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ABSTRACT

In traditional multi-armed bandits (MAB), a standard assump-
tion is that the mean rewards are constant across each arm, a
simplification that can be restrictive in nature. In many real-
world settings, the rewards exhibit a periodic pattern on which
traditional MAB algorithms would fail. This paper addresses
the problem of regret minimization when the mean rewards
change periodically. To this end, we propose an approach that
utilizes the Ramanujan periodicity transform to estimate the
support of the periods efficiently and, furthermore, use this
information to minimize regret.

Index Terms— Non-stationary Bandits, Periodic Bandits, Ra-
manujan Transform, Regret minimization

1. INTRODUCTION

Sequential decision-making under uncertainty is crucial in a
wide variety of fields. Ideally, given ample time, one would
exhaustively sample all available options before making de-
cisions. However, in modern problems which present the
decision maker with an enormous number of choices, such
an approach is infeasible. The Multi-armed bandits (MAB)
framework [1] addresses this by efficiently identifying optimal
options in minimal time. Central to MABs is the Exploration-
exploitation dilemma: one must balance exploring unknown
choices and exploiting the best-known option. Given its strong
theoretical foundations and its efficacy in a wide range of
domains like recommendation systems, clinical trials, and on-
line advertising, this framework and its variants have received
much attention in recent years [1–3].

A key limitation of this framework, however, is its traditional
reliance on stationarity of the underlying “reward” distribu-
tion. Real-world applications often exhibit non-stationarity.
Introducing non-stationary reward distributions complicates
matters due to potential erratic patterns. Although there have
been endeavors to address this (see, e.g., [4–6]), formulat-
ing a universal learning policy for non-stationarity remains
challenging.

* Equal contributions. This work was supported by the National Science
Foundation under award number CCF-2048223, and the Office of Naval
Research (ONR) under award number N00014-21-1-2615.

In this paper, we focus on Periodic Bandits, a class of non-
stationary bandits that are characterized by a periodic pattern
in their rewards. Such periodicity is common in a range of
real-world scenarios, such as cell-tower congestion, advertise-
ment trends, and behavior of electronic systems reliant on
discharging power sources. Ignoring these patterns can result
in highly suboptimal decisions [7]. Incorporating periodicity
into multi-armed bandit algorithms enables one to make de-
cisions that align more closely with the natural rhythms and
temporal variations present in the problem domain.

Research such as [8] has addressed seasonal reward shifts,
while [9] leverages historical data for sudden changes. Other
studies, like [10], focus on regime-switching rewards, while
[11] considers rewards based on auto-regressive models. [12]
integrates periodicity in Gaussian process bandits. Our work
aligns most closely with [13], which combines Fourier analysis
with a confidence-bound-based learning procedure to learn the
periods and minimize the regret.

This paper proposes a tractable methodology for tacking the pe-
riodic bandit framework. To this end, we utilize the framework
of Ramanujan Periodicity Transforms (RPT) to estimate the
length of the period and identify the fundamental periods if the
signal is a combination of two or more periodic signals. The
authors in [14, 15] introduced the notion of RPT and showed
that one can utilize RPTs to estimate the underlying period
of a periodic signal. In addition, the authors demonstrated
that RPT-based methods are more robust in the presence of
noise and showed the advantages of RPTs over the classical
DFT-based techniques [14]. RPTs have been used in practice
such as detecting periodicity in visually evoked potentials in
brain-computer interfaces [16] and detecting the tandem DNA
repeats [17] and have shown promising results.

Contributions. The main contributions of this work are the
following.
a) We propose an online learning algorithm called Bandit
Tracking System via Ramanujan Periodic transform (BTS-
RaP) for non-stationary environments with seasonal patterns
and unknown periods.
b) We propose the use of RPT dictionaries to estimate length
of periods across different arms which are known to overcome
the limitations of DFT-based technique.
c) Using computer simulations we show that BTS-RaP algo-
rithm can achieve sublinear regret.
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2. RAMANUJAN PERIODICITY TRANSFORMS

In this section, we briefly review the structure of the RPT
dictionary, and their applicability to estimate the period of a
periodic signal.

2.1. RPT dictionaries

RPT dictionaries are constructed based on the properties of
Ramanujan sums, defined as [18]

cp (n) =
pX

k=1
(k,p)=1

exp (j2⇡kn/p), (1)

where (k, p) is the greatest common divisor of k and p. cp
indicates the vector form of cp (n), and c(i)p shows the circu-
larly shifted version of cp with step size i. For each value p
construct a p⇥ � (p) submatrix Cp as follows

Cp =
h
cp c(1)p . . . c(�(p)�1)

p

i
, (2)

where � (p) is the Euler totient function (the number of integers
that are co-prime to p). The author in [15] showed that the
� (p) columns in Cp are linearly independent. Thus, one can
construct the RPT dictionary K in three consecutive steps.

i) Build all the submatrices Cp for every p 2 P, where
P = {1, 2, . . . , Pmax} and Pmax is the largest possible period
in the signal.

ii) Build the L ⇥ � (p) submatrices Rp, by periodically
extending all the columns of Cp to length L.

iii) Concatenate the matrices Rp as

K =
⇥
R1 R2 . . . RPmax

⇤
. (3)

Therefore, denoting �(Pmax) =
PPmax

p=1 �(p), the size of the
dictionary is L⇥ �(Pmax).

2.2. Period estimation using RPT dictionary

Discrete periodic signals can be expressed using the RPT dic-
tionary in a noise-free setup as:

y = Kx (4)

where y is the vector form of the periodic signal with period
p, K is the RPT dictionary introduced in section 2, and x is
the sparse representation of the periodic signal under the RPT
dictionary. Given a sufficiently long vector y, vector x exhibits
a sparse structure and its non-zero values correspond to the
sub-matrices in K, that have periodic columns with periods

(a) (b) (c)

Fig. 1. (a) A noisy period 231 time series signal with that was
generated as sum of period 3, 7 and 11 signals. The strength vs
period plot for the solutions of the convex problem (5) using
(b) Ramanujan basis, and (c) DFT basis.

qi that are divisors of p, or qi|p. Therefore, it is possible to
estimate the period of a periodic signal by first recovering the
sparse representation of the signal under the RPT dictionary.
Then, the support set of the signal identifies the divisors of the
underlying period of the signal. The support set of a sparse
vector are a set of indices that contain the location of the non-
zero values of the vector. Finally, the estimate of the period is
equal to the least common multiplier (LCM) of the divisors
from the recovered support set. One can recover the support of
the sparse vector x using sparse recovery algorithms [19]. In
this work, we adopt the proposed approach in [14] and solve
the following minimization program:

min kDxk2 s.t. y = Kx (5)

where, D is a diagonal penalty matrix with i-th entry on the
diagonal being equal to p2i , where pi is the period of the i-th
column of the dictionary K. An illustration of this method
is presented in Fig. 1. In Part (a), we observe an incomplete
segment of a signal with a period of 231, which has been af-
fected by noise. This 231-period signal was constructed by
combining three periodic signals with underlying periods of 3,
7, and 11. Following [14], we compute the energy correspond-
ing to each subvector in x as follows and plot the strength vs.
period. Part (b) illustrates the strength vs. period after solving
(5). The strength at each period p is defined as:

E(p) =

P+�(p)X

k=P+1

|x(k)|2, P =
p�1X

d=1

�(d). (6)

Similarly, in part (c) the periodogram displays the strength
of the different period components in the signal. It is evident
that, RPT basis is robust towards estimating the fundamental
periods of a given signal.

3. PROBLEM SETUP

Consider a multi-armed bandit setting with K being the set
of all arms such that mean of each arm i 2 K is represented
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by function µi : N ! [a, b] 8i 2 [K] such that µi[t +
Ti] = µi[t] for some unknown Ti 2 N. Throughout the paper,
we sometimes refer µi[t] as µt,i. At each round, the learner
chooses an arm at 2 K to sample and observes a noisy reward

rt,i = µt,i + ⌘t,i ,

where, {⌘i,t}i,t are i.i.d. noise samples from a �2- sub-
Gaussian distribution. The goal of the problem is to minimize
the regret up to a known time horizon T defined as,

R(T ) =
TX

t=0

✓
max
i2K

µt,i � µt,at

◆
, (7)

where, the decision maker chooses an arm at at time step t.
The aim of the work is to propose an algorithm to minimize
regret as mentioned in (7). This can only be obtained if the
decision maker chooses an arm that is optimal for every time

t. If, at the current time instant, one of the arms is optimal,
it is not necessary that the previously chosen arm will be
optimal again at the next time step, which is well-suited for
handling time-varying reward changes. The notion in (7) is
different than the standard notion of regret [20], which focuses
on selecting the one optimal choice for every time-step t.

3.1. Baseline method

Recently [13] proposed for addressing periodic bandits a two-
stage approach which provides a sub-linear regret that scales
as O

⇣p
T

Pn
i=1 Ti

⌘
, where Ti is the period of arm i. The

authors first propose to use (DFT) to estimate the length of the
periods Ti’s. Since the mean of arm i returns to the same value
every Ti steps, the authors propose that for every arm i, the
number of ‘effective arms’ is Ti (1 arm for every step until time
reaches Ti). Therefore, we end up with d̂ :=

P
k T̂k effective

arms (unique mean rewards) to learn. In the second stage
of the algorithm, the authors utilize the estimated number of
effective arms to implement UCB-based approach to minimize
regret (7). We refer this as MAB-UCB.

This approach suffers drawbacks due to the utilization of DFT
as well as two distinct stages leading to sample inefficiency.
We address this by using RPT and merging the two stages into
one main algorithm thereby painting optimal sample efficiency.

4. PROPOSED APPROACH: BTS-RAP (BANDIT
TRACKING SYSTEM)

We first provide an overview of the linear bandits and then
show how it connects to RPT-based reward representation.

4.1. Linear bandits

Linear bandits [3] have emerged as a powerful and versatile
tool in the field of bandit research literature. These algorithms
are particularly well-suited for scenarios where the relationship
between actions and rewards can be approximated linearly. Let
the arm set be defined by the set K. In a linear bandit setup,
every arm is associated with a feature vector Rd such that
d < n. On sampling the arm i at time t, the reward observed
satisfies the relation rt,i = hai,✓✓✓⇤i+⌘t, where ✓✓✓⇤ 2 Rd dented
the unknown reward parameter, ai 2 Rd denote the feature
vector associated with arm i and ⌘t is the i.i.d. Gaussian noise
realized from a �2-subgaussian distribution at time t.

Due to the low dimensional structure of the linear bandit prob-
lem, it has been proven, both theoretically and experimentally
that the regret upper bound scales as O(

p
dT ) (sublinear in

time T ), where d is the feature dimensionality. Note that for
the case of stationary linear bandit, the regret takes the form
as defined below,

RLB(T ) =
TX

t=0

✓
max
k2K

hak,✓✓✓
⇤
i � hat,✓✓✓

⇤
i

◆
(8)

Taking a step further [21] showcases that the regret upper
bound can be further tightened to nearly O(

p
s0T ), where

s0 : k✓✓✓⇤k0  s0 is the support of ✓✓✓⇤.

4.2. Connection to RPT decomposition

Let K be the RPT dictionary and xi be the corresponding
sparse vector associated with the arm i with support set Si.
We can map our problem setup to linear bandits as follows:

i) Construct the block diagonal matrix KK = diag(K,K, . . . ),
where each K 2 RT⇥�(Pmax) are blocks on the diagonal and
constructed as per Equation (3). For an arm i, the arm features,
at time t is at,i = KK[i ⇤ T + t], which is the (i ⇤ T + t)th

row of KK.

ii) The unknown feature vector ✓✓✓⇤ is a vector stack of
xi, where xi is the true solution to the minimization prob-
lem (5) in the noiseless case. The reward is obtained as
rt,i = hat,i,xii.The pseudocode of the proposed algorithm is
provided in Algorithm 1 Following directly from [21], we can
provide the following theoretical backing to BTS-RaP:

Theorem 1. Let xi be the sparse representation of a peri-

odic signal under the RPT dictionary with support set Si that

has |Si| nonzero values, for all xi i 2 K, then the regret

of Bandit Tracking System (BTS-RaP) is upper bounded by

O(
p
T
P

i2K |Si|).
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(a) (b)

Fig. 2. Regret R vs time t plots on two armed periodic bandits
setting for (a) BTS-RaP and (b) MAB-UCB. Rewards of each
arm is generated as per Equation (10).

(a) (b)

Fig. 3. Regret R vs time t plots on two armed periodic bandits
setting for MAB-UCB and BTS-RaP. Rewards of each arm is
generated based on (9) with {p1, p2} taking values (a) {7, 3} ,
(b) {9, 11}

Algorithm 1 Bandit Tracking System (BTS-RaP)
1: Given T , K arms, form K 2 RT⇥�(Pmax) pull each arm

once and form the observation vector µi 8i 2 K

2: Create mini-dictionaries Ki for i 2 K which will grow as
arms get pulled. Initially each Ki is of size 1⇥ �(Pmax)

3: Initialize support for each arm xi for all i 2 K

4: for t = K + 1 . . . T do
5: Choose arm at = argmaxk2{1,...,K}hK[t],xii +p

2↵ ln t/nt�1,i, where, K[t] is the tth row of K
6: Append the row K[t] to the mini-dictionary Kat

7: Observe rt,at = µt,at+⌘t and append this observation
to µat

8: Solve : min kDxatk2 s.t. µat = Katxat to return
updated xat

9: end for
10: return {at}Tt=K+1

5. SIMULATION RESULTS

We consider a two-armed bandit setup with three different
experiments. In the first and second experiments, we represent

the means of the two arms by:

µ1(t) = c+ sin

✓
2⇡t

p1

◆
, µ2(t) = c+ sin

✓
2⇡t

p2

◆
, (9)

where, t = {1, 2, . . . , T} and c is some positive scalar. For
the first experiment the tuple {p1, p2} take the values {9, 11}
and for the second one it takes the values {7, 3}.

For the third experiment, we consider periodic mixtures to
generate rewards as follows,

µ1(t) = c+
3X

i=1

sin

✓
2⇡t

pi

◆
, µ2(t) = c+ sin

✓
2⇡t

p

◆
,

(10)

where, for the first arm the periods are {p1, p2, p3} =
{3, 7, 11} and second arm period is p = 9. In the first
two experiments (Figures 2(a), (b)), we see that our proposed
algorithm BTS-RaP outperforms MAB-UCB. While plotting
the regret of MAB-UCB we do not consider the stage one
(estimation of period) cost. One advantage of using RPT is
that even if the period is large, we can still estimate it using
RPT with fewer samples, sometimes, even when we have
incomplete period length signal as illustrated in Figure 1.
While MAB-UCB does achieve sub-linear regret it does so at
a very slow pace compared to BTS-RaP. This is because we
are selecting an optimal arm from a set of

P
k Tk arms and

not 2 as stated in the problem. This increases the complexity
of the MAB problem and is reflected in the regret curve.

The real issue is revealed in the third experiment where one
of the arms rewards is a combination of sum of smaller peri-
odic signals (7,3,11). Therefore, the resulting signal is a 231
length period signal. The second arm is a single period signal
with period 9. So effectively, MAB-UCB algorithm has 240
effective arms to select from. Whereas, BTS-RaP effectively
learns non-zero coordinates of the support vector x associated
with each arm. This vector as highlighted earlier is sparse and
the regret scales with the sum `0-norm of this support vector.
Therefore, as seen in Figure 3, BTS-RaP achieves minimum re-
gret quickly and MAB-UCB has to run for significantly longer
time (⇠ 100⇥) to start learning the periodic pattern.

6. CONCLUSION

In this paper, we consider bandits that exhibits periodicity. We
incorporated the periodic structure of the rewards and proposed
an algorithm to minimize the regret. To this end, we utilized
the newly introduced, Ramanujan-based periodicity estimation
techniques to sequentially update the estimate of the periods
of each arm, and subsequently select the best arm at each time
step. Our results indicates that our RPT-based method dubbed
BTS-RaP, can achieve sub-linear regret.
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