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Abstract

G-equation is a popular level set model in turbulent combustion, and becomes an
advective mean curvature type evolution equation when curvature of a moving flame
in a fluid flow is considered:

DG
G 1 —ddi DG 1% -DG = 0.
’+< 1V<|DG|>>+' Ve

Here d > 0 is the Markstein number and the positive part ()4 is imposed to avoid a
non-physical negative laminar flame speed. For simplicity of presentation, we focus
mainly on the case when V : R? — R? is the two dimensional cellular flow with
Hamiltonian H = sin x| sinx, and amplitude A. Our main result is that for any unit
vector p € R?, there exists a positive number H (p) such that if G(x, 0) = p - x, then

|G(x,0) = p-x+H(p)t| < C inR* x [0, c0)
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for a constant C depending only on on the Markstein number d and the cellular flow
amplitude A. The number H (p) corresponds to the effective burning velocity in the
physics literature. The non-coercivity encountered here is one of the major difficulties
for homogenization of the mean curvature-type equations. To overcome it, we intro-
duce a new approach that combines PDE methods with a dynamical analysis of the
Kohn-Serfaty deterministic game characterization of the curvature G-equation utiliz-
ing the streamline structure of cellular flows. Extension to general two-dimensional
incompressible flows is also discussed. In three dimensional incompressible flows, the
existence of H (p) might fail when the flow intensity exceeds a bifurcation value even
for simple shear flows Mitake et al. (Bifurcation of homogenization and nonhomoge-
nization of the curvature G-equation with shear flows (2023)).

Keywords Front motion - Cellular flow - Curvature effect - Homogenization - Game
theory

Mathematics Subject Classification 70H20 - 76M50 - 76M45 - 76N20

1 Introduction

G-equation is a well-known level-set model in turbulent combustion [39]. Precisely
speaking, given a reference function G(x, ¢), let the flame front be the zero level
set {G(x, t) = 0} at time ¢, where the burnt and unburnt regions are {G(x, ) < 0}
and {G(x,t) > 0}, respectively. See Fig. 1 below. The velocity of ambient fluid
V : R" — R"is assumed to be continuous and Z" -periodic. The propagation of flame
front obeys a simple motion law:

vi =5+ V(x) A,

i.e., the normal velocity is the laminar flame speed (s;) plus the projection of V along
the normal direction 7. This leads to the so—called G-equation, a level-set PDE [32,
34, 39]:

G+ V(x)-DG+5|DG| =0 inR" x (0, +00).

In the simplest case when the laminar flame speed s; is a positive constant, the
above equation is called the inviscid G-equation, a non-coercive convex Hamilton-
Jacobi equation.

However, in general, s; is not constant along the flame front since the burning
temperature varies in different locations. In order to quantify temperature difference,
the curvature effect in turbulent combustion was first introduced by Markstein [30],
which says that if the flame front bends toward the cold region (unburned area, point
Cin Fig. 2 below), the flame propagation slows down. If the flame front bends toward
the hot spot (burned area, point B in Fig. 2), it burns faster.

There is a vast turbulent combustion literature discussing the impact of curvature
effect. Below is the most recognized empirical linear relation proposed by Markstein
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Fig.1 Level-set formulation of front propagation

C

B unburned

Fig.2 Curvature effect

[30] to approximate the dependence of the laminar flame speed s; on the curvature
(see also [34]):
si=s50(1—d k). (1.1

Here s?, the mean value, is a positive constant. Hereafter we set slo = 1. The parameter
d > 0 is the so called Markstein length which is proportional to the flame thickness.
The mean curvature along the flame front is «. The positive part (a)+ = max{a, 0} is
imposed to avoid negative laminar flame speed since materials cannot be “unburned”.
This correction usually is not explicitly mentioned in combustion literature since, by
default, the curvature is always assumed to be small there. However, mathematically,
large positive curvature could occur as time evolves. Therefore it is necessary to
explicitly add this correction in theoretical study and numerical computations [44] if
the physical validity is taken into consideration in the modeling of flame propagation.

Plugging the expression of the laminar flame speed (1.1) into the G-equation and
normalizing the constant slo = 1, we obtain a mean curvature type equation with
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advection:

G +(1—dd' <DG>> |IDG|+V(x)-DG =0 (1.2)
t 1v DG . X) - = 0. .

We would like to mention that curvature G-equations served as some of the first
numerical examples in the development of level-set methods [32, 33, 36]. The rigorous
mathematical foundation under the framework of viscosity solution was established
in [10, 16].

In general, ¥ changes sign along a curved flame front. So a mathematically inter-
esting and physically important question is:

Question 1 How does the “averaged” flame propagation speed depend on the curva-
ture term?

As the first step, the main purpose of this paper is to establish the existence of a
properly defined “averaged speed", which is basically to average fluctuations caused
by both the flow and the curvature. The theory of homogenization provides such a
rigorous mathematical framework in environments with microstructures.

Turbulent combustion usually involves small scales. As a simplified model, we
rescale V as V = V(%) and replace d by d €. Here € denotes the Kolmogorov scale
(the small scale in the flow). The diffusivity constant d > 0 is called the Markstein
number. We would like to point out that the dimensionless Markstein number is d - S?L
with §7, denoting the flame thickness [34]. In the thin reaction zone regime, §;, = O (¢€),
see Eq. (2.28) and Fig. 2.8 of [34]. Without loss of generality, let ‘S?L = 1. Then (1.2)

becomes
0G DG
C+(1—-dediv <
Jt |IDG|

>>+ IDGe| +V ()E—C) .DG.=0. (13)

Since € < 1, it is natural to look at lim¢_,¢ G¢, i.e., the homogenization limit. If
Ge(x,0) = p - x, the limit lime_.0 G¢ (x, ) can be viewed as the flame propagation
under the effective burning velocity (also called “turbulent flame speed” in physics
literature) along a given direction p.

For general V, the effective burning velocity might not exist (see Remark 1.4).
Moreover, a general V is unlikely to provide meaningful answers to delicate problems
like Question 1. In this paper, we consider a two-dimensional (2D) cellular flow that is
frequently used in the mathematics and physics literature. See [11] for more physical
motivations. For clarity of presentation, we choose to work with the typical example

Vx)= A(DH)J‘ = A(—cosxpsinxy, cosxysinxp).

Here H(x1,x2) = sinxjsinxp is the stream function and the positive constant A
represents the flow intensity. The following is our main theorem.

Theorem 1.1 Suppose that V.= A(DH)* for A > 0. For each € > 0, let G, =
Ge(x,t) € C(]R2 X [0, 00)) be the unique viscosity solution to equation (1.3) on
R? x [0, 00) subject to G¢(x,0) = p - x for a given p € R?. Then

|Ge(x, 1) — p-x + Ha(p)t] < Ce onR?* x [0, 0)
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for a constant C depending only on d, V and |p|. Here H4 € C(R?\{0}, (0, 0)) is
a continuous positive homogeneous function of degree one.

Equivalently, if G(x, t) is the unique viscosity solution to equation (1.2) on R? x
[0, 00) subject to G(x,0) = p - x, then

|G(x, 1) — p-x+Ha(p)t| <C onR* x [0, 00).

Remark 1.1 Our proof relies on establishing the existence of correctors to the cell
problem for every p € R?:

. p+ Dv _
<1 —d div <—>> |p+ Dv|+ V(x)-(p+ Dv) = H(p).
lp+Dv|)],

In general, the cell problem is sufficient to obtain the full homogenization with
any uniformly continuous initial data by Evans’ perturbed test function method [15].
However, as it was first explicitly pointed out in [5], due to the discontinuity of the
mean curvature operator, the standard perturbed test function method is not directly
applicable. Roughly speaking, given a test function ¢ (x, 1) € C*(R" x (0, 00)), let
p = Dy¢(xp, tp), it is not clear whether
X
€

qb(x,t)—i—ev( )

is an approximate solution of equation (1.3) near (xg, fo) due to possible vanishing
gradients. The authors of [5] have introduced a mechanism to implement a modified
version of the perturbed test function method. See also [2] for a different modified
argument when the corresponding cell problem has a classical solution. To avoid a
lengthy paper, we will address this subtle issue in a future publication. In view of our
problem’s physical origin, it would be an interesting project to study more detailed
properties of H 5 (p) (e.g., its anisotropy). See Remark 3.2.

Remark 1.2 'We would like to point out that the small scales in the curvature G-equation
help flame propagation. In fact, it is not hard to see that under equation (1.2), the flame
front is stagnant if the initial burned region is {x € R*| G(x,0) < 0} = {x €
[0, ] x [0, w]| H(x) > 1| — r} and the initial flame front is

{x € R2| Gx,0)0=0={xe0,7r]x[0,7r]] Hx)=1—r}

when r is small enough. Nevertheless, after homogenization, the front moves forward
with a positive normal speed H 5 (p) along any given direction p. The curvature term
plays a subtle role of flame spreading when the cellular flow corrugates the level set.
Such a flow induced geometric mechanism is absent in the invicid equation model (i.e.
d = 0). The homogenization of the inviscid G-equation has been established indepen-
dently in [7] and [40] via completely different approaches for general incompressible
flows in any dimension.
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Remark 1.3 As pointed out by a referee, a natural question is whether the cut-off () + in
the governing equation is actually active (equal to zero) at some point (x, ) during the
evolution in the cellular flow. A direct numerical simulation suggests that the answer
is positive over A € (0,45] at d = 0.1 where the H differs with and without the
cutoff. That the cut-off is active is clear in the case of three dimensional shear flows
[31] where the homogenization fails for large flow intensity with cut-off (-)+ and the
homogenization holds for all flow intensity without cut-off (-)1. See Remark 1.4 for
more details.

The major remaining question is to understand how the turbulent velocity H 4 (p)
depends on the Markstein number d and the flow intensity A. There is a consensus
in combustion literature that the curvature effect slows down flame propagation [35].
Heuristically, this is because the curvature term smoothes out the flame front and
reduces the total area of chemical reaction [36]. To the best of our knowledge, the first
mathematically rigorous result in this direction was obtained in [29] for shear flows.
It was proved that H is strictly decreasing with respect to the Markstein number d,
which is consistent with the experimental observation (e.g., [9]).

For the more complicated cellular flow, it is probably more convenient to compare
the growth law with respect to the flow intensity A. For the inviscid case, a sharp
growth law was establish in [41]: when d = 0, for p = (p1, p2),

A7T(IP1|+IP2|)<EA(p)<A7T(|P1I+IP2I)‘
2logA+Cy,  — — 2log A+ C

By refining the method and estimates in this paper, we conjecture that it might be
possible to show that when d > 0,

Hip=o0(-2
A(p) = <logA)'

More interestingly, in future work we plan to investigate:

Question 2 Does the presence of the curvature effect significantly reduce the predic-
tion of the turbulent flame speed? More specifically, does there exist a unit direction
p such that

Ha(p)logA  n(lpil +p2D) ,
P < !
A——+4o00 A 2

If the curvature term is replaced by full diffusion (i.e. the Laplacian A without any
correction), a dramatic slow-down (H 4 (p) uniformly bounded in A) is proved in [28]
for two dimensional (2D) cellular flows.

e Other works. In non-combustion practical suitations such as phase transition
(e.g., crystal growth) in material science [12, 25], the motion law is given by (no drift
term and ()4 correction)

v; = a(x) —dk (1.4)

@ Springer



Existence of an Effective Burning Velocity Page70f48 81

for a continuous positive Z"-periodic function a(x). The above formula is known
as the Gibbs-Thomson relation. The ()4 is not needed in crystal growth since both
freezing and melting could occur in the situation of ice formation [25]. See ([2, 5,
6, 8, 12, 14, 17-19, 26], etc) and reference therein for works regarding the homoge-
nization or large time limit related to (1.4). When a(x) satisfies a special coercivity
condition, homogenization has been proved in [26] for all dimensions. When n = 2,
homogenization was proved in [5] for all positive a(x) by a geometric approach. More-
over, the authors have also constructed a counterexample in [5] when the dimension
n > 3 for a positive a(x). See [4] for more discussions about geometric approaches
in homogenization. Due to the presence of the non-coercive transport term V - DG,
ora = a(x,n) = 1+ V(x) - i, our situation and methods are very different from
all these previous works. See Remark 3.3 for more discussions. Our result also holds
when (1 — dk)4 is replaced by a more general form (a(x) — dk) .

Remark 1.4 Like the invisicd G-equation case (d = 0), it is easy to construct a smooth
periodic V such that the effective speed does not exist, e.g. let V(x) = K (x — Py) near
Py = (%, 5) for a large number K > 0 and equal to the cellular flow away from Pp.
We conjecture that our method could be extended to cover general 2D smooth periodic
incompressible flows (div(V) = 0). See Sect. 4 for more detailed discussions. When
n > 3,itwas proved in [31] that, for the shear flow V (x1, x2, x3) = (0, 0, Af (x1, x2)),
the effective burning velocity ceases to exist when the flow intensity A exceeds a
bifurcation value. Note that when n = 2, the existence of effective burning velocity
can be established very easily for all shear flows since the cell problem is reduced to
an ODE and maximum principle immediately leads to uniform bound of derivatives.

Question 3 Does Theorem 1.1 hold if V is a 3D physically meaningful flow that
possesses turbulent or chaotic structures, e.g. the Arnold-Beltrami-Childress flow [11,
43]?

¢ Outline of the paper. In Sect. 2, for reader’s convenience, we will go over the defi-
nition and comparison principle of viscosity solutions of curvature type equations. The
associated game theoretic interpretation from [24] will be reviewed as well. In Sect. 3,
we prove Theorem 1.1 by a novel approach combining Lagrangian (game dynamics)
and Eulerian approaches (PDE techniques). In Sect. 4, we discuss how to extend our
results and methods to general 2D incompressible flows. Our approach also suggests
a possible general framework to tackle non-periodic settings (see Remark 4.1). To
help derive a reachability property in our proof, we show rigorously in the Appendix
a useful fact related to the consistency of viscosity and classical solutions in front
propagation.

2 Preliminary

In this section, V : R" — R” is assumed to be continuous and Z"-periodic. Write

F(A,p) = (|p| ~d (trA - w»
[P +
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for (A, p) € S x (R*\{0}). Here S"*" is the space of n X n real symmetric matrices.
Following the definition in [13], let

_ [P p) ifipl#0
0 if|p|=0

_ ) F(A, p) if|p| #0

and F(A, p) =
AP =V oanllAll iflp] = o.

E(A, p)

Here ||A|| is the largest absolute value of eigenvalues of A. Note that F and F are
lower semicontinuous and upper semicontinuous respectively. As it was pointed out
in [13], the definition at p = 0 is not really important as long as the lower and upper
continuity hold. This is because A will be zero when p = 0 with the proper test
function (see the proof of Theorem 2.1 for instance). When n = 2,

p.A.p_pl.A.pl

trA — =
Ipl? Ipl?

Here p = (—p2, p1) if p = (p1. p2) € R*\{0}.
2.1 Definition of Viscosity Solutions and Comparison Principle

We first introduce several definitions and terminologies.
Let

LSC (L) : the set of lower semicontinuous functions defined on €2,

USC(2) : the set of upper semicontinuous functions defined on €2,
and

UC(R2) : the set of uniformly continuous functions defined on 2.

Definition 2.1 Assumethat G = G(x,t) € USC(R" x (0, 00)). G is called a viscosity
subsolution of equation (1.2) provided that given ¢ (x, ) € C 2R x (0, 00)), if

G0, 10) = ¢(x0.10) = max _(G(x,1) = p(x. 1)),
R x (0,00)
then
9130, 10) + F (D29 (x0. 10). D (x0. 10) ) + V (x0) - Dp(x0, 10) < 0.

Definition 2.2 Assumethat G = G(x,t) € LSC(R" x (0, 00)). G is called a viscosity
supersolution of equation (1.2) provided that given ¢ (x,t) € C 2(R” x (0, 00)), if

G0, 1) = $ (o, 1) = _ min (G (x,1) = §(x,1),

@ Springer



Existence of an Effective Burning Velocity Page90f48 81

then
#1(x0,10) + F (D (5o, 10), DY (x0,10)) + V (x0) - D (x0, 0) = 0.

Definition2.3 G = G(x,t) € C(R" x (0, 00)) is called a viscosity solution of equa-
tion (1.2) if it is both a viscosity subsolution and a viscosity supersolution. If the initial
data G(x, 0) = g(x) is given, then we require that

linz) G(x,t) = g(x) locally uniformly forx € R".
t—

The following comparison principle for solutions can be proved by standard
approaches ([5, 10, 13, 16]), which is a special case of Theorem 3.3 in [5] . For
the reader’s convenience, we provide a sketch of the proof. See the proof of Theorem
3.3 in [5] (the long version) for more general operators.

Theorem 2.1 Assume that V. € WL°(RM), g1, 8 € UCR") and g1 < g». Suppose
that for some T > 0, G| = G(x,t) € USC(R" x (0, T)) is a viscosity subsolution
of equation (1.2) and G, = Go(x,t) € LSC(R" x (0, T")) is a viscosity supersolution
of equation (1.2). If both G| and G are subject to (fori =1, 2):

liII(l) |Gi(x,t) — gi(x)| =0 locally uniformly in R"
11—

then
Gi(x,1) < Gy(x,t) forall(x,1r) e R" x [0, T).

Proof By considering % arctan(G1) and % arctan(G,), we may assume that for i =
1,2,

—-1<G; <1.
We argue by contradiction. If not, then

sup  (Gi(x,1) — Ga(x, 1)) > 0.
(x,1)eR" x[0,T)

Let M = 4(||V [yt (@, + 1) and

Then G is a viscosity subsolution of

aG - - . N
B_tl + MG, + F(D*G1,DG)) +V(x)- DG, =0
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and G is a viscosity supersolution of

G S 3 .
a—tz+MG2+F(D2G2,DGz)—i—V(x)-DGg:O

subject to lim;_, ¢ |Gi(x, t) — gi(x)| = 0 locally uniformly in R”".
We also have that

r= sup  (G(x,1) — Ga(x, 1)) > 0.
(x,0)eR" x[0,T)

Now let
wx, y,0) =Gi(x,1) — Ga(y, 1) — Dp g 5(x,y)

for some K, p,$ > 0 and

8
<I>p,1<,a(x,y,t)=p( |x|2+1+\/|y|2+1>+K|x—y|“+ Tt

Step 1: It is easy to see that there exist pg, 8o € (0, 1) such that for all p < po,
§ <épand K € N,

1 ~ ~ r
max w(x,y, t) > < sup (G1—Gp) = —.
R xR"x[0,T) 2 (x,1)eR"x[0,T) 2

Choose (X, y,7) € R" x R" x [0, T) such that

w(x, y,t) = max w(x, y,t).
(x,y,1) R X (x,y,0)

For simplicity, we omit the dependence of (x, y, t:) on p, K and §.
Step 2 (avoiding the boundary ¢ = 0): Due to |G;| < 1, we have that

Q) k.5(X, 5, 1) <2.

Since fori = 1,2, gi € UC(R"), there exists Ko € N independent of p and § such
that # > 0 when K > Kj.

Step 3 (plugging into the equation): Now we fix K = Ko and § = §y. Write
y(x,y) = p <\/|x|2 +14+Vy2+ 1). Owing to Theorem 8.3 and Remark 3.8 in
[13], there exist a, b € R, two n x n symmetric matrices X and Y such that

8

= T XSY. IXI+IYIl < CKolR N

a—>b
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and at point (X, ¥, 7)

a+MG (%, 1) + E(X + Dyy, p+ Dyy) + V(&) - (5 + Dyy) <0
b+MGy(3, 1)+ F(Y —Djy, p— Dyy)+ V(3) - (p— Dyy) = 0

for p = 4Ko(x — y)|x — y|*. Since | DIy| + ID§V| + [Dxyl+ |Dyy| < Cp,
~ - ~ - r _ _4
G1(%.1) = Ga(3.1) = 5 + Koli 31,
i o, _ i M o
Pl < 4Koli =51 and [V@) - V@I < (5 —1)1E-3l,

we derive that

2 - — 2 - Mr 8o
F(X+Dyy,p+Dyy)—F(XY —=Djy,p—Dyy) < —T—m-i-cﬂ 2.1

Step 4: Let us look at the following two cases (up to a subsequence if necessary).

Case 1: lim,_0 |[x — y| = 0. Then both the gradient and the Hessian of the test
function go to zero, i.e.,

lim,op =0
lim, ,0 X =lim,,oY =0.

By (2.1), this implies 0 < —% after sending p — 0, which is absurd.
Case 2: lim,_¢ |[x — y| # 0. Without loss of generality, we may assume that

lim p=po#0, limX =Xy and Ilim Y =Y.

p—0 p—0 p—0
Since F (A, p) is monotonically decreasing with respect to the symmetric matrix A
and Xo < Yy, taking limit p — 0 on (2.1) leads to

Mr
0 < F(Xo, po) — F (Yo, po) < -

This is impossible. O
Corollary 2.1 Assume that g € UC(R") and |g(x)| < C(|x| 4+ 1) for some positive
constant C. Suppose that G = G(x,t) € C(R" x [0, 00)) is a viscosity subsolution

of equation (1.2) subject to G(x,0) = g(x). Then there exists a constant C depending
only on C, V and d such that

IG(x,t)| < C(1 + |x|+1) forall (x,1) € R" x [0, c0).
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Proof Let ¢ (x) = 2C/|x[2 + 1. Let
C1 = max [F(D? (), Dp(x)) + V (x) - Dp(x)]

Then G1(x,t) = ¢ (x) + Cqt is a viscosity supersolution to equation (1.2). Hence by
the comparison principle Theorem 2.1, we have that

G(x,1) < Gi(x,1) < C(1 + |x| +1)

for C = max(2C, Cy). A similar inequality holds in the other direction. O

2.2 Game Theory Interpretation From [24]

In this section, let n = 2 and x € R?. Fix the game step size parameter > 0 and the
number of steps N € N.

For n > 1, consider the discrete dynamical system {x, },]1\': 1 C R? associated with
the game starting from xg = x: forn =0,1,2,.., N — 1

Xp41 = Xp + T 2dbyn, + 7277,% - ‘L'ZV(xn)
X0 = X,

where 1, € B1(0) = {v € R?| |v| < 1} and b, € {—1, 1}. Here for convenience,
compared to [24], we reverse the time that leads to —V instead of V. Moreover,
nt = (—c,a)ifn = (a, c) € R%

There are two players: player I and player II. In each step,

e Player I: First choose the direction 1,;
e Player II: Then choose the sign b,,.

The sequence of positions {xy } 1/<V=0 is called a game trajectory associated with (7, N).

The goal of player I is to minimize g(xy) and player II aims to maximize g(xy) .

A strategy I'y of player I refers to how player I chooses 1, based on {x, n;, b;| 1 <
i < n—1}forn > 1. Similarly, a strategy I'» of player II refers to how player II
chooses the sign b,, based on {x, n;, n,, bi, | 1 <i <n —1}forn > 1.

Assuming that both players play optimally. Write the value function of player I as

ur(x, Nt?) = infimum of g(xn). 2.2)

Then we have the following dynamic principle: for k > 1,

us(x, krz) = inf max u, (x + th2dn + tsz‘ — r2V(x), (k — 1)1:2) . 3
Inl<1b=+1

For the standard mean curvature motion, player I can only choose unit vectors. Here
we basically allow player I to also choose n, = 0, which excludes the possibility of
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“unburning”. The consistency holds: for small 7,

min max {tbv2dn - D¢ (x) + dtzn . D2¢(x) -+ 1:277J‘ - D¢}
neB1(0) b=+1

€ —T’[F(D*¢(x), D¢ (x)), F(D*p(x), Dp(x))].
2.3 Convergence

Given g(x) e UC (R2), as in [24], we have that

lim - ue(x, Nt?) = u(x, 1) locally uniformly onR? x (0, 00).  (2.4)
7—0, Nt*—>t

Here u € C(R? x [0, 00)) is the unique viscosity solution to equation (1.2) subject to

lim u(x, 1) = g(x) uniformly in R
t—

As it was mentioned in [23], this game theory approach is essentially a semi-
discrete approximation scheme (continuous in space, discrete in time) for curvature-
type equations. See [37] for an analogous game in combinatorics.

The proof is standard under the framework of viscosity solution. For the reader’s
convenience, we provide an outline of the proof.

Step 1: Define

ux,t) = lim sup u,(y,er)

y—x, 10, N12—>1

u(x,t) = lim inf u(y, er).

y—=x, 70, Nt2—>1¢
Then u is upper semicontinuous and u is lower semicontinuous.

Lemma 2.1 Fort € [0, 1],

min  g(y) <u(x,t) <u(x,t) < max g().
ly—x|<Cv/i ly—x|=CVi

Here C is a constant depending only on d and maxp> |V|.

Proof Fixt > 0. Consider the game starting from xq € R2 with (, N), Nt e [%, 2t].
On the one hand, if player I adopts the following strategy similar to the exit strategy
in [24]: at each step n, player I chooses the direction 7, such that

M - (Xn — x0) =0,
then regardless of how player II plays, if |x, — xo| > /7, then

2w - q + |w|? 2 1
lg +w|—1lgl = ————— = |xp41 —x0l < |xp —x0| +CT° | 1 4+ — | .
lg +wl + g " " Ji
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Hence
lxy — xo| < C+/t fort € [0, 1].
Then by the definition of u(x, t),

u(xp,t) < max g(y).
ly—xol<CVt

On the other hand, if player II employs the strategy as: at each step n, player II
chooses the sign b, such that

buny - (xn —x0) <0

after player I picks the direction 7,,, then regardless what kind of strategy player I uses,
similarly, we have that

xy — xo| < CW/t.
This implies that

u(xo,t) > min  g(y).

ly—xol<Cv/t
O
Since g € UC(R?),
) _)l)igrtl_)oﬁ(y, 1) = , _}iT_)Og(y, 1) = g(x) uniformly forx € R2.
Step 2: As in [24], we have that
Lemma 2.2 u(x, t) is a viscosity subsolution of
i, + F(D*u, Di) + V(x) - Du =0 onR? x (0, 00)
and u(x, t) is a viscosity supersolution of
u, + F(D*u, Du) + V(x) - Du=0 onR? x (0, 00).
O

Step 3: Finally, the comparison principle Theorem 2.1 implies that u > u. There-
fore, u = u and (2.4) holds. O
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Remark 2.1 By the uniqueness of solution and Lemma 2.1, if n = 2 and G (x, 1) is the
unique viscosity to equation (1.2) subject to G(x, 0) = g(x), Then for ¢ € [0, 1]

min  g(y) <Gx,t) < max g(y).
ly—x|=CV1 ly—x|<C+/7

Of course, this can also be proved by pure PDE methods through comparison principle.

Remark 2.2 Although the game is formulated in a deterministic way, it has some
intrinsic stochastic features due to the different scales  and 72 so that the game
trajectory is practically hard to analyze. Having the positive part (equivalently, allowing
player I to choose 1,, = 0) renders the game more deterministic. As mentioned in [23],
one of the two main questions about the game is whether it can be used to prove new
results about PDE, which requires finding the right structure of PDE to work with.
The curvature G-equation with integrable ambient fluid flows turns out to be a good
candidate. The game formulation does allow us to make the best use of the underlying
structure that is not naturally accessible by the relatively rough PDE approaches. See
[27] and [20] for other works related to applications of the game.

2.4 Stationary Equation and Reachability

As in [24], we may also consider stationary equations

(1-aav(i5))
1—ddiv|—)) |Dul+ V) Du=oa. 2.5)
\Dul )],

for a constant o > 0.

Definition 2.4 u € USC(R2) is called a viscosity subsolution of equation (2.5) pro-
vided that given ¢ (x) € C?(R"), if for xo € Q

u(x0) = § (x0) = max(u(x) = $(x)).
then
E(D?*(x0). D¢ (x0)) + V (x0) - Dp(x0) = av.

Definition 2.5 u € LSC(2) is called a viscosity supersolution of equation (2.5) pro-
vided that given ¢ (x) € C?(R"), if for xo € Q

u(xp) — ¢ (xo) = min(u(x) — ¢ (x)),
xXeR
then

F (D% (x0), Do (x0)) + V (x0) - D (x0) = @
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u € C(R) is called a viscosity solution of (2.5) if it is both a viscosity subsolution
and a viscosity supersolution. Unlike the Cauchy problem, the stationary problem
might not have a solution with a prescribed boundary data.

Similar to the proof of Theorem 2.1, we can prove the following comparison prin-
ciple.

Theorem 2.2 Assume that « > 0 and 2 is a bounded open set. Suppose that
uyp € USC(RQ) N L () is a viscosity subsolution of equation (2.5) on Q and
uy € LSC(2) N L°° () is a viscosity supersolution of equation (2.5) on Q. If for
every point x € 9%2,

limsupu;(y) < liminf us(y),
yeQ—x YEQ—X

then
u1(x) <uy(x) forx € Q.

Lemma 2.3 Suppose o > 0 and u € C(Q) is a viscosity supersolution of equation
(2.5), then

minu(x) = min u(x).
xeQ xed2

Proof By the definition of viscosity supersolution, # cannot attain minimum at xo € .
Otherwise, we can use the constant function ¢ = ming u as the test function and obtain

0= F(D?*0,D0) + V(xp)-0>a > 0,

which is absurd. Hence our conclusion holds. O

Definition 2.6 Consider the game dynamics introduced in Sect. 2.2. Let S be subset
of R?. We say that S is reachable from x (or x can reach S) within time T if for every
open set U satisfying S C U, there exist a sequence of positive numbers {7, }n>1
such that lim,,_, y » 7, = 0 and for each fixed 7,,, player I has a U-oriented strategy
Iy such that regardless of how player II chooses his strategy I';, under strategy
I';u1, player I can force the associated game trajectory starting from x to enter U at
N(@m, I'y1, I'2)-th step (i.e., XN(m,1,,,.15) € U), where N(m, I';,1, I'2) is a positive
integer depending on 1, [',1, [ and satisfying N (m, ['y,1, 1*2)1',,21 <T.

Remark 2.3 To simplify notations, we usually omit the dependence of the game tra-
jectory (in particular, the terminal point xy) on v, N and the strategy of player II.
Moreover, by the above definition, it is clear that if a point x can reach an open set U
within time #; and every point on U can reach a set S within #,. Then the point x can
reach S within time #; + 1.
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Hereafter, for any set £ C R" and t+ > 0, we denote by E; the image of E under
the —V flow £ = —V (&) at time 1, i.e.,

E = {&@lx € E, &(5) = =V (5:(5)), £&(0) = x}.

Lemma 2.4 Suppose that u € UC (R?) is a viscosity subsolution of equation (2.5) on
R2. For xo € R?, if there exists Ty > 0 such that a bounded set S is reachable from
xo within time Ty, then

u(xo) < max _u(y)+aTp.
Y€Usepo, 19151

In particular, if the set S is —V flow invariant (i.e., S; = S forallt > 0), then

u(xo) < maxu(y) + aTp.
yeS

Proof let w(x,t) = u(x) — at. Then w(x, t) is a viscosity subsolution to equation
(1.2) with initial data w(x,0) = u(x). Now let G(x, 1) € C(R2 x [0, 00)) be the
unique viscosity solution to equation (1.2) with initial data G (x, 0) = u(x). Owing to
the comparison principle Theorem 2.1,

wx,t) < G(x,t).

Forr > 0and E C R?,let D,(E) = {x € R?*| d(x, E) < r}. Fix r > 0. Due to the
game formulation of G (x, ) and the Definition 2.6 of reachability, there are a sequence
of positive numbers {7,,},,>1 and a sequence of positive integers {N,,},>1 such that
lim,;,—s +00 Ty = 0 and for each 7, player I has a D, (S)-oriented strategy to drive the
game trajectory to enter D, (S) at the N,,-th step for Ny, r,%l < Ty regardless of how
player II plays. Here for convenience, we omit the dependence of N, on the concrete
strategy of player II since what really matters here is the upper bound N, r2 < To.

Next, starting from xy,, € D,(S), player I chooses n = 0 for k more steps. Here k
is the first whole number such that Ty > (N, + k)t > Ty —

Let J,, be the integer part of TO . Then the above argument says that player I has

a strategy such that regardless of "how player II plays, player I can steer the game
trajectory into

DC-L”% (Er)

at the Jy,-th step for E, = Ug<; <7, (D, (5)):.
Hence for the value function defined in (2.2), due to G(x, 0) = u(x),

2
Uz, (x0, JmTy) < max  u(y)
veDe2 (Er)

G(xo, Tp) = llm U (x0, JnT) < max u(y).
yeE,
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So

u(xo) — Toa = w(xo, To) < G(xp, To) < max u(y).
yeE,

Accordingly, our conclusion follows by sending r — 0. O

Lemma 2.5 Suppose thatu € UC(R”) is a viscosity subsolution of equation (2.5) on
R". Let & : [0, 00) — R" satisfy £E(s) = —V (£(s)). Then for t; < 1,

u(&(1) = u(r2)) +aln —1).

Proof This follows directly from the two facts below:

(1) w(x,t) =u — at is also a viscosity subsolution of the transport equation
wy + V(x)- Dw =0 subjecttow(x,0) =u(x),
(2) the unique solution to

v+ V&) -Dv=0
v(x,0) = ux)

is given by the representation formula: v(x, f) = u(&.(r)) for &£ (s) = —V(&.(s))
subject to £, (0) = x. O
3 Proof of Theorem 1.1

Let p € R" be a fixed unit vector. By the standard Perron’s method [13], for any given

A > 0, the following equation has a unique continuous Z"-periodic viscosity solution
v=uv; € CAR").

. p+ Dv : n
WA+ |1 —ddiv| ——— |p+ Dv|+V(x)-(p+ Dv) =0 inR".
lp+Dvl/)),

The above equation also has a comparison principle whose proof is similar to that of
Theorem 2.1. To prove Theorem 1.1, our main task will be to show that Wﬂen n=2
and V = A(DH)™ is the 2D cellular flow, there exists a positive constant H (p) such
that

lim Avy (x) = —H(p) uniformly on R2.
r—0

Here we omit the dependence of H on the flow intensity A.
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Throughout this section, C represents a constant depending only on d and V. By
maximum principle, it is easy to see that

max [Avy(x)| < 1+ max|V]|. 3.1
xeR2 R2

We believe that the equi-continuity of the family of functions {v; },~o does not hold
due to the degeneracy of the curvature term and the lack of coercivity. Instead, we will
show that

max_|vy(x) —un(y)| = C.
x,yeR?

Our strategy is (1) establishing partial reachability from the associated game dynam-
ics based on the special structure of the cellular flow to apply Lemma 2.4 and
Lemma 2.5, then (2) using the minimum value principle Lemma 2.3 to compensate for
the lack of full reachability. The proof can be viewed as a combination of Lagrangian
and Eulerian approaches. The game trajectory under player I's strategy more or less
mimics the reverse of the propagation route of flame.

By adopting the proof of Theorem 4 in [1], we first establish the connection between
G (x, t) and v,. Combining with partial reachability, this will lead to a negative upper
bound of Avy(x) for small A in Corollary 3.2 later, which allows us to apply the
minimum value principle.

Lemma 3.1 Let G(x, t) be the unique solution of (1.2) with G(x, 0) = p - x. Suppose
that there exists B > 0 such that for all (x,t) € R" x [0, c0)

Gx,t)—p-x<—-Bt+C.
Then
B
max Avy(x) < ——= + AC
xeRn 2

Here C represents a constant depending only on d and V.

Proof By comparing G (x, t) and p - x £ Mt for a suitable constant M depending only
on d and V, the comparison principle Theorem 2.1 implies that

|G(x,1) — p-x| < Mt forall(x,t) € R" x [0, c0).
Apparently, 8 < M. . .
In addition, by periodicity of V, G (x+[, ) — p-l is also a solution of (1.2) with intial
data p - x for any [ € Z". Then uniqueness implies that G(x +1[,¢) — p -1l = G(x, 1),

equivalently, G(x, t) — p - x is Z"-periodic for x. By the assumption, we may choose
To > 0 such that

2pt n
Gx,t)—p-x < -3 for (x, 1) € R" x [T, 00).
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Step 1: Choose f(t) € C°°([0, 00)) such that

B
/t <« _Z
Fo <=5
and
Fio) = —2Mt whent > 2T
—% whent € [0, Tp].
Define

hx) = rtni(r)l(G(x, t)—p-x— f(t)) > —oo.

Clearly, h(x) < 0. Hence the minimum is attained for some #, € (0, 2Tj]. Therefore,
h(x) is periodic, continuous and is a viscosity supersolution of

. ( p+Dh )) B
1 —ddiv| ——— + Dh|+V(x)-(p+ Dh) == onR".
< (|p+Dh| +|P | (x)-(p ) 5

Step 2: Then

— 7)) — min b — 2
i (x) = h(x) = min h(x) = o

is a viscosity supersolution of

p+DhA

M)+ (1 —ddiv ———=
e < (Ip—i—thl

)) |p+ Dhyl+ V(x)-(p+ Dhy) =0.
+
Accordingly, by comparison principle,

V). (x) < hy(x),

which implies that

max vy (x) < —é + 2A max |h(x)|.
xeRn 2 xeRn

Hence our conclusion holds. O
Hereafter, we let x = (x1, x2) € R2 and
Vx)= A(DH)L = A(—cos(xp) sin(x1), cos(xy)sin(x2)).
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@] ™ (0] ™

flow of —V(z) Quand T,

Fig.3 Flow of —V, two domains Q, and I,

for A > 0. Keep in mind that our game is using
—V(x) = A(cos(xp) sin(x1), — cos(xq)sin(x2)).
Write
Q=1[0,7]x[0,7], Qu={xeQ|H(x)> u}
and
T, = {x = (x1, x2) € R?| min{|x1], [xal, |x1 — 7|, [x2 — 7|} < ).

for u € (0, 1]. Note that Q, is —V flow invariant (See Fig. 3).
We will utilize the special structure of the cellular flow to establish reachability.

Lemma 3.2 Suppose u € [0, 1). For Py € Q, the level curve {x € Q| H(x) = u}is
reachable from Py within time 3/2. In particular, for u > 0, every point P, € {x €
Q| H(x) = u} is reachable from Py within time < C(1 + |log u|) for a constant C
depending only on V.

Proof First we prove the reachability to the level curve. Given the game step size
parameter 7, recall that the game dynamics is

Xnv1 = Xy + t4/2dbpny + '5'277,1L - TzV(Xn)
Xo =P

forn > 0. Here , € B1(0) = {v € R?| |v| < 1} and b, € {—1, 1}.

Case 1: P # (%, %).Then |DH(Pp)| > 0.Player I chooses the strategy as follows:
Let Xog = P;.

Ateachstepn > 0, if H(X,) > H(P»), player I chooses

V(X
VXDl

Nn
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Then

L DH(X.)
= T IDHX)

Then regardless of how player II moves, we have that
H(Xoi1) = HX) =H (X + tby/ 2, + 20 = V(X)) = H(X,)
=<DH, thuN2d1, + T — r2V(xn)>
1
+3 <D2Hrbn«/2dnn, rb,ﬁ/zdnn> + 0

2| _|\DH|+d prylH DH +0(%
=% |- , — 7).
\DH|" |DH|

Since H(X,) = sin xy, sin xp, for X,, = (x1,, x2,), we have

5 ., DYH D*H
—max||D*H|| < (D°H
R

|IDH|" |DH|
sin(x1,) sin(xp;,)(cos(2x1,) + cos(2x2,) + 2) _
cos(2x1,) cos(2xa,) — 1 -

0.

Here the negative sign is essentially due to the convexity of the level curve of H instead
of the specific form of H. So

H(Xp41) — H(X,) < —|DH(X,)|t* + O(73).

Let a, = H(X,). Then by Lemma 3.3,

Any1 < an — /2@y —a2)t> + 0(7).

This implies that the decreasing rate of a,, = H(X,) when n increases is no slower
than the decreasing rate along the ODE

s(t) = —+/2s(t)(1 — s(¢)) withs(0) = H(Py) € (0, 1),

which has a unique solution when s(f) € (0,1). Assume that s(r) > 0 for
t € (0,19) and s(t9) = 0. Clearly s(¢) is strictly decreasing for ¢+ € [0, #p). Since
V2s()(A —5(t)) > /1 —5() when 5(t) € (%, 1) and /2s(t)(1 —s5(2)) > +/s(t)

when s(t) € (0, %], we have that

1

71
ds—i—/ —ds = 2/2.
0 /S

1
1
toS/
i V1 =5
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A

'
\

0 ™

Fig.4 Game trajectory of Lemma 3.2

In particular, the upper bound is independent of the value of H(P;). Hence a simple

calculation shows that when 7 is small enough, after at most n| < 3‘[ steps, we have
that

H(Xn) =

for the first time. In particular, d(X,,, {x € Q| H = u}) < Ct. Hence by Defin-
tion 2.6, the needed time to reach the level curve 77 < 3+/2.

Case 2: P = %, %). First travel a little bit away from P;. Choose r > 0 such
that maxg p ) |V| = }‘. Then player I can use the exit strategy as in the proof of

Lemma 2.1. It is easy to see that player I could reach d B, (P;) within time Cr?. Then
it goes to Case 1.

Next we show the reachability to every point P, on the level curve {x € Q| H(x) =
w}. After the game trajectory reaches the level curve , player I can just choose n = 0,
i.e., follow the —V flow to travel along the level curve to reach every point P, on the
curve. When p is close to 1, the traveling time around the level curve is near 27 (See
Fig. 4). When p is close to 0, the traveling time is bounded by O (] log 1|). Hence the
conclusion holds. O

Remark 3.1 The reachability established in the above lemma is only one way: Pj is
NOT reachable from P, if H(P;) is close to 1 since the curvature on the level curve
will become very big and surpass 1. This is different from the invicid case (d = 0)
where two points are mutually reachable.
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Lemma 3.3 Forx = (x1,x2) € [0, 7] x [0, 7],

|DH(x)| > v2(H (x) — H2(x)).

Proof A direction computation shows that

|DH(X)| = \/Sin2 x1 + sin xp — 2 sin? x; sin? x»

> \/2 sin x sinxp — 2 sin? x; sin? x»

= V2(H(x) — H2(x)).

O

We would like to point out that the convexity of level sets of H and the above
inequality provide technical convenience in the proof, but they are not essential in
obtaining the existence of H(p). See Sect. 4 for more details.

Lemma 3.4 There exists g > 0 and Ty > 0 depending only on d and V such that the
set Qo is reachable from every point x € T, within time Tj.

Proof 1t is enough to prove the above conclusion when I';,, is replaced by the set

2

since the proof for other pieces are similar and we can just choose the smallest 1.
Step 1: We first consider points near the corner O = (0, 0). For & > 0, set

o — 1 1 1
a—(a, )X(-z, 5)

Note that V(x) - (1,0) = O for all x € {0} x R. By applying Lemma 5.3 for § =
(0, 1)x(—3, 3)and Q@ = Q,, we have that thereisa; > O such that g, is reachable
from every point x € [—o1, o ]2 within time 1.

Step 2: Next we look at points on the line segment

2
L= {(x1,0)|x1 c [%?”]}

By applying Lemma 5.3 for § = Q and 2 = Q,,, we deduce that there is o € (0, 3
such that Q> is reachable by every x € Ly ,, = L1 x [—uo, no] within time 1.
Step 3: Next, given a point P; € [—ay, a1]?, by step 1, player I has a strategy to
push the game trajectory to some point P, € €254, within time 1. If P, ¢ L ,,, then
|H(P,)| = sin ug sin(2o1). Hence, by Lemma 3.2, P, can reach Ly, within time 7;.
Thus by step 2, Py can reach Q5 within time 1 + 1 +#; =2 + 1 (See Fig. 5).
Accordingly, every point on Ay, C ([—a1, a1]* U Ly ) can reach Oy, within
time 2 4 1. Note that i (hence #; as well) depends only on d and V. O
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A

? Qo

r

a4

ol [ T T= "
‘

Fig.5 Game trajectory of Lemma 3.4

Given a point Xo = (ao, bg) and § >0, let y(s) € C([0, 1], R2) be a continuous
simple curve satisfying

y((0, 1)) € (a0 — 8, ag + 8) x (=00, by)
and ¥ (0) - (1,0) = ag — &, y(1) - (1,0) = ap + 5. Write

5 5
Jr = (ao—z, ao+§> X (bo+r. bo+r+7)

for some r, r’ > 0. Note that the curve y divides the strip [ag — 8, a0 + 8] x R into
two connected components /1 and I. Let I; be the lower component.

Lemma 3.5 Given a point x = (x1, x3) € Iy, if x can reach J, within ty < % then
x can also reach y ([0, 1]) within ty. Here M = 1 + maxp: |V|.

Proof According to Definition 2.6 of the reachability, player I has a J,--oriented strategy
to move the game trajectory into J, within time #( regardless of how player Il responses.
Let U be an open set such that y ([0, 1]) C U and

v=d(y(0,1]),0U) < 1.

We claim that the corresponding game trajectory of player I's J,-oriented strategy
with a game step size parameter T < MLer must enter U before it arrives at J,. If not,
then at some moment #; < fo, the game trajectory arrives at

fx = (1, 2] 21 — aol > 8.
Without loss generality, we assume that it arrives at {x; < a9 — 8} (See Fig. 6).
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v: ((L[) + S, b())

L

Fig. 6 Game trajectory of Lemma 3.5

Then player II can simply employ the strategy: at each step n, after play I picks the
direction 7, player II chooses the sign b,, such that

b1 - (1,0) < 0.

Then the only remaining force that can push the game trajectory to move along the

positive horizontal direction is the mean burning speed 1 and the flow — V. Therefore,

8 8
it will take the game at least 537 M time to reach J;. Since 19 < 35; < 53;, thisis a

contradiction. O

Corollary 3.1 Forany 0 < 6 < %, every point in the set

Zg = (O, mr —0)x[0,7])U([0,7] x (8,7 —0))

is reachable from the center Py = (%, 5) within time ty depending only on 6, V and
d.

Proof Let M = 1+maxp2 |V|. Due to symmetric structure and Lemma 3.2, it suffices
to show that for some §yp > 0, every point in the set

=([0,7r—9]x[0,%])0{0§H<59}

is reachable from Py within time 7y depending only on 6, V and d.
By applying Lemma 5.3 for § = (29 55) X (—%, ()) and

30 50 1 6 1
sz o o X T
8§ 8 m 4 m
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we can show that there exist m € N and X,, = (%, n%) such that n% < ?T and every
point x € B1 (X,,) can reach 2, within time ﬁ. Now fix m and set
4m

“min  H(x).
x€B | (Xm)
4m

8 =

N =

Applying Lemma 3.5 with § = % to level curves of the stream function H within the
strip [9 39] x R, we deduce that for any u € [0, §g], every point on B%(Xm) can

g, =H=mn(|2 ( 0 ”]
= — — — X — —
" " 44 )
within time 2.

Next we show that every point on Sy is reachable from Py.

In fact, suppose that P; € Sp. Let u; = H(Py) € [0, 8p).

Step 1: Thanks to Lemma 3.2, Py can reach X,, within time 1. By the definition of
reachability, the game trajectory can arrive at some pointin Y; € B L (X ) within #1.

reach the curve

Step 2: By the above discussion and the definition of reachab1l1ty, startmg from Y 1 ,
forany k > 2 € N, the game trajectory can arrive ata point Y such thatd (Yi, §,,) < ¢
within time #, = ﬁ

Step 3: Starting from Y%, at each step n, player I chooses 1, = 0 (i.e., just following
the flow —V). Then within time #3, the game trajectory will arrive at some point as
close to P; as we want when k — +o00. Note that |V| has a positive lower bound
depending on 6 on ([%), T —0]x [ 3 ]) So t3 has a upper bound depending only on
6 and V.

Hence Py can reach any neighborhood of P; within time #; 4 #, + 3 (See Fig. 7).
Note that each #; depends only on 6, V and d. O

Recall that Q = [0, 7]2. Consider the interior of four cells in [—7, 7]*: U; =
O0,7)x 0, 7), U =U1 —(7,0),U3s = U; — (0, ) and Us = Uy — (m, 7). Clearly,
by similar proofs, the corresponding versions of previous results on U; could also be
established for U; (i = 2,3,4).

Below is a transition property from one cell to another.

Lemma 3.6 There exists B > O depending only on d and V such that every point
P € Uy can reach the set U; within time 8 fori = 2, 3, 4.

Proof 1t suffices to prove this for U,. The others are similar. Fix P € U;. Choose

o from Lemma 3.4 that works for the corresponding statements for all four cells in
[—m, w]?. Choose the largest fi € (0, j10) such that

{x € QI H(x) < 1} C T
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T2

Sy

Fig.7 Game trajectory of Corollary 3.1
Case 1: If H(P) > [1, by Lemma 3.2, P can reach at some point

Pler{er|%<H(x)</1}

within time #;. Then by following the flow —V, P; can reach a point P, € J N
((0, o) x (0, 7)) within time #,. Since

0, no) x (0, 1) C Iy — (7, 0),

P, can reach U, within time T by applying Lemma 3.4 to U, (See Fig. 8).

Case 2: If H(P) < [i, then P € I',,. Owing to Lemma 3.4, P can arrive at some
f’l € Q2 Within time #3 , which goes back to case 1 (See Fig. 9).

In the above, #1, 1> and 73 depend onlyond and V. Let B =1t +tr + 13+ Tp. O

Lemma3.7 Let p € R? be a unit vector and G(x, t) be the unique solution of (1.2)
with G(x,0) = p - x. Then there exists y > 0 depending only on d and V such that

Gx,t)—p-x <—yt+C.

Proof Since |p| = 1, without loss of generality, we may assume that p - (1,0) > %
Owing to the above Lemma 3.6, there exists 8 > 0 such that, starting from any point
x € Q = [0, 1%, player I can design a strategy so that it takes at most 2 time to
move the game trajectory into U; + (—2m, 0). Using periodicity, staring from any
point x € Q, in time ¢, player I can design a strategy to move the game trajectory into
U; + (—2mk, 0) for some k > ﬁ — 1 within time t. Since Uy + (—27k,0) is —V
flow invariant, when the game trajectory arrives at Uy + (—2mk, 0), if needed, player
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Fig.8 Case | game trajectory of Lemma 3.6

Fig.9 Case 2 game trajectory of Lemma 3.6

I can just choose n = 0 until time ¢. Accordingly, by the game theory formulation, we
have that

G(x,1) < max
yeQ+k(—2m,0)

p-y<—kp-Q2r,00+C < —yt+C.
fory = % O
Combining with Lemma 3.1, we deduce that

Corollary 3.2 When A is small enough,

14
max Avy (x) < ——.
xeR2 * 2

In particular, v = v;, is a viscosity supersolution of

D
<l—da’iv<u>> Ip+Dvl+ V) -(p+Dvy=L >0, inR2.
p+Dvl)), 2
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Here y is from the previous Lemma 3.7.
Let 01 =(0,0), 0, = (1,0), O3 = (1, 1) and 04 = (0, 1).

Lemma 3.8 Letu)(x) = p-x + vy(x). Then

max lu) (x) —u, ()| <C
(x,y)el—m,7]?

for a constant C depending only on 'V and d.

Proof Owing to (3.1), u, is always a viscosity subsolution of

F(D?uj, Duy) + V(x) - Duy, =1 +max |V (x)] inRR2.
R

Throughout the proof, C,, represents various constants depending only on d, V and a
given parameter /L.

Step 1: We first establish the difference bound within Q, for any given u € (0, 1).
Note that the level curve {x € Q| H(x) = u} is flow invariant. When p is close to 1,
the traveling time around the level curve is near 2;7. When u is close to 0, the traveling
time is bounded by O (| log u|).

Owing to Lemma 3.2, Lemma 2.4 and Lemma 2.5, we have that

1. For every point x € 9Q,, and every point y € Cu, u; (x) = uy(y) — Cy. Accord-
ingly,

min u;(x) > max u; (x) — Cy.
xeoly xeQ,

2. By Corollary 3.2 and the minimum value principle Lemma 2.3,

min u;(x) = min u;(x).

Xeoyu xeQ,
Accordingly,
max u; (x) — min u,(x) = max |u(x) — w; ()| < C. (3.2)
XEQ;A_ erl_l )C,yEQV_

Step 2: Recall the four cells in [—7, 71%: Uy = (0, ) x (0, ), U» = U; — (1, 0),
Us =U1—(0,m)and Uy = U1 — (7, ). Let Py = (%, 5).q1 = (0,0),q2 = — (7, 0),
q3 = —(0, r) and g4 = — (7, 7). Then the above (3.2) also holds when Q,, is replaced
by Q, +g;forl <i <4.

Let 1o be the number from Lemma 3.4 that works for all four cells. Combining with
corresponding versions of Corollary 3.1 in all four cells, Q2 + ¢; is reachable by
Py+gqjforl <i, j <4 within time Ty depending only on d and V. Since Q2,,, + i
are flow invariant, owing to Lemma 2.4 and (3.2) from Step 1, we deduce that for
l<i,j<4

lus(Po + qi) —us(Po+¢qj)| < C. (3.3)
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| W)

O 1 T—op T 51

Fig. 10 dp, Bp and «q

By employing (3.2) in all cells, we actually have that for any u € (0, 1],
lup(x) —up ()| = Cy (34

forx,y € Ui<i<a(Qpu + gi)-

Step 3: It remains to take care of regions near {H = 0} since C;, — +ooasu — 0.
Owing to Corollary 3.1, there exists 7; such that every point (1, d) for d € [0, 1] is
reachable from Py within time 7.

Ford € [0, 1], let &; : [0, c0) — R2 be the —V flow starting from (1, d), i.e.,
£4(s) = —V(£4(s)) subject to &;,(0) = (1,d). Write &(f;) = (7 — 2v, 0). Fix
0 < ap < min{ug, vo}. Clearly, there exists dy € (0, ro) such that for all d < dp,

£4(10, 00)) N ({r — ap} x [0, 1]) = &4(sq)
for some sy > 7. Let
(7w — a0, Bo) = &ay(Sdy)-

By choose dj small enough, we may assume that By < ag (See Fig. 10).
Due to Lemma 2.4, for all d < d,

u (Po) < max u) (§4(2)) + C.
tel0,11]
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Ax2 Ax2
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Y A Y Y A Y
& —— & —

Fig.11 J; and Ry

Combining with Lemma 2.5, for all s € [0, 1],
uy (Po) < u(w — ao, sBo) + C.

By looking at other cells and using (3.3), we can find common By < ag € (0, uo)
such that

u)(Po) <minfu; (x)|x €e LHU(=J)NJhN(=hh)}+C.

Here J; = {m — a0} x [—Bo, Bol and Jo> = [—Bo, Bo] x {ao} (See Fig. 11).
Combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Q,, and (3.4), we
have that

up(Po) = maxfuy (x)| x € 1 U(=J) NN (=)} -C.

Now consider the rectangle Ry = [—7 + «g, m — ap] X [—p, ). Thanks to (3.4)
and the above argument, we have that

max [u; (Po) —up(x)| < C.
xedRy

Again, combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Q,, and (3.4),

u; (Py) > max uy (x) — C.
xeRy

Finally, applying the minimum value principle Lemma 2.3 on R(, we have that

min u; (x) = min u;(x) > u;(Py) — C.
X€Ry x€dRy
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Fig. 12 Corresponding versions of R on other edges

Accordingly, combining all the inequalities above, we derive that

max |uy(Py) —uy(x)| < C.
xX€eRy

By applying this to other cells and edges (see Fig. 12), we have that

max |u; (Py) —u(x)| < C.
xel“a,0

Similar conclusion also holds in other cells. Combining with (3.4), the lemma holds.
O

According to the above Lemma 3.8, standard arguments lead to

Corollary 3.3 For any unit vector p, there exists H(p) € R such that

lim Av; (x) = —H(p) uniformly in R2.
r—0

In particular, there exists a 7> -periodic v € USC (R?) that is a viscosity subsolution

of
E(D*T, p+ D) + V() - (p+ Dv) = H(p)
and a 7?-periodic v € LSC (R?) that is a viscosity supersolution of

F(D*v, p+ Dv) + V(x) - (p+ Dv) = H(p).
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Also,

sup {[v(x)[, [u(x)[} < Co

xeR?
for a constant Cy depending only ond and V.

Proof The argument of the existence of the limit is similar to the proof of (3) in the
following lemma. Let

U(x) = limsup (vi(y) — vi(0))

A—0,y—>x

and
v(x) = liminf (vi(y) — v (0)).
A—=0,y—>x

It is easy to see that our conclusion holds. O

Lemma 3.9 Below are several properties of H.

1. for A > 0,

H(.p) = AH(p);
2. H(p) >0 forp#0;
3 H(p) € CR?).

Proof (1) is obvious from the definition of v;,. (2) follows from Corollary 3.2. (3)
follows from the standard stability of viscosity solutions. For the reader’s convenience,
we present details of the proof. Fixed a unit vector p. We argue by contradiction. If not,
without loss of generality, we may assume that there exist a sequence of unit vectors
{Pm}m=>1 such that for lim,,—, oo pm = p and forallm > 1

H(pw) > H(p) +r

for some r > 0. Owing to Corollary 3.3, for each m > 1, let v,, € LSC(RZ) be a
Z?*-periodic viscosity supersolution of

F(D*v, pm + Dvy) + V(x) - (pm + Dvy) = H(p) +r
and

sup |vm (X)) < Co
xeR2
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with the constant Cp from Corollary 3.3. Let
v(x) = liminf v, (y).
m——+00,y—>Xx

Then v(x) € LSC(R?) is a Z>-periodic viscosity supersolution of
F(D*v, p+ Do)+ V(x)-(p+ Dv) = H(p) +r.

Alsoby Corollary 3.3, thereisv € USC (R?) thatisa Zz-periodic viscosity subsolution
to

F(D*0, p+ Dv) + V(x)- (p+ Dv) = H(p).
Writtu = p-x +vandu = p - x 4+ v. Then u is a viscosity supersolution of
F(D*u, Du)+ V(x)-Du=H(p) +r
and u is a viscosity subsolution of
F(D*u, Du) + V(x) - Du = H(p).
Let

lx — yl*
—

ws(x, y) = ulx) —uly) —
Due to the periodicity of v and v, we can find (x5, ys) € R2 x R2 such that

ws(xs, ys) = max_ws(x, y).
x,yeR?

It is easy to see that

_ 4
im eyl _ (3.5)

lim w , =max(v —v) and 1
5—0 8(x5, 7s) XERZ( v 5—0 1)

Owing to Theorem 3.2 and Remark 3.8 in [13], there are two 2 x 2 symmetric matrices
X and Y such that

2
X§ — Vs
X <Y, X +y) <=2l

2
and for p = 4(xs — ys) |x(s—3y5|

EX,p)+V(xs)-p SE(p)
F(Y,p)+V(ys)-p=H(p)+r.
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Also,
V) = Vi -7l < o0l
Accordingly,
Py —Fr py < Sl
Case 1: If x5 — ys = 0, then X = Y = 0. We have that
0=0-0<-—r,
which is impossible.
Case 2: If xs — ys # 0. Then
F(X,p)—F(Y,p)=F(X,p)— F(Y,p) =0,
we obtain
o< Cho—wlt
- 3
Owing to (3.5), as 6 — 0, we have
0<-—r,
a contradiction. O

Proof of Theorem 1.1 Letv and v be functions from Corollary 3.3. Then by comparison

principle Theorem 2.1,

pex+e(v(Z)—Co) = Hpy = Getrot) = pox+e(u(2) +Co) —Hepyr
and

p-x4+0(x)—Co— H(p)t <Gx,t) < p-x+vx)+Co— H(p)t.
for the constant Cyp from Corollary 3.3. The conclusion follows immediately. O

Remark 3.2 For application purposes, people are interested in deriving explicit formu-
las of the effective burning velocity under the G-equation model (see [22] for instance).
Although a simple formula is mathematically not available, it might be practically
interesting to investigate more detailed properties of H(p) (e.g., its anisotropy due to
the presence of the fluid) in addition to its dependence on physical parameters. These
kind of problems often require methods deeper than those standard PDE approaches
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Yo

Fig. 13 Move forward within a non-convex cell

in Lemma 3.9. For instance, questions in this aspect have been studied in [21] and [38]
for the case v; = a(x) (e.g., phase transition in an inhomogeneous medium without
considering curvature effect) using tools from dynamical systems. A conclusion from
results there is that in 2D, a polygon could be an effective front if and only if it is
centrally symmetric with rational vertices and nonempty interior. So different distri-
butions of defects and heterogeneities can change the evolution significantly, which
could have an important practical implication [12].

Remark 3.3 A natural question is whether our result can be proved by pure PDE or
geometric approaches as in previous literature. For this aspect, Theorem 10.2 in [5]
seems relevant. Checking Assumption B” there (if it holds) might need to evolve
Q. by properly combining the motion law and the V flow. It is not clear to us how
to arrange the motions to reach a stationary supersolution (basically a large V-flow
invariant set in our context) within finite time. Game theoretical method provides more
flexibility to handle detailed local structures. For instance, the non-divergence inviscid
example in section 11.2 of [5] relying on Theorem 10.2 for 2D can be proved for all
dimensions via control formulation using full reachability or partially reachability +
minimum value principle as in this paper. See [42] for more applications of game
theory in homogenization of non-coercive non-convex G-equations.

4 Extension to General 2D Incompressible Flows

In this section, we will briefly explain how to possibly modify our methods to cover
more general 2D incompressible flows. Assume that V = (—H,,, Hy,) for a general
periodic stream function H . For simplicity, we just discuss two representative scenarios
and the corresponding adjustments of our methods.

Case 1: Non-convex cells. In general, the level curves of H might consist of convex
and concave parts (relative to a fixed cell).

e Movement within a cell (extension of Lemma 3.2). Starting from a level curve
y1, the game trajectory can move forward on the convex part (or near flat part)
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Fig. 14 Move to points near the boundary and to an adjacent cell

of y; using a modified version of Lemma 5.3 to arrive at another level curve y»,
then travel along y» to its convex parts (or near flat parts) in order to further move
forward (See Fig. 13).

e Movement to reach the boundary and adjacent cells (extension of Lemma 3.4 and
Corollary 3.1). Starting from the center critical point P in the cell Uy, player I
aims to drive the game trajectory to travel to a point W that is very close to a
concave portion of the boundary. As in this paper, we need to control the amount
of travel time. Since the game trajectory might not be able to cross the boundary
on the concave portion, it can first move to a point W near (but not very close
to) the convex part of the boundary. Next use a modified version of Lemma 5.3 to
reach W3 in the adjacent cell U;. Then follow the flow —V to a point Wy that is
close (but not too close) to the concave part of the boundary of Uy and move back
to Up based on a modified version of Lemma 5.3, and finally travel to W, along
the flow —V (See Fig. 14).

Other lemmas and conclusions in this paper can be extended similarly.
Case 2: Cat’s-eye types. For simplicity, we look at the following representative
example

H(x1, xp) = sinxq sin x» + § COS X1 COS X2

for 6 € (0, 1). The picture consists of islands (e.g. shaded regions I, I in figure
below) and unbounded periodic orbits of —V flow (e.g., regions Ji, J; in the figure
below) (See Fig. 15).

Step 1: By similar arguments in this paper and possible extensions as in the above
Case 1 together with periodicity, there exist constants ¢, ¢2, ¢ and ¢ such that for
i =1,2,lim)_, 0 Au, = ¢; in the unbounded region J; and limy .o Au; = ¢; within
I;.
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=
ol

Fig. 15 Cat’s-eye type flows

Step 2: By partial reachability (from I, I to J; and J> due to convexity of the
boundary of I;), we have that ¢y, ¢ < ¢y, ¢2.
Step 3: Note that for (x1, x2) near (0, 0),

2 2
M) 4, 4
H(xy,x2) =x1x2+46 1_?—7 + O(x] +x35).

It is not hard to see that the curvature of H (x1, x2) = § (the boundary of islands) tends
0 when approaching saddle points (inflection points). Therefore, starting from some
regions of Ji or J, player I can move the game trajectory into those islands through
portions of the boundary near saddle points. Accordingly, we have that ¢y = ¢ =
c1 = .

For other cat’s-eye type flows, it could happen that one island / is uniformly convex
and, hence, game trajectories might not be able to enter it from unbounded domains
when the Markstein diffusivity d is large. For this case, game trajectories can still
enter islands adjacent to / and the minimum value principle will lead to the same
conclusion. One such example is

H(xy,x) = x% — x% — Zx? + x‘f for (x1, x2) near (0, 0).

Here H = 0 implies x = x| — x12 orx; = —xj + x% near (0, 0).

We expect that the effective burning velocity should exist for quite general 2D
incompressible flows, at least if all critical points H are non-degenerate where the
flow structure is well-understood and essentially the combination of case 1 and case
2 (see [3]). The main challenge is how to find an efficient systematic proof without
examining all possible scenarios. For non-smooth flows (H € C!+!, or equivalently V
is only Lipschitz continuous) or flows with degenerate stagnation points, the analysis
appears more complicated. We plan to investigate this issue in the future.

Remark 4.1 Our proof of Theorem 1.1. suggests a general framework based on the one
sided reachability of game trajectories and the minimum value principle of suitable
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stationary problems. The former is a separate dynamical system issue that has to be
verified for a given flow field V, be it periodic, almost periodic or random. If it is
true or almost surely true, the remaining PDE argument extends and the existence of
effective front speed might be established in interesting non-periodic settings.
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5 Appendix

It is well known that the front propagation under the viscosity solution framework is
consistent with the classical meaning when the smooth solutions exist. See section 6
in [16] for instance. The following conclusion is a special case in our context, which
is needed to derive a reachability property. For the reader’s convenience, we present
its proof here in 2D, which is sufficient for our purpose.

Throughout this section, we only assume that V € Ww1-2°(R?) and

V(x)-(1,0) =0 forx € {0} x [0, 1]. (5.1)
Let S = (0, 1)2 and

—% arctan(d(x, 0S5)) forx € §

X) =
8s(x) %arctan(d(x, dS5)) otherwise.

Here d(x, 9S) is the distance from x to 9.S.

Lemma 5.1 Suppose that G € C(R? x [0, 00)) is the unique viscosity solution to
equation (1.2) subject to

G(x,0) = gs(x).

Then for a given § € (0, %), there exists ts > O depending only on d, V and § such
that

G((0,0),t) <0 for(0,t) €[§,1—6]x (0, ts].

Proof Intuitively, this conclusion is obvious since the speed along the normal direction
i = (—1, 0) at the point (0, 9) is

vi=1—de+V(x)-n=1.

To make this rigorous, we need to build smooth supersolutions and employ comparison
principle. It suffices to prove this at a fixed 0 € [§, 1 — §].
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(0,)

t=0 0<t<ty
Fig. 16 Propagation of the ellipse
Step 1: Choose an ellipse. Consider the ellipse

(x1 —ap —v)* (2 —6)?
a?(t) b2(1)

Eo(t) :

Here v € (0, ag) is added for technical convenience and will be sent to zero later (See
Fig. 16).
Let bg = %. Then choose ag € (0, lﬂ) small enough such that

[V(x)-(1,0)] < % if x € [—4ag, 4ao] x [0, 1]

and
d64a0 ap 1
4MgNV3— < .
MY TR

Here My = max, g2 |V (x)].
Then we define a(t) = ap + %t and b(t) = by — Lt for L > 0 satisfying

1 3Lag dby
2 4bg ap?

My.
Hereafter we require 0 < t < t5 for #; = min {Zao, zb—% }, which implies that

by
(a(t), b(1)) € [ap, 2ap] x [7, bo}

and

Eo(t) C Ry = [—4ap, 4ap] x [0, 1]
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for ¢t € [0, t5]. Also, 4ag < by leads to
a(t) < b(t) forallr € [0, t5].

For convenience, we drop the dependence of a and b on ¢. Hereafter t € [0, 73]
unless specified otherwise. Let 7 be the outward unit normal vector along Eg(¢) that
has the following parameterization: for ¢ € [0, 2]

X1 =aop+v-+acoseo
X2 =60 + bsin ¢.

Then
V.-n

v bcos ¢ asing
JaZsin2 ¢+ b2cos? ¢ JaZsin?p + bicostg )
: V3

If [sing| < %57,

e " My ——asine

Venl = Ve - (L0 + Mo - e s
5|V(x)~(1,0)|+M0'%'|tan¢| 5.2)
5|V(x)-(1,0)|+1"10'1;20“/02‘*/§

= V0O (1O +4V3M - §2 < §+§ = 1.

Step 2: Evolution of an elliptic boundary. Let us recall some basic facts. Given
a C! function f(x, ) and the family of level curves

C(t) = {x e R? |f(x,1) =0},

if D, f # 0, the propagation speed of C(¢) along the outward normal direction 7 =
|gijf£\ is given by

fi
Uy = — s
|Dy f1

which can be easily derived through the chain rule. Moreover, the corresponding mean
curvature along C () is

K = div, (n).
Now let us verify that for ¢ € [0, #5], the propagation of Ey(¢) obeys the following

inequality:
v; <1—dk+V-n, (5.3)

which will be used to construct a supersolution. Fix any a, » > 0 and an ellipse

2 2
x_1+x_2=1
a’  b? ’
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direct compuations show that its curvature at point P(a cos ¢, bsing),0 < ¢ < 2w,
is
ab

K =

3

(a?sin® ¢ + b2 cos? ¢)?

and the normal velocity at P(a cos ¢, b sin ¢) is

a'bcos? ¢ + ab’ sin? ¢

Vi = .
Va?sin? ¢ + b2 cos? ¢
Case 1. If | sin¢| < */Tg, then
dab dab dab d64ayg 1
dk = < < < < -.

3 3 3 = 2
(asin’ ¢ + b2 cos? ¢)? (b2 cos? ¢)? (®/2) b; 8
Note that

%’ cos? ¢ — Lasin® ¢ % cos? ¢ 1

vi = < <-.
Va%sin2 ¢+ b2cos2¢ ~ /bicos?¢ ~ 2

Since for ¢t € [0, t5],
Eg(t) C [—4ag, 4ap] x [0, 1],

(5.2) implies thatv; < 4 <1 — 4§ — 1 <1 —dk +V -ii.
Case 2. If | sin¢| > \/75’ then

g cos? ¢ — Lasin? ¢ g cos? ¢ Lasin? ¢
= < —
VaZsin2¢ + b2cos2 ¢~ /b*cos ¢ b
1 3La - 1 3Lag

< .
-2 4 — 2 4bo

Ui

Meanwhile,

dab db  dby
dk = < — <=,

3 2 2
(a%sin® ¢ + b2 cos2 )2 ¢ a0

Therefore, due to the choice of L, we have v; < 1 —dk + V - n.
Combining case 1 and case 2, we see that (5.3) holds, i.e., the evolution of Egy(t)
satisfies

vi<1l—dik+ V. -n,for0<t<t.
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Step 3: Comparison. Let

(x1—ap—=v)?  (n—67>
a?(t) b2(1)

W(x,1) =

Owing to (5.3), we may choose 1o € (0, %) such that (5.3) also holds along the
curve {x € R?| W(x, 1) = u} forall u € [—uo, ol and ¢ € [0, t5]. Equivalently, for

Dy = {(x.1) € R x 10,151 | = o = W(x,1) = puo}

DV
W, + <1 —d div(|D\y|>> IDU| + V(x)-D¥ >0 onDy. (5.4)

Let {hx}k>1 € C°(R) be a sequence of functions such that

/ 1 1 /
0<hp=1 inlk=<—l¢bo+%, ,U«o—%>, hy =0 inR\I

and limg_, 4 o0 Ak (s) = h(s) uniformly in R, where

o fors > uo
h(s) = {s fors € [—uo, (ol
—po fors < —po.

Apparently, Wi (x, 1) = hi (W (x, t)) satisfies

oWy . DYy 2
Ry (1~ d div IDW| + V(x)-DW >0 onR2 x (0,1;). (5.5)
dr DU |

By stability, we have that G| (x, t) = h(¥(x, 1)) € W1oo(R2 x [0, 00)) is a viscosity
supersolution of

IG DG
i (1—ddiv L)) DG+ V(x)- DG >0 onR? x (0, 15). (5.6)
ot IDG |

Since (a)+ > a, G1 = G1(x, t) is also a viscosity supersolution of equation (1.2) on
RZ x (0, t5).
Because for fixed v > 0

{Gi1(x,0) =0} ={¥(x,0) =0} C S,

we can choose a function £ € C*(R) such that £ > 0, £(0) = 0, supcg 1£(s)| < 00
and

gx) =§(Gi(x,0)).
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Since £(G1(x, 0)) is also a viscosity supersolution of equation (1.2) on R? x (0, t5),
thanks to Theorem 2.1, we have that

G(x,1) <&(Gi(x,1) for(x,1) € R* x [0, 15].
In particular, this implies that
(x e R?| Gi(x,1) <0} = {x € R?| £(G1(x,1)) < 0} C {x € R*| G(x,1) < O}.

Note that {x € R?| G1(x,1) < 0} = {x € R?| W(x,1) < 0}. Sending v — 0, we
have that for ¢ € [0, 5],

(x1 —ap)?  (x2 —6)?

{x=(x1,xz)eR2| < 1} C {x e R} G(x,1) <O}

a?(t) b2(1)
Then
G((0,0),t) <0 fort € (0, t5],
which finishes the proof. Note that 75 only depends on § and V. O

Let @ C R? be an open convex set. Denote by Ggq(x, ) the unique viscosity
solution to equation (1.2) subject to G (x, 0) = go(x) where

—% arctan(d(x, 02)) forx € Q
% arctan(d(x, 0€2)) otherwise.

galx) = {

Given two sets E| and E», their Hausdorff distance

dy(Eq, Ep) = max{max d(x, Ey), maxd(x, E)}.
xeE xeky

Also, fora > 0 and § € (0, %), we write

Was = [—a, o] x [8,1 —46].

Lemma5.2 Let S = (0, 1)2. For given § € (0, %) and n € N, there exists 05, > 0
such that if

du(S,2) <os, and o <os,,

then
1
Ga(x,1) <0 for(x,1) € Was x [—‘3, t,;].
n
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(]

Waﬁ

Fig.17 Reach 2 from W, s

Here ts is from the previous Lemma 5.1.

Proof We argue by contradiction. If not, then there exist a sequence of convex open
sets {2, }m>1 such that

1
du (S, Q2m) = —
m

and for some (X, try) € W1 45 X [%, t5]
m’
GQm (Xms t) = 0.
Since

lim gg, (x) = gs(x) uniformly on R2,
m——+00

due to Remark 2.1, the uniqueness of viscosity solutions, we have that

lim Ggq,(x,t) = G(x,t) locally uniformly on R? x [0, 0).
m——+00

Here G is from Lemma 5.1. The proof is similar to that of (2.4). Also, up to a
subsequence if necessary, we may assume that 1im,,;— oo (X, ) = ((0, 0), 1) for
(0.7) € [6,1 — 8] x [2, 15]. Then we have that

G(0,0),1) = lim Ggq, (xm,tn) > 0.
m——+0o0
This is a contradiction. O

As an immediate corollary, we have the following reachability.

Lemma 5.3 Consider the game in section 2.2. Under the assumption of Lemma 5.2,
every point on Wy, 5 can reach 2 within time % Also, it is easy to see that if we replace
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S by an arbitrary rectangle, all previous results are still true in the corresponding
forms (See Fig. 17).

Remark 5.1 Due to the hidden stochastic nature of the game trajectory, it is not clear
to us how to use pure game dynamics to prove the above reachability conclusion. An
interesting analog in random walk (or Brownian motion) is to use strong maximum
principle of the Laplace equation to show that a particle has a positive probability to
exit from any small window of the boundary.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Alvarez, O., Bardi, M.: Singular perturbations of degenerate parabolic PDEs: a general convergence

result. Arch. Rational Mech. Anal. 170, 17-61 (2003)

. Armstrong, S., Cardaliaguet, P.: Stochastic homogenization of quasilinear Hamilton-Jacobi equations

and geometric motions. J. Eur. Math. Soc. (JEMS) 20(4), 797-864 (2018)

. Arnold, V.I.: Topological and ergodic properties of closed 1-forms with incommensurable periods.

Funct. Anal. Its Appl. 25, 81-90 (1991)

. Caffarelli, L.A.: The homogenization of surfaces and boundaries. Bll Braz. Math. Soc. New Series

44(4), 755-775 (2013)

. Caffarelli, L.A., Monneau, R.: Counterexample in three dimension and homogenization of geometric

motions in two dimension. Arch. Ration. Mech. Anal. 212, 503-574 (2014)

. Cardaliaguet, P., Lions, P.L., Souganidis, P.E.: A discussion about the homogenization of moving

interfaces. J. Math. Pures Appl. 91(4), 339-363 (2009)

. Cardaliaguet, P., Nolen, J., Souganidis, P.. Homogenization and enhancement for the G-equation in

periodic media. Arch. Ration. Mech. Anal. 199(2), 527-561 (2011)

. Cesaroni, A., Novaga, M.: Long-time behavior of the mean curvature flow with periodic forcing.

Commun. Partial Differ. Egs. 38(5), 780-801 (2013)

. Chaudhuri, S., Wu, F,, Law, C.K.: Scaling of turbulent flame speed for expanding flames with Markstein

diffusion considerations. Phys. Rev. E 88, 033005 (2013)

Chen, Y.G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of generalized mean
curvature flow equations. J. Differ. Geo. 33, 749-786 (1991)

Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: The Fast Dynamo. Lecture Notes in Physics Mono-
graphs, 37, Springer (1995)

Craciun, B., Bhattacharya, K.: Effective motion of a curvature-sensitive interface through a heteroge-
neous medium. Interf. Free Bound. 6(2), 151-173 (2004)

Crandall, M.G., Ishii, H., Lions, P.L.: User’s guide to viscosity solutions of second order partial
differential equations. Bull. Amer. Math. Soc. 27(1), 1-67 (1992)

Dirr, N., Karali, G., Yip, N.K.: Pulsating wave for mean curvature flow in inhomogeneous medium.
Eur. J. Appl. Math. 19(6), 661-699 (2008)

Evans, L.C.: The perturbed test function method for viscosity solutions of nonlinear PDE. Proce. R.
Soc. Edinb. Sect. A: Math. 111(3—4), 359-375 (1989)

Evans, L.C., Spruck, J.: Motion of level sets by mean curvature. J. Differ. Geom. 33, 635-681 (1991)
Feldman, W.M.: Mean curvature flow with positive random forcing in 2-d, arXiv:1911.00488 (2019)
Gao, H., Kim, I.: Head and tail speeds of mean curvature flow with forcing. Arch. Ration. Mech. Anal.
235(1), 287-354 (2020)

Giga, Y., Mitake, H., Tran, H.V.: On asymptotic speed of solutions to level-set mean curvature flow
equation with driving and source terms. Siam J. Math. Anal. 48(5), 3515-3546 (2016)

Hamamuki, N., Liu, Q.: A game-theoretic approach to dynamic boundary problems for level-set cur-
vature flow equations and applications. SN Partial Differ. Eqs. Appl. 2, 30 (2021)

Jing, W., Tran, H.V., Yu, Y.: Effective fronts of polygon shapes in two dimensions, arXiv:2112.10747
[math.AP] (2021)

Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady
homogeneous flow field. Phys. Rev. A 37, 2728 (1988)

@ Springer


http://arxiv.org/abs/1911.00488
http://arxiv.org/abs/2112.10747

81 Page480f48 H.Gao et al.

23. Kohn, R.V., Serfaty, S.: Second-order PDE’s and deterministic games. Proceedings of ICIAM, pp
239-249 (2007)

24. Kohn, R.V,, Serfaty, S.: A deterministic-control-based approach to motion by mean curvature. Comm.
Pure. Appl. Math 59, 344-407 (2006)

25. Langer, J.: Instabilities and pattern formation in crystal growth. Rev. Mod. Phys. 52, 1 (1980)

26. Lions, PL., Souganidis, P.E.: Homogenization of degenerate second-order PDE in periodic and almost
periodic environments and applications. Ann. Inst. H. Poincaré, Anal. Non Linéaire 22(5), 667-677
(2005)

27. Liu, Q.: Waiting time effect for motion by positive second derivatives and applications. Nonlinear
Differ. Equ. Appl. 21, 589-620 (2014)

28. Liu, Y., Xin, J., Yu, Y.: Asymptotics for turbulent flame speeds of the viscous G-equation enhanced by
cellular and shear flows. Arch. Rational. Mechanics. Anal 199(2), 461-492 (2011)

29. Lyu, J., Xin, J., Yu, Y.: Curvature Effect in Shear Flow: Slowdown of Turbulent Flame Speeds with
Markstein Number. Commun. Math. Phys. 359, 515-533 (2018)

30. Markstein, G.H.: Experimental and theoretical studies of flame front stability. J. Aero. Sci. 18, 199-209
(1951)

31. Mitake, H., Mooney, C., Tran, H.V., Xin, J., Yu, Y.: Bifurcation of homogenization and nonhomoge-
nization of the curvature G-equation with shear flows, preprint, arXiv:2303.16304 [math.AP] (2023)

32. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York
(2002)

33. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: Algorithms based on
Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 1249 (1988)

34. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)

35. Ronney, P.: Some Open Issues in Premixed Turbulent Combustion, In: J. D. Buckmaster, T. Takeno,
(Eds.). Modeling in Combustion Science. Lecture Notes In Physics, Vol. 449, Springer-Verlag, Berlin,
pp- 3-22 (1995)

36. Sethian, J.: Curvature and the evolution of fronts. Comm. Math. Phys. 101(4), 487-499 (1985)

37. Spencer, J.: Balancing games. J. Combinatorial Th. Ser B 23, 68-74 (1977)

38. Tran, H.V., Yu, Y.: Differentiability of effective fronts in the continuous setting in two dimensions,
arXiv:2203.13807 [math.AP], (2022)

39. Williams, F.: Turbulent combustion. In: Buckmaster, J. (ed.) The Mathematics of Combustion, pp.
97-131. SIAM, Philadelphia (1985)

40. Xin, J., Yu, Y.: Periodic Homogenization of Inviscid G-equation for Incompressible Flows. Comm.
Math. Sci. 8(4), 1067-1078 (2010)

41. Xin, J., Yu, Y.: Sharp asymptotic growth laws of turbulent flame speeds in cellular flows by inviscid
Hamilton-Jacobi models. Ann. Insti. H. Poincar. Anal. Non Linéaire 30(6), 1049-1068 (2013)

42. Xin, J., Yu, Y.: Front Quenching in G-equation Model Induced by Straining of Cellular Flow. Arch.
Rational. Mech. Anal. 214, 1-34 (2014)

43. Xin, J., Yu, Y., Zlato$, A.: Periodic orbits of the ABC flow with A = B = C = 1. SIAM J. Math.
Anal. 48(6), 4087—4093 (2016)

44. Zhu, J., Ronney, P.: Simulation of Front Propagation at Large Non-dimensional Flow Disturbance
Intensities. Combust. Sci. Technol. 100(1), 183-201 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer


http://arxiv.org/abs/2303.16304
http://arxiv.org/abs/2203.13807

	Existence of an Effective Burning Velocity in a Cellular Flow for the Curvature G-Equation Proved Using a Game Analysis
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Definition of Viscosity Solutions and Comparison Principle
	2.2 Game Theory Interpretation From KS1
	2.3 Convergence
	2.4 Stationary Equation and Reachability

	3 Proof of Theorem 1.1
	4 Extension to General 2D Incompressible Flows
	Acknowledgements
	5 Appendix
	References




