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ARTICLE

A powerful approach to identify replicable
variants in genome-wide association studies

Yan Li,1.2 Haochen Lei,?> Xiaoquan Wen,* and Hongyuan Cao3*
Summary

Replicability is the cornerstone of modern scientific research. Reliable identifications of genotype-phenotype associations that are sig-
nificant in multiple genome-wide association studies (GWASs) provide stronger evidence for the findings. Current replicability analysis
relies on the independence assumption among single-nucleotide polymorphisms (SNPs) and ignores the linkage disequilibrium (LD)
structure. We show that such a strategy may produce either overly liberal or overly conservative results in practice. We develop an effi-
cient method, ReAD, to detect replicable SNPs associated with the phenotype from two GWASs accounting for the LD structure. The local
dependence structure of SNPs across two heterogeneous studies is captured by a four-state hidden Markov model (HMM) built on two
sequences of p values. By incorporating information from adjacent locations via the HMM, our approach provides more accurate SNP
significance rankings. ReAD is scalable, platform independent, and more powerful than existing replicability analysis methods with
effective false discovery rate control. Through analysis of datasets from two asthma GWASs and two ulcerative colitis GWASs, we

show that ReAD can identify replicable genetic loci that existing methods might otherwise miss.

Introduction

Genome-wide association studies (GWASs) allow for simulta-
neous study of millions of single-nucleotide polymorphisms
(SNPs). Numerous genetic risk variants associated with
various phenotypes and complex diseases have been re-
ported over the past couple of decades.'* These associations
provide insights into the architecture of disease susceptibil-
ity. Despite these progresses, many reported genotype-
phenotype associations fail to replicate in other studies.*
An analysis of past studies indicates that the cumulative
prevalence of irreplicable preclinical research (including
GWASs) exceeds 50%°°. Approximately 28 billion dollars
annually is spent on preclinical research that is not replicable
in the United States alone.” Irreplicable and/or inconsistent
between-study associations might be spurious findings
caused by confounding factors, such as population stratifica-
tion, misclassification of phenotypes, genotyping errors, or
technical biases, among others. Replicability is now
considered a sine qua non for establishing credible geno-
type-phenotype associations in the era of GWASs.”'? We
study conceptual replicability where consistent results are
obtained using different processes and populations that
target the same scientific question. For GWASs, replicability
analysis aims to detect genetic risk loci that are significantly
associated with the same phenotype across different
studies.''"'* By eliminating genetic associations that cannot
be generalized across studies, replicability analysis provides
stronger support for genuine scientific findings, avoids
wasted resources, and improves efficiency of drug develop-
ment. This helps the translation of bench discoveries to
bedsided therapies.

In GWASs, millions of SNPs are tested simultaneously,
requiring multiple testing adjustment. False discovery
rate (FDR), defined as the expectation of the proportion
of false discoveries over total discoveries, is a commonly
used metric for type I error control.'* A central character-
istic of GWAS data is the linkage disequilibrium (LD)
among SNPs with which alleles at nearby sites can co-occur
on the same haplotype more often than by chance
alone.">'° As a result, it is common to observe that pheno-
type-associated SNPs form clusters and exhibit high corre-
lations within clusters.'” An effective approach to account
for the LD structure among SNPs is through the hidden
Markov model (HMM).'*'? Existing GWAS litera-
ture'”"'??" using HMM for a single study is not applicable
to replicability analysis of multiple studies. Furthermore,
their approaches cannot be generalized to more than one
study due to the heterogeneity of LD across different
studies.”'*? Replicability analysis of GWASs explicitly ac-
counting for the LD structure remains understudied and
critically important.

To claim replicability, an ad hoc approach is to imple-
ment an FDR control method, such as the Benjamini and
Hochberg (BH) procedure,'* for each study and intersect
significant results from all studies as replicable findings.
This approach does not control the FDR and moreover
has low power as it does not borrow information from
different studies. The maximum of p values across studies
(Pmax) is a straightforward significance measure for replica-
bility.>* After summarizing data from multiple studies by
Prax, classic FDR control procedures such as BH are used
for replicability analysis. This procedure is overly conserva-
tive as it guards against the worst scenario and does not
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incorporate the composite null structure of replicability
analysis. For independent features from high-throughput
experiments, various methods were proposed for replica-
bility analysis. These methods are not robust to heteroge-
neity of different studies,”*** require tuning parameters,”®
impose parametric assumptions on the p values,'* or de-
mand access to full datasets, which can be prohibitive
due to privacy concerns or logistics.”” Wang and Zhu®®
investigated replicability analysis for dependent data but
imposed strong parametric assumptions.

We address the limitations of existing methods by devel-
oping an efficient method, ReAD (Replicability Analysis
accounting for Dependence) to detect replicable geno-
type-phenotype associations across two GWASs by
incorporating the LD structure. We use GWAS summary
statistics such as p values, treating multiple studies sym-
metrically. Our approach models the clustered signals
from two studies with a four-dimensional HMM, account-
ing for the heterogeneity of LD structures in different
studies. Conditional on the HMM, we model the two p
value sequences as a four-group mixture of SNPs.””*” The
replicability null hypothesis consists of three components:
zero effects in both studies, zero effect in one study, and
non-zero effect in another study and vice versa. ReAD cal-
culates the posterior probability of replicability null given
data. Compared to other replicability analysis methods,
ReAD is robust as it is non-parametric, jointly models the
signal and non-signal from different studies, and accounts
for the heterogeneity of different studies. ReAD provides
more efficient rankings of importance for replicable SNPs
by pooling information from two p value sequences via
the forward and backward probabilities.*'** ReAD applies
a step-up procedure to identify clusters of genotype-
phenotype associated signals, improving the power of
replicability analysis while effectively controlling the
FDR. ReAD is computationally scalable to whole-genome
studies with tens of millions of SNPs. Its implementation
combines the non-parametric expectation maximization
(EM) algorithm®? and the pool-adjacent-violator algorithm
(PAVA) in shape constraint inference,”*”° without any tun-
ing parameters. We conduct extensive simulation studies
to evaluate the performance of our approach across a
wide range of scenarios. By applying our procedure to sum-
mary statistics of two asthma GWASs, two ulcerative colitis
(UC) GWASs, and two type 2 diabetes GWASs, we show
that ReAD identifies more replicable genetic loci that
otherwise might be missed when using existing methods
that do not account for the LD structure. These identified
association signals pinpoint potential loci related to
metabolisms and immunity.

Material and methods

Method overview
ReAD takes p values from two independent GWASs with the same
phenotype as input. Suppose we have /] SNPs with corresponding

pvalues (pij,p2j),j = 1,...,]. We aim to identify replicable SNPs asso-
ciated with the phenotype in both studies. Our method can handle
SNPs in the whole genome where Jis in the order of millions. We use
0;; to represent the inferred association status of SNP j in study i. For
each SNP, we consider its association analysis results are replicable if
its corresponding 6 values are consistently 1. The correlations be-
tween 0s within a study are caused by LD among tested SNPs, and
we model their dependence structure using a Markov chain. This
is an effective way to model the correlations between observed p
values. Given the observed p values are from both studies, the over-
all model structure can be represented by an HMM.*°

We present our schematic in Figure 1. We use sje {0,1,2,3} to
denote the joint inferred association status for SNP j, where
Sj:()ifﬂljzggf:(), s,-:lifﬁl,-:Oandﬁz,» = l,SjZZif
6hj = 1 and 0 = 0, and s; = 3 if 6;; = 02 = 1. The composite
null for replicability analysis corresponds to s; € {0, 1,2}. To cap-
ture the local dependence of LD structure among SNPs, we impose
a four-state HMM on s = (s1,...,s;). The transition matrix is de-
noted as A = {ay : k,I = 0,1,2,3} where the transition probabil-
ity from s; = k to sj;1 = lis given by ay, and 213:0 ay = 1 forall
k. An efficient EM algorithm in combination with the forward-
backward procedure and PAVA is developed to estimate the un-
known parameters and functions. We use the posterior probability
of being replicability null, 1LIS;,j = 1,...,], as the test statistic and
obtain rLIS j for all SNPs. By applying a step-up procedure on rL/I\S,'7
j = 1,...,], we get powerful testing results while controlling the
FDR. More details of ReAD can be found below and in Note S1.

The HMM for replicability analysis

Suppose there are ] SNPs in two independent GWASs. We are inter-
ested in testing whether the jth SNP is associated with the phenotype
in both studies. Let 6;; denote the inferred association status of SNP j
in study i, where ; = 1indicates thejth SNP (j = 1,...,]) isinferred
associated with the phenotypeinstudyi(i = 1,2)and6; = O other-
wise. Weuse s; (j = 1,...,]) to denote the joint status.

0, (64,0) = (0,0),
G 1, (61,65) = (0,1),
/ 2, (04,04) = (1,0),
3, (01,’,(92,’ = (11 .

The replicability null hypotheses is

Hy:sje {0,1,2},j=1,...,]. (Equation 1)

Let p; = (p,»;)//-:1 denote p values of ] SNPs in study i. We use
mixture models for the conditional distributions of p values given
0 values. Specifically,

Pli)ﬁu ~ (1 = Oy)fo + Oyfr,
PZ/"02/ ~ (1 = 05)fo + 03f>,

where fy is the probability density function of p values when
01; = 02 = 0, and f; and f are the p value density functions un-
der non-null in study 1 and study 2, respectively. We assume f; fol-
lows the standard uniform distribution and impose the following
monotone likelihood ratio condition.*”~**

(Equation 2)

fi(x) / fo(x) and f>(x) /fo(x) are monotonically non — increasing in
(Equation 3)

This condition naturally arises as small p values indicate evi-
dence against the null. To capture the LD structure among SNPs,
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Figure 1. Schematic of ReAD
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0;; represents the inferred association status of SNPj (j = 1,...,J) instudyi (i = 1,2). p; represents the p value of SNPj (j = 1,...,]) in study
i (i=1, 2). For each SNP j, we consider its association analysis results are replicable if #;; = 6»; = 1. The dependence structure among

SNPs across two studies can be modeled with an HMM.

we assume that s = (s1,...,s7) follows a four-state stationary, irre-

ducible, and aperiodic HMM. The transition probabilities
ay = P(s1 = l|s; = k) (Equation 4)

for k,I = 0,1,2,3 with constraint Zfzoak, = 1. The stationary
distribution of each state s; is P(s; = k) = = for k = 0,1,2,3
and Y} _,m = 1. The paired p values for the jth SNP are assumed
to be conditionally independent satistying

f(Pliapzi‘elf’02i> = f(Plf"gli)f(PZi"?Zi)'

Based on the mixture model as in Equation 2, we have

w N = O

fo <P1;>fo (PZf) _—

fo<P11 fZ(PZi)v i =

fi (Pli)ﬁ) (Plf) .

i (o) (P2
Denoteby A = {ay : k,I = 0,1,2,3} the transition matrix, # =

(mo, m1,m2,m3) the vector of stationary distribution, and F =

(fO,fM @ £3) the probability density functions of the bivar-

iate observations (pi, pj). The convergence theorem of a Markov
chain (Theorem 5.5.1*°) implies that

f(s’) (P1i7p2i) =

Sj =

1j , S =

1 ,
7 E I(S,‘ :k)—>ﬂ'k
=

almost surely fork = 0,1,2,3 as]— . As fj is assumed to follow a
standard uniform distribution, we use A = (=, A4, fi,2) to denote
the collection of unknown parameters and functions in the
HMM. Our goal is to separate the replicable SNPs (s; = 3) from
the non-replicable SNPs (s; € {0,1,2}) based on the observed bivar-
iate p values.

FDR control for replicability analysis accounting for LD
The rLIS statistic for replicability analysis across two studies
Consider the ideal setup that an oracle knows A = (mr,A,f1,f2). We
define the replicability local index of significance (rLIS) as the pos-
terior probability of being null. Specifically,

ILIS,‘ L= P)L(Sf € {01 1,2}}P1,P2)‘

Given 2, the forward and backward probabilities are defined as
() = Pa((pre,pac)i_1,8) and  Bi(s;) = Pa((pre.pa)l_ja [5),
respectively. The forward-backward procedure*' can be used in
the calculation. Specifically, we initialize a1(s1) = 5, [V
(p11,p21) and By(s;) = 1. We can obtain () and g;(-) for
j = 1,...,] recursively by

3

Q1 (Si+1) = Z Qj (Sf)as,-smf(xm) <P1»i+1,P2,i+1>

5;=0
and
3 .
Bi(s) = > Bra(sia) ) (Pl.m :Pz.m)“s/xw
Sjii1=0

Hence, we have

2
IS, — Z;, —0(57)8;(s7) _
> —0(51)8;(s7)

The rejection rule can be written as

& = I(iLIS; < t),j = 1,....],

where I( -) is the indicator function.
We next derive the threshold  for a pre-specified FDR level g. To-
tal number of discoveries and the number of false discoveries are
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R(t) = YJ_, I(LIS; <t) and V(t) = ¥_,
2}), respectively. We have

I(ILIS/' <t, Sj € {O7 1,

J
E[V(t)] = Z{WQI(I‘LIS/' < t|5i = 0) +TF]I(I‘LIS,' < t‘Si = 1)

+mI(ILIS; < tls; = 2)}]

= [E{ZI (rLIS; rLIS}

Let rLIS) <rLIS;, - < 1LISg
Huy, ..., Hy be the correspondlng hypotheses. If k hypotheses
are re]ected, the number of false discoveries can be estimated by

k
k) = ZILIS(k)
i=1

and the FDR can be estimated by %E;(:l rLIS(;. We shall use the
following step-up procedure to control the FDR at level g.>

- 1&
letk = max{k X ;rLISg) < q};

be the order statistics and

then reject all Hj; forj = 1, k.

We provide an estimation of A in the next section.
Data-driven testing procedure
To estimate the unknown parameters and functions in A, we first
define two posterior probabilities, v;(s;) = Pa(sj|p1,p») and &(s;,
$j+1) = Pa(8},8j+1|P1,P2)- By the definition, v;(s;) = ngﬂ:o £(s;,
sj+1). They can be obtained from the forward and backward
probabilities

o(57)6;(s)
35 -0 (5)8;(s)

vi(s1) =
and

(8j) By (5i+1)as;s/>1 f(s’“) <P1.i+1 7Pz,i+1)
o0 Las—0 9 (5)) B4 (s701) s, fl) (Pml va.f+1)

Ei(sj841) =

The likelihood function of the complete data (p,, p,, s) is given by

J J
L(A;phPZas) = Ts, HaS/'flS/' Hf(c/) (plj-,pi)'
j=2 =1

We develop a non-parametric EM algorithm®® to estimate the
unknowns A = (m, A,f1,f2) under the monotone likelihood
ratio constraint (Equation 3). With an appropriate initialization
of the unknowns, A® = (7 4@ £ £ the EM algorithm
proceeds by iteratively implementing the followmg two steps.

E-step: Given current A} = (w0, A® £ £V} the forward and
backward probabilities a( )(5,) ,6( >(s,) and the posterior probabili-
ties 7,( )(s,) ;/( )(s,,s,ﬂ) are calculated The conditional expectation
of the log likelihood function can be written as

D(AM(O) = ZPAW (s|P1=P2)10gL(A§P17P275)
J
= Z{PM” (slp,.p>) {108 s, + Zlog as
s i
]
+ ZIOg f(‘/) (Plfap2i>:| }
=1

M-step: Update A"V by
(t+1) _ (t)
A = argﬂ%%§zD(n,A,ﬁ,ﬁ|A )
We can update each component alternatingly. By using the La-
grange multiplier, we can calculate 7)) and A“+D as

7D = 49(s),s€ {0,1,2,3}
and
128" (kD)

/—z 21:05;'71 »’)’

The two functions can be updated by

(t+1) _
Ay =

k.le {0,1}.

J

b — argrgl:lﬂ)ﬁ{ Z [7;”(2) + 7}”(3)]10g fi <p1,) } (Equation 5)

j=1

and

/
fieh — arg?nau)ﬁ{ Z [7,@(1) +7,§”(3)} log f; (pz,-> }, (Equation 6)
o€ =1

where / is a set of monotonic non-increasing density func-
tions.*”*? We solve Equations 5 and 6 independently using the
non-parametric maximum likelihood estimation implemented
with PAVA.**

The E-step and M-step are conducted iteratively until conver-
gence. Detailed derivations of the algonthrn are presented
in Note S1. With the estimate 2= = {7, A, f 1 f ,}, we can calculate

the test statistics rLIS; = P;(sie {0, 1, 2}|p1, p,). Let
LISy < -+ < rLIS(, be the order statistics of rLIS;, and denote
Hy, ‘..,H(, as the corresponding Hp;. The data-driven testing pro-

cedure works as follows.

~ D1l s —
Letk = max{z:i ZILIS(D Sq},

=1

and reject Hj; fori = 1, ...,E.

Data analysis details

We apply ReAD to analyze two pairs of published GWAS datasets
for identifying replicable associations, including two GWAS data-
sets for asthma and two GWAS datasets for UC. Informed consent
was obtained from participants for all studies.**** In the
following, the locations of SNPs are mapped to Genome Assembly
GRCh38/hg38.

Asthma GWASs

Asthma is a complex bronchial disease characterized by chronic
inflammation and narrowing of the airways, which is caused by
a combination of environmental and genetic factors. The preva-
lence of asthma varies across different populations and ethnicities.
We use publicly available GWAS summary statistics for asthma
from the Trans-National Asthma Genetic Consortium (TAGC)
(https://www.ebi.ac.uk/gwas/downloads/summary-statistics) and
UK Biobank (UKBB) (http://www.nealelab.is/uk-biobank) to
conduct replicability analysis. The TAGC consortium deposits
HapMap2-imputed, ancestry-specific, meta-analysis data from
ethnically diverse populations.”® The TAGC asthma GWAS data
with high-density genotyped and imputed SNP based on the Euro-
pean-ancestry comprises 8,843,303 genetic variants for 19,954
asthma cases and 107,715 controls. UKBB is a large-scale
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prospective cohort study with over half a million participants aged
40-69 years from the United Kingdom between 2006 and 2010.*°
The imputed asthma GWAS from UKBB contains summary statis-
tics for 8,856,162 genetic variants measured on 39,049 self-re-
ported asthma cases and 298,070 controls.

UC GWASs

Inflammatory bowel disease is a chronic, relapsing intestinal in-
flammatory disease. It has the highest age-standardized prevalence
rate in the US followed by the UK*® with increasing prevalence in
Asia and developing countries.*” UC is one of the two main forms
of inflammatory bowel disease. We conduct replicability analysis
of publicly available GWAS summary statistics for UC from the
International Inflammatory Bowel Disease Genetics Consortium
(IIBDGC) (https://www.ibdgenetics.org/) and the UKBB. The
IIBDGC GWAS analyses 8,857,076 SNPs from 6,968 UC cases
and 20,464 population controls of European descent.*® The
imputed UKBB GWAS data contain summary statistics of
8,856,162 SNPs genotyped on 1,795 self-reported UC cases and
335,324 controls from the United Kingdom.

Results

Simulation study

Simulation |

In simulation I, we evaluated the FDR and statistical power
of ReAD based on the rLIS statistic across two studies. Here,
power is defined as the average proportion of true discov-
eries among the total number of non-null hypotheses.
We compare the FDR and power of ReAD with several repli-
cability analysis methods developed under independence,
including the ad hoc BH method, the MaxP method based
on Prax, > and the STAREG method based on the local false
discovery rate (Lfdr).*” Details of these methods can be
found in Note S2. An extensive comparison with a replica-
bility analysis method developed under dependence,
repLIS,”® can be found in Note S3.

In each simulation, the hidden states of 10,000 SNPs
were generated from a four-state Markov chain. A detailed
description of the data-generating process is provided in
Note S3. In all simulations, we fix the initial distribution
of four states as a° = (0.9,0.025,0.025,0.05). The signals
from two studies are generated from normal distributions
with mean y; and variance a-iz, i = 1,2. We vary the transi-
tion matrix A = {ay:k,I=0,1,2,3} and u, while fix
w1 = 2, and o1 = g2 = 1, empirical FDR, and power are
calculated from 100 replications for each setting. The
results are summarized in Figure 2 (top: FDR; bottom: po-
wer). In Figure 2, each row corresponds to a different ago,
and each column corresponds to a different as;. In each
panel, we set u, to 1.5,2, or 3. At FDR level 0.05, we observe
that the ad hoc BH fails to control the FDR. MaxP is overly
conservative across all settings. STAREG has a slight FDR
inflation in some settings. By accounting for the local
dependence structure via the rLIS statistic, ReAD properly
controls the FDR and has substantial power gain compared
to competing methods. The powers of all methods increase
as u, increases.

The forward-backward procedure of HMM implies that a
small rLIS does not occur alone but in clusters. Therefore,
ReAD tends to identify the entire cluster of genotype-
phenotype associations. Such clusters are unlikely to occur
by chance and are more plausible biological signals. To
illustrate this, p values for two studies are generated
following the above strategy by setting app = 0.9,a33 =
0.7, and u, = 2. We compare three methods for testing
the composite replicability null hypotheses across two
studies: the MaxP method,?* the STAREG method,*’ and
the ReAD method. Figure 3 presents results of different
methods in one replication. It can be seen that MaxP is
extremely conservative, which only identifies one single
signal; STAREG rejects individual hypotheses with very
small p values in both studies, whereas ReAD can identify
clusters of replicable signals.

Simulation 1

By incorporating the LD structure in GWASs through HMM,
the rLIS statistic integrates information from adjacent loca-
tions. Therefore, the rankings of SNPs based on rLIS are
different from the rankings from MaxP (based on Ppax)
and STAREG (based on Lfdr). In simulation II, we perform
simulation studies to evaluate FDR and power in GWASs
with realistic LD patterns among SNPs. Data for two studies
are generated based on two SNP matrices from the Genetic
European Variation in Disease (GEUVADIS) project®’ at
https://www.internationalgenome.org/data-portal/data-
collection/geuvadis. The first genotype matrix is collected
from 78 Utah residents (CEPH) with Northern and Western
European ancestry (CEU), and the second genotype matrix
is measured from 89 Finnish in Finland (FIN). CEU and FIN
are both sub-populations of the European ancestry popula-
tion, therefore they may have similar LD structures. Based
on the CEU and FIN genotype matrices, we filter out SNPs
with the same genotypes in all samples and obtain geno-
types of 16,764 SNPs in both studies. We specify 4 causal
SNPs that are approximately independent of each other in
each study, 3 of which are replicable in both studies. In
each study, for the ith subject (i = 1,...,78 in the CEU
study and i = 1,...,89 in the FIN study), we generate
continuous phenotypes using the linear regression model

4
Vi=Bo+ Y Gibi+e,
=1

where  is the intercept, G, ..., Gj, are the genotypes of
the ith subject for the 4 causal SNPs, 31, ..., 85 are regression
coefficients, and ¢; is an error term generated from N(0O, 1),
a standard normal distribution. The intercept and the
regression coefficients of causal SNPs g,k = 0,1,...,4 are
set to 1.5. The p values of 16,764 SNPs in two studies are
obtained by a marginal regression of each SNP on the
phenotype.

To evaluate FDR and power, following the clumping pro-
cedure in GWAS,*" we define clustered signals as SNPs in
LD (r2 > 0.5) with pre-specified replicable causal SNPs. In
addition, SNPs in LD (r2 > 0.5) with clustered signals are
added to the signal sets. We evaluate the FDR control and
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Figure 2. FDR control and power comparison of different methods

FDR control and power comparison are plotted in the top and bottom panels, respectively. Simulations were conducted under the setting
of ] = 10,000 and u; = 2. The initial distribution of four states is #° = (0.9,0.025,0.025,0.05). The horizontal dashed line in the FDR
plot represents the target FDR level of 0.05, and the results were calculated over 100 replications. Each row and column correspond to
different transition probabilities, agp and as3, respectively. In each panel, we vary u, from 1.5 to 3.

power of the top K hits based on the maximum of p values mated FDR of top K hits is obtained by averaging the ordered
(Pmax), Lfdr, and 1LIS from 100 runs. We define empirical = Ppax,Lfdr, and rLIS from the smallest to the Kth value. We set
FDR as the average proportion of false discoveries selected K = 10,20,...,1000. Figure 4 summarizes the simulation re-
by the top K hits and power as the average proportion of sults. We observe that MaxP is conservative, ReAD controls
true discoveries over the number of true signals. The esti- the FDR properly, and STAREG has FDR inflation for larger
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K hits.

We conduct additional simulation studies with real ge-
notypes of samples from multiple population groups to
assess the sensitivity and specificity of our method with
respect to different LD structures. The detailed results are
summarized in Note S3.4 and Figures S3 and S4. We
observe that ReAD has robust performance with respect
to variations of LD patterns in closely related populations.
However, for distant populations, ReAD can suffer signifi-
cant power loss.

Data analysis

Replicability analysis of asthma GWASs

We first perform replicability analysis on the asthma GWAS
data obtained from TAGC and UKBB. We filter out SNPs
with minor allele frequency (MAF) smaller than 0.05, re-
sulting in 6,234,241 SNPs in the TAGC study and
6,242,120 SNPs in UKBB. After taking the intersection of
SNPs in the two studies, we obtain paired p values of
6,222,195 SNPs to conduct replicability analysis.

As the ad hoc BH does not control FDR, we apply MaxP
and STAREG on the paired p values for comparison. At
FDR level 5x 10-8, MaxP identifies 2,853 SNPs, which
are also identified by STAREG and ReAD. Compared to
MaxP, STAREG identifies 909 additional significant SNPs.
By capturing the local LD structure through HMM, ReAD
identifies 10,084 significant SNPs, 6,328 of which are
missed by MaxP or STAREG. This demonstrates the
improved power of ReAD. The NHGRI-EBI GWAS Cata-
log™® reported associations with asthma in published
GWASs at SNP level and locus (cytogenetic region) level,
which can be used as a validation criterion for the replica-
bility analysis.

Among the 6,328 SNPs uniquely identified by ReAD,
158 are recorded in GWAS Catalog,52 and 6,103
SNPs locate in known loci tagged by SNPs in GWAS Cat-

several of them can be mapped to
asthma-associated genes. For ins-
tance, SNP rs864537 (rLIS: 3.2e-07;
TAGC p value: 3.2e-05; UKBB p value:
2.0e-11) mapped to gene CD247 indi-
cates a significant locus associated
with asthma.’® Three SNPs, rs1270
0390 (rLIS: 2.7e-07; TAGC p value:
2.1e-05; UKBB p value: 2.6e-07),
1s12700391 (1LIS: 3.3e-07; TAGC p
value: 2.1e-05; UKBB p value: 2.8e-07), and rs7781534
(rLIS: 2.8e-07; TAGC p value: 2.8e-05; UKBB p value:
2.8e-07) are closest to gene IL6, which is a potential
contributor to asthma and other inflammatory pulmo-
nary diseases.”*>°

To assess the replicability of GWAS loci across two
studies, we state that a locus is replicated if at least one
SNP within it is identified significantly replicable and is re-
ported associated to asthma in the GWAS Catalog. If a lo-
cus contains multiple significant SNPs, the SNP with the
strongest association is considered as the lead SNP. For
instance, if we use STAREG with Lfdr as the test statistic,
the SNP with the smallest Lfdr is the lead SNP. In this crite-
rion, at FDR level 5 x 10~ 8, MaxP identifies 12 loci, which
are also identified by STAREG and ReAD. STAREG identifies
3 additional loci. ReAD identifies 28 genetic loci with repli-
cable asthma associations, including 13 loci could not be
detected by other methods. Figure 5 presents the Manhat-
tan plots of MaxP, STAREG, and ReAD. In Figure 5, the
vertical axis are —log;, transformations of test statistics
for replicability analysis, i.e., Pmax for MaxP, Lfdr for
STAREG, and rLIS for ReAD.

Table 1 displays main characteristics of the 28 cytoge-
netic regions identified by ReAD. The mapped gene de-
notes genes overlapping or closest to the lead SNP in
the identified locus. The 15 loci only identified by ReAD
harbor signals closely related to asthma. For example,
the lead SNP in locus 2p25.1, 1510174949, is in the intron
of gene LINC00299 and plays an important role in atopic
dermatitis, including asthma, hay fever, and eczema
in European and UK populations.’®>® The 8q21.13 region
is reported to be associated with asthma and hay fever in a
European-ancestry study.’” The lead SNP rs10957979 lies
between gene RPL13AP18 (chr8:80,265,528-80,266,155)
and gene RNU6-1213P (chr8:80,405,516-80,405,609),
and its association with asthma has been observed in
several European-ancestry studies.** "
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Figure 4.

Replicability analysis of UC GWASs

Next, we perform replicability analysis of UC GWAS data
from IIBDGC and UKBB. We filter out SNPs with MAF
smaller than 0.05, resulting in 6,243,744 SNPs in the
IIBDGC study and 6,242,120 SNPs in the UKBB. We use
the paired p values of 6,232,147 SNPs common to both
studies as input for replicability analysis.

We apply MaxP, STAREG, and ReAD on the paired p
values. At FDR level 5 x 10~ 8, MaxP identifies 1,239 signif-
icant SNPs in 1 locus. STAREG identifies 1, 542 significant
SNPs in 2 loci, one of which is also detected by MaxP.
ReAD identifies 3,307 significant SNPs in 7 genetic loci,
including 5 loci that are not detected by MaxP or
STAREG. Figure 6 presents the Manhattan plots of MaxP,
STAREG, and ReAD. ReAD uniquely identifies 1,766 addi-
tional UC-associated SNPs, among which 11 are recorded
in the GWAS Catalog.”” The remaining 1,755 SNPs locate
in known loci tagged by SNPs in the GWAS Catalog.

We assess the replicability of genetic loci identified by
different methods in the GWAS Catalog.>* Table 2 presents
the main characteristics of the 7 replicable genetic loci
identified by ReAD. UC associations of these loci in cohorts
of European descent have been reported in the literature.
For instance, the lead SNP of loci 6p21.32, 156927022, is
in the intron of gene HLA-DQA1, and the HLA complex
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is associated with multiple risk alleles for inflammatory
bowel disease, including UC.®'~%* The lead SNP harbored
in loci 1g23.3, 11801274, is only identified by ReAD and
has confirmed associations with UC in several European-
ancestry studies.*®®*°> We have additional validations in
DisGeNET, a versatile platform that contains a comprehen-
sive catalog of genes and variants associated with human
diseases.°® Many mapped genes of the lead SNP only
identified by ReAD have been reported to be associated
with UC, such as FCGR2A in locus 1q23.3, IL23R in
locus 1p31.3, IL10 in locus 1q32.1, and MST1 in locus
3p21.31.

Replicability analysis can be conducted on a wider range
of traits beyond asthma and UC. To illustrate, we perform
additional data analysis on GWAS data for type 2 diabetes.
Details of the data and analysis can be found in Note S4
and Figure S5.

Discussion
In this paper, we present ReAD, an efficient method ac-
counting for the LD structure to identify replicable associa-

tions from two GWAS datasets. We conducted extensive
simulation studies and analyzed GWAS datasets for 3 traits.
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Figure 5. The Manhattan plots of asthma GWASs based on Py, Lfdr, and rLIS
The dashed horizontal lines denote the FDR cutoffs of 5x10~8 produced by MaxP, STAREG, and ReAD, respectively.
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Table 1.

Main characteristics of the 28 loci associated with asthma in the European-ancestry TAGC and UKBB GWASs identified by ReAD

Locus Lead SNP Lead SNP location Mapped gene Ppax Lfdr rLIS
Replicable asthma loci identified by all methods

2ql2.1 1s3771180 chr2:102,337,157 IL18R1, ILIRL1 1.5e-20 2.5e-16 2.5e-20
5q22.1 1s10455025 chr5:111,069,301 BCLAF1P1, TSLP 2.0e-25 2.4e-21 1.9e-25
5q31.1 1520541 chr5:132,660,272 IL13, TH2LCRR 1.4e-14 9.1e-11 7.0e-15
6p21.32 1517843604 chr6:32,652,506 HLA-DQA1, HLA-DQB1 2.2e-33 5.0e-29 3.8e-33
6p21.33 152596464 chr6:31,445,184 LINCO01149 1.8e-13 8.0e-10 4.2e-13
6q15 152325291 chr6:90,276,967 BACH2 8.6e-13 1.3e-09 1.0e-13
9p24.1 15992969 chr9:6,209,697 GTF3AP1,IL33 4.3e-29 5.5e-25 4.8e-29
11q13.5 152155219 chr11:76,588,150 LINCO02757, EMSY 2.9e-15 6.3e-12 4.8e-16
15q22.33 1517228058 chr15:67,157,967 SMAD3 2.9e-15 6.3e-12 1.8e-15
16p13.13 1512935657 chrl6:11,125,184 CLECI6A 2.1e-12 1.3e-09 2.0e-13
17q12 152941522 chr17:39,754,115 GRB7, IKZF3 1.5e-38 3.6e-34 3.0e-38
17g21.1 152305479 chr17:39,905,964 GSDMB 1.0e-42 1.1e-37 8.0e-42
Replicable asthma loci identified by ReAD and STAREG but not by MaxP

5q31.3 157705042 chr5:142,112,854 NDFIP1 6.8e-09 4.4e-07 5.1e-10
10p14 151775553 chr10:9,012,362 LINC00709, LINC02676 2.0e-10 1.5e-07 1.2e-11
15q22.2 1s11071558 chr15:60,777,222 RORA 8.3e-11 8.1e-08 9.9e-12
Replicable asthma loci only identified by ReAD

1g32.1 157555556 chr1:203,121,848 ADORA1 5.5e-06 9.3e-04 6.9e-08
1921.3 157521458 chr1:154,435,237 IL6R 1.1e-04 6.6e-04 2.9e-07
2p25.1 1510174949 chr2:8,302,118 LINC00299 3.0e-06 5.7e-04 5.3e-08
3q28 152889896 chr3:188,384,928 LPP 1.0e-06 1.9e-04 1.5e-08
4pl14 1s4833103 chr4:38,813,881 TLR1 1.5e-05 2.5e-03 2.1e-07
4q27 1s1904522 chr4:122,415,763 ADADI1 1.7e-05 2.5e-03 2.3e-07
6p22.2 15766406 chr6:26,319,360 H3C9P, H4C8 2.8e-07 7.6e-05 1.3e-07
6p22.1 151117490 chr6:30,202,733 TRIM26 2.1e-08 8.6e-06 6.5e-10
8q21.13 1s10957979 chr8:80,377,552 RPL13AP18, RNU6-1213P 2.3e-08 8.6e-06 6.5e-10
11q12.2 15174562 chr11:61,817,672 FADS2, FADS1 7.9e-06 1.4e-03 1.1e-7
12q13.3 1s3001425 chr12:57,115,786 STAT6 2.9e-07 1.1e-04 8.6e-09
12q24.31 15625228 chr12:120,840,463 SPPL3 9.0e-06 5.8e-04 7.7e-08
17q21.33 1517637472 chr17:49,384,071 ZNF652-AS1, PHB1 3.3e-09 3.3e-06 2.5e-10

The SNP with the strongest association within each locus is called lead SNP. The mapped gene denotes genes (or pseudogenes) overlapping or closest to the lead
SNP in the identified locus. The locations of lead SNPs are mapped to Genome Assembly GRCh38/hg38.

Compared to conventional approaches that impose inde-
pendence assumption among SNPs, ReAD provides effective
FDR control. It has a substantial power gain in identifying
genuine and replicable genetic loci. It is computationally
scalable to hundreds of millions of SNPs and has no tuning
parameters.

In this paper, we mainly consider irreplicable GWAS sig-
nals due to non-biological factors, e.g., batch effects. Our
discussion focuses on assessing the replicability via
commonly available summary statistics based on single-
SNP association testing, which does not carry LD informa-

tion. We acknowledge that, in the applications of genetic
association analysis, varying LD patterns between studies
can lead to inconsistent significant findings at the SNP
level. Consequently, our assumption for simulations and
real data analysis is that LD patterns in multiple GWASs
are similar. This is illustrated in simulation II by using the
real genotypes of different populations from the
GEUVADIS project. In the presence of varying LD patterns,
a more relevant question should be the consistency of un-
derlying association signals within each interrogated locus
across original and replication studies. To this end, we apply
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Figure 6. The Manhattan plots of UC GWASs based on Pp,.x, Lfdr, and rLIS
The dashed horizontal lines denote the FDR cutoffs of 5x10~8 produced by MaxP, STAREG, and ReAD, respectively.

a simple and practical strategy requiring at least one SNP-
level finding replicable. With the potential varying LD
structures fully accounted for by the proposed HMM, we
find this strategy intuitive and effective when applied to
genomic loci with proper resolutions (as illustrated by our
simulations and real data examples). Nevertheless, this lo-
cus-level criterion may be considered overly lenient. In
addition, the allele frequencies of associated SNPs can differ
drastically in different populations, making p values inap-
propriate metrics to assess the replicability of GWAS find-
ings across populations. We will continue to explore alter-
native locus-level replicability assessment criteria for
different populations in our future work.

In this work, we use repeated significance to assess repli-
cability. We note that applying such a replicability criterion
is debated in the scientific community.®’~*° While acknowl-
edging its drawbacks, especially its conservativeness, we
note the following context-specific factors. First, despite
continued efforts to include more informative statistics
summarizing GWAS findings, a large body of historical
GWAS findings are only reported in p values (see GWAS Cat-
alog®?), which fundamentally limits applying alternative
replicability criteria. Second, because complicated
unknown confounders, e.g., population stratification and

unobserved batch effects in genotyping experiments, often
cause false positives in genetic association analysis, the ge-
netics community has consistently advocated conservative
replicability criteria to ensure the reliability of GWAS find-
ings.?””’% Third, we emphasize that our main statistical
contribution is to account for the correlation structure be-
tween genetic variants, and our work can be naturally
extended to applying other alternative replicability criteria.

On a related point, although we exclusively assume that
GWAS results are reported in the form of single-SNP testing
p values throughout this paper, the proposed statistical
methodology can be extended to other forms of summary
statistics. For example, probabilistic fine-mapping analysis
of genetic association signals has become increasingly pop-
ular, thanks to the availability of efficient variable selection
algorithms.”'~"? The fine-mapping result is typically given
as a posterior inclusion probability (PIP) at the individual
SNP level. With the ability to construct a Bayesian credible
set for each underlying signal within a genomic locus, the
PIPs have many advantages over single-SNP p values. Theo-
retically, our work can be straightforwardly extended to
this setting by noting the connection that 1 — PIP is
equivalent to the Lfdr in the Bayesian perspective. We
leave this extension to our future work.

Table 2. Main characteristics of the 7 loci associated with UC in the European-ancestry IIBDGC and UKBB GWASs identified by ReAD
Locus Lead SNP Location of lead SNP Mapped gene Prax Lfdr rLIS
Replicable UC loci identified by all methods

6p21.32 156927022 chr6:32,644,620 HLA-DQA1 1.1e-20 2.8e-15 1.2e-19
Replicable UC loci identified by ReAD and STAREG but not by MaxP

21q22.2 152836882 chr21:39,094,644 RPL23AP12 4.5e-11 1.9e-07 8.1e-12
Replicable UC loci only identified by ReAD

1p36.13 154654903 chrl:19,874,497 RNF186, OTUD3 1.3e-08 3.6e-05 6.7e-09
1p31.3 152201841 chrl:67,228,519 Clorfl41, IL23R 6.1e-08 1.8e-04 1.8e-08
1923.3 151801274 chr1:161,509,955 FCGR2A 1.7e-08 3.6e-05 7.7e-09
1g32.1 13024505 chr1:206,766,559 Y RNAs, IL10 4.1e-08 8.9e-05 5.4e-07
3p21.31 13197999 chr3:49,684,099 MST1 1.2e-06 5.2e-03 3.4e-07

The SNP with the strongest association within each locus is called the lead SNP. The mapped gene denotes genes (or pseudogenes) overlapping or closest to the
lead SNP in the identified locus. The locations of lead SNPs are mapped to Genome Assembly GRCh38/hg38.
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Data and code availability

An R package ReAD implementing the proposed method is
available on CRAN (https://CRAN.R-project.org/package=
ReAD).

Supplemental information

Supplemental information can be found online at https://doi.org/
10.1016/j.ajhg.2024.04.004.
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