Physica D 460 (2024) 134082

Contents lists available at ScienceDirect

Physica D

journal homepage: www.elsevier.com/locate/physd — —

Check for

A DeepParticle method for learning and generating aggregation patterns in | e
multi-dimensional Keller-Segel chemotaxis systems
Zhongjian Wang?, Jack Xin ", Zhiwen Zhang "

a Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang
Link, Singapore 637371, Singapore

b Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA

¢ Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region of China

ARTICLE INFO ABSTRACT

Communicated by V.M. Perez-Garcia We study a regularized interacting particle method for computing aggregation patterns and near singular
solutions of a Keller-Segel (KS) chemotaxis system in two and three space dimensions, then further develop the

Iliglt :—r(si;el system DeepParticle method to learn and generate solutions under variations of physical parameters. The KS solutions

Chemotaxis are approximated as empirical measures of particles that self-adapt to the high gradient part of solutions. We

Interacting particle approximation utilize the expressiveness of deep neural networks (DNNs) to represent the transform of samples from a given

Optimal transportation initial (source) distribution to a target distribution at a finite time T prior to blowup without assuming the

Wasserstein distance invertibility of the transforms. In the training stage, we update the network weights by minimizing a discrete

Deep neural networks 2-Wasserstein distance between the input and target empirical measures. To reduce the computational cost,
we develop an iterative divide-and-conquer algorithm to find the optimal transition matrix in the Wasserstein
distance. We present numerical results of the DeepParticle framework for successful learning and generation
of KS dynamics in the presence of laminar and chaotic flows. The physical parameter in this work is either
the evolution time or the flow amplitude in the advection-dominated regime.

1. Introduction convolution. The KS system then reduces to a scalar non-local non-

linear advection-diffusion PDE governing the evolution of the density
Chemotaxis partial differential equations (PDEs) were introduced by function p:
Keller and Segel (KS [1]) to describe the aggregation of the slime mold
amoeba Dictyostelium discoideum due to an attractive chemical sub- pr=uldp+yV-(pV(K % p)). 2

stance. Related random walk model by Patlak was known earlier [2],

see [3] for an analysis of basic taxis behaviors (aggregation, blowup, For modeling chemotaxis in a fluid environment such as ocean [5-

and collapse) based on reinforced random walks. Recall a common form 91, people studied Eq. (2) with the advective Lie derivative p on the
of KS model [4] as follows: left hand:

0, =V-(uVp—ypVe), ec,=Ac—k*c+p, ¢h) PtV (pV)=pdp+ x V- (pV(K *p)). 3)
where y.u (e, k) are positive (non-negative) constants. The model is The mixing mechanism of the flow field v is known to slow down or

called elliptic if € = 0 (when ¢ evolves rapidly to a local equilibrium),
and parabolic if € > 0. The p is the density of active particles (bacteria),
and c is the concentration of chemo-attractant. The bacteria diffuse
with mobility x and drift in the direction of V¢ with velocity yVe,
where y is called chemo-sensitivity.

smooth out blowup or aggregation in (2), see analysis in [5,6,8,9] and
references therein, and related convection induced smoothing in fluids
[10,11]. Eq. (3) is the macroscopic limit (McKean-Vlasov equation) of
the interacting particle system below as J 1 oo:

In the simplest regime (e,k) = 0, the concentration equation be- ) M J ) i ) )
comes the Poisson equation —Ac = p. Subject to a suitable boundary dX) =——=Vy; Z KX = X')dt +v(X)dt + 2 ud W,
o S . J =T @
condition of ¢, the classical integral representation ¢ = —-K =x p =Lt
holds, where K is the Green’s function of the Laplacian, and * denotes i=1...J,
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where M is the conserved total mass (integral of p), and W/’s are
independent Brownian motions in RY.

In this work, v is a prescribed divergence-free vector field. We shall
approximate p of Eq. (3) numerically based on the associated interact-
ing particle system in two and three spatial dimensions (d = 2,3), and
carry out a systematic deep learning study (a.k.a. DeepParticle [12]) on
the (u, v) dependency of solutions. As we are interested in studying near
singular KS solutions, the main challenge for training data collection is
to approximate the fields p(x) and c(x) reliably as they intensify. Due
to the singular behavior of Green’s function, as particles come close to
each other, our approach is to regularize KX in (4) for approximating
p(x) as particles aggregate, in a similar spirit to the vortex blob method
for fluids ([13] and references therein) and [14].

Deep learning tools have been applied broadly for scientific comput-
ing in recent years, such as solving PDEs and their inverse problems;
see [12,15] and references therein. DeepParticle [12] is based on a
particle method for solving a time-dependent physically parameter-
ized PDE, whose solution is approximated by the particle empirical
measure (distribution). A deep neural network (DNN) with physical
parameter dependence learns the mapping from the initial particle
distribution to the particle distribution at time 7" with training data
over sampled physical parameters provided by the particle method.
The trained DNN then generates approximate solutions at time 7 for
new physical parameters unseen in the training process. DeepParticle
has been successfully designed and trained for learning and generating
invariant measures of stochastic interacting particle systems (at T = o)
arising in reaction—diffusion front speeds in three-dimensional chaotic
flows [12]. In this paper, we further develop DeepParticle to learn and
generate KS solutions exhibiting aggregation behavior at a finite time
T before blow-up for a range of diffusivity u and advection amplitude
values.

The rest of the paper is organized as follows. In Section 2, we briefly
review the blow-up behavior in the KS model and the regularized
particle methods to solve the KS model. In Section 3, we present
our DeepParticle method to learn the transport map from an input
distribution to a target distribution. Moreover, we will discuss the
details of the implementation of our method and how to learn the
distributions in particle simulation of the KS model. In Section 4, we
show numerical results to demonstrate the performance of our method,
where both 2D and 3D KS chemotaxis systems will be studied. Finally,
conclusions and future works will be discussed in Section 5.

2. Regularized interacting particle method of KS model
2.1. Blow up behavior in KS model

We start from the simplest KS model without advection, namely
the Eq. (2) with 4 = y = 1 in two spatial dimensions (d = 2). This
system has been extensively studied by many authors; see the survey
article [16] and references therein. The conservation of mass holds:

d
— ,Hdx =0, 5
R Rzp(x ndx ()

which is also true for Eq. (3) when the advection field v is divergence-
free. If we set the total mass M = /RZ p(x,0)dx, the second moment
has a fixed time derivative, i.e.,

i/ﬁﬂ%mnm=ﬁﬁw—Mx ®)
dl R2 271'

where 8z is called the critical mass of the KS system. Accordingly, it
is well-known that: (1) if M > 8z, the system has no global smooth
solutions; (2) if M = 8z, the system has a global smooth solution, which
blows up as t — oo; and (3) if M < 8z, the system has a global smooth
solution.

In [5-7], an extra advection term is introduced to KS-type equa-
tions, in order to model organism movement in prescribed fluid flows.
Then, the second-moment identity in Eq. (6) and the subsequent
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blowup vs. global evolution results are no longer valid. By comparison
principle, [7] shows that if the total mass is smaller than the critical
mass, Eq. (3) has a global smooth solution with smooth initial data.
In the cases with supercritical mass, there are only numerical experi-
ments suggesting that the advection, if sufficiently large, prevents the
solutions from blowing up. Later, [9] shows that when the flow exerts a
‘stretching’ effect, the advection field v indeed suppresses the growth or
the concentration of chemo-attractant and hence the solution has global
regularity and exists for all time. Examples of stretching flows include
hyperbolic flows where v(x) = (xl, —ﬁx_) and laminar flows where
v(x) = (v(x_),0_), with x_ = (x,,...,x,) and v is periodic. However,
the case of chaotic flows, or when the amplitude of advection v is not
sufficiently large, remains open.

2.2. Regularized interacting particle methods

The singular behavior of the governing PDE and the associated
Green’s function that cause trouble for particle methods is a well-
known problem. The vortex blob method [17] provides a regularization
approach to extend vortex sheet motion past the singularity formation
time into the physically important roll-up regime, in which the points
representing the vortex sheet are replaced by vortices of prescribed
and fixed shape. Numerical calculations show regular motion for the
centers of the blobs even after the time when a curvature singularity
on a vortex sheet is formed. Later, a special form of the vortex blob
method [18] is used to calculate the roll-up of a periodic vortex
sheet resulting from the classical Kelvin-Helmholtz instability. The
singular solutions are closely related to the ill-posedness of vortex sheet
motion [19]. Nonetheless, as the regularization parameter approaches
zero, the regularized vortex sheet solution converges to a weak solution
of the Euler equation [20]. As in vortex blob methods, we formulate a
regularized interacting particle method (denoted as IPM from here on)
to solve KS chemotaxis systems.

Let us approximate the density function (solution of Eq. (2) or
Eq. (3)) with empirical distributions of particle positions. In SDE (4) on
particle positions, the chemo-attractant term
%V Xi ZLM 4 K(IX/ = X'|)dt causes numerical instabilities when
particles tend to concentrate. To overcome this difficulty, we replace
the singular kernel K(-) in (4) by a smoothed approximation K;(-), such
that K5(z) > K(z) as 6 — 0, where 6 > 0 is a regularization parameter.
For example, we define

lzI*
|z)2 462

Equipped with the kernel K;(-), we obtain a system of regularized
SDE:s for the particles as follows:

K;(z) = K(z) @)

J

Z Ks(1 X7 = X'y dt +v(X7)dt + /2y dW,
i=1,i#j ®)

i=L12...J,

. M
de = - TVX/

where J is the number of particles, X/ € R? is the position of the jth
particle, and dW/’s are mutually independent d-dimensional Brownian
motions. The convergence of a random particle blob method, similar
to (8) yet for KS without advection field v, is analyzed in [21]. For
a stochastic interacting particle method using heuristic collision and
splitting rules to bypass the singular behavior of Green’s function,
see [22].

Representing PDE solutions by particles belongs to the Lagrangian
framework. The Lagrangian methods have several advantages: (1) easy
to implement; (2) spatially mesh-free and self-adaptive; and (3) compu-
tational costs scale linearly with the dimension of spatial variables in
the underlying stochastic dynamical systems. If we discretize KS system
(3) on mesh grids with grid-based methods, e.g. finite element [23] and
spectral [24] methods, the number of mesh grids depends exponentially
on the spatial dimension. The key benefit of the Lagrangian framework
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in computing KS models is its natural capability to follow the KS
solution when a singular behavior is emerging.

As we shall see, the stochastic particle method based on (8) re-
produces the well-known aggregation behavior and captures the KS
dynamics during the potential blow-up stage of evolution. This is an-
other step forward in our program of computing high gradient solutions
in the Lagrangian framework, which has shown encouraging results for
a range of multi-dimensional singularly-perturbed advection-diffusion
PDEs. We refer interested readers to our recent progress in developing
Lagrangian methods to compute effective diffusivities in chaotic or
random flows [25-28] and KPP front speeds in chaotic flows [29] and
random flows [30]. There are also deterministic particle methods ([14,
31] and references therein) for a class of KS and degenerate diffusion
equations that fall in our DeepParticle framework (see Section 3).

Though the IPM in our study here is mesh-free and self-adaptive for
solving multi-dimensional KS chemotaxis systems, the computational
costs remain high if we want to study the systems under a variation of
parameters (e.g. the evolution time T and the amplitude of advection
A). Also, the number of particles J cannot be too large as the chemo-
attractant term has O(J?) complexity in each time step evolution. The
total complexity is then O(J? %), where At is the time step of discretiza-
tion for Eq. (8). On the other hand, our numerical simulation of Eq. (8)
shows that the distribution at finite time T, starting from the same
initial distribution, may have continuous dependence on the physical
parameters. Therefore in the next section, we will introduce a deep
learning algorithm that can learn the continuous dependence of the
solutions on parameters of the KS models and generate approximated
samples with O(J) complexity.

3. Deep particle method

In this section, we introduce a DeepParticle algorithm to learn the
features of the transport map from a trivial (input) distribution to a
target (output) distribution. The mapping error is measured by the
2-Wasserstein distance.

3.1. Discrete Wasserstein distance

Given distributions y and v defined on metric spaces X and Y, let us
construct a transport map f*0 : X - Y such that ff(y) = v, where star
denotes the push forward of the map. For any function f, : X — Y,
the 2-Wasserstein distance between f, (¢) and v is defined by:

1/2
Wy (f (), v) = ( dist(y', y)* dy(y’,y>> , ©)

inf
rer(f(wv) Jyxy
where I'(f,(u),v) denotes the collection of all measures on Y X Y with
marginals f,(u) and v on the first and second factors respectively,
and dist(-,-) denotes the metric (distance) on Y. A straightforward
derivation yields:

172
Wz(f*(ﬂ),\/)=< inf ) dist(f (x), y)? d}’(x,y)> , 10)

vE€l(uv) J xxy

where I'(u,v) denotes the collection of all measures on X x Y with
marginals 4 and v on the first and second factors respectively, and still
dist(-,-) denotes the metric (distance) on Y. To design computational
methods, we approximate distributions x4 and v by empirical distribu-

tion functions: y = % Z,]il d,, and v = L Z,N=1 8, , where N is the

number of samples in the empirical diStI‘ibjlvltiOIlS. Under the setting of
learning distribution from interacting particle methods, we take N < J
sub-samples from the terminal time position of system (4) to represent
the distribution. We will re-sample them every 1000 steps of training.
The preceding technique is usually referred to as mini-batch in the deep

learning literature.

Physica D: Nonlinear Phenomena 460 (2024) 134082

Table 1
Shape and size of network parameters to
learn in case of d =3 and p=1.

Parameter Shape Size

W, 30 x 4 120

by 30 x1 30

Wiy 30 x 30 900 x 4
by 30 x 1 30 x 4
W 3 x 30 90

bs 3x1 3

Total 3963

Any joint distribution in I'(u, v) can be approximated by an N X N
doubly stochastic matrix [32], denoted as transition matrix, y = (y; i
satisfying:

N N
vij 2 0; vij, Z}’ij =1 Vi, Z}’ij =1 an

i=1 j=1

Then (10) becomes
N 1/2

. 1 ) )
=( inf — Ny ). 12
W(f) <yé“r N [_; dist(f(x;),y;) n,) (12)

W (f) in (12) has a simple intuitive interpretation: given a y € I'(u, v)
and any pair of locations (x,y), the value of y(x,y) tells us what
proportion of f,(u) mass at f(x) should be transferred to y, in order
to reconfigure f,(x) into v. Computing the effort of moving a unit of
mass from f(x) to y by dist(f(x), y)? yields the interpretation of W as
the minimal effort (optimal transportation [33]) to reconfigure f,(u)
mass distribution into that of v.

3.2. Training data and neural network configuration

Note that given any fixed set of {x;}¥ .
(training data), we have derived Eq. (12) to be minimized by gradient
descent. In addition, we aim to find a network that can represent the
change of target distribution over some physical parameters. In such
a scenario, more than one set of data ({x;} and {y;} consists of one
set of data) should be assimilated. More precisely, let the total number
of data set be denoted as N,,. Then we have N, pairs of ii.d.
samples of input and output distribution, denoted by {x;,} and {y;,}
for r =1-- Ny, Associated with the rth data set ({x;,} and {y;,}), we
assume that there is a physical parameter 5, € RP. To represent this
in the network, we encode 7, to each data in the set, i.e., the input of
the network is {(x;,.7,)}; C R¥*7. This procedure is also called padding
in the literature. The output of the network is then denoted by fy,(x;#)
where 6’s are all trainable parameters of the network, i.e., the weights
in the neural network.

We want to emphasize that our neural network is very compact.
Between the input layer (/;) and output layer (/¢), there are 5 latent
layers, where each layer is 30 in width. The adjacent layers /; and 7,
are fully connected, i.e.,

c R? and {yj}f: c R4

Iy = tanh(W,(I) + b)) i=0,...,4, (13)

where W, is (weight) matrix width of /,,; and /;,, b; is the (bias)
vector with the same dimension as /;, and tanh(-) is the activation
function. For the output layer, the formula is similar except we do
not apply the activation function. In the case of d = 2 and p = 1
(e.g. the first numerical example in computing blowup behavior of KS
without advection in Section 4.1), there are 3902 parameters (weight
and bias) to learn. In 3D cases, we find that the network performs well
even without altering the width of latent layers, where the parameter
number is 3963; see Table 1 for the detailed shape and size.

Remark 3.1. Compared with the par-net approach developed in [12],
we found that padding achieves similar performance when learning
distribution in particle simulation of the KS model.
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In our computation, by equipping R? with Euclidean metric, we can
get the training loss function as follows:

ny N
52 1 . . 2
W=(fy) = N_nn ; (y,lenli:’v f/z—:1 [foxipsm) = v, yij,r) . 14)

The goal of DeepParticle algorithm is then to find (0, {y,}) through
minimizing

ny N
PO (1) = 20 Y (IfeCeirin) = v, %7,,) - (15)

r=11i,j=1
3.3. Iterative method in finding transition matrix y

Notice that, with fixed 0, finding the transition matrix y to calculate
discrete Wasserstein distance in (14) is a linear programming problem
with a degree of freedom N2. When the number of particles N becomes
large, it is expensive to go by a conventional algorithm, e.g. interior
point algorithm or simplex algorithm. We now present a mini-batch
linear programming algorithm to find the best y for each inner sum of
(14), while suppressing #, dependence in f, for notational simplicity.

The problem (14) is a linear programming problem on the bounded
convex set I'V of vector space of real N X N matrices. By Choquet’s
theorem, this problem admits solutions that are extremal points of
I'N. The set of all doubly stochastic matrix I'N is viewed as Birkhoff
polytope. The Birkhoff-von Neumann theorem [34] states that such
polytope is the convex hull of all permutation matrices, i.e., those
matrices such that y;; = §; ) for some permutation z of {I,..., N},
where 6 is the Kronecker symbol.

Our algorithm is defined iteratively. We start from a permutation
matrix, e.g., 7;; = 6;;. In each iteration, we randomly select columns and
corresponding rows such that the submatrix is a permutation matrix.
Then, the entries of the submatrix consist of a linear programming
problem under the constraint that maintains column-wise and row-
wise sums equal to one. To be precise, we randomly choose {i;} ,’(Vi Iy
(M <« N) from {1,2,..., N} without replacement. Then, we select the
indices j,’s such that Viesi = 1- The cost function of the sub-problem is

M
™y =Y 1 fo) -, IPr (16)

ikJi
k=1

subject to

M
Zy‘.,‘c’jl =1 vi=1,...M
k=1

17
i, =1

oy Vk=1,....M
k+Ji

= TM =

70,20 Vki=1,.. M.

ki
Then, the minimizer y* is again a permutation matrix. The linear
programming sub-problem of much smaller size is solved by the interior
point method [35]. In addition, as the goal is to find a permutation
matrix, we set the tolerance of the interior point to be relatively large
and project the resulting approximation to a permutation matrix. In
our approach, we terminate the iteration of the sub-problem until
min, (max; yi’; ) > 05 This is to ensure that there is a unique large-value
entry in each column. As a projection, we update y by,

1 if j = argmax, 3,
Y = { 0 otherwise. (18)

We observe that the global minimizer of y in (14) is also the solution
of sub-problems (16) with arbitrarily selected rows and columns, sub-
ject to the row and column partial sum values of the global minimum.
The selection of rows can be one’s own choice. In our approach, in
each step after gradient descent, we randomly select rows to solve the
optimization problem iteratively.
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Compared with the Wasserstein Generative Adversarial Network
(WGAN) proposed in [36], (15) is a Min-Min optimization problem.
Both Adam gradient descent of § and mimi-batch optimization of y
are iteratively defined. We then alternatively update 0 and y to seek
a global minimizer of (15).

The computational cost of finding optimal y increases as N in-
creases, however, the network itself is independent of y. After training,
our network acts as a sampler for some target distribution v without
the assumption that v should have a closed-form distribution function.
At this stage, the input data is no longer limited by training data, and
an arbitrarily large amount of samples approximately obeying v can be
generated through x (uniform distribution).

3.4. Full training algorithm

The full training process is outlined in Alg. 1, and carried out on a
quad-core CPU desktop with an RTX2070 8 GB GPU at UC Irvine. The
training data is collected from the first-order explicit IPM that solves
the regularized SDE system (8) by Euler’s method in time. The IPM is
also the reference solver for evaluating DeepParticle generations.

Algorithm 1: DeepParticle Learning

Randomly initialize weight parameters  in network f, : RY —» RY;
repeat

for physical parameter set r < 0 to n, do

randomly select {x;,}, {y;,}, i.j =1 : N from i.i.d. samples
of input and target distribution (generated by the IPM)
with respect to physical parameter #,;

Yijr = 0; ), i.€., initialize it as a permutation matrix;

end

if not the first training mini-batch then

for physical parameter set r < 0 to n, do

6P. =400

while |§P,| < tol do

Po= XN oG n) = v, Py

randomly choose {ik’,}lf("i . from {1,2,---, N} without
replacement;

find {j,.,}L, such thaty, ; ,=1;

solve the linear programming sub-problem
(16)—(17) and get vy that is another permutation

matrix;
update {y;, /I,r}llcV,II:] with {yi’;‘,j“}l}c\fllzl ;
8P, = Xy o ipon) = v, 7, = Pre
end
end
end
repeat

N, ©N .

P= Zr:l Zw‘:] |f9(xi,r’ ”r) - yj,rlzyij,r’

0 < 0 —6,V,yP, 6, is the learning rate;

repeat

for physical parameter set r < 0 to n, do

N

P = Zi,j:l |f9(x,',rv n.) — yj,r|27[j,r;

randomly choose {ik’,},’c":l, from {1,2,--,N}
without replacement;

find {j, .}, such that Vieyirr = 1

solve the linear programming sub-problem
(16)-(17) and get y; which is another permutation
matrix;

update {yik,rjl,r}%=l with {y

* }M
i rdiy M I=1"
end

until given linear programming steps, N p;

until given steps for each training mini-batch;
until given number of training mini-batches, N;.;;
Return
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4. Numerical examples
4.1. 2D KS simulation and generation in the absence of advection

First, we consider the KS model without advection, namely the
Eq. (2). In addition, we choose u = y = 1. A straightforward derivation
shows that if the initial mass M > 8z and has a finite second moment,
the system will blow up in finite time.

As the first numerical example, we consider learning the change
of distribution depending on evolution time 7 starting from the initial
distribution. The initial distribution is assumed to be a uniform distribu-
tion on a ball with a radius 1 centered at the origin. Assuming the total
mass is 16z, we have then the initial second moment as 8z, which is
the same as in [7]. By Eq. (6), the system will blow up when 7 > 0.125.
Before applying the deep learning algorithm, we first investigate the
error of regularized method. In Fig. 1(a), we show the second moment
of IPM simulation with various regularization parameters. We see that
except for the value 62 = 1072, a smaller regularization parameter &
does not affect the accuracy of the IPM simulation when ¢ € [0,0.1].

Then, we turn to investigate the performance of the proposed Deep-
Particle algorithms. To get the training data, we apply the IPM with
regularization parameter 62 = 1073 for T = 0.1 with J = 10000 particles.
We keep the snapshots of the empirical distribution every 0.05 time
interval. During the training process, we consider a mini-batch of size
8 x 2000, which means that we take N,;,, = 8 sets of training data at
various times . Namely, we replace the general notation for physical
parameter 7 in the network expression f,(x,#). Notice that the physical
parameter # is the evolution time 7 in this example. In each data set
(mini-batch), we have N = 2000 subsamples from J = 10000 samples
from the IPM. We apply the Adam stochastic gradient descent method
to learn the parameters (weights and bias) in the network. We renew
the mini-batch every 1000 steps and renew y every 200 steps.

In Fig. 1(b), we show the training loss of W?2(f,) computed by
Eq. (14). Since we do not renew y at every step of the gradient
descent of parameters, the training loss is not uniformly decreasing.
However, the loss is on a decreasing trend overall, which shows that the
network successively learns the feature of the distribution as training
progresses. In addition, to validate the generalization capabilities of
the model, we generate a set of validation distributions at time 7 =
[0.005,0,025,0,045,0.065,0.095] and compute the Wasserstein distance
between output distribution and validation distribution every 10 steps.
The trend is similar to the training loss.

After the training process, we denote the trained parameters
(weights and bias) in the network as 6, and evaluate the network
fo,(x,) at various time ¢ with a larger batch {xi}iJ:/1 of size J' =
IM. Though J’' > J = 10K, the computational cost of the network
evaluation, O(J"), is obviously smaller than that of the IPM, O(sz)
as discussed in Section 2.2. In this example, the DeepParticle method
takes 0.015 s to generate J' = 1M samples while the reference IPM
needs 120 seconds to generate 10K samples.

We emphasize that the generated output of the network is the
image of a continuous map f,, acting on finer samples of the input
distribution, which provides an efficient method to generate samples
for the output distribution. In fact, it is not a direct replica of training
data when the physical parameter (e.g. the time 7) overlaps with a
value in the training set. The generated output of the network will not
congregate on points in the training empirical distribution; see Fig. 8.
Leveraging this feature, we can further use these generated samples as
a warm-up step to accelerate the IPM simulation. A similar idea appears
in our recent paper [12] when computing invariant measures.

In Fig. 1(c), we plot the second moment of the particles obtained by
the IPM solver (denoted as reference solution) and by our DeepParticle
(denoted as network) generation. We see that the slope of the second
moment by reference IPM solver deviates from the network output after
t = 0.075. This is due to the fact that the regularization parameter § > 0
in the IPM. For training data, we rely on the IPM solver most of the
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time when it has good accuracy prior to the time when the § effect
kicks in.

In Fig. 2, we plot the histogram of the network output (using 10°
particles) and reference distribution (using 10* particles) at different
times ¢. We see that the network learns the feature of particle concen-
tration and even has a more concentrated output than the reference
solver near the blowup time.

4.2. KS simulation and generation in the presence of 2D Laminar flows

Next, we consider the KS model with advection, i.e., v # 0 in the
Eq. (3). In this case, the movement of the organism is not only driven by
the chemotaxis gradient but also driven by some given environmental
fluid velocity field. In [7], the blow-up behavior of the KS model given
various strengths of environment velocity is investigated. Now we let

2
Vi) = A <‘°’Xp(0 Y )>, (19
which represents a laminar flow of amplitude A traveling along x
direction with y-dependent speed. There are two physical parameters
to learn in the model: the amplitude A of the advection field and the
evolution time 7.

Learning the dependence on A. We first study the dependence of the
aggregation patterns on the amplitude of the advection field while
fixing the evolution time. In this example, we use the IPM to generate
J = 10000 samples of solution after T = 0.02 with A = 100% ; =
0,....,10. The initial distribution of the IPM for each A is a uniform
distribution on the unit ball. In Fig. 3, we can see that the distribution
of the particles turns to a V shape as A increases. This is due to the
stretching effect by the laminar flow (19). Numerical results show that
our network can learn this important feature. In addition, our network
can also predict distribution when A is slightly outside the range of the
training set; see the case when A = 150 in Fig. 3(d). More precisely,
Fig. 3(c) shows that most of the outputs in the training set (1 < A < 100)
satisfy x < 3 while at A = 150, a reasonable proportion of particles is
on the right side of x = 3 and our network indeed predicts it.

Learning the dependence on evolution time. Next, we study the depen-
dence of the aggregation patterns on the evolution time at fixed A =
100. To generate training data, we run the IPM with 7 € [0,0.1] and
J = 10000 particles, and take snapshots of the empirical distribution at
t = 0,0.01,0.02,...,0.1. In Fig. 4, we compare the output distribution
generated by our network with the reference distribution generated
by the IPM at various evolution times. We see that both IPM and
DeepParticle methods reproduce the near blow-up behaviors, which are
consistent with the results obtained in [7].

4.3. KS simulation and generation in the presence of 3D flows

In this subsection, we study the KS model with advection in three-
dimensional space. There are two kinds of flows under consideration.
The first flow is the 3D laminar flow which is a natural generalization
of 2D laminar flow. The second one is the Kolmogorov flow which is a
well-known example of chaotic flow [27,37,38].

A 3D Laminar flow. In the first 3D example, we consider an advection
field of the following form:

exp(—y* — z%)
v(x,y,2) = A 0 . (20)
0

It describes the organism traveling along the x-direction while its speed
depends on the radial position of y and z variable. In Fig. 5 we show the
histogram of the generated distribution of our deep learning algorithms
with A = 10 and A = 100, which reproduces the distribution of corre-
sponding IPM simulation. The configuration of learning A dependence
is the same as one in 2D cases, except the input and output are now
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Fig. 1. Performance of the IPM (reference) and DeepParticle (network) algorithms.
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Fig. 3. Learning particle aggregation at different A values with 7 = 0.02 fixed. Both the interpolation and extrapolation performances of the network are tested.
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network output

reference output

(b) A =100

Fig. 5. Three cross sections of generated distributions at different A values in a 3D laminar flow (20).

in 3-dimension. From the numerical experiments (not shown), there
is no need to increase the width of our network. By comparing (a)
and (b) in Fig. 5, we see that the distribution becomes V shape in xy
projection and xz projection as the amplitude A increases. This is due
to the setting of the laminar flow. In the yz projection, the distribution
remains radial.

In Fig. 6, we show the xy projection of the distribution with various
A’s. It confirms that in addition to interpretation, our network is able
to extrapolate (predict) the aggregation pattern associated with the
amplitude A that is beyond and not far from the range in the training
set.

To further investigate the generalization capabilities of our learning
algorithms, we generate J; = 10° realizations using the network, de-
noted as pj, and J, = 10* realizations using the IPM, denoted as py. As
discussed in Section 3.3, direct computation of the Wasserstein distance
between point cloud data p; and py involves linear programming with

J, x J, = 1010 degrees of freedom. Therefore, we consider two types of
rough comparisons.

First, we observe through the training data that the distribution of
the first component increases as A increases. In Fig. 7(a), we compare
the means of the first component of the generation at various A’s.
Second, we compute an approximation of the W? distance between
pr and py. More precisely, we compute a 3D histogram of pp (py
correspondingly) with B> uniform cells (B = 20). Then, we approxi-
mate the distribution of pr by moving all points within a single cell
of the histogram to the center of the cell. Finally, we compute the
Wasserstein distance between the approximated distributions using the
iterative method in Section 3.3. See Fig. 7(b) for the comparison of
the W2 distance (solid line) as well as the absolute distance of the
mean (dashed line). These results show that our network can provide a
reliable approximation to the reference output associated with different
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Fig. 7. Comparison of the generation at various A’s in a 3D laminar flow (20).

A’s within a certain range of the largest A in the training set. Then, the
network gradually generates larger errors if we further increase A.

The 3D Kolmogorov flow. In the second example, we investigate the
case when the organism travels and aggregates in chaotic streamlines
given by the Kolmogorov flow [27,37,38]:

sin(27 z)
v(x,y,2) = A |sin(2zx) |.
sin(2zy)

2D

In Fig. 8, we compare the distributions generated by the network
method and the reference solver (i.e., the IPM) when A = 100 and
t = 0.1. This demonstrates that our network method, after learning
from discrete empirical data, is capable of generating continuous dis-
tributions. And in Fig. 9, we compare the distributions associated with
various amplitude A’s when projected to xy plane. The distributions are
in general a radial distribution and the radius of the distribution in-
creases when A increases (see also the second moment plot in Fig. 10).
The phenomenon differs from the one in laminar flow. This may result

from the mixing mechanism of the chaotic flow that spreads and acts
against the chemotaxis aggregation.

Finally, we summarize the performance of our algorithms measured
by the Wasserstein distance in the validation and prediction data set in
Table 2 as follows. These results show that the DeepParticle method is
an efficient method for learning and generating aggregation patterns in
2D and 3D KS chemotaxis systems.

5. Conclusions and future works

We proposed a regularized interacting particle method (IPM) to
compute aggregation patterns and near singular solutions in multi-
dimensional KS systems. We then studied a DeepParticle method to
learn and generate solutions for KS systems with dependence on phys-
ical parameters (e.g. the flow amplitude in the advection-dominated
regime and the evolution time) by minimizing the 2-Wasserstein dis-
tance between the source and target distributions. During the training
stage, we seek a mapping in the form of a deep neural network from
source to target distributions and update network parameters based
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Table 2

Wasserstein distance between the network output and reference output in various cases.

Model Validation config. w? Prediction config. w?

2D Laminar A =0 t=0.05 0.0086 t=0.12 0.0120
2D Laminar A = 100 t=0.05 0.0116 t=0.12 0.0190
2D Laminar r = 0.02 A=50 0.0041 A =130 0.0311
3D Laminar ¢ = 0.02 A =50 0.0217 A =130 0.0946
3D K flow t =0.02 A =50 0.0410 A=110 0.0619

on a discretized 2-Wasserstein distance defined on finite distribution
samples. Our method is general in the sense that we do not require
target distributions to be in closed form and the generation map to be
invertible. Our method is fully data-driven and applicable to the fast
generation of distributions for more general KS systems with physi-
cal parameter dependency. Our iterative divide-and-conquer algorithm
reduces considerably the computational cost of finding the optimal
transition matrix in the Wasserstein distance. We carried out numerical
experiments to demonstrate the performance of our method for learning
and generating aggregation patterns in 2D and 3D KS chemotaxis
systems without and with laminar and chaotic advection.

In future work, we plan to study the DeepParticle method to learn
and generate pattern-forming solutions of parabolic type KS systems
(e > 01in (1)) among other KS like (e.g. chemotaxis-haptotaxis) systems
for modeling and predicting cancer cell evolution [39].
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