nar/gkad1090.

357 Italia, J.S., Addy, P.S., Wrobel, C.J., Crawford, L.A., Lajoie, M.J., Zheng, Y., and Chatterjee, A.
358 (2017a). An orthogonalized platform for genetic code expansion in both bacteria and
359 eukaryotes. *Nat Chem Biol* 13(4), 446-450. doi: 10.1038/nchembio.2312.

360 Italia, J.S., Zheng, Y., Kelemen, R.E., Erickson, S.B., Addy, P.S., and Chatterjee, A. (2017b).
361 Expanding the genetic code of mammalian cells. *Biochem Soc Trans* 45(2), 555-562. doi:
362 10.1042/bst20160336.

363 Javahishvili, T., Manibusan, A., Srinagesh, S., Lee, D., Ensari, S., Shimazu, M., and Schultz, P.G.
364 (2014). Role of tRNA orthogonality in an expanded genetic code. *ACS Chem Biol* 9(4), 874-
365 879. doi: 10.1021/cb4005172.

366 Jewel, D., Kelemen, R.E., Huang, R.L., Zhu, Z., Sundaresh, B., Cao, X., et al. (2023). Virus-assisted
367 directed evolution of enhanced suppressor tRNAs in mammalian cells. *Nat Methods* 20(1),
368 95-103. doi: 10.1038/s41592-022-01706-w.

369 Jewel, D., Kelemen, R.E., Huang, R.L., Zhu, Z., Sundaresh, B., Malley, K., et al. (2024). Enhanced
370 Directed Evolution in Mammalian Cells Yields a Hyperefficient Pyrrolysyl tRNA for
371 Noncanonical Amino Acid Mutagenesis. *Angew Chem Int Ed Engl* 63(9), e202316428. doi:
372 10.1002/anie.202316428.

373 Katoh, T., and Suga, H. (2024). Fine-tuning the tRNA anticodon arm for multiple/consecutive
374 incorporations of β -amino acids and analogs. *Nucleic Acids Res.* doi: 10.1093/nar/gkae219.

375 Kim, Y., Cho, S., Kim, J.C., and Park, H.S. (2024). tRNA engineering strategies for genetic code
376 expansion. *Front Genet* 15, 1373250. doi: 10.3389/fgene.2024.1373250.

377 Kleina, L.G., Masson, J.M., Normanly, J., Abelson, J., and Miller, J.H. (1990). Construction of
378 Escherichia coli amber suppressor tRNA genes. II. Synthesis of additional tRNA genes and
379 improvement of suppressor efficiency. *J Mol Biol* 213(4), 705-717. doi: 10.1016/s0022-
380 2836(05)80257-8.

381 LaRiviere, F.J., Wolfson, A.D., and Uhlenbeck, O.C. (2001). Uniform binding of aminoacyl-tRNAs
382 to elongation factor Tu by thermodynamic compensation. *Science* 294(5540), 165-168. doi:
383 10.1126/science.1064242.

384 Ledoux, S., Olejniczak, M., and Uhlenbeck, O.C. (2009). A sequence element that tunes Escherichia
385 coli tRNA(Ala)(GGC) to ensure accurate decoding. *Nat Struct Mol Biol* 16(4), 359-364. doi:
386 10.1038/nsmb.1581.

387 Lin, T.Y., and Glatt, S. (2022). ACEing premature codon termination using anticodon-engineered
388 sup-tRNA-based therapy. *Mol Ther Nucleic Acids* 29, 368-369. doi:
389 10.1016/j.omtn.2022.07.019.

390 Lueck, J.D., Yoon, J.S., Perales-Puchalt, A., Mackey, A.L., Infield, D.T., Behlke, M.A., et al. (2019).
391 Engineered transfer RNAs for suppression of premature termination codons. *Nat Commun*
392 10(1), 822. doi: 10.1038/s41467-019-08329-4.

393 Maranhao, A.C., and Ellington, A.D. (2017). Evolving Orthogonal Suppressor tRNAs To Incorporate
394 Modified Amino Acids. *ACS Synth Biol* 6(1), 108-119. doi: 10.1021/acssynbio.6b00145.

395 Morosky, P., Comyns, C., Nunes, L.G.A., Chung, C.Z., Hoffmann, P.R., Söll, D., et al. (2023). Dual
396 incorporation of non-canonical amino acids enables production of post-translationally
397 modified selenoproteins. *Front Mol Biosci* 10, 1096261. doi: 10.3389/fmolb.2023.1096261.

398 Mort, M., Ivanov, D., Cooper, D.N., and Chuzhanova, N.A. (2008). A meta-analysis of nonsense
399 mutations causing human genetic disease. *Hum Mutat* 29(8), 1037-1047. doi:
400 10.1002/humu.20763.

401 Murakami, H., Ohta, A., and Suga, H. (2009). Bases in the anticodon loop of tRNA(Ala)(GGC)
402 prevent misreading. *Nat Struct Mol Biol* 16(4), 353-358. doi: 10.1038/nsmb.1580.

403 Normanly, J., Kleina, L.G., Masson, J.M., Abelson, J., and Miller, J.H. (1990). Construction of
404 Escherichia coli amber suppressor tRNA genes. III. Determination of tRNA specificity. *J Mol*
405 *Biol* 213(4), 719-726. doi: 10.1016/s0022-2836(05)80258-x.

406 Osgood, A.O., Zheng, Y., Roy, S.J.S., Biris, N., Hussain, M., Loynd, C., et al. (2023). An Efficient
407 Opal-Suppressor Tryptophanyl Pair Creates New Routes for Simultaneously Incorporating up
408 to Three Distinct Noncanonical Amino Acids into Proteins in Mammalian Cells. *Angew*
409 *Chem Int Ed Engl* 62(19), e202219269. doi: 10.1002/anie.202219269.

410 Panchal, R.G., Wang, S., McDermott, J., and Link, C.J., Jr. (1999). Partial functional correction of
411 xeroderma pigmentosum group A cells by suppressor tRNA. *Hum Gene Ther* 10(13), 2209-
412 2219. doi: 10.1089/10430349950017194.

413 Porter, J.J., Heil, C.S., and Lueck, J.D. (2021). Therapeutic promise of engineered nonsense
414 suppressor tRNAs. *Wiley Interdiscip Rev RNA* 12(4), e1641. doi: 10.1002/wrna.1641.

415 Prabhakar, A., Krahn, N., Zhang, J., Vargas-Rodriguez, O., Krupkin, M., Fu, Z., et al. (2022).
416 Uncovering translation roadblocks during the development of a synthetic tRNA. *Nucleic*
417 *Acids Res* 50(18), 10201-10211. doi: 10.1093/nar/gkac576.

418 Reynolds, N.M., Vargas-Rodriguez, O., Söll, D., and Crnković, A. (2017). The central role of tRNA
419 in genetic code expansion. *Biochim Biophys Acta Gen Subj* 1861(11 Pt B), 3001-3008. doi:
420 10.1016/j.bbagen.2017.03.012.

421 Rodnina, M.V. (2023). Decoding and Recoding of mRNA Sequences by the Ribosome. *Annu Rev*
422 *Biophys* 52, 161-182. doi: 10.1146/annurev-biophys-101922-072452.

423 Rogerson, D.T., Sachdeva, A., Wang, K., Haq, T., Kazlauskaitė, A., Hancock, S.M., et al. (2015).
424 Efficient genetic encoding of phosphoserine and its nonhydrolyzable analog. *Nat Chem Biol*
425 11(7), 496-503. doi: 10.1038/nchembio.1823.

426 Sako, Y., Usuki, F., and Suga, H. (2006). A novel therapeutic approach for genetic diseases by
427 introduction of suppressor tRNA. *Nucleic Acids Symp Ser (Oxf)* (50), 239-240. doi:
428 10.1093/nass/nrl119.

429 Schrader, J.M., Chapman, S.J., and Uhlenbeck, O.C. (2009). Understanding the sequence specificity
430 of tRNA binding to elongation factor Tu using tRNA mutagenesis. *J Mol Biol* 386(5), 1255-
431 1264. doi: 10.1016/j.jmb.2009.01.021.

432 Schrader, J.M., Chapman, S.J., and Uhlenbeck, O.C. (2011). Tuning the affinity of aminoacyl-tRNA
433 to elongation factor Tu for optimal decoding. *Proc Natl Acad Sci U S A* 108(13), 5215-5220.
434 doi: 10.1073/pnas.1102128108.

435 Serfling, R., Lorenz, C., Etzel, M., Schicht, G., Böttke, T., Mörl, M., and Coin, I. (2018). Designer
436 tRNAs for efficient incorporation of non-canonical amino acids by the pyrrolysine system in
437 mammalian cells. *Nucleic Acids Res* 46(1), 1-10. doi: 10.1093/nar/gkx1156.

438 Shepotinovskaya, I., and Uhlenbeck, O.C. (2013). tRNA residues evolved to promote translational
439 accuracy. *Rna* 19(4), 510-516. doi: 10.1261/rna.036038.112.

440 Stenson, P.D., Mort, M., Ball, E.V., Chapman, M., Evans, K., Azevedo, L., et al. (2020). The Human
441 Gene Mutation Database (HGMD(®)): optimizing its use in a clinical diagnostic or research
442 setting. *Hum Genet* 139(10), 1197-1207. doi: 10.1007/s00439-020-02199-3.

443 Temple, G.F., Dozy, A.M., Roy, K.L., and Kan, Y.W. (1982). Construction of a functional human
444 suppressor tRNA gene: an approach to gene therapy for beta-thalassaemia. *Nature* 296(5857),
445 537-540. doi: 10.1038/296537a0.

446 Thyer, R., Robotham, S.A., Brodbelt, J.S., and Ellington, A.D. (2015). Evolving tRNA^{Sec} for efficient
447 canonical incorporation of selenocysteine. *J Am Chem Soc* 137(1), 46-49. doi:
448 10.1021/ja510695g.

449 Uhlenbeck, O.C., and Schrader, J.M. (2018). Evolutionary tuning impacts the design of bacterial
450 tRNAs for the incorporation of unnatural amino acids by ribosomes. *Curr Opin Chem Biol*
451 46, 138-145. doi: 10.1016/j.cbpa.2018.07.016.

452 Uter, N.T., and Perona, J.J. (2004). Long-range intramolecular signaling in a tRNA synthetase
453 complex revealed by pre-steady-state kinetics. *Proc Natl Acad Sci U S A* 101(40), 14396-
454 14401. doi: 10.1073/pnas.0404017101.

455 Vargas-Rodriguez, O., Sevostyanova, A., Söll, D., and Crnković, A. (2018). Upgrading aminoacyl-
456 tRNA synthetases for genetic code expansion. *Curr Opin Chem Biol* 46, 115-122. doi:
457 10.1016/j.cbpa.2018.07.014.

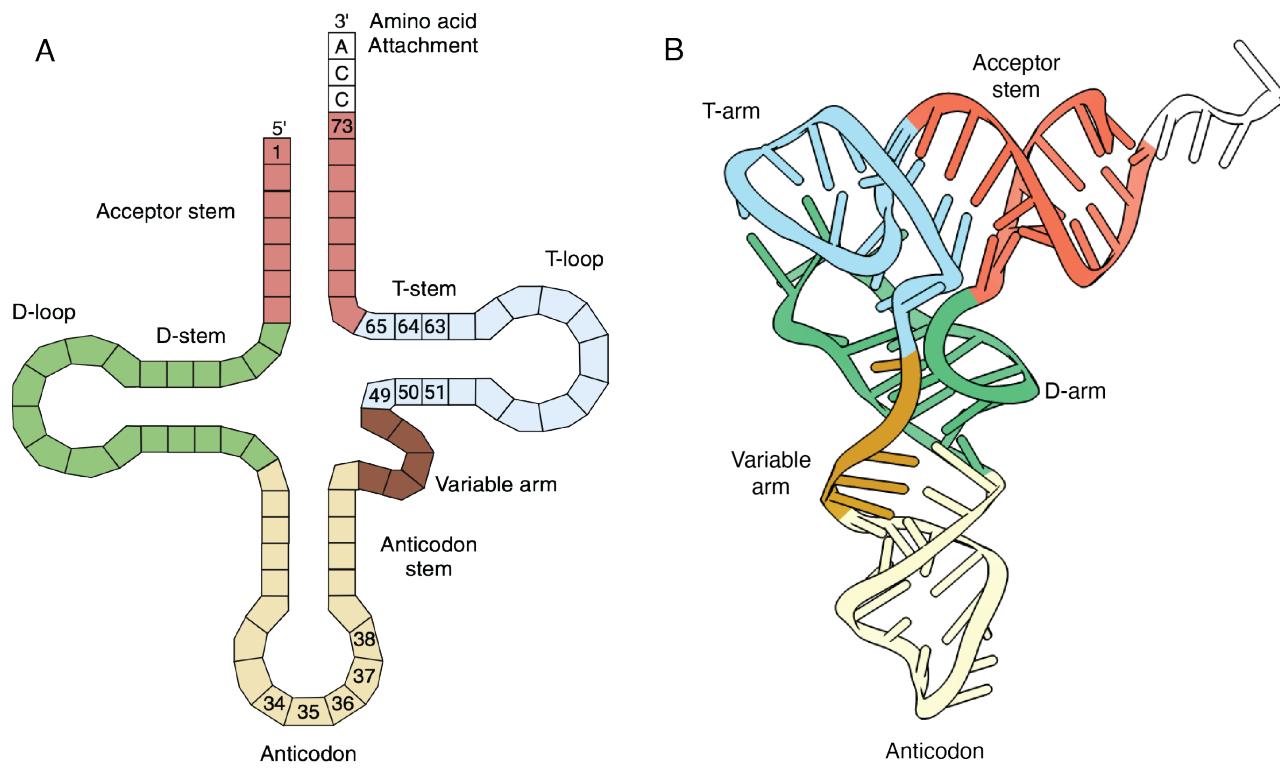
458 Wang, J., Zhang, Y., Mendonca, C.A., Yukselen, O., Muneeruddin, K., Ren, L., et al. (2022). AAV-
459 delivered suppressor tRNA overcomes a nonsense mutation in mice. *Nature* 604(7905), 343-
460 348. doi: 10.1038/s41586-022-04533-3.

461 Wang, L., Brock, A., Herberich, B., and Schultz, P.G. (2001). Expanding the genetic code of
462 *Escherichia coli*. *Science* 292(5516), 498-500. doi: 10.1126/science.1060077.

463 Wang, L., and Schultz, P.G. (2001). A general approach for the generation of orthogonal tRNAs.
464 *Chem Biol* 8(9), 883-890. doi: 10.1016/s1074-5521(01)00063-1.

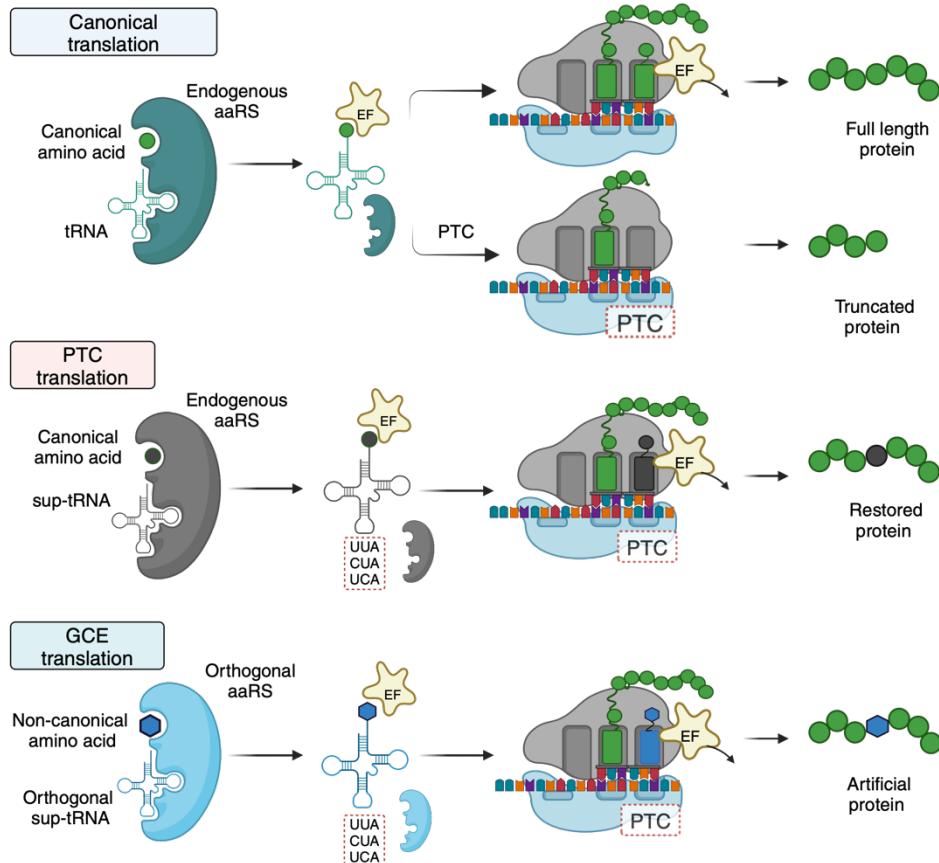
465 Wu, N., Deiters, A., Cropp, T.A., King, D., and Schultz, P.G. (2004). A genetically encoded
466 photocaged amino acid. *J Am Chem Soc* 126(44), 14306-14307. doi: 10.1021/ja040175z.

467 Young, T.S., Ahmad, I., Yin, J.A., and Schultz, P.G. (2010). An enhanced system for unnatural
468 amino acid mutagenesis in *E. coli*. *J Mol Biol* 395(2), 361-374. doi:
469 10.1016/j.jmb.2009.10.030.


470 Zhang, M., Yang, D., and Gold, B. (2021). Origins of nonsense mutations in human tumor suppressor
471 genes. *Mutat Res* 823, 111761. doi: 10.1016/j.mrfmmm.2021.111761.

472 Zhang, M.S., Brunner, S.F., Huguenin-Dezot, N., Liang, A.D., Schmied, W.H., Rogerson, D.T., and
473 Chin, J.W. (2017). Biosynthesis and genetic encoding of phosphothreonine through parallel
474 selection and deep sequencing. *Nat Methods* 14(7), 729-736. doi: 10.1038/nmeth.4302.

475 Zheng, Y., Addy, P.S., Mukherjee, R., and Chatterjee, A. (2017). Defining the current scope and
476 limitations of dual noncanonical amino acid mutagenesis in mammalian cells. *Chem Sci*
477 8(10), 7211-7217. doi: 10.1039/c7sc02560b.


478 Zuko, A., Mallik, M., Thompson, R., Spaulding, E.L., Wienand, A.R., Been, M., et al. (2021). tRNA
479 overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase.
480 *Science* 373(6559), 1161-1166. doi: 10.1126/science.abb3356.

481

485 FIGURE 1.

486 tRNA structure. (A) Secondary (cloverleaf) structure. The anticodon and elongation factor's
 487 recognition bases are numbered. Bases 37 and 38 are known to increase PTC translation. (B) Tertiary
 488 (L-shaped) structure. Figures 1A and 1B were created with BioRender.com and the tRNA crystal
 489 structure (PDB:1EVV), respectively.

491

492

493 FIGURE 2.

494 Mechanistic differences and requirements between canonical, PTC, and GCE translation. For GCE
 495 translation, an orthogonal tRNA-aaRS pair is required. The orthogonality requirement is achieved by introducing a tRNA-
 496 aaRS pair from an organism distinct from the host species. Created with BioRender.com.