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Yan Li,1,2 Haochen Lei,3 Xiaoquan Wen,4 and Hongyuan Cao3,*

Summary

Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are sig-

nificant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis

relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD)

structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an effi-

cientmethod, ReAD, to detect replicable SNPs associatedwith the phenotype from twoGWASs accounting for the LD structure. The local

dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two

sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP

significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with

effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we

show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.

Introduction

Genome-wideassociation studies (GWASs)allowfor simulta-

neous study ofmillions of single-nucleotide polymorphisms

(SNPs). Numerous genetic risk variants associated with

various phenotypes and complex diseases have been re-

ported over the past couple of decades.1,2 These associations

provide insights into the architecture of disease susceptibil-

ity. Despite these progresses, many reported genotype-

phenotype associations fail to replicate in other studies.3,4

An analysis of past studies indicates that the cumulative

prevalence of irreplicable preclinical research (including

GWASs) exceeds 50%5–8. Approximately 28 billion dollars

annually is spentonpreclinical research that isnot replicable

in the United States alone.8 Irreplicable and/or inconsistent

between-study associations might be spurious findings

causedby confounding factors, such as population stratifica-

tion, misclassification of phenotypes, genotyping errors, or

technical biases, among others. Replicability is now

considered a sine qua non for establishing credible geno-

type-phenotype associations in the era of GWASs.9,10 We

study conceptual replicability where consistent results are

obtained using different processes and populations that

target the same scientific question. For GWASs, replicability

analysis aims to detect genetic risk loci that are significantly

associated with the same phenotype across different

studies.11–13 By eliminating genetic associations that cannot

be generalized across studies, replicability analysis provides

stronger support for genuine scientific findings, avoids

wasted resources, and improves efficiency of drug develop-

ment. This helps the translation of bench discoveries to

bedsided therapies.

In GWASs, millions of SNPs are tested simultaneously,

requiring multiple testing adjustment. False discovery

rate (FDR), defined as the expectation of the proportion

of false discoveries over total discoveries, is a commonly

used metric for type I error control.14 A central character-

istic of GWAS data is the linkage disequilibrium (LD)

among SNPs with which alleles at nearby sites can co-occur

on the same haplotype more often than by chance

alone.15,16 As a result, it is common to observe that pheno-

type-associated SNPs form clusters and exhibit high corre-

lations within clusters.17 An effective approach to account

for the LD structure among SNPs is through the hidden

Markov model (HMM).18,19 Existing GWAS litera-

ture17,19,20 using HMM for a single study is not applicable

to replicability analysis of multiple studies. Furthermore,

their approaches cannot be generalized to more than one

study due to the heterogeneity of LD across different

studies.21,22 Replicability analysis of GWASs explicitly ac-

counting for the LD structure remains understudied and

critically important.

To claim replicability, an ad hoc approach is to imple-

ment an FDR control method, such as the Benjamini and

Hochberg (BH) procedure,14 for each study and intersect

significant results from all studies as replicable findings.

This approach does not control the FDR and moreover

has low power as it does not borrow information from

different studies. The maximum of p values across studies

(Pmax) is a straightforward significance measure for replica-

bility.23 After summarizing data from multiple studies by

Pmax, classic FDR control procedures such as BH are used

for replicability analysis. This procedure is overly conserva-

tive as it guards against the worst scenario and does not
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incorporate the composite null structure of replicability

analysis. For independent features from high-throughput

experiments, various methods were proposed for replica-

bility analysis. These methods are not robust to heteroge-

neity of different studies,24,25 require tuning parameters,26

impose parametric assumptions on the p values,12 or de-

mand access to full datasets, which can be prohibitive

due to privacy concerns or logistics.27 Wang and Zhu28

investigated replicability analysis for dependent data but

imposed strong parametric assumptions.

We address the limitations of existing methods by devel-

oping an efficient method, ReAD (Replicability Analysis

accounting for Dependence) to detect replicable geno-

type-phenotype associations across two GWASs by

incorporating the LD structure. We use GWAS summary

statistics such as p values, treating multiple studies sym-

metrically. Our approach models the clustered signals

from two studies with a four-dimensional HMM, account-

ing for the heterogeneity of LD structures in different

studies. Conditional on the HMM, we model the two p

value sequences as a four-group mixture of SNPs.29,30 The

replicability null hypothesis consists of three components:

zero effects in both studies, zero effect in one study, and

non-zero effect in another study and vice versa. ReAD cal-

culates the posterior probability of replicability null given

data. Compared to other replicability analysis methods,

ReAD is robust as it is non-parametric, jointly models the

signal and non-signal from different studies, and accounts

for the heterogeneity of different studies. ReAD provides

more efficient rankings of importance for replicable SNPs

by pooling information from two p value sequences via

the forward and backward probabilities.31,32 ReAD applies

a step-up procedure to identify clusters of genotype-

phenotype associated signals, improving the power of

replicability analysis while effectively controlling the

FDR. ReAD is computationally scalable to whole-genome

studies with tens of millions of SNPs. Its implementation

combines the non-parametric expectation maximization

(EM) algorithm33 and the pool-adjacent-violator algorithm

(PAVA) in shape constraint inference,34,35 without any tun-

ing parameters. We conduct extensive simulation studies

to evaluate the performance of our approach across a

wide range of scenarios. By applying our procedure to sum-

mary statistics of two asthma GWASs, two ulcerative colitis

(UC) GWASs, and two type 2 diabetes GWASs, we show

that ReAD identifies more replicable genetic loci that

otherwise might be missed when using existing methods

that do not account for the LD structure. These identified

association signals pinpoint potential loci related to

metabolisms and immunity.

Material and methods

Method overview
ReAD takes p values from two independent GWASs with the same

phenotype as input. Suppose we have J SNPs with corresponding

p values ðp1j;p2jÞ;j ¼ 1;.;J.We aim to identify replicable SNPs asso-

ciatedwith the phenotype in both studies. Ourmethod canhandle

SNPs in thewholegenomewhere J is in theorderofmillions.Weuse

qij to represent the inferred association status of SNP j in study i: For

eachSNP,we consider its associationanalysis results are replicable if

its corresponding q values are consistently 1: The correlations be-

tween qs within a study are caused by LD among tested SNPs, and

we model their dependence structure using a Markov chain. This

is an effective way to model the correlations between observed p

values. Given the observed p values are fromboth studies, the over-

all model structure can be represented by an HMM.36

We present our schematic in Figure 1. We use sj ˛ f0;1;2;3g to

denote the joint inferred association status for SNP j, where

sj ¼ 0 if q1j ¼ q2j ¼ 0; sj ¼ 1 if q1j ¼ 0 and q2j ¼ 1, sj ¼ 2 if

q1j ¼ 1 and q2j ¼ 0; and sj ¼ 3 if q1j ¼ q2j ¼ 1: The composite

null for replicability analysis corresponds to sj ˛ f0;1;2g: To cap-

ture the local dependence of LD structure among SNPs, we impose

a four-state HMM on s ¼ ðs1;.; sJ Þ. The transition matrix is de-

noted as A ¼ fakl : k; l ¼ 0;1;2;3g where the transition probabil-

ity from sj ¼ k to sjþ1 ¼ l is given by akl, and
P3

l¼0 akl ¼ 1 for all

k. An efficient EM algorithm in combination with the forward-

backward procedure and PAVA is developed to estimate the un-

known parameters and functions.We use the posterior probability

of being replicability null, rLISj; j ¼ 1;.;J, as the test statistic and

obtain drLISj for all SNPs. By applying a step-up procedure on drLISj;
j ¼ 1;.; J, we get powerful testing results while controlling the

FDR. More details of ReAD can be found below and in Note S1.

The HMM for replicability analysis
Suppose there are J SNPs in two independent GWASs. We are inter-

ested in testingwhether the jth SNP is associatedwith thephenotype

in both studies. Let qij denote the inferred association status of SNP j

in study i, where qij ¼ 1 indicates the jth SNP (j ¼ 1;.;J) is inferred

associatedwith thephenotype in study i (i ¼ 1;2) and qij ¼ 0 other-

wise. We use sj (j ¼ 1;.;J) to denote the joint status.

sj ¼

8>><>>:
0;

�
q1j; q2j

� ¼ ð0;0Þ;
1;

�
q1j; q2j

� ¼ ð0;1Þ;
2;

�
q1j; q2j

� ¼ ð1;0Þ;
3;

�
q1j; q2j

� ¼ ð1;1Þ:

The replicability null hypotheses is

H0j : sj ˛ f0;1;2g; j ¼ 1;.; J: (Equation 1)

Let pi ¼ ðpijÞJj¼1 denote p values of J SNPs in study i. We use

mixture models for the conditional distributions of p values given

q values. Specifically,

p1j

���q1j � �
1 � q1j

�
f0 þ q1jf1;

p2j

���q2j � �
1 � q2j

�
f0 þ q2jf2;

(Equation 2)

where f0 is the probability density function of p values when

q1j ¼ q2j ¼ 0; and f1 and f2 are the p value density functions un-

der non-null in study 1 and study 2, respectively.We assume f0 fol-

lows the standard uniform distribution and impose the following

monotone likelihood ratio condition.37–39

f1ðxÞ
�
f0ðxÞ and f2ðxÞ

�
f0ðxÞ are monotonically non � increasing in x:

(Equation 3)

This condition naturally arises as small p values indicate evi-

dence against the null. To capture the LD structure among SNPs,
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we assume that s ¼ ðs1;.; sJÞ follows a four-state stationary, irre-

ducible, and aperiodic HMM. The transition probabilities

akl ¼ P
�
sjþ1 ¼ l

��sj ¼ k
�

(Equation 4)

for k; l ¼ 0;1;2;3 with constraint
P3

l¼0 akl ¼ 1. The stationary

distribution of each state sj is Pðsj ¼ kÞ ¼ pk for k ¼ 0;1;2;3

and
P3

k¼0 pk ¼ 1. The paired p values for the jth SNP are assumed

to be conditionally independent satisfying

f
�
p1j; p2j

���q1j; q2j� ¼ f
�
p1j

���q1j�f �p2j���q2j�:
Based on the mixture model as in Equation 2, we have

f ðsjÞ
�
p1j; p2j

�
¼

8>>>>>><>>>>>>:

f0
�
p1j

�
f0
�
p2j

�
; sj ¼ 0;

f0
�
p1j

�
f2
�
p2j

�
; sj ¼ 1;

f1
�
p1j

�
f0
�
p2j

�
; sj ¼ 2;

f1
�
p1j

�
f2
�
p2j

�
; sj ¼ 3:

Denote byA ¼ fakl : k; l ¼ 0;1;2;3g the transitionmatrix, p ¼
ðp0;p1;p2;p3Þ the vector of stationary distribution, and F ¼
ðf ð0Þ; f ð1Þ; f ð2Þ; f ð3ÞÞ the probability density functions of the bivar-

iate observations ðp1j;p2jÞ. The convergence theorem of a Markov

chain (Theorem 5.5.140) implies that

1

J

XJ

j¼1

I
�
sj ¼ k

�
/pk

almost surely for k ¼ 0;1;2;3 as J/N. As f0 is assumed to follow a

standard uniform distribution, we use l ¼ ðp;A; f1; f2Þ to denote

the collection of unknown parameters and functions in the

HMM. Our goal is to separate the replicable SNPs (sj ¼ 3) from

the non-replicable SNPs (sj ˛ f0;1;2g) based on the observed bivar-

iate p values.

FDR control for replicability analysis accounting for LD
The rLIS statistic for replicability analysis across two studies

Consider the ideal setup that an oracle knows l ¼ ðp;A;f1;f2Þ. We

define the replicability local index of significance (rLIS) as the pos-

terior probability of being null. Specifically,

rLISj : ¼ Pl

�
sj ˛ f0;1;2g��p1;p2

�
:

Given l, the forward and backward probabilities are defined as

ajðsjÞ ¼ Plððp1t ; p2t Þjt ¼1; sjÞ and bjðsjÞ ¼ Plððp1t ; p2t ÞJt ¼ jþ1

���sjÞ,
respectively. The forward-backward procedure41 can be used in

the calculation. Specifically, we initialize a1ðs1Þ ¼ ps1 f
ðs1Þ

ðp11; p21Þ and bJ ðsJÞ ¼ 1: We can obtain ajð $Þ and bjð $Þ for

j ¼ 1;.; J recursively by

ajþ1

�
sjþ1

� ¼
X3
sj ¼0

aj

�
sj
�
asjsjþ1

f ðsjþ1Þ�p1;jþ1; p2;jþ1

�
and

bj

�
sj
� ¼

X3

sjþ1 ¼0

bjþ1

�
sjþ1

�
f ðsjþ1Þ�p1;jþ1; p2;jþ1

�
asjsjþ1

:

Hence, we have

rLISj ¼
P2

sj ¼0 aj

�
sj
�
bj

�
sj
�P3

sj ¼0 aj

�
sj
�
bj

�
sj
� :

The rejection rule can be written as

dj ¼ I
�
rLISj % t

�
; j ¼ 1;.; J;

where Ið $Þ is the indicator function.

We next derive the thresholdbt for a pre-specified FDR level q. To-

tal number of discoveries and the number of false discoveries are

Figure 1. Schematic of ReAD
qij represents the inferred association status of SNP j ðj ¼ 1;.; JÞ in study i ði ¼ 1;2Þ. pij represents the p value of SNP j (j¼ 1,..., J) in study
i (i ¼ 1, 2). For each SNP j, we consider its association analysis results are replicable if q1j ¼ q2j ¼ 1. The dependence structure among
SNPs across two studies can be modeled with an HMM.
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RðtÞ ¼ PJ
j¼1 IðrLISj % tÞ and VðtÞ ¼ PJ

j¼1 IðrLISj % t; sj ˛ f0; 1;
2gÞ, respectively. We have

E½VðtÞ� ¼ E

"XJ

j¼1

�
p0I

�
rLISj % t

��sj ¼ 0
�þp1I

�
rLISj % t

��sj ¼ 1
�

þp2I
�
rLISj % t

��sj ¼ 2
�	#

¼ E

"XJ

j¼1

I
�
rLISj % t

�
rLISj

#
:

Let rLISð1Þ % rLISð2Þ %/% rLISðJÞ be the order statistics and

Hð1Þ;.;HðJÞ be the corresponding hypotheses. If k hypotheses

are rejected, the number of false discoveries can be estimated by

bV ðkÞ ¼
Xk

j¼1

rLISðkÞ;

and the FDR can be estimated by 1
k

Pk
j¼1 rLISðjÞ. We shall use the

following step-up procedure to control the FDR at level q.20

let bk ¼ max

(
k :

1

k

Xk

j¼1

rLISðjÞ % q

)
;

then reject all HðjÞ for j ¼ 1;.; bk:
We provide an estimation of l in the next section.

Data-driven testing procedure

To estimate the unknown parameters and functions in l, we first

define two posterior probabilities, gjðsjÞ ¼ Plðsj
��p1;p2Þ and xjðsj;

sjþ1Þ ¼ Plðsj; sjþ1

��p1;p2Þ. By the definition, gjðsjÞ ¼ P3
sjþ1 ¼0 xjðsj;

sjþ1Þ. They can be obtained from the forward and backward

probabilities

gj

�
sj
� ¼ aj

�
sj
�
bj

�
sj
�P3

sj ¼0 aj

�
sj
�
bj

�
sj
�

and

xj
�
sj; sjþ1

� ¼
aj

�
sj
�
bjþ1

�
sjþ1

�
asjsjþ1

f ðsjþ1Þ�p1;jþ1; p2;jþ1

�
P3

sj ¼0

P3
sjþ1 ¼0 aj

�
sj
�
bjþ1

�
sjþ1

�
asjsjþ1

f ðsjþ1Þ�p1;jþ1; p2;jþ1

� :

The likelihood function of the complete data ðp1;p2; sÞ is givenby

Lðl;p1;p2; sÞ ¼ ps1

YJ
j¼2

asj�1sj$
YJ
j¼1

f ðsjÞ
�
p1j; p2j

�
:

We develop a non-parametric EM algorithm33 to estimate the

unknowns l ¼ ðp;A; f1; f2Þ under the monotone likelihood

ratio constraint (Equation 3). With an appropriate initialization

of the unknowns, lð0Þ ¼ ðpð0Þ;Að0Þ; f ð0Þ1 ; f
ð0Þ
2 Þ, the EM algorithm

proceeds by iteratively implementing the following two steps.

E-step: Given current lðtÞ ¼ ðpðtÞ;AðtÞ; f ðtÞ1 ; f
ðtÞ
2 Þ, the forward and

backward probabilities a
ðtÞ
j ðsjÞ;bðtÞj ðsjÞ and the posterior probabili-

ties g
ðtÞ
j ðsjÞ; xðtÞj ðsj; sjþ1Þ are calculated. The conditional expectation

of the log likelihood function can be written as

D
�
l
��lðtÞ� ¼

X
s

PlðtÞ ðs
��p1;p2Þlog Lðl;p1;p2; sÞ

¼
X
s

(
PlðtÞ ðs

��p1;p2Þ
"
log ps1 þ

XJ

j¼2

log asj�1sj

þ
XJ

j¼1

log f ðsjÞ
�
p1j; p2j

�#)
:

M-step: Update lðtþ1Þ by

lðtþ1Þ ¼ arg max
p;A;f1 ;f2

D
�
p;A; f1; f2

��lðtÞ�:
We can update each component alternatingly. By using the La-

grange multiplier, we can calculate pðtþ1Þ and Aðtþ1Þ as

pðtþ1Þ
s ¼ g

ðtÞ
1 ðsÞ; s˛ f0;1;2;3g

and

aðtþ1Þ
kl ¼

PJ
j¼2 x

ðtÞ
j�1ðk; lÞPJ

j¼2

P3
l¼0 x

ðtÞ
j�1ðk; lÞ

; k; l˛ f0;1g:

The two functions can be updated by

f
ðtþ1Þ
1 ¼ argmax

f1 ˛H

(XJ

j¼1

h
g
ðtÞ
j ð2Þþg

ðtÞ
j ð3Þ

i
log f1

�
p1j

�)
(Equation 5)

and

f
ðtþ1Þ
2 ¼ argmax

f2 ˛H

(XJ

j¼1

h
g
ðtÞ
j ð1Þþg

ðtÞ
j ð3Þ

i
log f2

�
p2j

�)
; (Equation 6)

where ℍ is a set of monotonic non-increasing density func-

tions.37–39 We solve Equations 5 and 6 independently using the

non-parametric maximum likelihood estimation implemented

with PAVA.34

The E-step and M-step are conducted iteratively until conver-

gence. Detailed derivations of the algorithm are presented

in Note S1. With the estimate bl ¼ fbp; bA;bf 1;
bf 2g, we can calculate

the test statistics drLISj ¼ P
l̂
ðsj ˛ f0; 1; 2g��p1; p2Þ. LetdrLISð1Þ %/% drLISðJÞ be the order statistics of drLISj, and denote

Hð1Þ;.;HðJÞ as the corresponding H0j. The data-driven testing pro-

cedure works as follows.

Let bk ¼ max

(
i :

1

i

Xi

j¼1

drLISðjÞ % q

)
;

and reject HðiÞ for i ¼ 1;.; bk:
Data analysis details
We apply ReAD to analyze two pairs of published GWAS datasets

for identifying replicable associations, including two GWAS data-

sets for asthma and two GWAS datasets for UC. Informed consent

was obtained from participants for all studies.42–44 In the

following, the locations of SNPs are mapped to Genome Assembly

GRCh38/hg38.

Asthma GWASs

Asthma is a complex bronchial disease characterized by chronic

inflammation and narrowing of the airways, which is caused by

a combination of environmental and genetic factors. The preva-

lence of asthma varies across different populations and ethnicities.

We use publicly available GWAS summary statistics for asthma

from the Trans-National Asthma Genetic Consortium (TAGC)

(https://www.ebi.ac.uk/gwas/downloads/summary-statistics) and

UK Biobank (UKBB) (http://www.nealelab.is/uk-biobank) to

conduct replicability analysis. The TAGC consortium deposits

HapMap2-imputed, ancestry-specific, meta-analysis data from

ethnically diverse populations.43 The TAGC asthma GWAS data

with high-density genotyped and imputed SNP based on the Euro-

pean-ancestry comprises 8;843;303 genetic variants for 19;954

asthma cases and 107;715 controls. UKBB is a large-scale
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prospective cohort study with over half amillion participants aged

40–69 years from the United Kingdom between 2006 and 2010.45

The imputed asthma GWAS from UKBB contains summary statis-

tics for 8;856;162 genetic variants measured on 39;049 self-re-

ported asthma cases and 298;070 controls.

UC GWASs

Inflammatory bowel disease is a chronic, relapsing intestinal in-

flammatory disease. It has the highest age-standardized prevalence

rate in the US followed by the UK46 with increasing prevalence in

Asia and developing countries.47 UC is one of the two main forms

of inflammatory bowel disease. We conduct replicability analysis

of publicly available GWAS summary statistics for UC from the

International Inflammatory Bowel Disease Genetics Consortium

(IIBDGC) (https://www.ibdgenetics.org/) and the UKBB. The

IIBDGC GWAS analyses 8;857;076 SNPs from 6;968 UC cases

and 20;464 population controls of European descent.48 The

imputed UKBB GWAS data contain summary statistics of

8;856;162 SNPs genotyped on 1;795 self-reported UC cases and

335;324 controls from the United Kingdom.

Results

Simulation study

Simulation I

In simulation I, we evaluated the FDR and statistical power

of ReAD based on the rLIS statistic across two studies. Here,

power is defined as the average proportion of true discov-

eries among the total number of non-null hypotheses.

We compare the FDR and power of ReADwith several repli-

cability analysis methods developed under independence,

including the ad hoc BH method, the MaxP method based

on Pmax,
23 and the STAREGmethod based on the local false

discovery rate (Lfdr).49 Details of these methods can be

found in Note S2. An extensive comparison with a replica-

bility analysis method developed under dependence,

repLIS,28 can be found in Note S3.

In each simulation, the hidden states of 10;000 SNPs

were generated from a four-state Markov chain. A detailed

description of the data-generating process is provided in

Note S3. In all simulations, we fix the initial distribution

of four states as p0 ¼ ð0:9;0:025;0:025;0:05Þ. The signals

from two studies are generated from normal distributions

with mean mi and variance s2i ; i ¼ 1; 2: We vary the transi-

tion matrix A ¼ fakl : k; l ¼ 0;1;2;3g and m2 while fix

m1 ¼ 2; and s1 ¼ s2 ¼ 1; empirical FDR, and power are

calculated from 100 replications for each setting. The

results are summarized in Figure 2 (top: FDR; bottom: po-

wer). In Figure 2, each row corresponds to a different a00,

and each column corresponds to a different a33. In each

panel, we set m2 to 1:5;2, or 3. At FDR level 0.05, we observe

that the ad hoc BH fails to control the FDR. MaxP is overly

conservative across all settings. STAREG has a slight FDR

inflation in some settings. By accounting for the local

dependence structure via the rLIS statistic, ReAD properly

controls the FDR and has substantial power gain compared

to competingmethods. The powers of all methods increase

as m2 increases.

The forward-backward procedure of HMM implies that a

small rLIS does not occur alone but in clusters. Therefore,

ReAD tends to identify the entire cluster of genotype-

phenotype associations. Such clusters are unlikely to occur

by chance and are more plausible biological signals. To

illustrate this, p values for two studies are generated

following the above strategy by setting a00 ¼ 0:9; a33 ¼
0:7, and m2 ¼ 2. We compare three methods for testing

the composite replicability null hypotheses across two

studies: the MaxP method,23 the STAREG method,49 and

the ReAD method. Figure 3 presents results of different

methods in one replication. It can be seen that MaxP is

extremely conservative, which only identifies one single

signal; STAREG rejects individual hypotheses with very

small p values in both studies, whereas ReAD can identify

clusters of replicable signals.

Simulation II

By incorporating theLDstructure inGWASs throughHMM,

the rLIS statistic integrates information from adjacent loca-

tions. Therefore, the rankings of SNPs based on rLIS are

different from the rankings from MaxP (based on Pmax)

and STAREG (based on Lfdr). In simulation II, we perform

simulation studies to evaluate FDR and power in GWASs

with realistic LD patterns among SNPs. Data for two studies

are generated based on two SNP matrices from the Genetic

European Variation in Disease (GEUVADIS) project50 at

https://www.internationalgenome.org/data-portal/data-

collection/geuvadis. The first genotype matrix is collected

from 78Utah residents (CEPH) with Northern andWestern

European ancestry (CEU), and the second genotype matrix

is measured from 89 Finnish in Finland (FIN). CEU and FIN

are both sub-populations of the European ancestry popula-

tion, therefore they may have similar LD structures. Based

on the CEU and FIN genotype matrices, we filter out SNPs

with the same genotypes in all samples and obtain geno-

types of 16;764 SNPs in both studies. We specify 4 causal

SNPs that are approximately independent of each other in

each study, 3 of which are replicable in both studies. In

each study, for the ith subject (i ¼ 1;.;78 in the CEU

study and i ¼ 1;.;89 in the FIN study), we generate

continuous phenotypes using the linear regression model

yi ¼ b0 þ
X4
k¼ 1

Gc
ikbk þ ei;

where b0 is the intercept, Gc
i1;.;Gc

i4 are the genotypes of

the ith subject for the 4 causal SNPs, b1;.; b5 are regression

coefficients, and ei is an error term generated from Nð0;1Þ;
a standard normal distribution. The intercept and the

regression coefficients of causal SNPs bk; k ¼ 0;1;.;4 are

set to 1.5. The p values of 16;764 SNPs in two studies are

obtained by a marginal regression of each SNP on the

phenotype.

To evaluate FDR and power, following the clumping pro-

cedure in GWAS,51 we define clustered signals as SNPs in

LD (r2 R0:5) with pre-specified replicable causal SNPs. In

addition, SNPs in LD (r2 R0:5) with clustered signals are

added to the signal sets. We evaluate the FDR control and
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power of the top K hits based on the maximum of p values

(Pmax), Lfdr, and rLIS from 100 runs. We define empirical

FDR as the average proportion of false discoveries selected

by the top K hits and power as the average proportion of

true discoveries over the number of true signals. The esti-

mated FDR of topKhits is obtained by averaging the ordered

Pmax;Lfdr, and rLIS from the smallest to theKth value.We set

K ¼ 10;20;.;1000. Figure 4 summarizes the simulation re-

sults. We observe that MaxP is conservative, ReAD controls

the FDR properly, and STAREG has FDR inflation for larger

Figure 2. FDR control and power comparison of different methods
FDR control and power comparison are plotted in the top and bottom panels, respectively. Simulations were conducted under the setting
of J ¼ 10;000 and m1 ¼ 2. The initial distribution of four states is p0 ¼ ð0:9;0:025;0:025;0:05Þ. The horizontal dashed line in the FDR
plot represents the target FDR level of 0.05, and the results were calculated over 100 replications. Each row and column correspond to
different transition probabilities, a00 and a33, respectively. In each panel, we vary m2 from 1.5 to 3.
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K: ReAD has the highest power based on selecting the top

K hits.

We conduct additional simulation studies with real ge-

notypes of samples from multiple population groups to

assess the sensitivity and specificity of our method with

respect to different LD structures. The detailed results are

summarized in Note S3.4 and Figures S3 and S4. We

observe that ReAD has robust performance with respect

to variations of LD patterns in closely related populations.

However, for distant populations, ReAD can suffer signifi-

cant power loss.

Data analysis

Replicability analysis of asthma GWASs

Wefirst perform replicability analysis on the asthmaGWAS

data obtained from TAGC and UKBB. We filter out SNPs

with minor allele frequency (MAF) smaller than 0.05, re-

sulting in 6;234;241 SNPs in the TAGC study and

6;242;120 SNPs in UKBB. After taking the intersection of

SNPs in the two studies, we obtain paired p values of

6;222;195 SNPs to conduct replicability analysis.

As the ad hoc BH does not control FDR, we apply MaxP

and STAREG on the paired p values for comparison. At

FDR level 53 10�8, MaxP identifies 2; 853 SNPs, which

are also identified by STAREG and ReAD. Compared to

MaxP, STAREG identifies 909 additional significant SNPs.

By capturing the local LD structure through HMM, ReAD

identifies 10;084 significant SNPs, 6;328 of which are

missed by MaxP or STAREG. This demonstrates the

improved power of ReAD. The NHGRI-EBI GWAS Cata-

log52 reported associations with asthma in published

GWASs at SNP level and locus (cytogenetic region) level,

which can be used as a validation criterion for the replica-

bility analysis.

Among the 6;328 SNPs uniquely identified by ReAD,

158 are recorded in GWAS Catalog,52 and 6; 103

SNPs locate in known loci tagged by SNPs in GWAS Cat-

Figure 3. Methods comparison for cluster
identification
Circles range from 1 (the outermost circle)
to 4 (the innermost circle). The outermost
circle represents true states; circle 2 repre-
sents ReAD, circle 3 represents STAREG,
and circle 4 represents MaxP.

alog. For the remaining 67 SNPs

several of them can be mapped to

asthma-associated genes. For ins-

tance, SNP rs864537 (rLIS: 3.2e-07;

TAGC p value: 3.2e-05; UKBB p value:

2.0e-11) mapped to gene CD247 indi-

cates a significant locus associated

with asthma.53 Three SNPs, rs1270

0390 (rLIS: 2.7e-07; TAGC p value:

2.1e-05; UKBB p value: 2.6e-07),

rs12700391 (rLIS: 3.3e-07; TAGC p

value: 2.1e-05; UKBB p value: 2.8e-07), and rs7781534

(rLIS: 2.8e-07; TAGC p value: 2.8e-05; UKBB p value:

2.8e-07) are closest to gene IL6, which is a potential

contributor to asthma and other inflammatory pulmo-

nary diseases.54,55

To assess the replicability of GWAS loci across two

studies, we state that a locus is replicated if at least one

SNP within it is identified significantly replicable and is re-

ported associated to asthma in the GWAS Catalog. If a lo-

cus contains multiple significant SNPs, the SNP with the

strongest association is considered as the lead SNP. For

instance, if we use STAREG with Lfdr as the test statistic,

the SNP with the smallest Lfdr is the lead SNP. In this crite-

rion, at FDR level 53 10�8, MaxP identifies 12 loci, which

are also identified by STAREG and ReAD. STAREG identifies

3 additional loci. ReAD identifies 28 genetic loci with repli-

cable asthma associations, including 13 loci could not be

detected by other methods. Figure 5 presents the Manhat-

tan plots of MaxP, STAREG, and ReAD. In Figure 5, the

vertical axis are � log10 transformations of test statistics

for replicability analysis, i.e., Pmax for MaxP, Lfdr for

STAREG, and rLIS for ReAD.

Table 1 displays main characteristics of the 28 cytoge-

netic regions identified by ReAD. The mapped gene de-

notes genes overlapping or closest to the lead SNP in

the identified locus. The 15 loci only identified by ReAD

harbor signals closely related to asthma. For example,

the lead SNP in locus 2p25.1, rs10174949, is in the intron

of gene LINC00299 and plays an important role in atopic

dermatitis, including asthma, hay fever, and eczema

in European and UK populations.56–58 The 8q21.13 region

is reported to be associated with asthma and hay fever in a

European-ancestry study.59 The lead SNP rs10957979 lies

between gene RPL13AP18 (chr8:80,265,528–80,266,155)

and gene RNU6-1213P (chr8:80,405,516–80,405,609),

and its association with asthma has been observed in

several European-ancestry studies.43,60
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Replicability analysis of UC GWASs

Next, we perform replicability analysis of UC GWAS data

from IIBDGC and UKBB. We filter out SNPs with MAF

smaller than 0.05, resulting in 6;243;744 SNPs in the

IIBDGC study and 6;242;120 SNPs in the UKBB. We use

the paired p values of 6;232;147 SNPs common to both

studies as input for replicability analysis.

We apply MaxP, STAREG, and ReAD on the paired p

values. At FDR level 53 10�8, MaxP identifies 1;239 signif-

icant SNPs in 1 locus. STAREG identifies 1;542 significant

SNPs in 2 loci, one of which is also detected by MaxP.

ReAD identifies 3;307 significant SNPs in 7 genetic loci,

including 5 loci that are not detected by MaxP or

STAREG. Figure 6 presents the Manhattan plots of MaxP,

STAREG, and ReAD. ReAD uniquely identifies 1;766 addi-

tional UC-associated SNPs, among which 11 are recorded

in the GWAS Catalog.52 The remaining 1;755 SNPs locate

in known loci tagged by SNPs in the GWAS Catalog.

We assess the replicability of genetic loci identified by

different methods in the GWAS Catalog.52 Table 2 presents

the main characteristics of the 7 replicable genetic loci

identified by ReAD. UC associations of these loci in cohorts

of European descent have been reported in the literature.

For instance, the lead SNP of loci 6p21.32, rs6927022, is

in the intron of gene HLA-DQA1, and the HLA complex

is associated with multiple risk alleles for inflammatory

bowel disease, including UC.61–63 The lead SNP harbored

in loci 1q23.3, rs1801274, is only identified by ReAD and

has confirmed associations with UC in several European-

ancestry studies.48,64,65 We have additional validations in

DisGeNET, a versatile platform that contains a comprehen-

sive catalog of genes and variants associated with human

diseases.66 Many mapped genes of the lead SNP only

identified by ReAD have been reported to be associated

with UC, such as FCGR2A in locus 1q23.3, IL23R in

locus 1p31.3, IL10 in locus 1q32.1, and MST1 in locus

3p21.31.

Replicability analysis can be conducted on a wider range

of traits beyond asthma and UC. To illustrate, we perform

additional data analysis on GWAS data for type 2 diabetes.

Details of the data and analysis can be found in Note S4

and Figure S5.

Discussion

In this paper, we present ReAD, an efficient method ac-

counting for the LD structure to identify replicable associa-

tions from two GWAS datasets. We conducted extensive

simulation studies and analyzed GWAS datasets for 3 traits.

Figure 4. FDR control and power comparison of different methods

Figure 5. The Manhattan plots of asthma GWASs based on Pmax, Lfdr, and rLIS
The dashed horizontal lines denote the FDR cutoffs of 5310�8 produced by MaxP, STAREG, and ReAD, respectively.
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Compared to conventional approaches that impose inde-

pendence assumption among SNPs, ReADprovides effective

FDR control. It has a substantial power gain in identifying

genuine and replicable genetic loci. It is computationally

scalable to hundreds of millions of SNPs and has no tuning

parameters.

In this paper, we mainly consider irreplicable GWAS sig-

nals due to non-biological factors, e.g., batch effects. Our

discussion focuses on assessing the replicability via

commonly available summary statistics based on single-

SNP association testing, which does not carry LD informa-

tion. We acknowledge that, in the applications of genetic

association analysis, varying LD patterns between studies

can lead to inconsistent significant findings at the SNP

level. Consequently, our assumption for simulations and

real data analysis is that LD patterns in multiple GWASs

are similar. This is illustrated in simulation II by using the

real genotypes of different populations from the

GEUVADIS project. In the presence of varying LD patterns,

a more relevant question should be the consistency of un-

derlying association signals within each interrogated locus

across original and replication studies. To this end,we apply

Table 1. Main characteristics of the 28 loci associated with asthma in the European-ancestry TAGC and UKBB GWASs identified by ReAD

Locus Lead SNP Lead SNP location Mapped gene Pmax Lfdr rLIS

Replicable asthma loci identified by all methods

2q12.1 rs3771180 chr2:102,337,157 IL18R1, IL1RL1 1.5e-20 2.5e-16 2.5e-20

5q22.1 rs10455025 chr5:111,069,301 BCLAF1P1, TSLP 2.0e-25 2.4e-21 1.9e-25

5q31.1 rs20541 chr5:132,660,272 IL13, TH2LCRR 1.4e-14 9.1e-11 7.0e-15

6p21.32 rs17843604 chr6:32,652,506 HLA-DQA1, HLA-DQB1 2.2e-33 5.0e-29 3.8e-33

6p21.33 rs2596464 chr6:31,445,184 LINC01149 1.8e-13 8.0e-10 4.2e-13

6q15 rs2325291 chr6:90,276,967 BACH2 8.6e-13 1.3e-09 1.0e-13

9p24.1 rs992969 chr9:6,209,697 GTF3AP1, IL33 4.3e-29 5.5e-25 4.8e-29

11q13.5 rs2155219 chr11:76,588,150 LINC02757, EMSY 2.9e-15 6.3e-12 4.8e-16

15q22.33 rs17228058 chr15:67,157,967 SMAD3 2.9e-15 6.3e-12 1.8e-15

16p13.13 rs12935657 chr16:11,125,184 CLEC16A 2.1e-12 1.3e-09 2.0e-13

17q12 rs2941522 chr17:39,754,115 GRB7, IKZF3 1.5e-38 3.6e-34 3.0e-38

17q21.1 rs2305479 chr17:39,905,964 GSDMB 1.0e-42 1.1e-37 8.0e-42

Replicable asthma loci identified by ReAD and STAREG but not by MaxP

5q31.3 rs7705042 chr5:142,112,854 NDFIP1 6.8e-09 4.4e-07 5.1e-10

10p14 rs1775553 chr10:9,012,362 LINC00709, LINC02676 2.0e-10 1.5e-07 1.2e-11

15q22.2 rs11071558 chr15:60,777,222 RORA 8.3e-11 8.1e-08 9.9e-12

Replicable asthma loci only identified by ReAD

1q32.1 rs7555556 chr1:203,121,848 ADORA1 5.5e-06 9.3e-04 6.9e-08

1q21.3 rs7521458 chr1:154,435,237 IL6R 1.1e-04 6.6e-04 2.9e-07

2p25.1 rs10174949 chr2:8,302,118 LINC00299 3.0e-06 5.7e-04 5.3e-08

3q28 rs2889896 chr3:188,384,928 LPP 1.0e-06 1.9e-04 1.5e-08

4p14 rs4833103 chr4:38,813,881 TLR1 1.5e-05 2.5e-03 2.1e-07

4q27 rs1904522 chr4:122,415,763 ADAD1 1.7e-05 2.5e-03 2.3e-07

6p22.2 rs766406 chr6:26,319,360 H3C9P, H4C8 2.8e-07 7.6e-05 1.3e-07

6p22.1 rs1117490 chr6:30,202,733 TRIM26 2.1e-08 8.6e-06 6.5e-10

8q21.13 rs10957979 chr8:80,377,552 RPL13AP18, RNU6-1213P 2.3e-08 8.6e-06 6.5e-10

11q12.2 rs174562 chr11:61,817,672 FADS2, FADS1 7.9e-06 1.4e-03 1.1e-7

12q13.3 rs3001425 chr12:57,115,786 STAT6 2.9e-07 1.1e-04 8.6e-09

12q24.31 rs625228 chr12:120,840,463 SPPL3 9.0e-06 5.8e-04 7.7e-08

17q21.33 rs17637472 chr17:49,384,071 ZNF652-AS1, PHB1 3.3e-09 3.3e-06 2.5e-10

The SNP with the strongest association within each locus is called lead SNP. The mapped gene denotes genes (or pseudogenes) overlapping or closest to the lead
SNP in the identified locus. The locations of lead SNPs are mapped to Genome Assembly GRCh38/hg38.
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a simple and practical strategy requiring at least one SNP-

level finding replicable. With the potential varying LD

structures fully accounted for by the proposed HMM, we

find this strategy intuitive and effective when applied to

genomic loci with proper resolutions (as illustrated by our

simulations and real data examples). Nevertheless, this lo-

cus-level criterion may be considered overly lenient. In

addition, the allele frequencies of associated SNPs can differ

drastically in different populations, making p values inap-

propriate metrics to assess the replicability of GWAS find-

ings across populations. We will continue to explore alter-

native locus-level replicability assessment criteria for

different populations in our future work.

In this work, we use repeated significance to assess repli-

cability.We note that applying such a replicability criterion

is debated in the scientific community.67–69While acknowl-

edging its drawbacks, especially its conservativeness, we

note the following context-specific factors. First, despite

continued efforts to include more informative statistics

summarizing GWAS findings, a large body of historical

GWAS findings are only reported in p values (see GWASCat-

alog52), which fundamentally limits applying alternative

replicability criteria. Second, because complicated

unknown confounders, e.g., population stratification and

unobserved batch effects in genotyping experiments, often

cause false positives in genetic association analysis, the ge-

netics community has consistently advocated conservative

replicability criteria to ensure the reliability of GWAS find-

ings.27,70 Third, we emphasize that our main statistical

contribution is to account for the correlation structure be-

tween genetic variants, and our work can be naturally

extended to applying other alternative replicability criteria.

On a related point, although we exclusively assume that

GWAS results are reported in the form of single-SNP testing

p values throughout this paper, the proposed statistical

methodology can be extended to other forms of summary

statistics. For example, probabilistic fine-mapping analysis

of genetic association signals has become increasingly pop-

ular, thanks to the availability of efficient variable selection

algorithms.71–73 The fine-mapping result is typically given

as a posterior inclusion probability (PIP) at the individual

SNP level. With the ability to construct a Bayesian credible

set for each underlying signal within a genomic locus, the

PIPs havemany advantages over single-SNP p values. Theo-

retically, our work can be straightforwardly extended to

this setting by noting the connection that 1 � PIP is

equivalent to the Lfdr in the Bayesian perspective. We

leave this extension to our future work.

Figure 6. The Manhattan plots of UC GWASs based on Pmax, Lfdr, and rLIS
The dashed horizontal lines denote the FDR cutoffs of 5310�8 produced by MaxP, STAREG, and ReAD, respectively.

Table 2. Main characteristics of the 7 loci associated with UC in the European-ancestry IIBDGC and UKBB GWASs identified by ReAD

Locus Lead SNP Location of lead SNP Mapped gene Pmax Lfdr rLIS

Replicable UC loci identified by all methods

6p21.32 rs6927022 chr6:32,644,620 HLA-DQA1 1.1e-20 2.8e-15 1.2e-19

Replicable UC loci identified by ReAD and STAREG but not by MaxP

21q22.2 rs2836882 chr21:39,094,644 RPL23AP12 4.5e-11 1.9e-07 8.1e-12

Replicable UC loci only identified by ReAD

1p36.13 rs4654903 chr1:19,874,497 RNF186, OTUD3 1.3e-08 3.6e-05 6.7e-09

1p31.3 rs2201841 chr1:67,228,519 C1orf141, IL23R 6.1e-08 1.8e-04 1.8e-08

1q23.3 rs1801274 chr1:161,509,955 FCGR2A 1.7e-08 3.6e-05 7.7e-09

1q32.1 rs3024505 chr1:206,766,559 Y RNAs, IL10 4.1e-08 8.9e-05 5.4e-07

3p21.31 rs3197999 chr3:49,684,099 MST1 1.2e-06 5.2e-03 3.4e-07

The SNP with the strongest association within each locus is called the lead SNP. The mapped gene denotes genes (or pseudogenes) overlapping or closest to the
lead SNP in the identified locus. The locations of lead SNPs are mapped to Genome Assembly GRCh38/hg38.
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Data and code availability

An R package ReAD implementing the proposed method is

available on CRAN (https://CRAN.R-project.org/package¼
ReAD).

Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2024.04.004.
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