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Abstract
G-equation is a popular level set model in turbulent combustion, and becomes an
advective mean curvature type evolution equation when curvature of a moving flame
in a fluid flow is considered:

Gt +
(
1 − d div

(
DG

|DG|
))

+
|DG| + V (x) · DG = 0.

Here d > 0 is the Markstein number and the positive part ()+ is imposed to avoid a
non-physical negative laminar flame speed. For simplicity of presentation, we focus
mainly on the case when V : R2 → R

2 is the two dimensional cellular flow with
Hamiltonian H = sin x1 sin x2 and amplitude A. Our main result is that for any unit
vector p ∈ R

2, there exists a positive number H(p) such that if G(x, 0) = p · x , then

∣∣G(x, t) − p · x + H(p)t
∣∣ ≤ C inR2 × [0,∞)
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for a constant C depending only on on the Markstein number d and the cellular flow
amplitude A. The number H(p) corresponds to the effective burning velocity in the
physics literature. The non-coercivity encountered here is one of the major difficulties
for homogenization of the mean curvature-type equations. To overcome it, we intro-
duce a new approach that combines PDE methods with a dynamical analysis of the
Kohn-Serfaty deterministic game characterization of the curvature G-equation utiliz-
ing the streamline structure of cellular flows. Extension to general two-dimensional
incompressible flows is also discussed. In three dimensional incompressible flows, the
existence of H(p) might fail when the flow intensity exceeds a bifurcation value even
for simple shear flows Mitake et al. (Bifurcation of homogenization and nonhomoge-
nization of the curvature G-equation with shear flows (2023)).

Keywords Front motion · Cellular flow · Curvature effect · Homogenization · Game
theory

Mathematics Subject Classification 70H20 · 76M50 · 76M45 · 76N20

1 Introduction

G-equation is a well-known level-set model in turbulent combustion [39]. Precisely
speaking, given a reference function G(x, t), let the flame front be the zero level
set {G(x, t) = 0} at time t , where the burnt and unburnt regions are {G(x, t) < 0}
and {G(x, t) > 0}, respectively. See Fig. 1 below. The velocity of ambient fluid
V : Rn → R

n is assumed to be continuous andZn-periodic. The propagation of flame
front obeys a simple motion law:

v�n = sl + V (x) · �n,

i.e., the normal velocity is the laminar flame speed (sl ) plus the projection of V along
the normal direction �n. This leads to the so–called G-equation, a level-set PDE [32,
34, 39]:

Gt + V (x) · DG + sl |DG| = 0 inRn × (0,+∞).

In the simplest case when the laminar flame speed sl is a positive constant, the
above equation is called the inviscid G-equation, a non-coercive convex Hamilton-
Jacobi equation.

However, in general, sl is not constant along the flame front since the burning
temperature varies in different locations. In order to quantify temperature difference,
the curvature effect in turbulent combustion was first introduced by Markstein [30],
which says that if the flame front bends toward the cold region (unburned area, point
C in Fig. 2 below), the flame propagation slows down. If the flame front bends toward
the hot spot (burned area, point B in Fig. 2), it burns faster.

There is a vast turbulent combustion literature discussing the impact of curvature
effect. Below is the most recognized empirical linear relation proposed by Markstein
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Fig. 1 Level-set formulation of front propagation

Fig. 2 Curvature effect

[30] to approximate the dependence of the laminar flame speed sl on the curvature
(see also [34]):

sl = s0l (1 − d κ)+. (1.1)

Here s0l , the mean value, is a positive constant. Hereafter we set s0l = 1. The parameter
d > 0 is the so called Markstein length which is proportional to the flame thickness.
The mean curvature along the flame front is κ . The positive part (a)+ = max{a, 0} is
imposed to avoid negative laminar flame speed since materials cannot be “unburned”.
This correction usually is not explicitly mentioned in combustion literature since, by
default, the curvature is always assumed to be small there. However, mathematically,
large positive curvature could occur as time evolves. Therefore it is necessary to
explicitly add this correction in theoretical study and numerical computations [44] if
the physical validity is taken into consideration in the modeling of flame propagation.

Plugging the expression of the laminar flame speed (1.1) into the G-equation and
normalizing the constant s0l = 1, we obtain a mean curvature type equation with
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advection:

Gt +
(
1 − d div

(
DG

|DG|
))

+
|DG| + V (x) · DG = 0. (1.2)

We would like to mention that curvature G-equations served as some of the first
numerical examples in the development of level-set methods [32, 33, 36]. The rigorous
mathematical foundation under the framework of viscosity solution was established
in [10, 16].

In general, κ changes sign along a curved flame front. So a mathematically inter-
esting and physically important question is:

Question 1 How does the “averaged” flame propagation speed depend on the curva-
ture term?

As the first step, the main purpose of this paper is to establish the existence of a
properly defined “averaged speed", which is basically to average fluctuations caused
by both the flow and the curvature. The theory of homogenization provides such a
rigorous mathematical framework in environments with microstructures.

Turbulent combustion usually involves small scales. As a simplified model, we
rescale V as V = V ( x

ε
) and replace d by d ε. Here ε denotes the Kolmogorov scale

(the small scale in the flow). The diffusivity constant d > 0 is called the Markstein
number. We would like to point out that the dimensionless Markstein number is d · δL

ε
with δL denoting the flame thickness [34]. In the thin reaction zone regime, δL = O(ε),
see Eq. (2.28) and Fig. 2.8 of [34]. Without loss of generality, let δL

ε
= 1. Then (1.2)

becomes

∂Gε

∂t
+
(
1 − d ε div

(
DGε

|DGε |
))

+
|DGε | + V

( x

ε

)
· DGε = 0. (1.3)

Since ε � 1, it is natural to look at limε→0 Gε , i.e., the homogenization limit. If
Gε(x, 0) = p · x , the limit limε→0 Gε(x, t) can be viewed as the flame propagation
under the effective burning velocity (also called “turbulent flame speed” in physics
literature) along a given direction p.

For general V , the effective burning velocity might not exist (see Remark 1.4).
Moreover, a general V is unlikely to provide meaningful answers to delicate problems
like Question 1. In this paper, we consider a two-dimensional (2D) cellular flow that is
frequently used in the mathematics and physics literature. See [11] for more physical
motivations. For clarity of presentation, we choose to work with the typical example

V (x) = A(DH)⊥ = A(− cos x2 sin x1, cos x1 sin x2).

Here H(x1, x2) = sin x1 sin x2 is the stream function and the positive constant A
represents the flow intensity. The following is our main theorem.

Theorem 1.1 Suppose that V = A(DH)⊥ for A > 0. For each ε > 0, let Gε =
Gε(x, t) ∈ C(R2 × [0,∞)) be the unique viscosity solution to equation (1.3) on
R
2 × [0,∞) subject to Gε(x, 0) = p · x for a given p ∈ R

2. Then

|Gε(x, t) − p · x + H A(p)t | ≤ Cε onR2 × [0,∞)
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for a constant C depending only on d, V and |p|. Here H A ∈ C(R2\{0}, (0,∞)) is
a continuous positive homogeneous function of degree one.

Equivalently, if G(x, t) is the unique viscosity solution to equation (1.2) on R
2 ×

[0,∞) subject to G(x, 0) = p · x, then

∣∣G(x, t) − p · x + H A(p)t
∣∣ ≤ C onR2 × [0,∞).

Remark 1.1 Our proof relies on establishing the existence of correctors to the cell
problem for every p ∈ R

2:

(
1 − d div

(
p + Dv

|p + Dv|
))

+
|p + Dv| + V (x) · (p + Dv) = H(p).

In general, the cell problem is sufficient to obtain the full homogenization with
any uniformly continuous initial data by Evans’ perturbed test function method [15].
However, as it was first explicitly pointed out in [5], due to the discontinuity of the
mean curvature operator, the standard perturbed test function method is not directly
applicable. Roughly speaking, given a test function φ(x, t) ∈ C∞(Rn × (0,∞)), let
p = Dxφ(x0, t0), it is not clear whether

φ(x, t) + εv
( x

ε

)

is an approximate solution of equation (1.3) near (x0, t0) due to possible vanishing
gradients. The authors of [5] have introduced a mechanism to implement a modified
version of the perturbed test function method. See also [2] for a different modified
argument when the corresponding cell problem has a classical solution. To avoid a
lengthy paper, we will address this subtle issue in a future publication. In view of our
problem’s physical origin, it would be an interesting project to study more detailed
properties of H A(p) (e.g., its anisotropy). See Remark 3.2.

Remark 1.2 Wewould like to point out that the small scales in the curvatureG-equation
help flame propagation. In fact, it is not hard to see that under equation (1.2), the flame
front is stagnant if the initial burned region is {x ∈ R

2| G(x, 0) < 0} = {x ∈
[0, π ] × [0, π ]| H(x) > 1 − r} and the initial flame front is

{x ∈ R
2| G(x, 0) = 0} = {x ∈ [0, π ] × [0, π ]| H(x) = 1 − r}

when r is small enough. Nevertheless, after homogenization, the front moves forward
with a positive normal speed H A(p) along any given direction p. The curvature term
plays a subtle role of flame spreading when the cellular flow corrugates the level set.
Such a flow induced geometric mechanism is absent in the invicid equation model (i.e.
d = 0). The homogenization of the inviscid G-equation has been established indepen-
dently in [7] and [40] via completely different approaches for general incompressible
flows in any dimension.
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Remark 1.3 As pointed out by a referee, a natural question iswhether the cut-off (·)+ in
the governing equation is actually active (equal to zero) at some point (x, t) during the
evolution in the cellular flow. A direct numerical simulation suggests that the answer
is positive over A ∈ (0, 45] at d = 0.1 where the H differs with and without the
cutoff. That the cut-off is active is clear in the case of three dimensional shear flows
[31] where the homogenization fails for large flow intensity with cut-off (·)+ and the
homogenization holds for all flow intensity without cut-off (·)+. See Remark 1.4 for
more details.

The major remaining question is to understand how the turbulent velocity H A(p)

depends on the Markstein number d and the flow intensity A. There is a consensus
in combustion literature that the curvature effect slows down flame propagation [35].
Heuristically, this is because the curvature term smoothes out the flame front and
reduces the total area of chemical reaction [36]. To the best of our knowledge, the first
mathematically rigorous result in this direction was obtained in [29] for shear flows.
It was proved that H is strictly decreasing with respect to the Markstein number d,
which is consistent with the experimental observation (e.g., [9]).

For the more complicated cellular flow, it is probably more convenient to compare
the growth law with respect to the flow intensity A. For the inviscid case, a sharp
growth law was establish in [41]: when d = 0, for p = (p1, p2),

A π(|p1| + |p2|)
2 log A + C2

≤ H A(p) ≤ A π(|p1| + |p2|)
2 log A + C1

.

By refining the method and estimates in this paper, we conjecture that it might be
possible to show that when d > 0,

H A(p) = O

(
A

log A

)
.

More interestingly, in future work we plan to investigate:

Question 2 Does the presence of the curvature effect significantly reduce the predic-
tion of the turbulent flame speed? More specifically, does there exist a unit direction
p such that

lim sup
A→+∞

H A(p) log A

A
<

π(|p1| + |p2|)
2

?

If the curvature term is replaced by full diffusion (i.e. the Laplacian � without any
correction), a dramatic slow-down (H A(p) uniformly bounded in A) is proved in [28]
for two dimensional (2D) cellular flows.

• Other works. In non-combustion practical suitations such as phase transition
(e.g., crystal growth) in material science [12, 25], the motion law is given by (no drift
term and ()+ correction)

v�n = a(x) − dκ (1.4)
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for a continuous positive Z
n-periodic function a(x). The above formula is known

as the Gibbs-Thomson relation. The ()+ is not needed in crystal growth since both
freezing and melting could occur in the situation of ice formation [25]. See ([2, 5,
6, 8, 12, 14, 17–19, 26], etc) and reference therein for works regarding the homoge-
nization or large time limit related to (1.4). When a(x) satisfies a special coercivity
condition, homogenization has been proved in [26] for all dimensions. When n = 2,
homogenizationwas proved in [5] for all positive a(x) by a geometric approach.More-
over, the authors have also constructed a counterexample in [5] when the dimension
n ≥ 3 for a positive a(x). See [4] for more discussions about geometric approaches
in homogenization. Due to the presence of the non-coercive transport term V · DG,
or a = a(x, �n) = 1 + V (x) · �n, our situation and methods are very different from
all these previous works. See Remark 3.3 for more discussions. Our result also holds
when (1 − dκ)+ is replaced by a more general form (a(x) − dκ)+.

Remark 1.4 Like the invisicd G-equation case (d = 0), it is easy to construct a smooth
periodic V such that the effective speed does not exist, e.g. let V (x) = K (x − P0) near
P0 = (π

2 , π
2 ) for a large number K > 0 and equal to the cellular flow away from P0.

We conjecture that our method could be extended to cover general 2D smooth periodic
incompressible flows (div(V ) = 0). See Sect. 4 for more detailed discussions. When
n ≥ 3, it was proved in [31] that, for the shear flow V (x1, x2, x3) = (0, 0, A f (x1, x2)),
the effective burning velocity ceases to exist when the flow intensity A exceeds a
bifurcation value. Note that when n = 2, the existence of effective burning velocity
can be established very easily for all shear flows since the cell problem is reduced to
an ODE and maximum principle immediately leads to uniform bound of derivatives.

Question 3 Does Theorem 1.1 hold if V is a 3D physically meaningful flow that
possesses turbulent or chaotic structures, e.g. the Arnold-Beltrami-Childress flow [11,
43]?

•Outline of the paper. In Sect. 2, for reader’s convenience, wewill go over the defi-
nition and comparison principle of viscosity solutions of curvature type equations. The
associated game theoretic interpretation from [24] will be reviewed as well. In Sect. 3,
we prove Theorem 1.1 by a novel approach combining Lagrangian (game dynamics)
and Eulerian approaches (PDE techniques). In Sect. 4, we discuss how to extend our
results and methods to general 2D incompressible flows. Our approach also suggests
a possible general framework to tackle non-periodic settings (see Remark 4.1). To
help derive a reachability property in our proof, we show rigorously in the Appendix
a useful fact related to the consistency of viscosity and classical solutions in front
propagation.

2 Preliminary

In this section, V : Rn → R
n is assumed to be continuous and Z

n-periodic. Write

F(A, p) =
(

|p| − d

(
trA − p · A · p

|p|2
))

+
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for (A, p) ∈ Sn×n×(Rn\{0}). Here Sn×n is the space of n×n real symmetricmatrices.
Following the definition in [13], let

F(A, p) =
{

F(A, p) if |p| 
= 0

0 if |p| = 0
and F(A, p) =

{
F(A, p) if |p| 
= 0

2dn||A|| if |p| = 0.

Here ||A|| is the largest absolute value of eigenvalues of A. Note that F and F are
lower semicontinuous and upper semicontinuous respectively. As it was pointed out
in [13], the definition at p = 0 is not really important as long as the lower and upper
continuity hold. This is because A will be zero when p = 0 with the proper test
function (see the proof of Theorem 2.1 for instance). When n = 2,

trA − p · A · p

|p|2 = p⊥ · A · p⊥

|p|2 .

Here p⊥ = (−p2, p1) if p = (p1, p2) ∈ R
2\{0}.

2.1 Definition of Viscosity Solutions and Comparison Principle

We first introduce several definitions and terminologies.
Let

L SC(	) : the set of lower semicontinuous functions defined on	,

U SC(	) : the set of upper semicontinuous functions defined on	,

and

UC(	) : the set of uniformly continuous functions defined on	.

Definition 2.1 Assume thatG = G(x, t) ∈ U SC(Rn×(0,∞)).G is called a viscosity
subsolution of equation (1.2) provided that given φ(x, t) ∈ C2(Rn × (0,∞)), if

G(x0, t0) − φ(x0, t0) = max
Rn×(0,∞)

(G(x, t) − φ(x, t)),

then

φt (x0, t0) + F
(

D2φ(x0, t0), Dφ(x0, t0)
)

+ V (x0) · Dφ(x0, t0) ≤ 0.

Definition 2.2 Assume thatG = G(x, t) ∈ L SC(Rn ×(0,∞)).G is called a viscosity
supersolution of equation (1.2) provided that given φ(x, t) ∈ C2(Rn × (0,∞)), if

G(x0, t0) − φ(x0, t0) = min
Rn×(0,∞)

(G(x, t) − φ(x, t)),
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then

φt (x0, t0) + F
(

D2φ(x0, t0), Dφ(x0, t0)
)

+ V (x0) · Dφ(x0, t0) ≥ 0.

Definition 2.3 G = G(x, t) ∈ C(Rn × (0,∞)) is called a viscosity solution of equa-
tion (1.2) if it is both a viscosity subsolution and a viscosity supersolution. If the initial
data G(x, 0) = g(x) is given, then we require that

lim
t→0

G(x, t) = g(x) locally uniformly for x ∈ R
n .

The following comparison principle for solutions can be proved by standard
approaches ([5, 10, 13, 16]), which is a special case of Theorem 3.3 in [5] . For
the reader’s convenience, we provide a sketch of the proof. See the proof of Theorem
3.3 in [5] (the long version) for more general operators.

Theorem 2.1 Assume that V ∈ W 1,∞(Rn), g1, g2 ∈ UC(Rn) and g1 ≤ g2. Suppose
that for some T > 0, G1 = G1(x, t) ∈ U SC(Rn × (0, T )) is a viscosity subsolution
of equation (1.2) and G2 = G2(x, t) ∈ L SC(Rn ×(0, T )) is a viscosity supersolution
of equation (1.2). If both G1 and G2 are subject to (for i = 1, 2):

lim
t→0

|Gi (x, t) − gi (x)| = 0 locally uniformly inRn,

then

G1(x, t) ≤ G2(x, t) for all (x, t) ∈ R
n × [0, T ).

Proof By considering 2
π
arctan(G1) and 2

π
arctan(G2), we may assume that for i =

1, 2,

−1 ≤ Gi ≤ 1.

We argue by contradiction. If not, then

sup
(x,t)∈Rn×[0,T )

(G1(x, t) − G2(x, t)) > 0.

Let M = 4(||V ||W 1,∞(Rn) + 1) and

G̃i = e−Mt Gi .

Then G̃1 is a viscosity subsolution of

∂G̃1

∂t
+ MG̃1 + F(D2G̃1, DG̃1) + V (x) · DG̃1 = 0
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and G̃2 is a viscosity supersolution of

∂G̃2

∂t
+ MG̃2 + F(D2G̃2, DG̃2) + V (x) · DG̃2 = 0

subject to limt→0 |G̃i (x, t) − gi (x)| = 0 locally uniformly in Rn .
We also have that

r = sup
(x,t)∈Rn×[0,T )

(G̃1(x, t) − G̃2(x, t)) > 0.

Now let

w(x, y, t) = G̃1(x, t) − G̃2(y, t) − 
ρ,K ,δ(x, y)

for some K , ρ, δ > 0 and


ρ,K ,δ(x, y, t) = ρ

(√
|x |2 + 1 +

√
|y|2 + 1

)
+ K |x − y|4 + δ

T − t
.

Step 1: It is easy to see that there exist ρ0, δ0 ∈ (0, 1) such that for all ρ ≤ ρ0,
δ ≤ δ0 and K ∈ N,

max
Rn×Rn×[0,T )

w(x, y, t) ≥ 1

2
sup

(x,t)∈Rn×[0,T )

(G̃1 − G̃2) = r

2
.

Choose (x̄, ȳ, t̄) ∈ R
n × R

n × [0, T ) such that

w(x̄, ȳ, t̄) = max
Rn×Rn×[0,T )

w(x, y, t).

For simplicity, we omit the dependence of (x̄, ȳ, t̄) on ρ, K and δ.
Step 2 (avoiding the boundary t = 0): Due to |G̃i | ≤ 1, we have that


ρ,K ,δ(x̄, ȳ, t̄) ≤ 2.

Since for i = 1, 2, gi ∈ UC(Rn), there exists K0 ∈ N independent of ρ and δ such
that t̄ > 0 when K ≥ K0.

Step 3 (plugging into the equation): Now we fix K = K0 and δ = δ0. Write

γ (x, y) = ρ
(√|x |2 + 1 +√|y|2 + 1

)
. Owing to Theorem 8.3 and Remark 3.8 in

[13], there exist a, b ∈ R, two n × n symmetric matrices X and Y such that

a − b = δ

(T − t)2
, X ≤ Y , ||X || + ||Y || ≤ C K0|x̄ − ȳ|2
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and at point (x̄, ȳ, t̄)

a + MG̃1(x̄, t̄) + F(X + D2
xγ, p̄ + Dxγ ) + V (x̄) · ( p̄ + Dxγ ) ≤ 0

b + MG̃2(ȳ, t̄) + F(Y − D2
yγ, p̄ − Dyγ ) + V (ȳ) · ( p̄ − Dyγ ) ≥ 0

for p̄ = 4K0(x̄ − ȳ)|x̄ − ȳ|2. Since |D2
xγ | + |D2

yγ | + |Dxγ | + |Dyγ | ≤ Cρ,

G̃1(x̄, t̄) − G̃2(ȳ, t̄) ≥ r

2
+ K0|x̄ − ȳ|4,

| p̄| ≤ 4K0|x̄ − ȳ|3 and |V (x̄) − V (ȳ)| ≤
(

M

4
− 1

)
|x̄ − ȳ|,

we derive that

F(X + D2
xγ, p̄ + Dxγ )− F(Y − D2

yγ, p̄ − Dyγ ) ≤ − Mr

2
− δ0

(T − t̄)2
+Cρ. (2.1)

Step 4: Let us look at the following two cases (up to a subsequence if necessary).
Case 1: limρ→0 |x̄ − ȳ| = 0. Then both the gradient and the Hessian of the test

function go to zero, i.e.,

limρ→0 p̄ = 0
limρ→0 X = limρ→0 Y = 0.

By (2.1), this implies 0 < − Mr
2 after sending ρ → 0, which is absurd.

Case 2: limρ→0 |x̄ − ȳ| 
= 0. Without loss of generality, we may assume that

lim
ρ→0

p̄ = p0 
= 0, lim
ρ→0

X = X0 and lim
ρ→0

Y = Y0.

Since F(A, p) is monotonically decreasing with respect to the symmetric matrix A
and X0 ≤ Y0, taking limit ρ → 0 on (2.1) leads to

0 ≤ F(X0, p0) − F(Y0, p0) ≤ − Mr

2
.

This is impossible. ��

Corollary 2.1 Assume that g ∈ UC(Rn) and |g(x)| ≤ C(|x | + 1) for some positive
constant C. Suppose that G = G(x, t) ∈ C(Rn × [0,∞)) is a viscosity subsolution
of equation (1.2) subject to G(x, 0) = g(x). Then there exists a constant C̃ depending
only on C, V and d such that

|G(x, t)| ≤ C̃(1 + |x | + t) for all (x, t) ∈ R
n × [0,∞).
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Proof Let φ(x) = 2C
√|x |2 + 1. Let

C1 = max
x∈Rn

∣∣∣F(D2φ(x), Dφ(x)) + V (x) · Dφ(x)

∣∣∣ .
Then G1(x, t) = φ(x) + C1t is a viscosity supersolution to equation (1.2). Hence by
the comparison principle Theorem 2.1, we have that

G(x, t) ≤ G1(x, t) ≤ C̃(1 + |x | + t)

for C̃ = max(2C, C1). A similar inequality holds in the other direction. ��

2.2 GameTheory Interpretation From [24]

In this section, let n = 2 and x ∈ R
2. Fix the game step size parameter τ > 0 and the

number of steps N ∈ N.
For n ≥ 1, consider the discrete dynamical system {xn}N

n=1 ⊂ R
2 associated with

the game starting from x0 = x : for n = 0, 1, 2, .., N − 1

{
xn+1 = xn + τ

√
2dbnηn + τ 2η⊥

n − τ 2V (xn)

x0 = x,

where ηn ∈ B1(0) = {v ∈ R
2| |v| ≤ 1} and bn ∈ {−1, 1}. Here for convenience,

compared to [24], we reverse the time that leads to −V instead of V . Moreover,
η⊥ = (−c, a) if η = (a, c) ∈ R

2.
There are two players: player I and player II. In each step,

• Player I: First choose the direction ηn ;
• Player II: Then choose the sign bn .

The sequence of positions {xk}N
k=0 is called a game trajectory associatedwith (τ, N ).

The goal of player I is to minimize g(xN ) and player II aims to maximize g(xN ) .
A strategy �1 of player I refers to how player I chooses ηn based on {x, ηi , bi | 1 ≤

i ≤ n − 1} for n ≥ 1. Similarly, a strategy �2 of player II refers to how player II
chooses the sign bn based on {x, ηi , ηn, bi , | 1 ≤ i ≤ n − 1} for n ≥ 1.

Assuming that both players play optimally. Write the value function of player I as

uτ (x, Nτ 2) = infimum of g(xN ). (2.2)

Then we have the following dynamic principle: for k ≥ 1,

uτ (x, kτ 2) = inf|η|≤1
max
b=±1

uτ

(
x + τb

√
2dη + τ 2η⊥ − τ 2V (x), (k − 1)τ 2

)
. (2.3)

For the standardmean curvature motion, player I can only choose unit vectors. Here
we basically allow player I to also choose ηn = 0, which excludes the possibility of
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“unburning”. The consistency holds: for small τ ,

min
η∈B1(0)

max
b=±1

{τb
√
2dη · Dφ(x) + dτ 2η · D2φ(x) · η + τ 2η⊥ · Dφ}

∈ −τ 2[F(D2φ(x), Dφ(x)), F(D2φ(x), Dφ(x))].

2.3 Convergence

Given g(x) ∈ UC(R2), as in [24], we have that

lim
τ→0, Nτ 2→t

uτ (x, Nτ 2) = u(x, t) locally uniformly onR2 × (0,∞). (2.4)

Here u ∈ C(R2 ×[0,∞)) is the unique viscosity solution to equation (1.2) subject to

lim
t→0

u(x, t) = g(x) uniformly inR2.

As it was mentioned in [23], this game theory approach is essentially a semi-
discrete approximation scheme (continuous in space, discrete in time) for curvature-
type equations. See [37] for an analogous game in combinatorics.

The proof is standard under the framework of viscosity solution. For the reader’s
convenience, we provide an outline of the proof.

Step 1: Define

u(x, t) := lim sup
y→x, τ→0, Nτ 2→t

uτ (y, Nτ 2)

u(x, t) := lim inf
y→x, τ→0, Nτ 2→t

uτ (y, Nτ 2).

Then u is upper semicontinuous and u is lower semicontinuous.

Lemma 2.1 For t ∈ [0, 1],

min
|y−x |≤C

√
t
g(y) ≤ u(x, t) ≤ u(x, t) ≤ max

|y−x |≤C
√

t
g(y).

Here C is a constant depending only on d and maxR2 |V |.
Proof Fix t > 0. Consider the game starting from x0 ∈ R

2 with (τ, N ), Nτ 2 ∈ [ t
2 , 2t].

On the one hand, if player I adopts the following strategy similar to the exit strategy
in [24]: at each step n, player I chooses the direction ηn such that

ηn · (xn − x0) = 0,

then regardless of how player II plays, if |xn − x0| ≥ √
t , then

|q + w| − |q| = 2w · q + |w|2
|q + w| + |q| ⇒ |xn+1 − x0| ≤ |xn − x0| + Cτ 2

(
1 + 1√

t

)
.
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Hence

|xN − x0| ≤ C
√

t for t ∈ [0, 1].

Then by the definition of u(x, t),

u(x0, t) ≤ max
|y−x0|≤C

√
t
g(y).

On the other hand, if player II employs the strategy as: at each step n, player II
chooses the sign bn such that

bnηn · (xn − x0) ≤ 0

after player I picks the direction ηn , then regardless what kind of strategy player I uses,
similarly, we have that

|xN − x0| ≤ C
√

t .

This implies that

u(x0, t) ≥ min
|y−x0|≤C

√
t
g(y).

��
Since g ∈ UC(R2),

lim
y→x,t→0

u(y, t) = lim
y→x,t→0

u(y, t) = g(x) uniformly for x ∈ R
2.

Step 2: As in [24], we have that

Lemma 2.2 u(x, t) is a viscosity subsolution of

ut + F(D2u, Du) + V (x) · Du = 0 onR2 × (0,∞)

and u(x, t) is a viscosity supersolution of

ut + F(D2u, Du) + V (x) · Du = 0 onR2 × (0,∞).

��
Step 3: Finally, the comparison principle Theorem 2.1 implies that u ≥ u. There-

fore, u = u and (2.4) holds. ��
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Remark 2.1 By the uniqueness of solution and Lemma 2.1, if n = 2 and G(x, t) is the
unique viscosity to equation (1.2) subject to G(x, 0) = g(x), Then for t ∈ [0, 1]

min
|y−x |≤C

√
t
g(y) ≤ G(x, t) ≤ max

|y−x |≤C
√

t
g(y).

Of course, this can also be proved by pure PDEmethods through comparison principle.

Remark 2.2 Although the game is formulated in a deterministic way, it has some
intrinsic stochastic features due to the different scales τ and τ 2 so that the game
trajectory is practically hard to analyze.Having the positive part (equivalently, allowing
player I to choose ηn = 0) renders the gamemore deterministic. As mentioned in [23],
one of the two main questions about the game is whether it can be used to prove new
results about PDE, which requires finding the right structure of PDE to work with.
The curvature G-equation with integrable ambient fluid flows turns out to be a good
candidate. The game formulation does allow us to make the best use of the underlying
structure that is not naturally accessible by the relatively rough PDE approaches. See
[27] and [20] for other works related to applications of the game.

2.4 Stationary Equation and Reachability

As in [24], we may also consider stationary equations

(
1 − d div

(
Du

|Du|
))

+
|Du| + V (x) · Du = α. (2.5)

for a constant α ≥ 0.

Definition 2.4 u ∈ U SC(	) is called a viscosity subsolution of equation (2.5) pro-
vided that given φ(x) ∈ C2(Rn), if for x0 ∈ 	

u(x0) − φ(x0) = max
x∈	

(u(x) − φ(x)),

then

F
(

D2φ(x0), Dφ(x0)
)

+ V (x0) · Dφ(x0) ≤ α.

Definition 2.5 u ∈ L SC(	) is called a viscosity supersolution of equation (2.5) pro-
vided that given φ(x) ∈ C2(Rn), if for x0 ∈ 	

u(x0) − φ(x0) = min
x∈	

(u(x) − φ(x)),

then

F
(

D2φ(x0), Dφ(x0)
)

+ V (x0) · Dφ(x0) ≥ α.
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u ∈ C(	) is called a viscosity solution of (2.5) if it is both a viscosity subsolution
and a viscosity supersolution. Unlike the Cauchy problem, the stationary problem
might not have a solution with a prescribed boundary data.

Similar to the proof of Theorem 2.1, we can prove the following comparison prin-
ciple.

Theorem 2.2 Assume that α > 0 and 	 is a bounded open set. Suppose that
u1 ∈ U SC(	) ∩ L∞(	) is a viscosity subsolution of equation (2.5) on 	 and
u2 ∈ L SC(	) ∩ L∞(	) is a viscosity supersolution of equation (2.5) on 	. If for
every point x ∈ ∂	,

lim sup
y∈	→x

u1(y) ≤ lim inf
y∈	→x

u2(y),

then

u1(x) ≤ u2(x) for x ∈ 	.

Lemma 2.3 Suppose α > 0 and u ∈ C(	) is a viscosity supersolution of equation
(2.5), then

min
x∈	

u(x) = min
x∈∂	

u(x).

Proof By the definition of viscosity supersolution, u cannot attainminimumat x0 ∈ 	.
Otherwise,we can use the constant functionφ ≡ min	̄ u as the test function and obtain

0 = F(D20, D0) + V (x0) · 0 ≥ α > 0,

which is absurd. Hence our conclusion holds. ��

Definition 2.6 Consider the game dynamics introduced in Sect. 2.2. Let S be subset
of R2. We say that S is reachable from x (or x can reach S) within time T if for every
open set U satisfying S ⊂ U , there exist a sequence of positive numbers {τm}m≥1
such that limm→+∞ τm = 0 and for each fixed τm , player I has a U -oriented strategy
�m1 such that regardless of how player II chooses his strategy �2, under strategy
�m1, player I can force the associated game trajectory starting from x to enter U at
N (m, �m1, �2)-th step (i.e., xN (m,�m1,�2) ∈ U ), where N (m, �m1, �2) is a positive
integer depending on τm, �m1, �2 and satisfying N (m, �m1, �2)τ

2
m ≤ T .

Remark 2.3 To simplify notations, we usually omit the dependence of the game tra-
jectory (in particular, the terminal point xN ) on τ , N and the strategy of player II.
Moreover, by the above definition, it is clear that if a point x can reach an open set U
within time t1 and every point on U can reach a set S within t2. Then the point x can
reach S within time t1 + t2.
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Hereafter, for any set E ⊂ R
n and t ≥ 0, we denote by Et the image of E under

the −V flow ξ̇ = −V (ξ) at time t , i.e.,

Et = {ξx (t)|x ∈ E, ξ̇x (s) = −V (ξx (s)), ξx (0) = x}.

Lemma 2.4 Suppose that u ∈ UC(R2) is a viscosity subsolution of equation (2.5) on
R
2. For x0 ∈ R

2, if there exists T0 > 0 such that a bounded set S is reachable from
x0 within time T0, then

u(x0) ≤ max
y∈∪t∈[0,T0] S̄t

u(y) + αT0.

In particular, if the set S is −V flow invariant (i.e., St = S for all t ≥ 0), then

u(x0) ≤ max
y∈S̄

u(y) + αT0.

Proof let w(x, t) = u(x) − αt . Then w(x, t) is a viscosity subsolution to equation
(1.2) with initial data w(x, 0) = u(x). Now let G(x, t) ∈ C(R2 × [0,∞)) be the
unique viscosity solution to equation (1.2) with initial data G(x, 0) = u(x). Owing to
the comparison principle Theorem 2.1,

w(x, t) ≤ G(x, t).

For r > 0 and E ⊂ R
2, let Dr (E) = {x ∈ R

2| d(x, E) < r}. Fix r > 0. Due to the
game formulation ofG(x, t) and theDefinition 2.6 of reachability, there are a sequence
of positive numbers {τm}m≥1 and a sequence of positive integers {Nm}m≥1 such that
limm→+∞ τm = 0 and for each τm , player I has a Dr (S)-oriented strategy to drive the
game trajectory to enter Dr (S) at the Nm-th step for Nmτ 2m ≤ T0 regardless of how
player II plays. Here for convenience, we omit the dependence of Nm on the concrete
strategy of player II since what really matters here is the upper bound Nmτ 2m ≤ T0.

Next, starting from xNm ∈ Dr (S), player I chooses η = 0 for k more steps. Here k
is the first whole number such that T0 ≥ (Nm + k)τ 2m ≥ T0 − τ 2m .

Let Jm be the integer part of T0
τ 2m
. Then the above argument says that player I has

a strategy such that regardless of how player II plays, player I can steer the game
trajectory into

DCτ 2m
(Er ).

at the Jm-th step for Er = ∪0≤t≤T0(Dr (S))t .
Hence for the value function defined in (2.2), due to G(x, 0) = u(x),

uτm (x0, Jmτ 2m) ≤ max
y∈D

Cτ2m
(Er )

u(y)

G(x0, T0) = lim
m→+∞ uτm (x0, Jmτ 2m) ≤ max

y∈Er

u(y).
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So

u(x0) − T0α = w(x0, T0) ≤ G(x0, T0) ≤ max
y∈Er

u(y).

Accordingly, our conclusion follows by sending r → 0. ��
Lemma 2.5 Suppose that u ∈ UC(Rn) is a viscosity subsolution of equation (2.5) on
R

n. Let ξ : [0,∞) → R
n satisfy ξ̇ (s) = −V (ξ(s)). Then for t1 < t2,

u(ξ(t1)) ≤ u(ξ(t2)) + α(t2 − t1).

Proof This follows directly from the two facts below:

(1) w(x, t) = u − αt is also a viscosity subsolution of the transport equation

wt + V (x) · Dw = 0 subject tow(x, 0) = u(x),

(2) the unique solution to

{
vt + V (x) · Dv = 0

v(x, 0) = u(x)

is given by the representation formula: v(x, t) = u(ξx (t)) for ξ̇x (s) = −V (ξx (s))
subject to ξx (0) = x . ��

3 Proof of Theorem 1.1

Let p ∈ R
n be a fixed unit vector. By the standard Perron’s method [13], for any given

λ > 0, the following equation has a unique continuous Zn-periodic viscosity solution
v = vλ ∈ C(Rn).

λv +
(
1 − ddiv

(
p + Dv

|p + Dv|
))

+
|p + Dv| + V (x) · (p + Dv) = 0 inRn .

The above equation also has a comparison principle whose proof is similar to that of
Theorem 2.1. To prove Theorem 1.1, our main task will be to show that when n = 2
and V = A(DH)⊥ is the 2D cellular flow, there exists a positive constant H(p) such
that

lim
λ→0

λvλ(x) = −H(p) uniformly onR2.

Here we omit the dependence of H on the flow intensity A.
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Throughout this section, C represents a constant depending only on d and V . By
maximum principle, it is easy to see that

max
x∈R2

|λvλ(x)| ≤ 1 + max
R2

|V |. (3.1)

We believe that the equi-continuity of the family of functions {vλ}λ>0 does not hold
due to the degeneracy of the curvature term and the lack of coercivity. Instead, we will
show that

max
x,y∈R2

|vλ(x) − vλ(y)| ≤ C .

Our strategy is (1) establishing partial reachability from the associated gamedynam-
ics based on the special structure of the cellular flow to apply Lemma 2.4 and
Lemma 2.5, then (2) using the minimum value principle Lemma 2.3 to compensate for
the lack of full reachability. The proof can be viewed as a combination of Lagrangian
and Eulerian approaches. The game trajectory under player I’s strategy more or less
mimics the reverse of the propagation route of flame.

By adopting the proof of Theorem 4 in [1], we first establish the connection between
G(x, t) and vλ. Combining with partial reachability, this will lead to a negative upper
bound of λvλ(x) for small λ in Corollary 3.2 later, which allows us to apply the
minimum value principle.

Lemma 3.1 Let G(x, t) be the unique solution of (1.2) with G(x, 0) = p · x. Suppose
that there exists β > 0 such that for all (x, t) ∈ R

n × [0,∞)

G(x, t) − p · x ≤ −βt + C .

Then

max
x∈Rn

λvλ(x) < −β

2
+ λC

Here C represents a constant depending only on d and V .

Proof By comparing G(x, t) and p · x ± Mt for a suitable constant M depending only
on d and V , the comparison principle Theorem 2.1 implies that

|G(x, t) − p · x | ≤ Mt for all (x, t) ∈ R
n × [0,∞).

Apparently, β ≤ M .
In addition, by periodicity of V ,G(x+�l, t)− p·�l is also a solution of (1.2)with intial

data p · x for any �l ∈ Z
n . Then uniqueness implies that G(x + �l, t) − p · �l = G(x, t),

equivalently, G(x, t) − p · x is Zn-periodic for x . By the assumption, we may choose
T0 > 0 such that

G(x, t) − p · x ≤ −2βt

3
for (x, t) ∈ R

n × [T0,∞).
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Step 1: Choose f (t) ∈ C∞([0,∞)) such that

f ′(t) ≤ −β

2

and

f (t) =
{

−2Mt when t ≥ 2T0
−βt

2 when t ∈ [0, T0].

Define

h(x) = min
t>0

(G(x, t) − p · x − f (t)) > −∞.

Clearly, h(x) < 0. Hence the minimum is attained for some tx ∈ (0, 2T0]. Therefore,
h(x) is periodic, continuous and is a viscosity supersolution of

(
1 − ddiv

(
p + Dh

|p + Dh|
))

+
|p + Dh| + V (x) · (p + Dh) = β

2
onRn .

Step 2: Then

hλ(x) = h(x) − min
x∈Rn

h(x) − β

2λ

is a viscosity supersolution of

λhλ(x) +
(
1 − d div

(
p + Dhλ

|p + Dhλ|
))

+
|p + Dhλ| + V (x) · (p + Dhλ) = 0.

Accordingly, by comparison principle,

vλ(x) ≤ hλ(x),

which implies that

max
x∈Rn

λvλ(x) ≤ −β

2
+ 2λ max

x∈Rn
|h(x)|.

Hence our conclusion holds. ��
Hereafter, we let x = (x1, x2) ∈ R

2 and

V (x) = A(DH)⊥ = A(− cos(x2) sin(x1), cos(x1) sin(x2)).
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O π

π
Q

flow of −V (x) Qμ and Γμ

ΓμQμ

π

π

O

Fig. 3 Flow of −V , two domains Qμ and �μ

for A > 0. Keep in mind that our game is using

−V (x) = A(cos(x2) sin(x1), − cos(x1) sin(x2)).

Write

Q = [0, π ] × [0, π ], Qμ = {x ∈ Q| H(x) > μ}

and

�μ = {x = (x1, x2) ∈ R
2| min{|x1|, |x2|, |x1 − π |, |x2 − π |} < μ}.

for μ ∈ (0, 1]. Note that Qμ is −V flow invariant (See Fig. 3).
We will utilize the special structure of the cellular flow to establish reachability.

Lemma 3.2 Suppose μ ∈ [0, 1). For P1 ∈ Qμ, the level curve {x ∈ Q| H(x) = μ} is
reachable from P1 within time 3

√
2. In particular, for μ > 0, every point P2 ∈ {x ∈

Q| H(x) = μ} is reachable from P1 within time ≤ C(1 + | logμ|) for a constant C
depending only on V .

Proof First we prove the reachability to the level curve. Given the game step size
parameter τ , recall that the game dynamics is

{
Xn+1 = Xn + τ

√
2dbnηn + τ 2η⊥

n − τ 2V (Xn)

X0 = P1

for n ≥ 0. Here ηn ∈ B1(0) = {v ∈ R
2| |v| ≤ 1} and bn ∈ {−1, 1}.

Case 1: P1 
= (π
2 , π

2 ). Then |DH(P1)| > 0. Player I chooses the strategy as follows:
Let X0 = P1.

At each step n ≥ 0, if H(Xn) > H(P2), player I chooses

ηn = V (Xn)

|V (Xn)| .
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Then

η⊥
n = − DH(Xn)

|DH(Xn)| .

Then regardless of how player II moves, we have that

H(Xn+1) − H(Xn) =H
(

Xn + τbn
√
2dηn + τ 2η⊥

n − τ 2V (Xn)
)

− H(Xn)

=
〈
DH , τbn

√
2dηn + τ 2η⊥

n − τ 2V (Xn)
〉

+ 1

2

〈
D2Hτbn

√
2dηn, τbn

√
2dηn

〉
+ O(τ 3)

=τ 2
[
− |DH | + d

〈
D2H

D⊥H

|DH | ,
D⊥H

|DH |
〉]

+ O(τ 3).

Since H(Xn) = sin x1n sin x2n for Xn = (x1n, x2n), we have

−max
R2

||D2H || ≤
〈

D2H
D⊥ H

|DH | ,
D⊥ H

|DH |
〉

= sin(x1n) sin(x2n)(cos(2x1n) + cos(2x2n) + 2)

cos(2x1n) cos(2x2n) − 1
≤ 0.

Here the negative sign is essentially due to the convexity of the level curve of H instead
of the specific form of H . So

H(Xn+1) − H(Xn) ≤ −|DH(Xn)|τ 2 + O(τ 3).

Let an = H(Xn). Then by Lemma 3.3,

an+1 ≤ an −
√
2(an − a2

n)τ 2 + O(τ 3).

This implies that the decreasing rate of an = H(Xn) when n increases is no slower
than the decreasing rate along the ODE

ṡ(t) = −√2s(t)(1 − s(t)) with s(0) = H(P1) ∈ (0, 1),

which has a unique solution when s(t) ∈ (0, 1). Assume that s(t) > 0 for
t ∈ (0, t0) and s(t0) = 0. Clearly s(t) is strictly decreasing for t ∈ [0, t0). Since√
2s(t)(1 − s(t)) ≥ √

1 − s(t) when s(t) ∈ ( 12 , 1) and
√
2 s(t)(1 − s(t)) ≥ √

s(t)
when s(t) ∈ (0, 1

2 ], we have that

t0 ≤
∫ 1

1
2

1√
1 − s

ds +
∫ 1

2

0

1√
s

ds = 2
√
2.
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Fig. 4 Game trajectory of Lemma 3.2

In particular, the upper bound is independent of the value of H(P1). Hence a simple

calculation shows that when τ is small enough, after at most n1 ≤ 3
√
2

τ 2
steps, we have

that

H(Xn1) ≤ μ

for the first time. In particular, d(Xn1 , {x ∈ Q| H = μ}) ≤ Cτ . Hence by Defin-
tion 2.6, the needed time to reach the level curve T1 ≤ 3

√
2.

Case 2: P1 = (π
2 , π

2 ). First travel a little bit away from P1. Choose r > 0 such
that maxBr (P1)

|V | ≤ 1
4 . Then player I can use the exit strategy as in the proof of

Lemma 2.1. It is easy to see that player I could reach ∂ Br (P1) within time Cr2. Then
it goes to Case 1.

Next we show the reachability to every point P2 on the level curve {x ∈ Q| H(x) =
μ}. After the game trajectory reaches the level curve , player I can just choose η = 0,
i.e., follow the −V flow to travel along the level curve to reach every point P2 on the
curve. When μ is close to 1, the traveling time around the level curve is near 2π (See
Fig. 4). When μ is close to 0, the traveling time is bounded by O(| logμ|). Hence the
conclusion holds. ��
Remark 3.1 The reachability established in the above lemma is only one way: P1 is
NOT reachable from P2 if H(P1) is close to 1 since the curvature on the level curve
will become very big and surpass 1. This is different from the invicid case (d = 0)
where two points are mutually reachable.
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Lemma 3.3 For x = (x1, x2) ∈ [0, π ] × [0, π ],

|DH(x)| ≥
√
2(H(x) − H2(x)).

Proof A direction computation shows that

|DH(X)| =
√
sin2 x1 + sin2 x2 − 2 sin2 x1 sin2 x2

≥
√
2 sin x1 sin x2 − 2 sin2 x1 sin2 x2

=
√
2(H(x) − H2(x)).

��
We would like to point out that the convexity of level sets of H and the above

inequality provide technical convenience in the proof, but they are not essential in
obtaining the existence of H(p). See Sect. 4 for more details.

Lemma 3.4 There exists μ0 > 0 and T0 > 0 depending only on d and V such that the
set Q2μ0 is reachable from every point x ∈ �μ0 within time T0.

Proof It is enough to prove the above conclusion when �μ0 is replaced by the set

Aμ0 =
[
−μ0,

2π

3

]
× [−μ0, μ0]

since the proof for other pieces are similar and we can just choose the smallest μ0.
Step 1: We first consider points near the corner O = (0, 0). For α > 0, set

	α = (α, 1) ×
(

−1

2
,
1

2

)
.

Note that V (x) · (1, 0) = 0 for all x ∈ {0} × R. By applying Lemma 5.3 for S =
(0, 1)×(− 1

2 ,
1
2

)
and	 = 	α , we have that there isα1 > 0 such that	2α1 is reachable

from every point x ∈ [−α1, α1]2 within time 1.
Step 2: Next we look at points on the line segment

L1 =
{
(x1, 0)| x1 ∈

[
α1

2
,
2π

3

]}
.

By applying Lemma 5.3 for S = Q and	 = Qμ, we deduce that there isμ0 ∈ (0, α1
2 )

such that Q2μ0 is reachable by every x ∈ L1,μ0 = L1 × [−μ0, μ0] within time 1.
Step 3: Next, given a point P1 ∈ [−α1, α1]2, by step 1, player I has a strategy to

push the game trajectory to some point P2 ∈ 	2α1 within time 1. If P2 /∈ L1,μ0 , then
|H(P2)| ≥ sinμ0 sin(2α1). Hence, by Lemma 3.2, P2 can reach L1,μ0 within time t1.
Thus by step 2, P1 can reach Q2μ0 within time 1 + 1 + t1 = 2 + t1 (See Fig. 5).

Accordingly, every point on Aμ0 ⊂ ([−α1, α1]2 ∪ L1,μ0

)
can reach Q2μ0 within

time 2 + t1. Note that μ0 (hence t1 as well) depends only on d and V . ��
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1 2π
3O

1
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1
2

α1 2α1

Q2μ0

Ω2α1

x1

P1

P2

x2

Fig. 5 Game trajectory of Lemma 3.4

Given a point X0 = (a0, b0) and δ̃ > 0, let γ (s) ∈ C([0, 1],R2) be a continuous
simple curve satisfying

γ ((0, 1)) ∈ (a0 − δ̃, a0 + δ̃) × (−∞, b0)

and γ (0) · (1, 0) = a0 − δ̃, γ (1) · (1, 0) = a0 + δ̃. Write

Jr =
(

a0 − δ̃

2
, a0 + δ̃

2

)
× (b0 + r , b0 + r + r ′)

for some r , r ′ > 0. Note that the curve γ divides the strip [a0 − δ̃, a0 + δ̃] × R into
two connected components I1 and I2. Let I1 be the lower component.

Lemma 3.5 Given a point x = (x1, x2) ∈ I1, if x can reach Jr within t0 ≤ δ̃
3M , then

x can also reach γ ([0, 1]) within t0. Here M = 1 + maxR2 |V |.
Proof According toDefinition2.6 of the reachability, player I has a Jr -oriented strategy
tomove the game trajectory into Jr within time t0 regardless of howplayer II responses.
Let U be an open set such that γ ([0, 1]) ⊂ U and

ν = d(γ ([0, 1]), ∂U ) < 1.

We claim that the corresponding game trajectory of player I’s Jr -oriented strategy
with a game step size parameter τ < ν

M+d must enter U before it arrives at Jr . If not,
then at some moment t1 < t0, the game trajectory arrives at

{x = (x1, x2)| |x1 − a0| > δ̃}.

Without loss generality, we assume that it arrives at {x1 < a0 − δ̃} (See Fig. 6).
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(a0, b0)(a0 − δ̃, b0) (a0 + δ̃, b0)

δ̃
2

δ̃
2

Jr

r

I2

I1

γ

(x1, x2)

Fig. 6 Game trajectory of Lemma 3.5

Then player II can simply employ the strategy: at each step n, after play I picks the
direction ηn , player II chooses the sign bn such that

bnηn · (1, 0) ≤ 0.

Then the only remaining force that can push the game trajectory to move along the
positive horizontal direction is the mean burning speed 1 and the flow −V . Therefore,

it will take the game at least δ̃
2M time to reach Jr . Since t0 ≤ δ̃

3 M < δ̃
2 M , this is a

contradiction. ��
Corollary 3.1 For any 0 < θ < π

8 , every point in the set

Zθ = ((θ, π − θ) × [0, π ]) ∪ ([0, π ] × (θ, π − θ))

is reachable from the center P0 = (π
2 , π

2 ) within time tθ depending only on θ , V and
d.

Proof Let M = 1+maxR2 |V |. Due to symmetric structure and Lemma 3.2, it suffices
to show that for some δθ > 0, every point in the set

Sθ =
(
[θ, π − θ ] ×

[
0,

π

2

])
∩ {0 ≤ H < δθ }

is reachable from P0 within time tθ depending only on θ , V and d.

By applying Lemma 5.3 for S =
(
3θ
8 , 5θ

8

)
× (− θ

4 , 0
)
and

	m =
(
3θ

8
,
5θ

8

)
×
(

− 1

m
− θ

4
, − 1

m

)
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we can show that there exist m ∈ N and Xm = ( θ
2 , 1

m ) such that 1
m < θ

4 and every
point x ∈ B 1

4m
(Xm) can reach 	m within time θ

12M . Now fix m and set

δθ = 1

2
min

x∈B 1
4m

(Xm )

H(x).

Applying Lemma 3.5 with δ̃ = θ
4 to level curves of the stream function H within the

strip
[

θ
4 , 3θ

4

] × R, we deduce that for any μ ∈ [0, δθ ], every point on B 1
4m

(Xm) can
reach the curve

ξμ = {H = μ} ∩
([

θ

4
,
3θ

4

]
×
(
−∞,

π

2

])

within time θ
12M .

Next we show that every point on Sθ is reachable from P0.
In fact, suppose that P1 ∈ Sθ . Let μ1 = H(P1) ∈ [0, δθ ).
Step 1: Thanks to Lemma 3.2, P0 can reach Xm within time t1. By the definition of

reachability, the game trajectory can arrive at some point in Y1 ∈ B 1
4m

(Xm) within t1.
Step 2: By the above discussion and the definition of reachability, starting from Y1,

for any k ≥ 2 ∈ N, the game trajectory can arrive at a pointYk such that d(Yk, ξμ1) < 1
k

within time t2 = θ
12 M .

Step 3: Starting from Yk , at each step n, player I chooses ηn = 0 (i.e., just following
the flow −V ). Then within time t3, the game trajectory will arrive at some point as
close to P1 as we want when k → +∞. Note that |V | has a positive lower bound
depending on θ on

([ θ
4 , π − θ ] × [0, π

2

])
. So t3 has a upper bound depending only on

θ and V .
Hence P0 can reach any neighborhood of P1 within time t1 + t2 + t3 (See Fig. 7).

Note that each ti depends only on θ , V and d. ��

Recall that Q = [0, π ]2. Consider the interior of four cells in [−π, π ]2: U1 =
(0, π)× (0, π), U2 = U1 − (π, 0), U3 = U1 − (0, π) and U4 = U1 − (π, π). Clearly,
by similar proofs, the corresponding versions of previous results on U1 could also be
established for Ui (i = 2, 3, 4).

Below is a transition property from one cell to another.

Lemma 3.6 There exists β > 0 depending only on d and V such that every point
P ∈ U1 can reach the set Ui within time β for i = 2, 3, 4.

Proof It suffices to prove this for U2. The others are similar. Fix P ∈ U1. Choose
μ0 from Lemma 3.4 that works for the corresponding statements for all four cells in
[−π, π ]2. Choose the largest μ̃ ∈ (0, μ0) such that

{x ∈ Q| H(x) ≤ μ̃} ⊂ �μ0 .
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P0

P1

Y1
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Fig. 7 Game trajectory of Corollary 3.1

Case 1: If H(P) ≥ μ̃, by Lemma 3.2, P can reach at some point

P1 ∈ J =
{

x ∈ Q| μ̃

2
< H(x) < μ̃

}

within time t1. Then by following the flow −V , P1 can reach a point P2 ∈ J ∩
((0, μ0) × (0, π)) within time t2. Since

(0, μ0) × (0, π) ⊂ �μ0 − (π, 0),

P2 can reach U2 within time T0 by applying Lemma 3.4 to U2 (See Fig. 8).
Case 2: If H(P) < μ̃, then P ∈ �μ0 . Owing to Lemma 3.4, P can arrive at some

P̃1 ∈ Q2μ0 within time t3 , which goes back to case 1 (See Fig. 9).
In the above, t1, t2 and t3 depend only on d and V . Let β = t1 + t2 + t3 + T0. ��

Lemma 3.7 Let p ∈ R
2 be a unit vector and G(x, t) be the unique solution of (1.2)

with G(x, 0) = p · x. Then there exists γ > 0 depending only on d and V such that

G(x, t) − p · x ≤ −γ t + C .

Proof Since |p| = 1, without loss of generality, we may assume that p · (1, 0) > 1
2 .

Owing to the above Lemma 3.6, there exists β > 0 such that, starting from any point
x ∈ Q = [0, π ]2, player I can design a strategy so that it takes at most 2β time to
move the game trajectory into U1 + (−2π, 0). Using periodicity, staring from any
point x ∈ Q, in time t , player I can design a strategy to move the game trajectory into
U1 + (−2πk, 0) for some k ≥ t

2β − 1 within time t. Since U1 + (−2πk, 0) is −V
flow invariant, when the game trajectory arrives at U1 + (−2πk, 0), if needed, player

123



Existence of an Effective Burning Velocity Page 29 of 48 81

U1U2

P

−π

π

π x1

x2

μ0O

P1

P2

Fig. 8 Case 1 game trajectory of Lemma 3.6

Fig. 9 Case 2 game trajectory of Lemma 3.6

I can just choose η = 0 until time t . Accordingly, by the game theory formulation, we
have that

G(x, t) ≤ max
y∈Q+k(−2π,0)

p · y ≤ −kp · (2π, 0) + C ≤ −γ t + C .

for γ = π
2β . ��

Combining with Lemma 3.1, we deduce that

Corollary 3.2 When λ is small enough,

max
x∈R2

λvλ(x) ≤ −γ

2
.

In particular, v = vλ is a viscosity supersolution of

(
1 − ddiv

(
p + Dv

|p + Dv|
))

+
|p + Dv| + V (x) · (p + Dv) = γ

2
> 0, inR2.
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Here γ is from the previous Lemma 3.7.

Let O1 = (0, 0), O2 = (1, 0), O3 = (1, 1) and O4 = (0, 1).

Lemma 3.8 Let uλ(x) = p · x + vλ(x). Then

max
(x,y)∈[−π,π ]2

|uλ(x) − uλ(y)| ≤ C

for a constant C depending only on V and d.

Proof Owing to (3.1), uλ is always a viscosity subsolution of

F(D2uλ, Duλ) + V (x) · Duλ = 1 + max
R2

|V (x)| inR2.

Throughout the proof, Cμ represents various constants depending only on d, V and a
given parameter μ.

Step 1:We first establish the difference bound within Qμ for any given μ ∈ (0, 1).
Note that the level curve {x ∈ Q| H(x) = μ} is flow invariant. When μ is close to 1,
the traveling time around the level curve is near 2π . Whenμ is close to 0, the traveling
time is bounded by O(| logμ|).

Owing to Lemma 3.2, Lemma 2.4 and Lemma 2.5, we have that

1. For every point x ∈ ∂ Qμ and every point y ∈ Qμ, uλ(x) ≥ uλ(y) − Cμ. Accord-
ingly,

min
x∈∂ Qμ

uλ(x) ≥ max
x∈Qμ

uλ(x) − Cμ.

2. By Corollary 3.2 and the minimum value principle Lemma 2.3,

min
x∈∂ Qμ

uλ(x) = min
x∈Qμ

uλ(x).

Accordingly,

max
x∈Qμ

uλ(x) − min
x∈Qμ

uλ(x) = max
x,y∈Qμ

|uλ(x) − uλ(y)| ≤ Cμ. (3.2)

Step 2: Recall the four cells in [−π, π ]2: U1 = (0, π)× (0, π), U2 = U1 − (π, 0),
U3 = U1−(0, π) andU4 = U1−(π, π). Let P0 = (π

2 , π
2 ), q1 = (0, 0), q2 = −(π, 0),

q3 = −(0, π) and q4 = −(π, π). Then the above (3.2) also holds when Qμ is replaced
by Qμ + qi for 1 ≤ i ≤ 4.

Letμ0 be the number fromLemma 3.4 that works for all four cells. Combining with
corresponding versions of Corollary 3.1 in all four cells, Q2μ0 + qi is reachable by
P0 + q j for 1 ≤ i, j ≤ 4 within time T0 depending only on d and V . Since Q2μ0 + qi

are flow invariant, owing to Lemma 2.4 and (3.2) from Step 1, we deduce that for
1 ≤ i, j ≤ 4

|uλ(P0 + qi ) − uλ(P0 + q j )| ≤ C . (3.3)
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O π

π

x1

x2

1
d0

P0

π − α0

β0

Fig. 10 d0, β0 and α0

By employing (3.2) in all cells, we actually have that for any μ ∈ (0, 1],

|uλ(x) − uλ(y)| ≤ Cμ (3.4)

for x, y ∈ ∪1≤i≤4(Qμ + qi ).
Step 3: It remains to take care of regions near {H = 0} sinceCμ → +∞ asμ → 0.

Owing to Corollary 3.1, there exists t̃1 such that every point (1, d) for d ∈ [0, 1] is
reachable from P0 within time t̃1.

For d ∈ [0, 1], let ξd : [0,∞) → R
2 be the −V flow starting from (1, d), i.e.,

ξ̇d(s) = −V (ξd(s)) subject to ξd(0) = (1, d). Write ξ0(t̃1) = (π − 2ν0, 0). Fix
0 < α0 ≤ min{μ0, ν0}. Clearly, there exists d0 ∈ (0, μ0) such that for all d ≤ d0,

ξd([0,∞)) ∩ ({π − α0} × [0, 1]) = ξd(sd)

for some sd ≥ t̃1. Let

(π − α0, β0) = ξd0(sd0).

By choose d0 small enough, we may assume that β0 ≤ α0 (See Fig. 10).
Due to Lemma 2.4, for all d ≤ d0,

uλ(P0) ≤ max
t∈[0,t̃1]

uλ(ξd(t)) + C .
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−π O
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Fig. 11 Ji and R0

Combining with Lemma 2.5, for all s ∈ [0, 1],

uλ(P0) ≤ uλ(π − α0, sβ0) + C .

By looking at other cells and using (3.3), we can find common β0 ≤ α0 ∈ (0, μ0)

such that

uλ(P0) ≤ min{uλ(x)| x ∈ J1 ∪ (−J1) ∩ J2 ∩ (−J2)} + C .

Here J1 = {π − α0} × [−β0, β0] and J2 = [−β0, β0] × {α0} (See Fig. 11).
Combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Qμ and (3.4), we

have that

uλ(P0) ≥ max{uλ(x)| x ∈ J1 ∪ (−J1) ∩ J2 ∩ (−J2)} − C .

Now consider the rectangle R0 = [−π + α0, π − α0] × [−α0, α0]. Thanks to (3.4)
and the above argument, we have that

max
x∈∂ R0

|uλ(P0) − uλ(x)| ≤ C .

Again, combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Qμ and (3.4),

uλ(P0) ≥ max
x∈R0

uλ(x) − C .

Finally, applying the minimum value principle Lemma 2.3 on R0, we have that

min
x∈R0

uλ(x) = min
x∈∂ R0

uλ(x) ≥ uλ(P0) − C .
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Fig. 12 Corresponding versions of R0 on other edges

Accordingly, combining all the inequalities above, we derive that

max
x∈R0

|uλ(P0) − uλ(x)| ≤ C .

By applying this to other cells and edges (see Fig. 12), we have that

max
x∈�α0

|uλ(P0) − uλ(x)| ≤ C .

Similar conclusion also holds in other cells. Combining with (3.4), the lemma holds.
��

According to the above Lemma 3.8, standard arguments lead to

Corollary 3.3 For any unit vector p, there exists H(p) ∈ R such that

lim
λ→0

λvλ(x) = −H(p) uniformly inR2.

In particular, there exists a Z
2-periodic v ∈ U SC(R2) that is a viscosity subsolution

of

F(D2v, p + Dv) + V (x) · (p + Dv) = H(p)

and a Z
2-periodic v ∈ L SC(R2) that is a viscosity supersolution of

F(D2v, p + Dv) + V (x) · (p + Dv) = H(p).
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Also,

sup
x∈R2

{|v(x)|, |v(x)|} < C0

for a constant C0 depending only on d and V .

Proof The argument of the existence of the limit is similar to the proof of (3) in the
following lemma. Let

v(x) = lim sup
λ→0,y→x

(vλ(y) − vλ(0))

and

v(x) = lim inf
λ→0,y→x

(vλ(y) − vλ(0)).

It is easy to see that our conclusion holds. ��
Lemma 3.9 Below are several properties of H.

1. for λ > 0,

H(λp) = λH(p);

2. H(p) > 0 for p 
= 0;

3. H(p) ∈ C(R2).

Proof (1) is obvious from the definition of vλ. (2) follows from Corollary 3.2. (3)
follows from the standard stability of viscosity solutions. For the reader’s convenience,
we present details of the proof. Fixed a unit vector p.We argue by contradiction. If not,
without loss of generality, we may assume that there exist a sequence of unit vectors
{pm}m≥1 such that for limm→+∞ pm = p and for all m ≥ 1

H(pm) ≥ H(p) + r

for some r > 0. Owing to Corollary 3.3, for each m ≥ 1, let vm ∈ L SC(R2) be a
Z
2-periodic viscosity supersolution of

F(D2vm, pm + Dvm) + V (x) · (pm + Dvm) = H(p) + r

and

sup
x∈R2

|vm(x)| ≤ C0
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with the constant C0 from Corollary 3.3. Let

v(x) = lim inf
m→+∞,y→x

vm(y).

Then v(x) ∈ L SC(R2) is a Z2-periodic viscosity supersolution of

F(D2v, p + Dv) + V (x) · (p + Dv) = H(p) + r .

AlsobyCorollary 3.3, there isv ∈ U SC(R2) that is aZ2-periodic viscosity subsolution
to

F(D2v, p + Dv) + V (x) · (p + Dv) = H(p).

Write u = p · x + v and u = p · x + v. Then u is a viscosity supersolution of

F(D2u, Du) + V (x) · Du = H(p) + r

and u is a viscosity subsolution of

F(D2u, Du) + V (x) · Du = H(p).

Let

wδ(x, y) = u(x) − u(y) − |x − y|4
δ

.

Due to the periodicity of v and v, we can find (xδ, yδ) ∈ R
2 × R

2 such that

wδ(xδ, yδ) = max
x,y∈R2

wδ(x, y).

It is easy to see that

lim
δ→0

wδ(xδ, yδ) = max
x∈R2

(v − v) and lim
δ→0

|xδ − yδ|4
δ

= 0. (3.5)

Owing to Theorem 3.2 and Remark 3.8 in [13], there are two 2×2 symmetric matrices
X and Y such that

X ≤ Y , ||X || + ||Y || ≤ C
|xδ − yδ|2

δ

and for p̄ = 4(xδ − yδ)
|xδ−yδ |2

δ

F(X , p̄) + V (xδ) · p̄ ≤ H(p)

F(Y , p̄) + V (yδ) · p̄ ≥ H(p) + r .
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Also,

|(V (xδ) − V (yδ)) · p| ≤ C |xδ − yδ|4
δ

.

Accordingly,

F(X , p̄) − F(Y , p̄) ≤ C |xδ − yδ|4
δ

− r .

Case 1: If xδ − yδ = 0, then X = Y = 0. We have that

0 = 0 − 0 ≤ −r ,

which is impossible.
Case 2: If xδ − yδ 
= 0. Then

F(X , p̄) − F(Y , p̄) = F(X , p̄) − F(Y , p̄) ≥ 0,

we obtain

0 ≤ C |xδ − yδ|4
δ

− r .

Owing to (3.5), as δ → 0, we have

0 ≤ −r ,

a contradiction. ��
Proof of Theorem 1.1 Let v and v be functions fromCorollary 3.3. Then by comparison
principle Theorem 2.1,

p · x + ε
(
v
( x

ε

)
− C0

)
− H(p)t ≤ Gε(x, t) ≤ p · x + ε

(
v
( x

ε

)
+ C0

)
− H(p)t

and

p · x + v(x) − C0 − H(p)t ≤ G(x, t) ≤ p · x + v(x) + C0 − H(p)t .

for the constant C0 from Corollary 3.3. The conclusion follows immediately. ��
Remark 3.2 For application purposes, people are interested in deriving explicit formu-
las of the effective burning velocity under theG-equationmodel (see [22] for instance).
Although a simple formula is mathematically not available, it might be practically
interesting to investigate more detailed properties of H(p) (e.g., its anisotropy due to
the presence of the fluid) in addition to its dependence on physical parameters. These
kind of problems often require methods deeper than those standard PDE approaches
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Fig. 13 Move forward within a non-convex cell

in Lemma 3.9. For instance, questions in this aspect have been studied in [21] and [38]
for the case v�n = a(x) (e.g., phase transition in an inhomogeneous medium without
considering curvature effect) using tools from dynamical systems. A conclusion from
results there is that in 2D, a polygon could be an effective front if and only if it is
centrally symmetric with rational vertices and nonempty interior. So different distri-
butions of defects and heterogeneities can change the evolution significantly, which
could have an important practical implication [12].

Remark 3.3 A natural question is whether our result can be proved by pure PDE or
geometric approaches as in previous literature. For this aspect, Theorem 10.2 in [5]
seems relevant. Checking Assumption B” there (if it holds) might need to evolve
Qμ by properly combining the motion law and the V flow. It is not clear to us how
to arrange the motions to reach a stationary supersolution (basically a large V -flow
invariant set in our context) within finite time. Game theoretical method provides more
flexibility to handle detailed local structures. For instance, the non-divergence inviscid
example in section 11.2 of [5] relying on Theorem 10.2 for 2D can be proved for all
dimensions via control formulation using full reachability or partially reachability +
minimum value principle as in this paper. See [42] for more applications of game
theory in homogenization of non-coercive non-convex G-equations.

4 Extension to General 2D Incompressible Flows

In this section, we will briefly explain how to possibly modify our methods to cover
more general 2D incompressible flows. Assume that V = (−Hx2 , Hx1) for a general
periodic stream function H . For simplicity,we just discuss two representative scenarios
and the corresponding adjustments of our methods.

Case 1:Non-convex cells. In general, the level curves of H might consist of convex
and concave parts (relative to a fixed cell).

• Movement within a cell (extension of Lemma 3.2). Starting from a level curve
γ1, the game trajectory can move forward on the convex part (or near flat part)
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Fig. 14 Move to points near the boundary and to an adjacent cell

of γ1 using a modified version of Lemma 5.3 to arrive at another level curve γ2,
then travel along γ2 to its convex parts (or near flat parts) in order to further move
forward (See Fig. 13).

• Movement to reach the boundary and adjacent cells (extension of Lemma 3.4 and
Corollary 3.1). Starting from the center critical point P in the cell U0, player I
aims to drive the game trajectory to travel to a point W2 that is very close to a
concave portion of the boundary. As in this paper, we need to control the amount
of travel time. Since the game trajectory might not be able to cross the boundary
on the concave portion, it can first move to a point W1 near (but not very close
to) the convex part of the boundary. Next use a modified version of Lemma 5.3 to
reach W3 in the adjacent cell U1. Then follow the flow −V to a point W4 that is
close (but not too close) to the concave part of the boundary of U0 and move back
to U0 based on a modified version of Lemma 5.3, and finally travel to W2 along
the flow −V (See Fig. 14).

Other lemmas and conclusions in this paper can be extended similarly.
Case 2: Cat’s-eye types. For simplicity, we look at the following representative

example

H(x1, x2) = sin x1 sin x2 + δ cos x1 cos x2

for δ ∈ (0, 1). The picture consists of islands (e.g. shaded regions I1, I2 in figure
below) and unbounded periodic orbits of −V flow (e.g., regions J1, J2 in the figure
below) (See Fig. 15).

Step 1: By similar arguments in this paper and possible extensions as in the above
Case 1 together with periodicity, there exist constants c̄1, c̄2, c1 and c2 such that for
i = 1, 2, limλ→0 λuλ = c̄i in the unbounded region Ji and limλ→0 λuλ = ci within
Ii .
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I2

I1

J1

J2

Fig. 15 Cat’s-eye type flows

Step 2: By partial reachability (from I1, I2 to J1 and J2 due to convexity of the
boundary of Ii ), we have that c1, c2 ≤ c̄1, c̄2.

Step 3: Note that for (x1, x2) near (0, 0),

H(x1, x2) = x1x2 + δ

(
1 − x21

2
− x22

2

)
+ O(x41 + x42 ).

It is not hard to see that the curvature of H(x1, x2) = δ (the boundary of islands) tends
0 when approaching saddle points (inflection points). Therefore, starting from some
regions of J1 or J2, player I can move the game trajectory into those islands through
portions of the boundary near saddle points. Accordingly, we have that c1 = c2 =
c̄1 = c̄2.

For other cat’s-eye type flows, it could happen that one island I is uniformly convex
and, hence, game trajectories might not be able to enter it from unbounded domains
when the Markstein diffusivity d is large. For this case, game trajectories can still
enter islands adjacent to I and the minimum value principle will lead to the same
conclusion. One such example is

H(x1, x2) = x21 − x22 − 2x31 + x41 for (x1, x2) near (0, 0).

Here H = 0 implies x2 = x1 − x21 or x2 = −x1 + x21 near (0, 0).
We expect that the effective burning velocity should exist for quite general 2D

incompressible flows, at least if all critical points H are non-degenerate where the
flow structure is well-understood and essentially the combination of case 1 and case
2 (see [3]). The main challenge is how to find an efficient systematic proof without
examining all possible scenarios. For non-smooth flows (H ∈ C1,1, or equivalently V
is only Lipschitz continuous) or flows with degenerate stagnation points, the analysis
appears more complicated. We plan to investigate this issue in the future.

Remark 4.1 Our proof of Theorem 1.1. suggests a general framework based on the one
sided reachability of game trajectories and the minimum value principle of suitable
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stationary problems. The former is a separate dynamical system issue that has to be
verified for a given flow field V, be it periodic, almost periodic or random. If it is
true or almost surely true, the remaining PDE argument extends and the existence of
effective front speed might be established in interesting non-periodic settings.
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5 Appendix

It is well known that the front propagation under the viscosity solution framework is
consistent with the classical meaning when the smooth solutions exist. See section 6
in [16] for instance. The following conclusion is a special case in our context, which
is needed to derive a reachability property. For the reader’s convenience, we present
its proof here in 2D, which is sufficient for our purpose.

Throughout this section, we only assume that V ∈ W 1,∞(R2) and

V (x) · (1, 0) = 0 for x ∈ {0} × [0, 1]. (5.1)

Let S = (0, 1)2 and

gS(x) =
{

− 2
π
arctan(d(x, ∂S)) for x ∈ S

2
π
arctan(d(x, ∂S)) otherwise.

Here d(x, ∂S) is the distance from x to ∂S.

Lemma 5.1 Suppose that G ∈ C(R2 × [0,∞)) is the unique viscosity solution to
equation (1.2) subject to

G(x, 0) = gS(x).

Then for a given δ ∈ (0, 1
2 ), there exists tδ > 0 depending only on d, V and δ such

that

G((0, θ), t) < 0 for (θ, t) ∈ [δ, 1 − δ] × (0, tδ].

Proof Intuitively, this conclusion is obvious since the speed along the normal direction
�n = (−1, 0) at the point (0, θ) is

v�n = 1 − dκ + V (x) · �n = 1.

Tomake this rigorous, we need to build smooth supersolutions and employ comparison
principle. It suffices to prove this at a fixed θ ∈ [δ, 1 − δ].
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(0, θ)

S

t = 0

(0, θ)

SR0

0 < t ≤ t0

Fig. 16 Propagation of the ellipse

Step 1: Choose an ellipse. Consider the ellipse

Eθ (t) : (x1 − a0 − ν)2

a2(t)
+ (x2 − θ)2

b2(t)
= 1.

Here ν ∈ (0, a0) is added for technical convenience and will be sent to zero later (See
Fig. 16).

Let b0 = δ
2 . Then choose a0 ∈ (0, b0

4 ) small enough such that

|V (x) · (1, 0)| <
1

8
if x ∈ [−4a0, 4a0] × [0, 1]

and

d64a0
b20

+ 4M0
√
3

a0
b0

<
1

8
.

Here M0 = maxx∈R2 |V (x)|.
Then we define a(t) = a0 + 1

2 t and b(t) = b0 − Lt for L > 0 satisfying

1

2
− 3La0

4b0
< 1 − db0

a02
− M0.

Hereafter we require 0 ≤ t ≤ tδ for tδ = min
{
2a0,

b0
2 L

}
, which implies that

(a(t), b(t)) ∈ [a0, 2a0] ×
[

b0
2

, b0

]

and

Eθ (t) ⊂ R0 = [−4a0, 4a0] × [0, 1]
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for t ∈ [0, tδ]. Also, 4a0 < b0 leads to

a(t) < b(t) for all t ∈ [0, tδ].

For convenience, we drop the dependence of a and b on t . Hereafter t ∈ [0, tδ]
unless specified otherwise. Let �n be the outward unit normal vector along Eθ (t) that
has the following parameterization: for φ ∈ [0, 2π ]

{
x1 = a0 + ν + a cosφ

x2 = θ + b sin φ.

Then

V · �n = V ·
(

b cosφ√
a2 sin2 φ + b2 cos2 φ

,
a sin φ√

a2 sin2 φ + b2 cos2 φ

)
.

If | sin φ| <
√
3
2 ,

|V · �n| ≤ |V (x) · (1, 0)| + M0 · a sin φ√
a2 sin2 φ+b2 cos2 φ

≤ |V (x) · (1, 0)| + M0 · a
b · | tan φ|

≤ |V (x) · (1, 0)| + M0 · 2a0
b0/2

· √
3

= |V (x) · (1, 0)| + 4
√
3M0 · a0

b0
< 1

8 + 1
8 = 1

4 .

(5.2)

Step 2: Evolution of an elliptic boundary. Let us recall some basic facts. Given
a C1 function f (x, t) and the family of level curves

C(t) = {x ∈ R
2 | f (x, t) = 0},

if Dx f 
= 0, the propagation speed of C(t) along the outward normal direction �n =
Dx f

|Dx f | is given by

v�n = − ft

|Dx f | ,

which can be easily derived through the chain rule. Moreover, the corresponding mean
curvature along C(t) is

κ = divx (�n).

Now let us verify that for t ∈ [0, tδ], the propagation of Eθ (t) obeys the following
inequality:

v�n < 1 − dκ + V · �n, (5.3)

which will be used to construct a supersolution. Fix any a, b > 0 and an ellipse

x21
a2 + x22

b2
= 1,
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direct compuations show that its curvature at point P(a cosφ, b sin φ), 0 ≤ φ < 2π ,
is

κ = ab(
a2 sin2 φ + b2 cos2 φ

) 3
2

and the normal velocity at P(a cosφ, b sin φ) is

v�n = a′b cos2 φ + ab′ sin2 φ√
a2 sin2 φ + b2 cos2 φ

.

Case 1. If | sin φ| ≤
√
3
2 , then

dκ = dab(
a2 sin2 φ + b2 cos2 φ

) 3
2

≤ dab(
b2 cos2 φ

) 3
2

≤ dab

(b/2)3
≤ d64a0

b20
<

1

8
.

Note that

v�n =
b
2 cos

2 φ − La sin2 φ√
a2 sin2 φ + b2 cos2 φ

≤
b
2 cos

2 φ√
b2 cos2 φ

≤ 1

2
.

Since for t ∈ [0, tδ],

Eθ (t) ⊂ [−4a0, 4a0] × [0, 1],

(5.2) implies that v�n ≤ 1
2 < 1 − 1

8 − 1
4 < 1 − dκ + V · �n.

Case 2. If | sin φ| ≥
√
3
2 , then

v�n =
b
2 cos

2 φ − La sin2 φ√
a2 sin2 φ + b2 cos2 φ

≤
b
2 cos

2 φ√
b2 cos2 φ

− La sin2 φ

b

≤ 1

2
− 3La

4b
≤ 1

2
− 3La0

4b0
.

Meanwhile,

dκ = dab(
a2 sin2 φ + b2 cos2 φ

) 3
2

≤ db

a2 ≤ db0
a02

.

Therefore, due to the choice of L , we have v�n < 1 − dκ + V · �n.
Combining case 1 and case 2, we see that (5.3) holds, i.e., the evolution of Eθ (t)

satisfies

v�n < 1 − dκ + V · �n, for 0 ≤ t ≤ tδ.
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Step 3: Comparison. Let

�(x, t) = (x1 − a0 − ν)2

a2(t)
+ (x2 − θ)2

b2(t)
− 1.

Owing to (5.3), we may choose μ0 ∈ (0, 1
2 ) such that (5.3) also holds along the

curve {x ∈ R
2| �(x, t) = μ} for all μ ∈ [−μ0, μ0] and t ∈ [0, tδ]. Equivalently, for

Dθ =
{
(x, t) ∈ R

2 × [0, tδ] | − μ0 ≤ �(x, t) ≤ μ0

}
,

�t +
(
1 − d div

(
D�

|D�|
))

|D�| + V (x) · D� ≥ 0 on Dθ . (5.4)

Let {hk}k≥1 ∈ C∞(R) be a sequence of functions such that

0 < h
′
k ≤ 1 in Ik =

(
−μ0 + 1

k
, μ0 − 1

k

)
, h

′
k = 0 inR\Ik

and limk→+∞ hk(s) = h(s) uniformly in R, where

h(s) =

⎧⎪⎨
⎪⎩

μ0 for s ≥ μ0

s for s ∈ [−μ0, μ0]
−μ0 for s ≤ −μ0.

Apparently, �k(x, t) = hk(�(x, t)) satisfies

∂�k

∂t
+
(
1 − d div

(
D�k

|D�k |
))

|D�k | + V (x) · D�k ≥ 0 onR2 × (0, tδ). (5.5)

By stability, we have that G1(x, t) = h(�(x, t)) ∈ W 1,∞(R2 ×[0,∞)) is a viscosity
supersolution of

∂G1

∂t
+
(
1 − d div

(
DG1

|DG1|
))

|DG1| + V (x) · DG1 ≥ 0 onR2 × (0, tδ). (5.6)

Since (a)+ ≥ a, G1 = G1(x, t) is also a viscosity supersolution of equation (1.2) on
R
2 × (0, tδ).
Because for fixed ν > 0

{G1(x, 0) ≤ 0} = {�(x, 0) ≤ 0} ⊂ S,

we can choose a function ξ ∈ C∞(R) such that ξ̇ > 0, ξ(0) = 0, sups∈R |ξ(s)| < ∞
and

g(x) ≤ ξ(G1(x, 0)).
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Since ξ(G1(x, 0)) is also a viscosity supersolution of equation (1.2) on R
2 × (0, tδ),

thanks to Theorem 2.1, we have that

G(x, t) ≤ ξ(G1(x, t)) for (x, t) ∈ R
2 × [0, tδ].

In particular, this implies that

{x ∈ R
2| G1(x, t) < 0} = {x ∈ R

2| ξ(G1(x, t)) < 0} ⊂ {x ∈ R
2| G(x, t) < 0}.

Note that {x ∈ R
2| G1(x, t) < 0} = {x ∈ R

2| �(x, t) < 0}. Sending ν → 0, we
have that for t ∈ [0, tδ],
{

x = (x1, x2) ∈ R
2| (x1 − a0)2

a2(t)
+ (x2 − θ)2

b2(t)
< 1

}
⊂ {x ∈ R

2| G(x, t) < 0}.

Then

G((0, θ), t) < 0 for t ∈ (0, tδ],

which finishes the proof. Note that tδ only depends on δ and V . ��
Let 	 ⊂ R

2 be an open convex set. Denote by G	(x, t) the unique viscosity
solution to equation (1.2) subject to G	(x, 0) = g	(x) where

g	(x) =
{

− 2
π
arctan(d(x, ∂	)) for x ∈ 	

2
π
arctan(d(x, ∂	)) otherwise.

Given two sets E1 and E2, their Hausdorff distance

dH (E1, E2) = max{max
x∈E1

d(x, E2), max
x∈E2

d(x, E1)}.

Also, for α > 0 and δ ∈ (0, 1
2 ), we write

Wα,δ = [−α, α] × [δ, 1 − δ].

Lemma 5.2 Let S = (0, 1)2. For given δ ∈ (0, 1
2 ) and n ∈ N, there exists σδ,n > 0

such that if

dH (S,	) ≤ σδ,n and α ≤ σδ,n,

then

G	(x, t) < 0 for (x, t) ∈ Wα,δ ×
[

tδ
n

, tδ

]
.
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Wα,δ

S

Ω

Fig. 17 Reach 	 from Wα,δ

Here tδ is from the previous Lemma 5.1.

Proof We argue by contradiction. If not, then there exist a sequence of convex open
sets {	m}m≥1 such that

dH (S,	m) ≤ 1

m

and for some (xm, tm) ∈ W 1
m ,δ × [ tδ

n , tδ
]

G	m (xm, tm) ≥ 0.

Since

lim
m→+∞ g	m (x) = gS(x) uniformly onR2,

due to Remark 2.1, the uniqueness of viscosity solutions, we have that

lim
m→+∞ G	m (x, t) = G(x, t) locally uniformly onR2 × [0,∞).

Here G is from Lemma 5.1. The proof is similar to that of (2.4). Also, up to a
subsequence if necessary, we may assume that limm→+∞(xm, tm) = ((0, θ), t̄) for
(θ, t̄) ∈ [δ, 1 − δ] × [ tδ

n , tδ
]
. Then we have that

G((0, θ), t̄) = lim
m→+∞ G	m (xm, tm) ≥ 0.

This is a contradiction. ��
As an immediate corollary, we have the following reachability.

Lemma 5.3 Consider the game in section 2.2. Under the assumption of Lemma 5.2,
every point on Wα,δ can reach 	 within time tδ

n . Also, it is easy to see that if we replace
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S by an arbitrary rectangle, all previous results are still true in the corresponding
forms (See Fig. 17).

Remark 5.1 Due to the hidden stochastic nature of the game trajectory, it is not clear
to us how to use pure game dynamics to prove the above reachability conclusion. An
interesting analog in random walk (or Brownian motion) is to use strong maximum
principle of the Laplace equation to show that a particle has a positive probability to
exit from any small window of the boundary.
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