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Abstract

Suppressor transfer RNAs (sup-tRNAs) are receiving renewed attention for their promising
therapeutic properties in treating genetic diseases caused by nonsense mutations. Traditionally, sup-
tRNAs have been created by replacing the anticodon sequence of native tRNAs with a suppressor
sequence. However, due to their complex interactome, considering other structural and functional
tRNA features for design and engineering can yield more effective sup-tRNA therapies. For over two
decades, the field of genetic code expansion (GCE) has created a wealth of knowledge, resources,
and tools to engineer sup-tRNAs. In this Mini Review, we aim to shed light on how existing
knowledge and strategies to develop sup-tRNAs for GCE can be adopted to accelerate the discovery
of efficient and specific sup-tRNAs for medical treatment options. We highlight methods and
milestones and discuss how these approaches may enlighten the research and development of tRNA
medicines.

1 Introduction

An estimated 10% of human genetic diseases are caused by nonsense mutations (or premature
termination codons, PTCs) (Mort et al., 2008). PTCs introduce a stop codon within a gene's protein-
coding region, prematurely terminating gene translation and producing truncated, non-functional
proteins. Several debilitating and life-threatening conditions, such as cystic fibrosis and Duchenne
muscular dystrophy, are caused by nonsense mutations (Stenson et al., 2020). In addition to inherited
mutations, PTCs can originate from somatic mutations, causing diseases like cancer (Zhang et al.,
2021). Very few treatment options are available for patients suffering from PTC-related conditions.
In recent years, suppressor tRNAs (sup-tRNAs) have regained notoriety as a promising therapeutic
approach based on their ability to translate PTCs and restore protein synthesis (Porter et al., 2021;
Dolgin, 2022; Lin and Glatt, 2022; Anastassiadis and K&hrer, 2023; Coller and Ignatova, 2024). The
reinvigorated interest in sup-tRNAs is supported by exciting new evidence demonstrating their
efficacy and safety in mouse models together with available RNA delivery strategies (e.g., lipid
nanoparticles and adeno-associated virus) (Lueck et al., 2019; Wang et al., 2022; Albers et al., 2023).
Despite recent progress, several challenges and knowledge gaps remain. Among them is the ability to
design and engineer efficient and specific sup-tRNAs. Most sup-tRNAs tested for disease-related
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applications have been created by introducing suppressor anticodon sequences into native tRNAs
(Temple et al., 1982; Panchal et al., 1999; Sako et al., 2006; Bordeira-Carrigo et al., 2014; Lueck et
al., 2019; Wang et al., 2022). While this approach yields tRNAs capable of suppressing PTCs, they
tend to display poor translation efficiencies and specificity. Thus, developing new and more effective
sup-tRNAs remains a fundamental area of research.

Coincidentally, for the past 20 years, research in genetic code expansion (GCE) has been at the
forefront of sup-tRNA engineering. GCE is a powerful biotechnology that enables the synthesis of
proteins with noncanonical amino acids at desired positions. GCE effectively increases the chemical
diversity and functions of proteins (Chin, 2017). Notably, GCE applications have been successfully
implemented in human-cultured cells and different model organisms, including whole animal models
(Brown et al., 2018). The targeted incorporation of noncanonical amino acids via GCE requires an
intentionally positioned PTC in the mRNA coding sequence of the protein of interest. Thus, sup-
tRNAs are a central component of GCE as they mediate the noncanonical amino acid incorporation
(Reynolds et al., 2017). The central role of sup-tRNAs in GCE has promoted significant work
towards creating and enhancing sup-tRNAs, which has enriched our knowledge of sup-tRNA
engineering (Kim et al., 2024). Notably, the advances in GCE have led to the development of robust
and high-throughput platforms for the design, engineering, and artificial evolution of sup-tRNAs
(Kim et al., 2024). Paradoxically, despite their shared goals of developing sup-tRNAs, a gap exists
between the fields of GCE and tRNA therapeutics. Here, we aim to bring attention to the available
information and tools that have emerged from GCE studies that can contribute to the discovery and
advancement of tRNA-based medicines.

2 The universal role of tRNAs

The principal role of tRNAs is to provide the ribosome with the amino acid building blocks for
protein synthesis. tRNAs typically comprise 70-100 bases that fold into a strictly conserved L-shaped
tertiary structure (Figure 1). With few exceptions, tRNAs are composed of 4-5 stems and 3-4 loops
that form a cloverleaf secondary structure. During translation, tRNAs are ligated with their cognate
amino acids by aminoacyl-tRNA synthetases (aaRSs) (Ibba and So6ll, 2000). The elongation factor
transports the resulting aminoacylated tRNAs to the ribosome, where codon-anticodon base pairing is
established, and the incoming amino acid is incorporated into the nascent protein (Figure 2). Each of
these steps involves highly choreographed interactions that contribute to the accurate translation of
genetic information into proteins. Consequently, engineering effective sup-tRNAs requires
individually and collectively considering the tRNA sequence or structural elements that define these
interactions.

3 Distinct engineering considerations for sup-tRNAs

Sup-tRNAs for GCE and therapeutic applications are engineered to translate a targeted PTC with a
desired amino acid. However, the requirements of the engineered sup-tRNAs differ. For GCE, the
sup-tRNAs are introduced into an organism with a dedicated exogenous aaRS partner that only
aminoacylates the sup-tRNA (Figure 2) (Vargas-Rodriguez et al., 2018). Importantly, the host cell’s
aaRSs must not recognize the sup-tRNA. To meet this requirement, sup-tRNA-aaRS pairs in GCE
are typically transplanted from organisms that are phylogenetically distant from the recipient species
(Icking et al., 2024). For example, sup-tRNAs and aaRSs used in eukaryotic cells (including humans)
usually have bacterial or archaeal origins (Italia et al., 2017b). In contrast, sup-tRNAs for therapeutic
purposes are designed to be recognized by an endogenous aaRS, eliminating the requirement for a
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dedicated aaRS partner (Figure 2). This stark difference simplifies the development of therapeutic
sup-tRNAs relative to GCE.

4 The intricacies of tRNA engineering: insights from GCE research

Efforts in GCE to optimize translation of PTCs with noncanonical amino acids have relied on
foundational knowledge of the dynamic interaction of tRNAs with different translation factors,
including the ribosome, aaRSs, and elongation factor. As a result, GCE studies have validated some
of the early knowledge while uncovering and defining intricacies that can be exploited to improve
sup-tRNA aminoacylation, delivery, and decoding. In this section, we describe the key basis of tRNA
interactions with translation factors and how their manipulation has led to the design and engineering
of improved sup-tRNAs in GCE.

4.1 Interactions with aaRSs

Like native tRNAs, ideal sup-tRNAs must be ligated with an amino acid by a specific aaRS. Most
aaRSs select their cognate tRNA substrates via interactions with two of the tRNA’s structural
features: the anticodon loop and the acceptor stem (Figure 1). A dedicated anticodon binding domain
generally mediates the anticodon recognition, while the aminoacylation domain recognizes the
acceptor stem (Giegé and Eriani, 2023). The identity of tRNAs for a particular amino acid is defined
by these unique sets of tRNA-aaRS interactions, preventing cross-reactions between non-cognate
tRNAs and aaRSs. Due to the stringent anticodon recognition, converting the anticodon sequence of
a canonical tRNA into a suppressor sequence significantly decreases the interaction and affinity with
the cognate aaRS. However, some aaRSs do not directly interact with tRNA anticodon or depend
little on the anticodon bases (Giegé and Eriani, 2023). For example, leucyl- and seryl-tRNA
synthetase do not recognize the anticodon, while arginyl- and tyrosyl-synthetase tolerate changes in
their tRNA substrates anticodons. Consequently, sup-tRNAs (natural and engineered) generally
originate from tRNAs whose cognate aaRS partners accept mutation in the anticodon.

Nonetheless, mutations in the anticodon can also affect aaRS’s catalytic function via distal
communication within the tRNA manifested in its 3"-end (Ibba et al., 1996; Uter and Perona, 2004).
The weaker tRNA-aaRS interaction results in low aminoacylation efficiency, a common feature of
most engineered tRNAs (Vargas-Rodriguez et al., 2018). The intricacies of the tRNA-aaRS
interactions go beyond the direct role of tRNA bases in binding and catalysis. Even changes in tRNA
regions that do not directly contact the aaRS may influence aminoacylation (Giegé and Eriani, 2014).
Finally, changes in the anticodon can cause unintended cross-reactions between aaRSs (Normanly et
al., 1990; Zheng et al., 2017; Giegé and Eriani, 2023; Osgood et al., 2023). In bacteria, a tRNAT™
with CUA, but not with UCA, is aminoacylated by glutaminyl-tRNA synthetase (Italia et al., 2017a).
This cross-reactivity with noncognate aaRSs is also observed in engineered human sup-tRNAs
(Wang et al., 2022). The complex interplay between tRNAs and aaRSs complicates the rational
design of sup-tRNAs.

Efforts in GCE have been aimed at overcoming these limitations. Using high-throughput screening
and selection engineering platforms, sup-tRNAs with improved interactions with their aaRS partners
that increase tRNA aminoacylation levels have been obtained (Wang and Schultz, 2001; Anderson et
al., 2004; Guo et al., 2009; Chatterjee et al., 2012; Chatterjee et al., 2013b; Javahishvili et al., 2014;
Jewel et al., 2023). Notably, the enhanced sup-tRNA-aaRS interactions are achieved by mutations in
the acceptor stem, suggesting that fine-tuning interactions in other tRNA regions can compensate for
a decrease in the anticodon binding. Similarly, sup-tRNAs have also been optimized to prevent
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aminoacylation by noncognate aaRSs (Zhang et al., 2017; Grasso et al., 2022). This knowledge can
aid and guide the sup-tRNA engineering efforts for therapeutic applications.

4.2 Interactions with elongation factor

In contrast to aaRSs, the elongation factor (EF-Tu in bacteria and eEF1 A in eukaryotes) must interact
with all aminoacylated tRNAs (except for initiator tRNAM®!, which is recruited to the ribosome by
initiation factors). This process involves the uniform recognition of tRNAs with diverse structural
and sequence features attached to amino acids with different side chains. EF-Tu achieves uniform
binding affinities using a compensatory thermodynamic mechanism in which the amino acid moiety
and the tRNA body additively contribute to the overall binding (LaRiviere et al., 2001; Uhlenbeck
and Schrader, 2018). As a result, EF-Tu exhibits a wide range of binding affinities toward tRNA
isoacceptors. The tRNA affinity is determined by three base pairs located in the T-stem (49:65,
50:64, and 51:63) (Figure 1) (Schrader et al., 2009). tRNAs with G51:C63, C50:G64, and G49:U65
T-stems are preferred EF binding partners (Schrader et al., 2009; 2011). Notably, GCE studies have
demonstrated that optimizing the T-stem sequence of the translation efficiency sup-tRNAs can
drastically improve suppression efficiency (Guo et al., 2009; Young et al., 2010; Fan et al., 2015;
Thyer et al., 2015; Serfling et al., 2018). For example, mutations in the T-stem of pyrrolysine tRNA
(a natural sup-tRNA) increase suppression efficiency by 5-fold (Fan et al., 2015). However, defining
the optimized T-stem for a particular sup-tRNA may require exploring permutations that consolidate
the optimal binding to the elongation factor. Some tRNAs may have an inherently optimal T-stem,
preventing further improvement (Jewel et al., 2023). This knowledge was recently applied to the
design of human sup-tRNAs, confirming the critical role of the elongation factor in suppression
efficiency (Albers et al., 2023). This study also corroborated that EF-Tu and EF1A share the tRNA
T-stem recognition (Albers et al., 2023).

4.3 Interactions with the ribosome

The elongation factor delivers tRNAs through complex interactions with the ribosome that facilitate
the tRNA anticodon to base pair with the mRNA. The formation of correct Watson-Crick interactions
triggers a local conformational rearrangement mediated by ribosomal RNA bases A1492, A1493, and
G530, promoting the selection of cognate tRNAs (Rodnina, 2023). Recent structural studies of the
ribosome reveal that this interaction network and the tRNA selection mechanism in the A-site are
maintained in natural and artificial sup-tRNAs (Fischer et al., 2016; Albers et al., 2021; Hilal et al.,
2022; Prabhakar et al., 2022). However, the movement of sup-tRNAs through the ribosome is
moderately slower than native tRNAs (Prabhakar et al., 2022). In addition to the ribosomal structural
features in the A-site, conserved base pairs in the tRNA anticodon stem may also contribute to
establishing a faithful codon-anticodon base pairing (Ledoux et al., 2009; Murakami et al., 2009;
Shepotinovskaya and Uhlenbeck, 2013). Enhancing these interactions has been proven to improve
translation of targeted codons. For example, a mutation that optimizes the anticodon stem of a sup-
tRNA increases suppression efficiency by 2-fold (Anderson and Schultz, 2003; Chatterjee et al.,
2013a). Fine-tuning the anticodon stem-loop can improve affinity and translation efficiency (Katoh
and Suga, 2024). Other anticodon structural and sequence features can also facilitate PTC
suppression (Rogerson et al., 2015). For example, adenosines at positions 37 and 38 substantially
increase suppression efficiency (Kleina et al., 1990; Normanly et al., 1990; Wu et al., 2004; Englert
et al., 2017).

tRNA modifications also play a crucial role in mRNA decoding. In GCE applications, anticodon
modifications were shown to influence suppression efficiency of two distinct sup-tRNAs in bacteria
(Baldridge et al., 2018; Crnkovi¢ et al., 2018). Although the molecular mechanism remains unknown,
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these studies underscore the importance of considering the fundamental role of modifications in sup-
tRNA engineering.

Another notable observation in GCE is that some tRNA scaffolds are more suitable for a particular
stop codon. For example, the natural suppressor tRNA™! is more efficient at translating its cognate
codon UAG than UGA. It can also mistranslate UAG, albeit with two times lower efficiency
(Morosky et al., 2023). Moreover, intrinsic tRNA elements contribute to codon specificity, as shown
for a synthetic sup-tRNA for selenocysteine with CUA anticodon that mistranslates UGA codons
with similar efficiency as the cognate UAG (Morosky et al., 2023). However, the same sup-tRNA
with UCA anticodon is specific for UGA. Understanding the molecular basis for these codon-
specificity behaviors requires further investigation. Nonetheless, these observations underscore the
intricacies of sup-tRNAs during decoding.

5 Translation deficiencies of sup-tRNA therapeutic candidates

Like in GCE applications, most engineered human sup-tRNAs used to translate disease-causing
PTCs fail to fully restore the synthesis of the target proteins to wild-type levels, achieving, on
average, less than 40% suppression in recent studies (Bordeira-Carrigo et al., 2014; Lueck et al.,
2019; Wang et al., 2022; Albers et al., 2023; Blomquist et al., 2023; Bharti et al., 2024). Notably,
varying suppression efficiencies are observed for sup-tRNAs with different identities and nonsense
anticodons. This may be due to the suboptimal interactions with their interacting partners, which
likely hinder sup-tRNAs’ decoding capacity. As discussed in the previous section, poor
aminoacylation by aaRSs, sup-tRNA delivery to the ribosome by EF1A, and interactions with the
mRNA and ribosome during decoding contribute to the overall efficiency of synthetic human sup-
tRNAs. However, the specific contribution of each of these steps is generally obscured in most
studies because the total output of a reporter protein is usually used to determine translation
efficiency. Thus, unraveling the molecular mechanisms determining PTC translation by sup-tRNA
will require additional detailed biochemical studies. These mechanistic details of PTC decoding will
better inform engineering efforts to enhance sup-tRNAs. For example, tuning the interaction with
EF1A improves sup-tRNA activity (Albers et al., 2023).

6 Existing platforms for sup-tRNA design and development

Developing and improving sup-tRNAs have been a major focus of GCE, resulting in several
pioneering approaches for sup-tRNA engineering (Wang et al., 2001; Wang and Schultz, 2001; Guo
et al., 2009; Maranhao and Ellington, 2017; DeBenedictis et al., 2021). Although efforts have
focused on enhancing the interaction between tRNAs and their cognate aaRSs to increase
aminoacylation levels, these platforms can be adapted to screen and select sup-tRNA variants with
improved EF affinity or decoding efficiency (Wang and Schultz, 2001; Guo et al., 2009; Rogerson et
al., 2015; DeBenedictis et al., 2021). These platforms integrate combinatorial approaches to create
large tRNA mutant libraries that can be selected or screened in a high-throughput fashion with
sensitive reporter proteins (Kim et al., 2024). A potential limitation is that these systems are mostly
based on Escherichia coli. Therefore, retrofitting them to enable human sup-tRNA engineering will
be needed. Nonetheless, given their robustness and tRNA sequence space that can be explored,
efforts to repurpose these platforms may provide invaluable insights. Human aaRSs that function in
E. coli cells and do not cross-react with bacterial tRNAs are ideal candidates to pursue this goal.

While bacterial platforms remain the primary avenue for tRNA engineering, recent work established
the virus-assisted directed evolution of tRNA (VADER) (Jewel et al., 2023; Jewel et al., 2024).
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VADER facilitates the screening of >60000 unique tRNA variants in human cultured cells, offering a
novel avenue for rapid human sup-tRNA discovery. Adapting VADER for human sup-tRNA
engineering will require establishing sensitive reporters that signal the incorporation of the intended
amino acid. This will avoid the need for mass spectrometry analyses that hinder the speed of sup-
tRNA discovery.

A limitation of most tRNA engineering platforms is that they depend on producing a protein reporter,
reflecting the combined outcome of aminoacylation and decoding. Thus, investigating how changes
in tRNA affect aminoacylation and decoding separately will allow us to discern their direct
contribution to PTC translation. This knowledge can aid in designing better engineering strategies.

7 Discussion

Sup-tRNAs represent a transformative pharmacological opportunity to treat human genetic diseases.
The prospect of therapeutic sup-tRNAs requires a better understanding of the mechanism of PTC
translation, how synthetic tRNAs are metabolized, and delivery strategies (Coller and Ignatova,
2024). In the context of PTC translation, developing potent sup-tRNAs is critical and remains a
fundamental area of research. The translation proficiency of sup-tRNAs can determine dosage
indications. Moreover, effectively rescuing diverse pathogenic PTCs will depend on sup-tRNAs'
ability to translate PTCs in different positions within the target mRNA. Sup-tRNAs are known to
display varying decoding efficiencies based on the location of PTC within the mRNA coding region
(Bossi, 1983; Atkinson and Martin, 1994; Bharti et al., 2024). Another consideration for sup-tRNA
therapies is the identity of the amino acid they carry. To faithfully restore protein synthesis from a
PTC-containing gene, the sup-tRNA must be aminoacylated with the corresponding amino acid. The
PTC-related diseases involve all three stop codons, which generally emerge from mutations of Arg,
Gln, Ser, Glu, Tyr, Lys, Trp, Gly, Leu, and Cys codons (Stenson et al., 2020). Correction of each
PTC would require a panel of sup-tRNAs with identities for each amino acid. Only a few families of
sup-tRNAs with Tyr, Ser, Trp, Gly, and Arg identities with varying translation efficiencies for
specific PTCs have been validated in animal models (Lueck et al., 2019; Wang et al., 2022; Albers et
al., 2023). These tRNAs have been generated using native human tRNAs as scaffolds. However, this
strategy may not be suitable for developing potent sup-tRNAs or require further engineering.

The innovation in GCE research can help guide the optimization of existing therapeutic sup-tRNA
candidates and the creation of new ones. The implementation of GCE applications has gained
substantial knowledge of how to design and engineer tRNAs. As discussed earlier, GCE has provided
important mechanistic insights into the key elements that should be considered to improve sup-tRNA
aminoacylation and decoding. GCE has also validated approaches to enhance sup-tRNA expression
in mammalian cells (Zheng et al., 2017; Brown et al., 2018). The information gained regarding
promoter designs and tRNA gene arrangement can be essential for establishing efficacious tRNA
delivery using an adeno-associated virus or lipid nanoparticles (Zuko et al., 2021; Wang et al., 2022;
Albers et al., 2023). Finally, given the need to treat different pathogenic PTCs, GCE has
demonstrated that using tRNAs from other biological sources (i.e., species) in human cells can be a
suitable and safe option for obtaining a panel of diverse sup-tRNAs capable of carrying desired
amino acids. Integrating this knowledge collectively during human sup-tRNA engineering can
accelerate the discovery of more proficient candidates.
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FIGURE 2.

Mechanistic differences and requirements between canonical, PTC, and GCE translation. For GCE
translation, an orthogonal tRNA-aaRS pair is required. The orthogonal pair does not interact with
endogenous tRNAs and aaRSs. The orthogonality requirement is achieved by introducing a tRNA-
aaRS pair from an organism distinct from the host species. Created with BioRender.com.
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