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Motivated by the possibility of noise to cure equations of finite-time blowup, the recent work [90] by
the second and third named authors showed that with quantifiable high probability, random diffusion
restores global existence for a large class of active scalar equations in arbitrary dimensionwith possibly
singular velocity fields. This class includes Hamiltonian flows, such as the SQG equation and its
generalizations, and gradient flows, such as the Patlak–Keller–Segel equation. A question left open
is the asymptotic behavior of the solutions, in particular, whether they converge to a steady state. We
answer this question by showing that the solutions from [90] in the periodic setting converge in Gevrey
norm exponentially fast to the uniform distribution as time t → ∞.

1 Introduction

Taking inspiration from [22, 62], the recent work [90] by the second and third named authors showed
for a large class of scalar flows that the addition of a random diffusion to the dynamics leads to
global classical solutions with high probability. Such an effect is significant, as without noise, the class
considered includes equations, such as aggregation equations, for which finite-time blowup holds for
classical solutions, as well equations such as the inviscid SQG equation, for which global existence
of classical solutions is unknown. We refer to the introduction of [90] for a detailed discussion of the
physical relevance and mathematical history of the class of equations considered.

A question left open in the cited work is the asymptotic behavior of solutions as t → ∞. The purpose
of this note is to answer this question by showing that with high probability, solutions converge to the
uniformdistributionwithmass equal to that of the initial data.Onemay interpret this as “equilibriation”
of the system. As the uniform distribution is a stationary solution, in particular, this implies that it is
the unique equilibrium. The present work together with the previous works [22, 62, 90], demonstrate a
fairly complete global theory for the effect of random damping/diffusion.

1.1 The model
The stochastic partial differential equation (SPDE) we consider is

§

¨

©

∂tθ + div (θM∇g ∗ θ) = ν|∇|sθẆ
θ |t=0 = θ0

(t, x) ∈ R+ × T
d. (1.1)
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Above,M is a d×d constant matrix with real entries and g ∈ S ′(Td) is a tempered distribution, such that
there is a γ > 0 so that the Fourier transform ĝ(k) satisfies the bound

∀k ∈ Z
d, |ĝ(k)| � |k|−γ . (1.2)

The random diffusion corresponds to the term in the right-hand side of (1.1), where ν > 0, |∇|s is the
fractional Laplacian of order s (i.e., the Fourier multiplier with symbol |k|s), andW is a one-dimensional
standard Brownian motion. The randomness stems from the fact that the diffusivity coefficient ν is
modulated by thewhite noise Ẇ. The addition of such a termwas first proposed by Buckmaster et al. [22]
to obtain global existence in the case of M,g corresponding to the inviscid SQG equation, following an
earlier random damping term proposed by Glatt-Holtz and Vicol [62] in the case ofM,g corresponding to
the d = 2 incompressible Euler vorticity equation. In [90], an inhomogeneous diffusion ν(1+|∇|s)θẆwas
instead used because the problemwas set on R

d, which entails issues at low frequencies (see Section 1.3
for further elaboration).

The mathematical interpretation of the SPDE (1.1) is based on a pathwise change of unknown.
Supposing we have a solution θ to (1.1) and formally setting μt := �tθ t, where for each realization of the
Brownian motion W, �t := e−νWt |∇|s is the Fourier multiplier with symbol e−νWt |k|s , Itô’s lemma implies

∂tμ = − div �(�−1μM∇g ∗ �−1μ) − ν2

2
|∇|2sμ. (1.3)

See [22, Section 2] or [90, Equation (1.7)] for details of the computation and [90, Remark 1.1] for an
explanation of the choice of Itô noise, as opposed to Stratonovich noise. Equation (1.3) is a random
PDE that may be interpreted pathwise: for a fixed realization of W, which almost surely is a locally
continuous path on [0,∞), one studies the Cauchy problem for (1.3).

1.2 Main results
To state our results, we first fix some notions. Here and throughout this paper, we assume that the
potential g satisfies the condition (1.2). We assume that we have a standard real Brownian motion
{Wt}t≥0 defined on a filtered probability space (�,F , {F t}t≥0,P) satisfying all the usual assumptions. For
³,´, ν > 0, we define the event

�³,´,ν := {ω ∈ � : ³ + ´t − νWt(ω) ≥ 0 ∀t ∈ [0,∞)} ⊂ �. (1.4)

It is known that P(�³,´,ν) = 1−e− 2³´

ν2 [89, Proposition 6.8.1]. The definition of the Fourier–Lebesgue space
Ŵκ,r and norm ‖ · ‖Ŵκ,r used below may be found in Section 1.5.

Theorem 1.1. Let d ≥ 1, γ > 0, max( 1
2 ,

2−γ

2 ) < s ≤ 1. Suppose that g satisfies (1.2) for γ . Given
³,´, ν > 0, set φt := ³ + ´t and

ζ := inf
k∈Zd :k 
=0

(

ν2

2
− ´|k|−s − �

(

ĝ(k)|k|−2s(k · Mk)
)

)

. (1.5)

Assume that ζ > 0.
If s is sufficiently large depending on γ , then there exists an r0 ≥ 1 depending on d, γ , s, such that

the following holds. For any 1 ≤ r ≤ r0 and any σ > 0 sufficiently large depending on d, γ , r, s,
there is a constant C > 0 depending only on d, γ , r, s, σ , such that for initial data μ0 satisfying

1
(2π)d

∫

Td μ0dx = 1 and

∥

∥

∥
e(³+ε)|∇|sμ0 − 1

∥

∥

∥

Ŵσs,r
<

ζ

C|M| , (1.6)

for ε > 0, and any path in �³,´,ν , there exists a unique global solution μ ∈ C0([0,∞); Ŵσs,r) to
equation (1.3) with initial datum μ0. Moreover,

∀t ≥ 0,
∥

∥

∥
e(φt+ε)|∇|sμt − 1

∥

∥

∥

Ŵσs,r
≤ e− ζ t

2

∥

∥

∥
e(³+ε)|∇|sμ0 − 1

∥

∥

∥

Ŵσs,r
. (1.7)
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Remark 1.2. To make the statement of Theorem 1.1 reader-friendly, we have opted not to include
the explicit relations between parameters, such as d, γ , s, r0, σ . These relations are explicitly
worked out in Section 2 and 3. Throughout the paper, the reader should keep in mind that the
most favorable choice is (s, r) = (1, 1).

Remark 1.3. The condition s >
2−γ

2 ensures that we can make ζ > 0 by fixing ´,g,M and then
taking ν sufficiently large.

Remark 1.4. By rescaling time and using conservation of mass (see Remark 2.3 below), we may
always reduce to the case 1

(2π)d

∫

Td μ0dx = 1 up to a change of ν. More precisely, suppose that μ

is a solution to (1.3). Letting m = 1
(2π)d

∫

Td μ0dx, set μt
m := 1

mμt/m. Then using the chain rule,

∂tμ
t
m = − 1

m2
�

t
m div

(

(

�
t
m

)−1
μt/m

M∇g ∗
(

�
t
m

)−1
μt/m

)

− ν2

2m2
|∇|2sμt/m

= −�t
m div

(

(

�t
m

)−1
μt
m∇g ∗

(

�t
m

)−1
μt
m

)

− ν2
m

2
|∇|2sμt

m, (1.8)

where νm := ν/
√
m, Wt

m :=
√
mWt/m, and �t

m := e−νmWt
m |∇|s . Note that Wm is again a standard

Brownian motion (e.g., see [71, Lemma 9.4]).

As advertised at the beginning of the introduction, our main result shows that with quantifiable high
probability, solutions of the random PDE (1.3) with Gevrey initial data are global and as t → ∞, converge
exponentially fast in Gevrey norm to the uniform distribution with the same mass as μt. The essential
point and importance of our work is that our result is agnostic to M (no gradient flow or repulsive-
type assumptions) and to g, subject to the very general condition (1.2). This generality means our result
covers equations for which global existence, let alone asymptotic behavior, is unknown or for which
finite-time blow-up happens in the deterministic case.

The long-time behavior of equation (1.1) with ν = 0 is highly dependent on the nature of M and
the singularity of g. In general, little is known in the Hamiltonian case where M is antisymmetric.
For instance, if d = 2, M is rotation by π

2 , and ĝ(k) = |k|−2, the equation becomes the incompressible
Euler vorticity equation (see [81, Section 1.2], [80, Chapter 2]). Global well-posedness of classical/weak
solutions [67, 94, 95] is known, but the asymptotic behavior is only partially understood (e.g., see [8, 46,
47, 68, 69, 73, 83, 92] and references therein). For the same choice of d,M, if ĝ(k) = |k|−γ , for γ ∈ (0, 2),
then equation (1.1) becomes the inviscid generalized SQG equation [33, 39, 65, 88]. Global existence
of smooth solutions to the gSQG equation is a major open problem [23, 31, 32, 41, 42, 59, 60, 64]. It is
only known if one adds suitably deterministic strong diffusion (e.g., see [26, 37, 40, 72]). In the gradient
case where M = ∓I, global existence versus finite-time blow-up depends on the choice of sign. We
discuss only the model interaction ĝ(k) = |k|−γ , which is sometimes called a fractional porous medium
equation. Local well-posedness of classical solutions is known [35]. But in the attractive case I, suitably
strong solutions blow up in finite time [9]. In the repulsive case −I, global existence, uniqueness, and
asymptotic behavior of nonnegative classical and L∞ weak solutions are known when γ = 2 [3, 9, 77,
91] (see also [2, 79, 82]). The easier case γ > 2 follows by the same arguments [30, Section 4] (see also
[10]). For 0 < γ < 2, global existence, regularity, and asymptotic behavior of certain nonnegative weak
solutions are known [11, 24, 25, 27–29, 78]; but per our knowledge, these weak solutions are only known
to be unique if d = 1 [12]. It is an open problem whether classical solutions are global if 0 < γ < 2. In
the interests of completeness, we also mention there is a large body of work on the long-time behavior
of the gradient case for regular potentials g satisfying convexity assumptions (on R

d). For example, see
[93], to which the title of our paper pays homage (Many of the references discussed in this paragraph
are set on R

d; but in general, these results have analogues on T
d.).

There is an extensive literature on the effects of noise (e.g., “regularization by noise”), a sample of
which is contained in the references [6, 7, 22, 36, 43–45, 50–54, 61, 62, 86]. But to our knowledge, these
previousworks have not investigated the equilibriating properties of stochastic perturbations.Related in
spirit to our work, we mention some works [21, 38, 48, 55, 57, 63, 84] on the ergodicity of fluid equations
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subject to stochastic forcing. But we emphasize these results add noise to a diffusive deterministic
model, for which a result comparable to ours is already known (e.g., see [58] for 2D Navier–Stokes), and
are instead about the balance between the injection of energy through noise and the dissipation of
energy through viscosity.

Remark 1.5. As noted by one of the reviewers, our result would also hold if ν < 0. Indeed, since
W̃ := −W is also a Brownian motion, one may write νW = |ν|W̃, for ν < 0, which has the same
form as the noise for the ν > 0 case. Thus, the mechanism of random diffusion is agnostic to
both the sign of the nonlinearity and the sign of the noise.

1.3 Comments on the proof
The proof of Theorem 1.1 builds on the previous work [90]. The key point there to obtaining global
solutions is amonotonicity formula for the Gevrey norm, asserting that it is strictly decreasing, provided
the initial data and parameters are appropriately chosen. Showing this monotonicity requires carefully
estimating the size of nonlinearity and showing it does not overwhelm the dissipative effect of the
diffusion. In the present work, we go a step further by considering the evolution equation satisfied by
the unknown �t := μt − 1. We show a dissipation inequality for the Gevrey norm of �t, which, under
suitable conditions on the initial data, allows us to deduce the exponential-in-time decay of the Gevrey
norm of �t through a delicate continuity argument and Grönwall’s lemma.

One might ask why we work on the torus for the equation (1.1), as opposed to on R
d for the equation

∂tθ + ÷(θM∇g ∗ θ) = ν(1 + |∇|s)θẆt (1.9)

originally considered in [90]. The periodic setting is technically simpler since the spectrum is discrete
and one does not have to worry about low-frequency issues, in particular, when γ > 1. This allows to
replace the inhomogeneous multiplier (1 + |∇|s), which kills off all Fourier modes, by |∇|s, which kills
off only nonzero Fourier modes. We expect that a similar analysis can be performed for (1.9) on R

d

mutatis mutandis, where now with high probability, μt := e−νWt(1+|∇|s)θ t should converge to zero (vacuum)
in Gevrey norm as t → ∞.

Finally, let us mention that our method is quite robust and would also work, for example, for the
periodic 3D incompressible Euler equation modified by random diffusion (alternatively, the 3D Navier–
Stokes with white noise modulated hypoviscosity):

∂tu + u · ∇u = −∇p + ν|∇|suẆ. (1.10)

This becomes clearer from rewriting (1.10) in Leray projector form. One can show that with high
probability, the transformed unknown vt := �tut converges in Gevrey norm exponentially fast as t → ∞
to the vector

∫

T3 v0dx. To minimize the length of the paper, we leave such extensions to the interested
reader. It would be interesting to treat equation (1.10) for values of s ≥ 1, in particular including
genuine viscosity and hyperviscosity. But as discussed in [90],we crucially use the elementary inequality
(|a|+ |b|)s −|a|s −|b|s ≤ 0, which requires s ≤ 1, in both the local well-posedness and monotonicity steps.

1.4 Organization of paper
We briefly comment on the organization of the remaining body of the paper. Section 2 introduces the
scale of Gevrey function spaces, some elementary embeddings for these spaces, and then uses these
spaces to show the local well-posedness for equation (1.3), with the main result being Proposition 2.2.
Section 3 then shows the global existence and exponential decay to equilibrium, completing the proof
of Theorem 1.1. This is spread over two preliminary results: Proposition 3.1 and Lemma 3.4.

1.5 Notation
Let us conclude the introduction by reviewing the essential notation of the paper, following the
conventions of [90].

Given nonnegative quantities A and B, we write A � B if there exists a constant C > 0, independent
of A and B, such that A ≤ CB. If A � B and B � A, we write A ∼ B. To emphasize the dependence of the
constant C on some parameter p, we sometimes write A �p B or A ∼p B.
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The Fourier and inverse transform of a function f : Td → C
m are given by

f̂ (k) = F(f )(k) :=
∫

Td
f (x)e−ix·kdx,

f̌ (x) = F
−1(f )(x) := 1

(2π)d

∑

k∈Zd

f (k)eik·x.
(1.11)

The homogeneous Bessel potential space Ẇs,p is defined by

‖f‖Ẇs,p := ‖|∇|sf‖Lp , s ∈ R, p ∈ (1,∞), (1.12)

and the Fourier–Lebesgue space Ŵs,p is defined by

‖f‖Ŵs,p := ‖| · |s f̂‖�p , s ∈ R, p ∈ [1,∞]. (1.13)

C0([0,T);X) denotes the space of functions taking values in the Banach space X, which are continuous
and bounded.

2 Local Well-Posedness

We show local well-posedness for the equation (1.3), themain result of this section being Proposition 2.2
stated below. This proposition—and its proof via a contraction mapping argument—is a modification
of [90, Proposition 3.1]. Although it was noted in [90, Remark 1.7] that the results from that paper have
corresponding analogues on the torus, we present the proof anyway because it is not written anywhere
else and,more importantly, the two-tier function space (see (3.7) in the cited work) used on R

d becomes
unnecessary on the torus because the spectrum is discrete. We also improve on [90, Proposition 3.1]
(and the earlier [22, Proposition 3.1]) by removing the smallness condition ´ < ν2

2 , which explains why
the statement may not look comparable.

Set A := |∇|2s and define the bilinear operator

B(f , g) := ÷�(�−1f (M∇g ∗ �−1g)). (2.1)

Strictly speaking, B is time-dependent through �. When necessary, we make explicit this time depen-
dence by writing Bt(f , g). Assume 1

(2π)d

∫

Td μ0dx = 1. In contrast to [90], it will be more convenient to work
with the unknown �t := μt − 1, which satisfies the equation

∂t�
t = − ÷ �(�−1�t

M∇g ∗ �−1�t) − ÷(M∇g ∗ �t) − ν2

2
|∇|2s�t

= −Bt(�t, �t) − L�t − ν2

2
A�t, (2.2)

where L := ÷
(

M∇g ∗ (·)
)

. Note that L = 0 if M is antisymmetric. If we have a solution �t to (2.2), then
μt := 1 + �t is a solution to (1.3). So, there is no loss in working with the unknown �t. We rewrite the
Cauchy problem for (2.2) in the mild form,

�t = e−t
(

ν2A
2 +L

)

�0 −
∫ t

0
e−(t−τ)

(

ν2A
2 +L

)

Bτ (�τ , �τ )dτ . (2.3)

Remark 2.1. Observe that the real part of the symbol of ν2A
2 + L is

ν2|k|2s
2

+ �(ĝ(k))
(

Mk · k
)

≥ ν2|k|2s
2

− C|M||k|2−γ , (2.4)

where we have used assumption (1.2) to obtain the lower bound. If 2s ≥ 2 − γ , then for all

|k| ≥
(

2C|M|
ν2

)
1

2s−2+γ

, the symbol of ν2A
2 + L has nonnegative real part.
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To perform a contraction mapping argument based on (2.3), we use a scale of Gevrey function spaces
from [90] (see [22, 56] for earlier L2 special cases). We also mention that Gevrey norm techniques have
figured prominently in the analysis of fluid-type and related equations, as indicated by the following
sample of works [1, 4, 5, 13–20, 34, 49, 66, 70, 74–76, 85, 87, 96].

For a ≥ 0, κ ∈ R, define

‖f‖Gκ,r
a

:=
∥

∥

∥
eaA

1/2
f
∥

∥

∥

Ŵκs,r
. (2.5)

For 0 < T < ∞ and a continuous function φ : [0,T] → [0,∞), we define

‖f‖C0
TG

κ,r
φ

:= sup
0≤t≤T

‖f t‖Gκ,r
φt
. (2.6)

We write C0
∞ when sup0≤t≤T is replaced by sup0≤t<∞. Define the Banach space

C0
TG

κ,r
φ := {f ∈ C([0,T]; Ŵκs,r(Td)) : ‖f‖C0

TG
κ,r
φ

< ∞}. (2.7)

We also allow for T = ∞, replacing [0,T] in the preceding line with [0,∞).

Proposition 2.2. Let d ≥ 1, γ > 0,max( 1
2 ,

2−γ

2 ) < s ≤ 1. Given ³,´, ν > 0, supposeW is a realization
from the set �³,´,ν and set φt := ³ + ´t.

There exists r0 ≥ 1 depending on d, γ , s, such that the following holds. For any 1 ≤ r ≤ r0, there
exists σ0 ∈ (0, 2s−1

s ) depending on d, γ , r, s, such that for any σ ∈ (σ0, 2s−1
s ) with 1− γ ≤ σs, there

exists a time T > 0 such that for ‖�0‖Gσ ,r
³

≤ R, there exists a unique solution � ∈ C0
TG

σ ,r
φ to the

Cauchy problem for (2.2). Moreover,

‖�‖C0
TG

σ ,r
³

≤ 2‖�0‖Gσ ,r
³
. (2.8)

Additionally, if ‖�0
j ‖Gσ ,r

³
≤ R, for j ∈ {1, 2}, then

‖�1 − �2‖C0
TG

σ ,r
³

≤ 2‖�0
1 − �0

2‖Gσ ,r
³
. (2.9)

Remark 2.3. The solutions given by Proposition 2.2 conservemass, hence solutions to the original
equation (1.3) also conserve mass. One readily sees this by integrating both sides of (2.3) over

T
d and by using the fundamental theorem of calculus together with F

(

e−t
(

ν2A
2 +mL

)
)

(0) = 1.

Thus,
∫

Td
�t(x)dx =

∫

Td
�0(x)dx = 0. (2.10)

2.1 Gevrey and Sobolev embeddings
Before proceeding to the proof of Proposition 2.2, we record some elementary embeddings satisfied by
the spaces Gκ,r

a . For proofs of the following lemmas, see [90, Section 2.2].

Lemma 2.4. If a′ ≥ a ≥ 0 and κ ′ ≥ κ, then

‖f‖Gκ,r
a

≤ ea−a′ ‖f‖
Gκ′ ,r
a′
. (2.11)

If κ ′ ≥ κ and a′ > a ≥ 0, then

‖f‖
Gκ′ ,r
a

≤ �κ ′ − κ�!
(a′ − a)�κ ′−κ� ‖f‖Gκ,r

a′
, (2.12)

where �·� denotes the usual ceiling function.
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Lemma 2.5. If 1 ≤ p < r ≤ ∞, then

‖f‖Ŵs,p �d,p,r ‖f‖
Ŵ(s+ d(r−p)

rp )+,r
, (2.13)

where the notation (·)+ means (·) + ε, for any ε > 0, with the implicit constant then depending
on ε and possibly blowing up as ε → 0+. If 2 ≤ p ≤ ∞, then if f̂ (0) = 0,

‖f‖Ŵs,p �d,p ‖f‖
Ẇ

s, p
p−1

. (2.14)

2.2 Contraction mapping argument
Throughout this subsection, assume that we have fixed a realization ofW from �³,´,ν . Fix �0 and define
the map

�t �→ (T �)t := e−t
(

ν2A
2 +L

)

�0 −
∫ t

0
e−(t−τ)

(

ν2A
2 +L

)

Bτ (�τ , �τ )dτ . (2.15)

We check that T is well-defined on C0
TG

σ ,r
φ for φt = ³ + ´t, with ³,´, σ , r > 0 satisfying the conditions in

the statement of Proposition 2.2.
First,we control the linear term in (2.3).We introduce some notation that will be used inwhat follows.

Define the parameters

|k0| := sup

{

|k| : k ∈ Z
d, ´|k|s + �

(

ĝ(k)Mk · k
)

− ν2|k|2s
2

≥ 0
}

, (2.16)

λ := sup
k∈Zd

(

´|k|s + �
(

ĝ(k)Mk · k
)

− ν2|k|2s
2

)

. (2.17)

Since 2s > max(2 − γ , s) by assumption, |k0| is finite and

λ = sup
k:|k|≤|k0 |

(

´|k|s + �
(

ĝ(k)Mk · k
)

− ν2|k|2s
2

)

. (2.18)

Lemma 2.6. For any 1 ≤ r ≤ ∞,max(
2−γ

2 , 0) < s ≤ 1, σ ∈ R, and ³,´, ν > 0, it holds that

∀t ≥ 0, ‖e−t
(

ν2A
2 +L

)

f‖Gσ ,r
φt

≤ eλt‖f‖Gσ ,r
³
. (2.19)

Proof. Unpacking the definition of the Gσ ,r
φt norm, it holds that

‖e−t
(

ν2A
2 +L

)

f‖r
Gσ ,r

φt
=

∥

∥

∥

∥

eφtA1/2
e−t

(

ν2A
2 +L

)

f

∥

∥

∥

∥

r

Ŵσs,r

=
∑

k

|k|rsσ
∣

∣

∣

∣

eφt |k|s− ν2 |k|2s
2 +(Mk·k)ĝ(k) f̂ (k)

∣

∣

∣

∣

r

=

⎡

£

∑

|k|≤|k0 |
+

∑

|k|>|k0 |

¤

⎦ |k|rsσ er³|k|s
∣

∣

∣

∣

et
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

f̂ (k)

∣

∣

∣

∣

r

≤
∑

|k|≤|k0 |
|k|rsσ er³|k|sertλ|f̂ (k)|r +

∑

|k|>|k0 |
|k|rsσ er³|k|s |f̂ (k)|r

≤ ertλ‖e³A1/2
f‖r

Ŵσs,r , (2.20)

where the final line follows from λ ≥ 0. �

Next, we control the bilinear term in (2.3).
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Lemma 2.7. Let d ≥ 1, γ > 0, max(
2−γ

2 , 1
2 ) < s ≤ 1. There exists an r0 ∈ [1,∞], depending on d, s,

such that the following holds. For any 1 ≤ r ≤ r0, there exists σ0 ∈ (0, 2s−1
s ) depending on d, s, r,

such that for any σ ∈ (σ0, 2s−1
s ) with 1 − γ ≤ σs, there exists a constant C depending only on

d, r, q, σ , s,´, ν, such that for any T > 0,

∥

∥

∥

∥

∫ t

0
e−

(

ν2A
2 +L

)

Bτ (�τ
1 , �

τ
2)dτ

∥

∥

∥

∥

C0
TG

σ ,r
φ

≤ C|M|‖�1‖C0
TG

σ ,r
φ

‖�2‖C0
TG

σ ,r
φ

(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

. (2.21)

Proof of Lemma 2.7. We make the change of unknown �t
j := e−φtA1/2 |∇|−σsρt

j , so that

‖ρt
j ‖L̂r = ‖�t

j‖Gσ ,r
φt
. (2.22)

By Minkowski’s inequality, we see that

∥

∥

∥

∥

eφtA1/2
∫ t

0
e−(t−τ)

(

ν2A
2 +L

)

Bτ (�τ
1 , �

τ
2)dτ

∥

∥

∥

∥

Ŵσs,r

≤
∫ t

0

∥

∥

∥

∥

eφtA1/2−(t−τ)
(

ν2A
2 +L

)

Bτ (�τ
1 , �

τ
2)

∥

∥

∥

∥

Ŵσs,r

dτ , (2.23)

and by definition of the Ŵσs,r norm, the preceding right-hand side equals

∫ t

0

(

∑

k

er(t−τ)
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

|k|rσs

∣

∣

∣

∣

∣

∣

∑

j

|k · Mj||ĝ(j)|
|k − j|σs|j|σs e

(φτ −νWτ )[|k|s−|k−j|s−|j|s]ρ̂τ
1 (k − j)ρ̂τ

2 (j)

∣

∣

∣

∣

∣

∣

r
)1/r

dτ . (2.24)

We adopt the notational convention ρ̂τ
1 (k−j)

|k−j|σs := 0 when k = j (similarly, for ρ̂τ
2 ). Using φt −φτ = ´(t− τ), the

preceding expression is controlled by

∫ t

0

(

∑

k

er(t−τ)
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

|k|rσs

∣

∣

∣

∣

∣

∣

∑

j

|k · Mj||ĝ(j)|
|k − j|σs|j|σs e

(φτ −νWτ )[|k|s−|k−j|s−|j|s]ρ̂τ
1 (k − j)ρ̂τ

2 (j)

∣

∣

∣

∣

∣

∣

r
)1/r

dτ . (2.25)

Since 0 < s ≤ 1, we have |k|s − |k − j|s − |j|s ≤ 0 for all k, j ∈ Z
d. Since φτ − νWτ ≥ 0 for all 0 ≤ τ ≤ t by

assumption, it follows that

e(φτ −νWτ )[|k|s−|k−j|s−|j|s] ≤ 1. (2.26)

Thus, for fixed k, estimating the inner sum of (25), we find

∣

∣

∣

∣

∣

∣

∑

j

|k · Mj||ĝ(j)|
|k − j|σs|j|σs e

(φτ −νWτ )[|k|s−|k−j|s−|j|s]ρ̂τ
1 (k − j)ρ̂τ

2 (j)

∣

∣

∣

∣

∣

∣

r

�

⎛

¿

∑

j

|k · Mj||ĝ(j)|
|k − j|σs|j|σs |ρ̂τ

1 (k − j)||ρ̂τ
2 (j)|

À

⎠

r

� |M|r|k|r
⎛

¿

∑

j

|k − j|−σs|ρ̂τ
1 (k − j)||j|1−γ−σs|ρ̂τ

2 (j)|

À

⎠

r

, (2.27)

where we have implicitly used that g satisfies (1.2) to obtain the last line. With |k0| defined as in (2.16)
above, there exists a constant δ > 0, such that for frequencies |k| > |k0|,

ν2|k|2s
2

− ´|k|s − �(ĝ(k)Mk · k) ≥ δ|k|2s. (2.28)
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Furthermore, observe that by writing |k| = (t−τ)−
1
2s (t−τ)

1
2s |k|, it follows from the power series for z �→ ez

that

er(t−τ)
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

|k|rsσ ≤ e−rδ(t−τ)|k|2s |k|rσs �δ (t − τ)−
r(σs+1)

2s . (2.29)

For frequencies |k| ≤ |k0| (of which there are at most finitely many), we crudely estimate

er(t−τ)
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

|k|rsσ ≤ er(t−τ)λ|k0|rsσ , (2.30)

with λ as in (2.17). With these observations, we find

∫ t

0

(

∑

k

er(t−τ)
(

´|k|s+�(ĝ(k)Mk·k)− ν2 |k|2s
2

)

|k|rσs
∣

∣

∣

∣

∣

∣

∑

j

|k · Mj||ĝ(j)|
|k − j|σs|j|σs e

(φτ −νWτ )[|k|s−|k−j|s−|j|s]ρ̂τ
1 (k − j)ρ̂τ

2 (j)

∣

∣

∣

∣

∣

∣

r
)1/r

dτ

� |M||k0|sσ
∫ t

0
e(t−τ)λ

⎛

¿

∑

|k|≤|k0 |

⎛

¿

∑

j

|k − j|−σs|ρ̂τ
1 (k − j)||j|1−γ−σs|ρ̂τ

2 (j)|

À

⎠

rÀ

⎠

1/r

dτ

+ |M|
∫ t

0
(t − τ)−

(σs+1)
2s

⎛

¿

∑

|k|>|k0 |

⎛

¿

∑

j

|k − j|−σs|ρ̂τ
1 (k − j)||j|1−γ−σs|ρ̂τ

2 (j)|

À

⎠

rÀ

⎠

1/r

dτ . (2.31)

Thus, it remains to estimate the factor containing the �rk norm of the sum over j. For this, we use Young’s
inequality followed by Sobolev embedding Lemma 2.5,

⎛

¿

∑

k

⎛

¿

∑

j

|k − j|−σs|ρ̂τ
1 (k − j)||j|1−γ−σs|ρ̂τ

2 (j)|

À

⎠

rÀ

⎠

1/r

≤ ‖| · |−σsρ̂τ
1‖�p‖| · |1−γ−σsρ̂τ

2‖
�

rp
(r+1)p−r

� ‖ρτ
1‖Ŵ−σs,1‖ρτ

2‖Ŵ1−γ−σs,11r=1 + ‖ρτ
1‖

Ŵ(
d(r−1)

r −σs)+,r‖ρτ
2‖Ŵ1−γ−σs,r1p=1

r>1

+ ‖ρτ
1‖Ŵ−σs,r‖ρτ

2‖
Ŵ(1−γ−σs+ d(r−1)

r )+,r1p=r
r>1

+ ‖ρτ
1‖

Ŵ(
d(r−p)
rp −σs)+,r

‖ρτ
2‖

Ŵ(1−γ−σs+ d(p−1)
p )+,r

11<p<r
r>1

= ‖eφτA1/2
�τ
1‖Ŵ0,1‖eφτA1/2

�τ
2‖Ŵ1−γ ,11r=1 + ‖eφτA1/2

�τ
1‖Ŵ d(r−1)

r +,r‖eφτA1/2
�τ
2‖Ŵ1−γ ,r1p=1

r>1

+ ‖eφτA1/2
�τ
1‖Ŵ0,r‖eφτA1/2

�τ
2‖Ŵ(1−γ+ d(r−1)

r )+,r1p=r
r>1

+ ‖eφτA1/2
�τ
1‖

Ŵ(
d(r−p)
rp )+,r

‖eφτA1/2
�τ
2‖

Ŵ(1−γ+ d(p−1)
p )+,r

11<p<r
r>1

, (2.32)

where the final equality follows from unpacking the definition of ρt. To obtain estimates that close, the
top Sobolev index appearing in (2.32) must be ≤ σs. This leads to the following conditions:

§

⎪

⎪

⎪

⎪

⎪

¨

⎪

⎪

⎪

⎪

⎪

©

1 − γ ≤ σs, r = 1
d(r−1)

r < σs and 1 − γ ≤ σs, p = 1 and r > 1

1 − γ + d(r−1)

r < σs, p = r and r > 1
d(r−p)
rp < σs and 1 − γ + d(p−1)

p < σs, 1 < p < r and r > 1.

(2.33)

Assuming the preceding conditions are met and also that (σs+1)

2s < 1, it follows from our work that

∥

∥

∥

∥

eφtA1/2
∫ t

0
e−(t−τ)

(

ν2A
2 +L

)

Bτ (�τ
1 , �

τ
2)dτ

∥

∥

∥

∥

Ŵσs,r

� |M||k0|sσ
(

eTλ − 1
λ

)

‖�1‖C0
TG

σ ,r
φ

‖�2‖C0
TG

σ ,r
φ

+ |M|T1− σs+1
2s ‖�1‖C0

TG
σ ,r
φ

‖�2‖C0
TG

σ ,r
φ

(2.34)

for any 0 ≤ t ≤ T. We adopt the convention that eTλ−1
λ

= T if λ = 0.
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To complete the proof of the lemma, it is important to list all the conditions we imposed on the
parameters d, γ , σ , s, r during the course of the above analysis:

(LWP1) 2−γ

2 < s ≤ 1;
(LWP2) (a) r = 1 and 1 − γ ≤ σs,

(b) or r > 1 and d(r−1)

r < σs and 1 − γ ≤ σs,
(c) or r > 1 and 1 − γ + d(r−1)

r < σs,
(d) or r > 1 and ∃p ∈ (1, r) such that d(r−p)

rp < σs and 1 − γ + d(p−1)

p < σs;

(LWP3) (σs+1)

2s < 1

We refer the reader to the proof of [90, Lemma 3.7] for the existence of a non-trivial choice of
parameters satisfying the above conditions. �

Proof of Proposition 2.2. Putting together the estimates of Lemmas 2.6 and 2.7, we have shown that
there exists a constant C > 0 depending on d, γ , r, σ , s,´, ν, such that

‖T (�)‖C0
TG

σ ,r
φ

≤ eTλ‖�0‖Gσ ,r
φ

+ C|M|‖�‖2C0
TG

σ ,r
φ

(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

(2.35)

and

‖T (�1) − T (�2)‖C0
TG

σ ,r
φ

≤ C|M|
(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

‖�1 − �2‖C0
TG

σ ,r
φ

× (‖�1‖C0
TG

σ ,r
φ

+ ‖�2‖C0
TG

σ ,r
φ

). (2.36)

We want to show that for any appropriate choice of T, the map T is a contraction on the closed ball
BR(0) of radius R ≥ 2‖�0‖Gσ ,r

φ
centered at the origin in the space C0

TG
σ ,r
φ . From the estimates (2.35) and (36),

we see that if

eTλ ≤ 3
2
, (2.37)

2C|M|R
(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

≤1
8
, (2.38)

then T is a contraction on BR(0). So by the contraction mapping theorem, there exists a unique fixed
point � = T (�) ∈ C0

TG
σ ,r
φ . We let T0 denote the maximal T such that (2.37), (2.38) both hold. We note that

the maximal lifespan of the solution is ≥ T0.
The preceding result shows the local existence and uniqueness. To complete the proof of Proposition

2.2, we now prove continuous dependence on the initial data. For j = 1, 2, let �j be a solution in C0
Tj
Gσ ,r

φ to

(2.2) with initial datum �0
j , such that ‖�0

j ‖Gσ ,r
φ

≤ R. From themild formulation (2.3), the triangle inequality,
Lemmas 2.6 and 2.7, we see that

‖�1 − �2‖C0
TG

σ ,r
φ

≤ ‖�0
1 − �0

2‖Gσ ,r
φ

+ C|M|
(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

‖�1 − �2‖C0
TG

σ ,r
φ

(‖�1‖C0
TG

σ ,r
φ

+ ‖�2‖C0
TG

σ ,r
φ

). (2.39)

Taking T smaller if necessary while still preserving T � T0, we may assume that

2C|M|
(

|k0|sσ
(

eTλ − 1
λ

)

+ T1− σs+1
2s

)

≤ 1
4
. (2.40)

Bounding each ‖�j‖C0
TG

σ ,r
φ

by R in the last factor, it then follows from (39) that

‖�1 − �2‖C0
TG

σ ,r
φ

≤ 2‖�0
1 − �0

2‖Gσ ,r
φ
. (2.41)

This last estimate completes the proof of Proposition 2.2. �
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Remark 2.8. An examination of the proof of Proposition 2.2 reveals that when |k0| = 0 (and
therefore λ = 0), which is implied by the assumption ζ > 0 (recall (1.5)), the time of existence T
given by the fixed point argument satisfies the lower bound

T ≥ C(|M|R)
− 2s

(2−σ)s−1 , (2.42)

where the constant C > 0 depends quantitatively on the parameters d, γ , s, σ , r,´, ν.

3 Global Existence and Convergence to Equilibrium

We now conclude the proof of Theorem 1.1 by showing that the solutions are global and converge to
the uniform distribution as t → ∞.

Assume that 1
(2π)d

∫

Td μ0dx = 1. Let �t = μt − 1 be as in Section 2, and recall that �t satisfies the
equation

∂t�
t = −Bt(�t, �t) − L�t − ν2

2
A�t, (3.1)

where we remind the reader that A = |∇|2s, the operator B was defined in (2.1), and L = ÷
(

M∇g ∗ (·)
)

.
Also, recall that �̂0(0) =

∫

Td �0dx = 0, so by conservation of mass (Remark 2.3), �̂t(0) = 0 for every t ≥ 0.
Our first result shows that if � belongs to a higher regularity Gevrey space on [0,T], then the norm

associated to a lower regularity Gevrey space decays exponentially in time on [0,T].

Proposition 3.1. Let d ≥ 1, γ > 0, 1 ≤ r ≤ ∞,max( 1
2 ,

2−γ

2 ) < s ≤ 1. Given ³,´, ν > 0, set φt := ³ + ´t
and assume that W is a realization from �³,´,ν . Define

ζ := inf
k∈Zd :k 
=0

(

ν2

2
− ´|k|−s + �(ĝ(k))|k|−2s

Mk · k
)

(3.2)

and assume that ζ > 0.
There is a threshold κ0 ∈ R depending on r, d, s, γ , such that for any κ > κ0, the following holds.

There is a constant C > 0, depending only on d, γ , r, s, κ, such that if � ∈ C0
TG

κ+ 2
r ,r

φ is a solution
to (2.2), for some T > 0, satisfying

‖�0‖Gκ,r
³

<
ζ

C|M| , (3.3)

then

∀t ∈ [0,T], ‖�t‖Gκ,r
φt

≤ e− ζ t
2 ‖�0‖Gκ,r

³
. (3.4)

The starting point of the proof of Proposition 3.1 (cf. [90, Section 4.1]) is to compute for k ∈ Z
d,

d
dt

∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣
= �

(

|eφt |k|s �̂t(k)|−1eφt |k|s �̂t(k)
(

´|k|seφt |k|s �̂t(k)

−eφt |k|s
F

(

B
(

�t, �t)) (k) +
(

k · Mk
)

ĝ(k)eφt |k|s �̂t(k) − ν2

2
|k|2seφt |k|s �̂t(k)

)

. (3.5)

Majorizing the nonlinear term by its absolute value, we obtain

d
dt

∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣
≤ −

∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣

(

ν2

2
|k|2s − ´|k|s − �(ĝ(k))Mk · k

)

+
∣

∣

∣
eφt |k|s

F
(

Bt
(

�t, �t)) (k)
∣

∣

∣
. (3.6)



Trend to Equilibrium for Flows With Random Diffusion | 8775

Using (3.6), we compute

1
r
d
dt

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵσs,r
= 1

r
d
dt

∑

k

|k|rσs
∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣

r

=
∑

k

|k|rσs
∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣

r−1 d
dt

∣

∣

∣
eφt |k|s �̂t(k)

∣

∣

∣

≤ −ζ
∑

k

∣

∣

∣
eφt |k|s |k|(σ+ 2

r )s�̂t(k)
∣

∣

∣

r

+
∑

k

∣

∣

∣
eφt |k|s |k|σs�̂t(k)

∣

∣

∣

r−1|k|σseφt |k|s ∣

∣F
(

Bt
(

�t, �t)) (k)
∣

∣ . (3.7)

To estimate the nonlinear term in the preceding right-hand side, we use two lemmas, which are
periodic analogues of [90, Lemmas 4.3, 4.4], respectively. We omit their proofs, as the arguments are
essentially the same as the γ ≤ 1 Euclidean case.

Lemma 3.2. For any t ≥ 0 with φt − νWt ≥ 0, it holds for any test functions f , g that

|eφt |k|s
F(Bt(f , g))(k)| �γ |M|

∑

j 
=0

|k||j|1−γ
∣

∣

∣
eφt |k−j|s f̂ (k − j)eφt |j|s ĝ(j)

∣

∣

∣
. (3.8)

Lemma 3.3. Let d ≥ 1, γ > 0, 1 ≤ r ≤ ∞, 1
2 < s ≤ 1. Then there exists a threshold κ0 depending on

d, γ , r, s, such that for any κ > κ0, there exists a constant C > 0 depending on d, γ , r, s, κ so that

∑

k

∣

∣

∣
eφt |k|s |k|κsĥ(k)

∣

∣

∣

r−1|k|κs+1
∑

j 
=0

|j|1−γ
∣

∣

∣
eφt |k−j|s f̂ (k − j)eφt |j|s ĝ(j)

∣

∣

∣

≤ C‖eφtA1/2
h‖r−1

Ŵ(κ+ 2
r )s,r

(

‖eφtA1/2
f‖

Ŵ(κ+ 2
r )s,r‖eφtA1/2

g‖Ŵκs,r + ‖eφtA1/2
f‖Ŵκs,r‖eφtA1/2

g‖
Ŵ(κ+ 2

r )s,r

)

. (3.9)

Proof. Conclusion of proof of Proposition 3.1 Applying Lemmas 3.2 and 3.3 with f = g = h = �t and
κ > κ0, and choosing σ = κ in the inequality (3.7), we find that

d
dt

1
r

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵκs,r
≤ −ζ

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵ(κ+ 2
r )s,r

+ C|M|‖eφtA1/2
�t‖r

Ŵ(κ+ 2
r )s,r

‖eφtA1/2
�t‖Ŵκs,r

=
∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵ(κ+ 2
r )s,r

(

C|M|
∥

∥

∥
eφtA1/2

�t
∥

∥

∥

Ŵκs,r
− ζ

)

. (3.10)

If we assume that

∥

∥

∥
e³A1/2

�0
∥

∥

∥

Ŵκs,r
<

ζ

2C|M| , (3.11)

where C is the same constant as in (3.10), then we claim that this inequality persists for all time t ∈ [0,T].
We argue by contradiction. Let T∗ ≥ 0 denote the maximal time such that

∀t ∈ [0,T∗), ‖eφtA1/2
�t‖Ŵκs,r <

ζ

2C|M| . (3.12)

Such a T∗ exists and is positive since the preceding inequality is true at t = 0 by assumption and the
function t �→ ‖eφtA1/2

�t‖Ŵκs,r is continuous. If T∗ = T, then there is nothing to prove, so assume otherwise.
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(3.12) together with (3.10) imply that t �→ ‖eφtA1/2
�t‖Ŵκs,r is strictly decreasing on [0,T∗) (assuming �t is a

nonzero solution), implying

‖eφtA1/2
�T∗ ‖Ŵκs,r < ‖eφtA1/2

�0‖Ŵκs,r <
ζ

2C|M| . (3.13)

This inequality implies by maximality that T∗ = T. Therefore, for t ∈ [0,T],

d
dt

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵκs,r
≤ − rζ

2

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵ(κ+ 2
r )s,r

≤ − rζ
2

∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵκs,r
. (3.14)

Applying Grönwall’s lemma, we conclude that

∀t ∈ [0,T],
∥

∥

∥
eφtA1/2

�t
∥

∥

∥

r

Ŵκs,r
≤ e− rζ t

2 ‖e³A1/2
�0‖r

Ŵκs,r , (3.15)

which completes the proof of Proposition 3.1. �

On its own, Proposition 3.1 does not imply Theorem 1.1 because the former assumes that �t lives in
a higher index Gevrey space on [0,T], while only showing that a lower index Gevrey norm of �t decays
on [0,T]. The lower index norm does not control the higher index norm, so somehow we have to make
up for this discrepancy between spaces.

Fix ε > 0 and suppose that �0 ∈ Gσ0 ,r
³+ε for σ0 above the regularity threshold κ0 given by Proposition 3.1.

Assume that the parameters d, γ , r, s, σ0,³,´, ν satisfy all the constraints of Theorem 1.1 and also assume
that

‖�0‖Gσ0,r
³+ε

<
ζ

Cexp|M| , (3.16)

where ζ is as in (3.2) and Cexp > 0 is the constant from Proposition 3.1. Assuming a realization of W
from �³,´,ν and given r ≥ 1 sufficiently small depending on d, γ , s, Proposition 2.2 implies that for any
0 < σ < 2s−1

s , with 1 − γ ≤ σs, sufficiently large depending on d, γ , s, r, there is a maximal solution � to
equation (2.2) with lifespan [0,Tmax,σ ,ε), such that � belongs to C0

TG
σ ,r
φ+ε for any 0 ≤ T < Tmax,σ ,ε . The main

lemma to conclude global existence relates the lifespan of �t in Gσ ,r
φt+ε

to the lifespan of �t in the larger
space Gσ ,r

φt+ε′ , for any ε′ ∈ [0, ε). For details on how to prove such a result, see the proof of [90, Lemma 4.5],
bearing in mind Remark 2.8.

Lemma 3.4. Let � be as above. There exists a constant C > 0 depending on d, γ , r, s, σ ,´, ν such
that for any 0 ≤ ε2 < ε1 ≤ ε, the maximal times of existence Tmax,σ ,ε1 ,Tmax,σ ,ε2 of �t as taking
values in Gσ ,r

φt+ε1
,Gσ ,r

φt+ε2
, respectively, satisfy the inequality

Tmax,σ ,ε2 ≥ Tmax,σ ,ε1 + C(|M|‖�0‖Gσ0,r
³+ε

)−
2s

2s−σs−1 . (3.17)

Proof of Theorem 1.1. Fix 0 < ε′ < ε, and let σ , σ0 be as above. If Tmax,σ ,ε′ < ∞, then let n ∈ N be such
that nC(|M|‖�0‖Gσ0,r

³+ε
)−

2s
2s−σs−1 satisfies the inequality

nC(|M|‖�0‖Gσ0,r
³+ε

)−
2s

2s−σs−1 > Tmax,σ ,ε′ − Tmax,σ ,ε , (3.18)

where C is the same constant as in the inequality (3.17). We observe from Lemma 3.4 that

Tmax,σ ,ε′ − Tmax,σ ,ε =
n−1
∑

j=0

(T
max,σ ,ε− (j+1)(ε−ε′ )

n
− T

max,σ ,ε− j(ε−ε′ )
n

)

≥
n−1
∑

j=0

C(|M|‖�0‖Gσ0 ,r
³+ε

)−
2s

2s−σs−1

> Tmax,σ ,ε′ − Tmax,σ ,ε , (3.19)

which is a contradiction. Thus, Tmax,σ ,ε′ = ∞.



Trend to Equilibrium for Flows With Random Diffusion | 8777

For any 0 < ε′ < ε and any 0 < σ < 2s−1
s sufficiently large depending on d, γ , s, r, it therefore holds

that ‖�‖C0
TG

σ ,r
φ+ε′

< ∞ for all T > 0. Using the arbitrariness of ε′, Lemma 2.4 implies that for any T > 0,

‖�‖
C0
TG

σ0+ 2
r ,r

φ+ε′
< ∞. Using that

‖�0‖Gσ0 ,r
³+ε′

≤ ‖�0‖Gσ0 ,r
³+ε

<
ζ

Cexp|M| (3.20)

by assumption (3.16), we can apply Proposition 3.1 on the interval [0,T] to obtain that

∀t ∈ [0,T], ‖�t‖Gσ0 ,r

φt+ε′
≤ e− ζ t

2 ‖�0‖Gσ0 ,r
³+ε′

. (3.21)

Since T > 0 was arbitrary, the decay (3.21), in fact, holds on [0,∞).
Finally, we can replace ε′ in both sides of (3.21) by the larger ε. Indeed, the result of the preceding

paragraph and the trivial inequality ‖ · ‖Gσ0 ,r
³+ε′

≤ ‖ · ‖Gσ0 ,r
³+ε

, for ε′ ≤ ε, give

∀t ≥ 0, ‖�t‖Gσ0 ,r

φt+ε′
≤ e− ζ t

2 ‖�0‖Gσ0,r
³+ε′

≤ e− ζ t
2 ‖�0‖Gσ0,r

³+ε
< ∞. (3.22)

The desired conclusion now follows by unpacking the definition of the left-hand side and appealing to
the monotone convergence theorem. �
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