®

Check for
updates

CONSchema: Schema Matching
with Semantics and Constraints

Kevin Wu, Jing Zhang, and Joyce C. Ho(®)

Emory University, Atlanta, GA 30322, USA
{kevin.wu2, jing.zhang?2, joyce.c.ho}@emory.edu

Abstract. Schema matching aims to establish the correspondence
between the attributes of database schemas. It has been regarded as the
most difficult and crucial stage in the development of many contempo-
rary database and web semantic systems. Manual mapping is a lengthy
and laborious process, yet a low-quality algorithmic matcher may cause
more trouble. Moreover, the issue of data privacy in certain domains,
such as healthcare, poses further challenges, as the use of instance-level
data should be avoided to prevent the leakage of sensitive information. To
address this issue, we propose CONSchema, a model that combines both
the textual attribute description and constraints of the schemas to learn
a better matcher. We also propose a new experimental setting to assess
the practical performance of schema matching models. Our results on
6 benchmark datasets across various domains including healthcare and
movies demonstrate the robustness of CONSchema.
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1 Introduction

Schema matching in relational databases can be viewed as one of the most essen-
tial elements of data integration. The purpose is to identify correspondences
among concepts across heterogeneous and potentially distributed data sources.
For example, a wide variety of database systems collect similar data and each
system has been customized for the company. This results in similar collec-
tions of data being stored in different formats, terminologies, and even logically
arranged ways. As such, data exchange and integration can be hindered by these
customized databases. Thus, schema matching becomes necessary across various
domains including sharing health records [17] and merging documents with dif-
ferent formats [1]. Although schema matching is well-studied [1], the existing
methods entail significant manual labor or fail to generalize across domains [21].

Given the rising focus on privacy across various sectors such as healthcare,
there is a need to focus on schema-level rather than instance- or hybrid levels (i.e.,
no exchange of information related to instance-level records). Under the schema-
level paradigm, only table and attribute information such as the name, descrip-
tion, meta-data, and summary statistics are shared. Meta-data and summary
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MIMIC Dataset OMOP Dataset

table cont

‘mimic_admissions: the admissions table gives information regarding a patient’s admission to the || abe 1| omop.

the spans of time a person continuously receives
hospital. ealth care syster

Columns |Tyue | Size Column Description n: | Type ‘ ‘ Column Description

A foreign key to the visit_occurrence table of the visit immediately

admittime provides the date and time the patient was admitted to the Preceding-
preceding this visit.

admittime | date | 22 | pocpiea visit_occurrence_ | """

Fig. 1. Example of an identified schema match between the mimic admission table
and admittime source field in MIMIC-IIT and the omop visit table and preced-
ing visit_time field in OMOP using both semantics and constraints.

statistics pose fewer privacy risks and are often shared for federated databases
and privacy-preserving learning [4]. Several approaches have been proposed to
automate schema-level matching, including constraint-based approaches (3,9, 16]
and linguistic-based approaches [18,21]. Unfortunately, both approaches entail
background knowledge to manually define the mapping between the two rela-
tions, assume the content of the elements will be the same across the two schemas,
or fail to adequately capture the similarities between the field descriptions. This
can yield suboptimal performance for new applications.

Deep learning (DL) has been proposed as a new paradigm for data inte-
gration [19] given its success in other applications such as computer vision and
natural language processing. DITTO, a state-of-the-art (SOTA) entity match-
ing model, utilizes a pre-trained Transformer-based language model that can
solve classification problems with entity matching [13]. However, DITTO may
not perform well across different domains. SMAT, another DL model, generates
a schema-level embedding using the element names and descriptions to identify
the matching relations [21]. These models demonstrate the potential of DL to
encode the textual information present in the attribute names and descriptions,
yet ignore constraints such as data types, ranges, and key constraints.

We propose CONSchema to fuse the constraint information such as the data
type, range, and key constraints with the textual information (Fig.1 shows an
example) to improve DL-based matching. The central insight is a classification
model can then learn the interaction between the attribute similarity and the
constraint relatedness, without requiring manual mapping. Furthermore, exist-
ing strategies do not assess the generalizability of the matching model to unseen
elements within the schema. Often, training samples include either the source
or target schema elements, thereby offering an optimistic assessment of the pre-
dictive performance. We introduce a unseen partition experimental setting and
our experiments on 6 datasets demonstrate the robustness of CONSchema. The
CONSchema is publicly available in the GitHub repository.!

2 Related Work

We briefly summarize the existing schema-level matching work focused on
relational databases. Instance-level and hybrid-level models require privacy-
preserving mechanisms for sensitive domains like healthcare and are beyond the

! https://github.com /kwu78/CONSchema.
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scope of this work. Other related schema matching can be found in the survey
[1]. Thus, we focus on existing schema-level matching methods [1].

Linguistic-level approaches calculate similarity based on the name of the
attributes and/or the description of the attributes. Previous heuristic meth-
ods [3,7,15] provided decent solutions for schema matching with combinations
of matchers. However, the numerical representations of the schema with dis-
tance metrics would not handle the semantic heterogeneity. Recent DL models
have been introduced to perform linguistic matching. ADnEV proposed to post-
process the matching results from other matchers [18]. Unfortunately, the quality
of the matchers impacts the ADnEV performance. SMAT [21] utilized attention-
over-attention to pretrain a language model for the attributes, and obtained
SOTA performance on several schema-level matching benchmark datasets.

The constraint-based approach relies on the meta-data of the attributes such
as the data types and value ranges, uniqueness, optionality, relationship types,
and cardinalities. A measure of similarity can be determined by data types
and domains, key characteristics (e.g., unique, primary, foreign), and relation-
ships [9, 16]. However, precise matching requires rich constraint information. The
hybrid approach combining constraint-based and instance-based approaches [2, 6]
has been popularized to achieve flexible and robust matchers. Unfortunately,
instance-based approaches can result in privacy leakage.

3 CONSchema

3.1 Problem Statement

Given two table descriptions Sts and Spr, two attributes’ names Ngy and
Npo, their descriptions Sg1 and Sga, and their constraints Cr; and Cre (ie.,
data type, value ranges, primary key, and foreign key) from the source and
target schema respectively, we construct two sets of sequences: (1) the source
sequence set Sg = <Np;>, <Srg + Sr1>,<Cp1>, and (2) the target sequence
set ST = <Npgo>, <Str + Sp2>, <Cpo>. For Fig. 1, the source example can be
constructed as the sequence set “the admissions table gives information regard-
ing a patient’s admission to the hospital”, “admittime”, “admittime provides the
date and time the patient was admitted to the hospital”, “date” and size 13. For
training, there is an annotated label L(Sg, St) where 0 and 1 denotes two fields
are not related (i.e., not mapped to each other) and related (i.e., corresponding
attribute-to-attribute matching), respectively. The task objective is then classi-
fying the relatedness between the two attributes.

3.2 Model

Textual Similarity Embedding. The textual embedding captures the relat-
edness between the two attributes’ names and descriptions. The idea is that the
semantic similarity between the two attributes serves as the proxy for related-
ness. For example, SMAT constructs two sentence pairs where a sentence consists
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Fig. 2. Tllustration of CONSchema’s structure.

of the attribute name and description (e.g., <Ng1, S7s+Sr1>). The model then
learns the textual similarity between the two sentence pairs and is trained using
the labels without encoding domain knowledge explicitly. CONSchema uses the
last SMAT layer to serve as the attribute embedding (a 2-dimensional vector)
that captures the semantic similarity between the two attributes. SMAT is cho-
sen due to its superior performance for schema matching [21].

Constraint Encoding. The key idea behind CONSchema is to fuse the schema
constraints (i.e., Crq and Cgs) to the textual embedding. This is done by encod-
ing the constraints into a numerical vector format where each column represents
a different constraint such that a downstream classifier can then learn the impor-
tance without requiring previous knowledge. For our experiments, we focus on
the data types (e.g., varchar, datetime, int, numeric), the data size for the con-
tents (2 versus 128 characters), and key constraints. To represent the data type,
we use a one-hot encoding where the value is 1 for the corresponding feature
and 0 elsewhere. For example, if the attribute type is a String, then the isString
feature will be set to 1. Similarly, key constraints are encapsulated using the
one-hot encoding mechanism (e.g., isPrimaryKey, isForeignKey). The raw data
size serves as a numeric element.

For the Fig. 1 scenario, the “admittime” attribute is a date type with a size of
22, thus the isDate feature is set to be 1 while the other data types remain 0 (i.e.,
isVarchar, isInt2, isInt4). In addition, the size is set to 22 (i.e., size =22). For
the OMOP attribute, since it is a varchar of size 10, the vector representation
is all 0 except isVarchar =1 and size = 10. This representation avoids the need
to create ad-hoc rules for each domain. Other constraints such as uniqueness,
optionality, and functional dependencies can be captured in a similar fashion,
but such information is not available in the 6 datasets used for our experiments.

Final Classification. The textual similarity embedding and the constraint
encoding representations are concatenated together to create the final vector
representation. This fused vector encapsulates the semantic relation and the con-
straints of the two attributes and is then used with the annotated labels to train a
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Table 1. Summary statistics of the 6 datasets used in our experiments. The columns
under # capture the conversion statistics for table, attribute, and related, respectively.
The next 5 columns under % represent the data type distribution where B/12/14
denotes boolean, int2, and int4; F1/Arr/Oth represents float, array, and other; and
PK/SK denotes primary and secondary keys. The last 3 columns provide the character
length of the textual descriptions.

# % Length

Tab. | Attr. | Rel. | String | Date | B/12/14 | F1/Arr/Oth | PK/SK | Min | Avg | Max
MIMIC [11] |25 |240 129 47 |19 |-/9/15 |-/-/10 /- 64 | 255 688
Synthea [20] |12 |11 105 77 |14 | -/4/1 |-/-/4 /- 45 219 688
CMS 3] 5 96 |196 53 |14 | -/12/21 | -/-/- /- 54 232|688
Real Estate [8] |3 |76 |66 |46 - | 14/-/20 11/-/- /- 4 12 |20
IMDB [12] 23 120 45 33 19 | 3/-/33 | 5/7/- 16/20 |63 132 306
Thalia [10] 21 167 |52 |70 14 |-/-/16 |-/-/- -/ 14 (22 35

multi-layer perceptron (MLP).? MLP can capture non-linear interactions (espe-
cially with an increasing number of hidden layers) and is relatively lightweight
compared to an end-to-end DL model that will incur significant training and
inference overhead. Moreover, the MLP seamlessly integrates with existing DL
frameworks, offering adaptability and unlocking the potential of the models. In
this work, the MLP consists of two linear layers and a ReLU layer. A softmax
is then applied to the outputs of MLP in order to obtain a prediction of schema
matching. Figure 2 shows the entire architecture of CONSchema.

4 Experiments

Our experiments are designed to evaluate the accuracy and robustness of the
model to unseen attributes. Existing evaluation strategies involves randomly par-
titioning the attribute pairs into training, validation, and test datasets. Thus, the
source attribute likely occurs in at least 1 pair sample in the training dataset and
provides an optimistic assessment of the model performance as partial informa-
tion on the test pairs has been seen by the model. Instead, we introduce an unseen
partition evaluation strategy. We randomly partition the source attributes and
pair them with all the target attributes, ensuring source attributes in test never
appear in training or validation, named as {dataset} S. The same strategy is
applied on the target attributes and denoted as {dataset} T.

Our experiments evaluate the schema-matching models under our unseen
partition using a ratio of 80-10-10 for train, validation, and test, respectively.
The hidden units and learning rate sweep are done over the ranges [24, 36, 48, 64]
and [le—5, 5e—b, le—4], respectively. Since the DL-based models are sensitive
to the initialization of the parameters, we train 5 versions of the model using
different initial weights and report the mean value across the 5 initializations.

2 We explored other models such as random forest and logistic regression and the
results follow similar trends with MLP providing the largest performance boost.



236 K. Wu et al.

Table 2. Comparison of precision (P), recall (R), and F1 (F) on the 6 datasets under
the unseen partition evaluation strategy. The best performance is bolded and the
second best is underlined.

Datasets DITTO SMAT Con-MLP CONSchema

P R F1 P R F1 P R F1 P R F1
MIMIC_S 0.002 | 0.323 |0.004 | 0.261 0.467 |0.284 |0.041|1.000 0.079 |0.247 | 0.550 |0.298
MIMIC T 0.001 |0.285 |0.002 |0.137 0.650 |0.226 0.008 1.000  0.016 |0.122 |0.750 |0.209

Synthea T 0.003 | 0.314 |0.006 | 0.259 |1.000 |0.411 |0.256|1.000 | 0.408 |0.345 1.0000.513

Synthea S 0.004 | 0.282 |0.008 |0.409 | 0.720|0.457 ' 0.077 0.300 |0.122 |0.430  0.680 |0.510

CMS_S 0.156 |0.321 |0.210 | 0.289 |0.821 |0.426 |0.214]0.333 1 0.261 |0.430|0.933 | 0.575
CMS_T 0.008 |0.763 |0.015 | 0.097 |0.200 |0.089 |0.009|0.316 | 0.017 |0.140|0.316 | 0.194
IMDB_S 0.149 |0.203 |0.172/0.107 |0.125 |0.110 |0.079|0.375|0.130 | 0.224 | 0.150 |0.162
IMDB_T 0.056 |0.867|0.355 0.092 |0.422 [0.150 |0.018/0.333 |0.058 |0.143  0.444 |0.216

Real Estate_S |0.138 |0.109 |0.122 | 0.900 | 0.167 |0.279 |0.214 | 1.000  0.353 | 0.470 |0.400 | 0.352
Real Estate_ T | 0.613 |0.533 |0.5530.084 | 0.500 |0.111 |0.065|0.500 | 0.115 | 0.082 |0.667 | 0.146
Thalia_S 0.117 10.269 |0.163 |0.120 | 0.400 |0.181 |0.167 1.000  0.286 |0.252 | 0.760 |0.374
Thalia_ T 0.052 | 0.880 |0.095 |0.109 | 0.431 |0.164 ' 0.116 1.000 0.208 |0.176  0.600 |0.273

Datasets. We assess the models on the OMAP benchmark, a schema-level
matching healthcare dataset [21] mapping 3 databases to the Observational Med-
ical Outcomes Partnership (OMOP) Common Data Model standard to facilitate
evidence-gathering and informed decision-making [17], and 3 popular schema
matching benchmark datasets, IMDB, Real Estate, and Thalia, used for several
existing studies [12]. For each dataset, the element table name with its descrip-
tions, attribute column name with its descriptions, attribute data type, and
attribute key constraints are used to construct the sequence. The label anno-
tation is based on the final ETL design, where a 1 denotes the table-column
in the source schema was mapped to a table-column in the target schema. The
summary statistics for the 6 datasets are summarized in Table 1.

Baseline Methods. CONSchema is compared against 3 matching models: (1)
DITTO [13], a SOTA entity matching model based on the pre-trained Trans-
former model that matches using a sequence-pair classification problem; (2)
SMAT |[21], a SOTA schema matching model generating embeddings from the
attribute name and description and then feeding the embedding to a MLP to
conduct the classification task; and (3) CON-MLP, an MLP model using only
the constraint encoding as an input. The optimal hyperparameters are deter-
mined using grid search and evaluation on the validation dataset.

5 Results

5.1 Unseen Partition Evaluation

Table2 summarizes the results under our unseen evaluation strategy, where
source ({dataset} S)/ target ({dataset} T) attributes in the test dataset are
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Fig. 3. Precision-Recall Curves for two of the datasets.

guaranteed not to be seen during training. In comparison with the random par-
tition evaluation for MIMIC, Synthea, and CMS in [21], we observe that the
recall for both DITTO (i.e., 0.462, 0.40, 0.636) and SMAT (i.e., 0.846, 0.950,
and 0.909 respectively) is lower. This suggests the performance under random
splits tends to overestimate the recall performance as having seen some of the
pairings with the attributes can help the model generalize better on the test set.

We observe that CONSchema achieves the highest precision across 4 of the 6
datasets and second best for MIMIC and Real Estate on two different partitions.
It also yields the best F1 score for MIMIC, Synthea, CMS, and Thalia, and the
second-best F1 score for Real Estate and IMDB. Furthermore, the F1 scores for
CONSchema are all better than SMAT for the 6 datasets, except MIMIC _T.
This provides evidence that the constraints offer further information to more
accurately identify the correspondences. Moreover, there are no huge differences
on CONSchema between target and source partitions demonstrating its robust-
ness.

Semantic embeddings can work even without long and well-formed textual
descriptions. As shown in Table 1, the real estate database attributes are short
(average of 12 characters). Examples of the textual descriptions include “water”,
“agent name”, “type”, and “firm city” which correspond to the attributes “water”,
“agent name”, “type”, and “firm_ city”. From Table 2, we observe that DITTO
and SMAT, which rely only on textual descriptions, can achieve reasonable per-
formance compared to the longer counterparts such as CMS and Synthea.

The Con-MLP results illustrate the importance of our constraint vector repre-
sentation. Without any textual similarity information, the model achieves better
F1 scores across all but IMDB datasets when compared with DITTO. The F1
score is also better than SMAT for IMDB, Real Estate, and Thalia. To bet-
ter understand the benefits of the constraint representation, Table 1 summarizes
the mean, or frequency, of each encoded column for its corresponding dataset.
We observe that Synthea has the highest proportion of the Varchar datatype
when compared to the other datasets. Thus, CON-MLP is unable to achieve high
recall or F1 as the constraint representation offers little information. In contrast,
Real Estate, IMDB, MIMIC, and Thalia have a diversity of data types, thereby
yielding improved recall scores compared to SMAT. The constraint statistics
also illustrate the importance of appropriately specifying the data type and data
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Fig. 4. Illustration of the SHAP values to explain the impact of the features in CON-
Schema.

range in the database schema. Ambiguous information is likely to hurt CON-
Schema more than helping it to achieve better results.

To better understand the trade-off in precision and recall, Fig.3 plots the
precision-recall curve for two datasets. For CMS, the precision of CONSchema is
consistently higher than SMAT until the higher recall rates. DITTO and CON-
MLP have comparable precision at the lower recall and DITTO drops below
CON-MLP for recall > 0.3. For Synthea, we observe slightly different dynamics
where at the lower recall (<0.2), SMAT outperforms CONSchema in terms of
precision. However, for recall between 0.2 and 0.5, CONSchema outperforms
SMAT significantly in terms of precision. For recall > 0.5, the two methods
yield similar precision. The plots suggest for midrange recall, the constraints are
particularly helpful to differentiate the positive matches. The plots also suggest
that solely using constraints can generate comparable precision at lower recall
rates.

5.2 Explaining CONSchema Matching Decisions

To better understand the predictions of CONSchema, we investigate the impor-
tance of the features and how they differ across the three datasets. Our analysis
is based on the SHapley Additive exPlanations (SHAP) framework [14] to better
understand the impact with respect to the label. SHAP is a popular explainable
artificial intelligence framework that is model-agnostic. It is an additive feature
attribution method and explains the change in the expected model prediction
when conditioning on that feature. The SHAP analysis is performed on the best-
performing model from the 5 different versions.

Figure 4 provides the summary plots for 3 of the 6 datasets where the features
are sorted in descending order of their overall impact on the model output. The
Y-axis labels with 1 (i.e., size 1) represent the constraints of the source dataset,
whereas the 2 represent the constraints of the target dataset. The plots illustrate
that the SMAT output score is one of the most important features across all
datasets, which is not surprising given the results from Table 2. However, the
importance of the constraints on the precision is illustrated both for IMDB and
Thalia. For IMDB (Fig. 4a), which has the richest constraint diversity, we observe
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that the data type (string versus integer) is almost equivalent in importance to
SMAT. Similarly, for Thalia (Fig.4c), the size of the target data type is more
important than SMAT. On Real Estate (Fig.4b), we observe boolean, integer,
and string all have top SHAP values. This further illustrates the importance of
constraint diversity towards improving performance.

5.3 CMS Case Study

We also performed a qualitative study on the CMS dataset by assessing three dif-
ferent scenarios. The first positively maps the CMS icd9 dgns_cd attribute from
table inpatientclaims (varchar type of size 100 with a description of “claim diag-
nosis code 1 - claim diagnosis code 10”) to the OMOP cause source concept_id
element from table death (int4 type of size 10 with a description of “a foreign key
to the concept that refers to the code used in the source. note this variable name
is abbreviated to ensure it will be allowable across database platforms.”). CON-
Schema correctly identifies the match over SMAT even though the descriptions
are dissimilar as the constraints indicatethey might be potentially related.

The second is a negative pair where the CMS clm from dt attribute from
the inpatientclaims table (date type of size 13 with the description “claims start
date”) does not map to the OMOP condition start datetime element from the
condition occurrence table (date type of size 296 with the description “the date
and time when the instance of the condition is recorded”). CONSchema incor-
rectly identifies a match whereas SMAT does not. We observe both the text
(the start date of a claim and the start time of a medical condition) and the
constraints are similar, thus leading to an incorrect conclusion by CONSchema.

The last scenario is a positive pair that matches the CMS sp_cncr attribute
from the beneficiary summary table (int2 type of size 5 with the description
“chronic condition: cancer”) and the OMOP cohort _definition id element from
the cohort table (int4 type of size 10 with description “a foreign key to a record in
the cohort definition table containing relevant cohort definition information”).
Both SMAT and CONSchema incorrectly classify this sample as the textual
description of OMOP is too broad (no text related to the chronic condition
cancer), and the constraint type encoding does not convey enough information.

6 Conclusion

This paper proposes CONSchema, a model that incorporates schema constraints
and textual descriptions to achieve better schema-level matching. As it does not
utilize instance-level information and avoids directly encoding domain knowl-
edge regarding the source and target systems, CONSchema can be used for
privacy-sensitive applications. Moreover, our constraint encoding can encompass
categorical-style features (type of data, type of constraint) and numeric repre-
sentations (size of data) common across a variety of relational database schemas.
We also propose an evaluation strategy to better understand the generalizability
of existing models and demonstrate the robustness on 6 datasets.
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There are several limitations of our work. First, the F1 scores are too low
to be used in practice. Yet, the improvement in precision can facilitate less
manual matching by prioritizing the predicted positive cases. Next, utilizing
one-hot encoding to represent the constraints can yield sparse inputs for large
number of constraints. This can be addressed by utilizing an auto-encoder to
reduce variations or inconsistencies in the constraints originating from diverse
data sources. Another limitation is the need for sufficient labels. We posit that
contrastive learning techniques and data augmentation approaches may reduce
the need for annotations and improve predictive performance. We also note a
stronger evaluation strategy is to use the zero-shot learning framework where
the model is not trained on any of the source or target attributes, and leave this
for future work. Finally, CONSchema has only been demonstrated for relational
schemas and should be extended to encompass a variety of data (e.g., nested
data models and unstructured data) and data discovery tasks.
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