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Dynamic Behavior of Bistable
Shallow Arches: From Intrawell
to Chaotic Motion
Bistable shallow arches are ubiquitous in many engineering systems ranging from compli-
ant mechanisms and biomedical stents to energy harvesters and passive fluidic controllers.
In all these scenarios, the bistable states of the arch and the sudden transitions between
them via snap-through instability are harnessed. However, bistable arches have been tra-
ditionally studied and characterized by triggering snap-through instability using quasi-
static forces. Here, we analytically examine the effect of oscillatory loads on bistable
arches and investigate the dynamic behaviors ranging from intrawell motion to periodic
and chaotic interwell motion. The linear and nonlinear dynamic responses of both elasti-
cally and plastically deformed shallow arches are presented. Introducing an energy
potential criterion, we classify the structure’s behavior within the parameter space. This
energy-based approach allows us to explore the parameter space for high-dimensional
models of the arch by varying the force amplitude and excitation frequency. Bifurcation dia-
grams, Lyapunov exponents, and maximum critical energy plots are presented to character-
ize the dynamic response of the system. Our results reveal that unstable solutions admitted
through higher modes govern the critical energy required for interwell motion. This study
investigates the rich nonlinear dynamic behavior of the arch element and it introduces an
energy potential criterion that can scale easily to classify motion of arrays of bistable arches
for future developments of multistable mechanical metamaterials.
[DOI: 10.1115/1.4064208]
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1 Introduction and Background
Historically, arches were considered static structural elements,

designed to resist deformation and minimize deflection [1].
Recently, an interest in multistable mechanical metamaterials
inverted this perception and found ways to take advantage of
elastic instabilities [2–4]. In particular, the “snap-through” phenom-
enon has spurred promising new applications for the bistable arch as
a building block in multistable mechanical metamaterials [5–8].
Snap-through is the sudden transition between stable configurations
resulting in large displacement and potential energy release [9].
Given that the snap-through instability is scale independent, bis-
table arches are functional for numerous applications across
length scales ranging from the micro to macro scale. On the micro-
scale, micro-electromechanical systems utilize bistable arches in
electrical systems as microactuators [10], relays, switches [11],
and memory cells [12]. Macro-scale bistable arches are used for
energy production [13], energy dissipation [14], and passive
sensing devices [15]. The switch-like response of bistable elements
has promoted the study of structures, such as morphing aircraft

structures, that can reconfigure themselves to optimize perfor-
mances while adjusting physical properties [16,17]. Logic gates
and mechanical computers have shown promising avenues to lever-
age bistability to encode bits of information and perform logic oper-
ations [18,19].
Previous studies on bistable arches have imposed constant veloc-

ity displacement to study the dynamic response and approximate the
growth rate of the phenomenon [20]. The snapping dynamics of an
elastic arch have been shown to manifest a critical slowing down on
the edge of the snap-through transition [21]. Rotational boundary
actuation and asymptotic analysis have been used to characterize
the dynamics of arches near a shape transition [22]. Differences
in the snapping behavior between elastically and plastically
deformed arches have also been investigated [23].
In terms of actuation mechanisms, magnetic forces [24–26], pho-

tosensitive materials [27,28], heat activation [29,30], and electric
loads [31] have all been leveraged to trigger the snap-through insta-
bility in bistable arches. The bistable arch has also been used to
control fluid flow while being actuated from the fluid itself [32–
34]. Each activation method is tailored to a specific application
but in all cases, energy is added to the system to overcome the
energy barrier between the energy wells and trigger a snap-through
transition. Typically, quasi-static loading conditions are assumed to
determine the critical load or displacement needed to overcome the
energy barrier to initiate the shape transition [20]. However, under
oscillatory loads, the necessary conditions for snap-through will
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rely both on the amplitude and the frequency of the external force.
With a single-degree-of-freedom (SDOF) representation, the bis-
table arch can be modeled as a Duffing oscillator [35], a prototypical
example of a bistable oscillator which has been extensively studied
to predict the onset of chaos [36], the nonlinear hardening and soft-
ening behavior [37], and the criteria for interwell motion (i.e.,
motion between both wells) [38].
Here, we explore the dynamic behavior under oscillatory loads of

two varieties of bistable shallow arches: the elastically deformed
arch (i.e., buckled beam) and the plastically deformed arch with
initial curvature. First, we analytically derive an expression describ-
ing the relationship between the first natural frequency and the rise
of the elastically deformed arch. We investigate both the linear and
nonlinear frequency response for both varieties of bistable arches.
Then, we classify the response regime using the potential energy
function and interpret the motion with respect to the two energy
wells. We define a critical energy criterion needed for vacillation
between the two energy wells. Finally, we explore the parameter
space for a single-mode approximation of an arch as well as a three-
mode approximation.
These findings have the potential to set the foundation for the

design of next generation multistable metamaterials with energy
harvesting and reconfiguration capabilities.

2 The Shallow Arch
The bistable shallow arch is modeled as a beam column supported

by hinges on either side with an oscillatory load applied transversely
along the beam (Fig. 1). Using Kirchhoff plate theory and non-
dimensionalization described in Ref. [23], the non-dimensional gov-
erning partial differential equation can be written as

∂2w
∂t2

+ β
∂w
∂t

+
∂4w
∂x4

−
∂4w0

∂x4

( )
+ P

∂2w
∂x2

+
π

2
Q sin(Ωt)δ x − πη

( )
= 0 (1)

where x is the non-dimensional axial coordinate, w is the transverse
displacement, β is the viscous damping coefficient, w0 is the initial
unstressed shape of the beam, Q is a transverse force applied on
the beam at x= πη, Ω is the frequency of excitation, δ is the Dirac
delta function, and P is the axial force. The axial force P is a function

of the end shortening ΔL and the difference between the undeformed
initial curvature w0 and the deformed shape:

P = ΔL −
1
2π

∫π
0

∂w
∂x

( )2

−
dw0

dx

( )2

dx (2)

We consider two classes of bistable shallow arches: elastically
deformed buckled beams and plastically deformed beams. The
motion of both shallow arches is described by Eq. (1), but differ
in their expression for end shortening and initial curvature:

• Elastically Deformed Arch. For an elastically deformed
shallow arch (a buckled beam), the initial unstressed position
of the midsurface is flat with zero initial curvature. An axial
force is applied to buckle the beam into a deformed shape
with rise b (Fig. 1(a)). Removing the external axial force
would permit the arch to straighten back out to a flat beam.
The end shortening ΔL can be found imposing a constant
arc length between the undeformed and deformed beam con-
figuration. Thus, the elastically deformed arch is described by

w0(x) = 0 (3a)

ΔL ≈ 1 +
b

2

( )2

(3b)

• Plastically Deformed Arch. A plastically deformed arch is
manufactured by permanently deforming the arch with an
initial curvature. We impose an initial curvature of a half sine
wave with rise e. When the plastically deformed arch is removed
from the supports, the initial curvature remains (Fig. 1(e)). There
is no end shortening in themanufacturing process. The arch isman-
ufactured tohave the same length in itsfinal configuration.Theplas-
tically deformed arch is expressed using

w0(x) = e sin x (4a)

ΔL = 0 (4b)

2.1 Galerkin Method. Solutions to the arch’s equation of
motion (Eq. (1)) can be found via Galerkin’s method. Utilizing
the simply supported boundary conditions, a basis of shape sine
functions is defined and the error of the projection onto the basis

Fig. 1 (a) Diagram of the elastic arch in undeformed and deformed state. Potential energy landscape of the elastically deformed
arch for (b) N=1, (c) N=2, and (d) N=3. (e) Diagram of the plastically deformed arch in its unstressed state. Potential energy
landscape of the plastically deformed arch for (f) N=1, (g) N=2, and (h) N=3.
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is minimized. Using N modes, the transverse displacement of the
arch can be defined as

w(x, t) = w0(x) +
∑N
n=1

an(t) sin (nx) (5)

where an are unknown time-dependent coefficients describing the
amplitude of the n-th mode. After substituting Eq. (5) into Eq. (1)
and applying the Galerkin scheme, a system of N second-order ordi-
nary differential equations is generated [23,39]:

än + βȧn + n4 − n2ΔL +
n2

2
ea1(1 − δ1,n) +

1
2
e2δ1,n

( )
an

+
1
2
ea2nδ1,n +

n2

4

∑N
k=1

k2ak

( )
(an + eδ1,n) + qn = 0

for n = 1, 2, 3, . . . , N (6)

where δi,j is the Kronecker delta and

qn = Q sin(Ωt) sin nπη
( )

(7)

Equations (3) and (4) are substituted into Eq. (6) to describe the
dynamics of the elastic and plastic arches, respectively.

3 Potential Energy of the Shallow Arch
To classify the dynamic behavior of the arch, we turn our atten-

tion to the potential energy of the structure. The potential energy,
which is a scalar function of the mode shapes, governs the behavior
of the unforced, undamped system. The stability of fixed points,
energy wells, escape velocities, and domains of attraction are all
dependent on the potential energy. Compared to attempts to classify
the motion of the arch by tracking points along the length, the
potential energy conveniently encompasses the entire shape of the
arch. Furthermore, the energy function can easily be extended to
higher dimensional models.
Let a represent the vector whose components are the time-

dependent amplitude of each mode:

a = 〈a1, a2, a3, . . . , aN〉 (8)

The potential energy is solved by finding the scalar function
whose gradient field is the elastic potential energy terms in
Eq. (6). For N= 1, this expression becomes

V(a) =
1
2

1 − ΔL +
1
2
e2

( )
a21 +

1
4
ea31 +

1
16

a41 + C1 (9)

where C1 is an integration constant chosen to shift the potential
energy such that the minimum value of V(a) is zero. For higher
dimensional models of the structure (N > 1), the potential energy
is a function of each mode and can be described by the system of
differential equations found via

ä1 + βȧ1 +
∂V
∂a1

= q1

ä2 + βȧ2 +
∂V
∂a2

= q2

..

.

äN + βȧN +
∂V
∂aN

= qN

(10)

Thus, the potential energy V can be solved and written as

V(a) =
1
4
ea31 +

1
2

∑N
j=1

j4 − j2ΔL +
1
2
e2δ1,j

( )
a2j +

1
8
j4a4j

[ ]

+
1
4

∑N
k=2

k2a2k

( )
ea1( ) + 1

8

∑N−1
n=1

∑N
m=n+1

n2m2a2na
2
m + C1

for N = 2, 3, 4, . . . (11)

3.1 Single-Degree-of-Freedom Approximation. For N= 1,
we obtain the energy potential substituting Eqs. (3) and (4) into
Eq. (9) for the elastic arch (Fig. 1(b)) and plastic arch (Fig. 1( f )),
respectively. Both arches have a double-well potential energy land-
scape with two stable equilibrium points, denoted as local mini-
mums on the energy plot and one unstable equilibrium point
represented by a local maximum. For the elastically deformed
arch, the potential energy is symmetric resulting in two stable equi-
librium positions occurring at

aes = 〈±b〉 (12)

with equal potential energy

V aes
( )

= 0 (13)

where the apex “e” stands for elastic arch and the subscript “s”
stands for stable equilibrium point. An unstable equilibrium point
is found at

aeu = 〈0〉 (14)

with potential energy

V aeu
( )

=
b4

16
(15)

where the subscript “u” stands for unstable equilibrium point. The
plastically deformed arch retains two energy wells, but as a result
of the initial curvature, the wells are asymmetric. The lower
energy well corresponds to the arch in an unstressed state in the
direction of the initial curvature

aps,l = 〈0〉 (16)

with energy

V aps,l
( )

= 0 (17)

where the apex “p” stands for plastic arch and the subscripts “s, l”
stand for stable lower equilibrium point. The higher energy well
denotes the arch inverted from its initial curvature and it occurs at

aps,h = −
1
2

3e +
��������
e2 − 16

√( )〈 〉
(18)

with potential energy

V aps,h
( )

= −
1

128

��������
e2 − 16

√
+ 3e

( )2
e

��������
e2 − 16

√
− e

( )
− 8

( )
(19)

where the subscripts “s, h” stand for stable higher equilibrium point.
Lastly, the unstable solution occurs at

apu = −
1
2

3e −
��������
e2 − 16

√( )〈 〉
(20)

with potential energy

V apu
( )

=
1
128

��������
e2 − 16

√
− 3e

( )2
e

��������
e2 − 16

√
+ e

( )
+ 8

( )
(21)

In all cases, the energy well associated with each stable solution is
defined using the energy of the unstable solution as a boundary. In
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Fig. 1(b), the wells of an elastic arch are shaded and are bounded by
the vertical line from Eq. (14) and the horizontal line from Eq. (15).
Similarly, the energy wells on the plastic arch (Fig. 1( f )) are sepa-
rated by the lines from Eqs. (20) and (21). An alternative way of
interpreting the energy wells is using the domain of attraction.
For an unforced system, the energy wells are the domain of attrac-
tion of each stable equilibrium point regardless of the system’s
damping. Although the domain of attraction could be calculated
for each fixed point, it is more convenient to define the energy
wells with the bounds defined by the unstable equilibrium points.
In addition to defining the boundaries of the energy wells, the

unstable equilibrium point is used to calculate the critical energy
Vcr required for the motion to escape from one energy well. The dif-
ference in energy between the stable and the nearest unstable
equilibrium defines the energy barrier needed to transition from
one well to the other:

Vcr = V au( ) − V as( ) (22)

If the sum of the potential and kinetic energy exceeds the difference
in energy between the stable and nearest unstable configuration,

VKinetic + VPotential > Vcr (23)

it is expected that the motion will escape the well [40]. The condi-
tion of exceeding the energy barrier is necessary for escaping an
energy well, but not sufficient [38]. We will demonstrate,
however, that the energy barrier is a strong predictor of escaping
the energy well.

3.2 Two-Degree-of-Freedom Approximation. For N= 2, the
energy potential can be plotted as a 3D function of a1 and a2 for an
elastic (Fig. 1(c)) and a plastically deformed arch (Fig. 1(g)). We
observe that many of the features from the one-dimensional
model remain, such as the two stable equilibrium points.
However, the inclusion of a2 introduces two additional unstable
equilibrium points. In the elastically deformed arch, these two
new unstable equilibrium points occur at

aeu = 0, ±
1
2

���������
b2 − 12

√〈 〉
(24)

with associated potential energy

V aeu
( )

=
3
2

b2 − 6
( )

(25)

The plastically deformed arch has two new unstable solutions at

apu = −
4e
3
, ±

1
3

����������
2e2 − 36

√〈 〉
(26)

with potential energies

V apu
( )

=
8
3

e2 − 6
( )

(27)

In both models, the new unstable equilibrium points occur at ener-
gies lower than the unstable equilibrium points from the N= 1
model. As a result, the energy barrier is lower compared to the
N = 1 model and a new lower energy path between the two
energy wells is created. The energy wells are again bounded by
the energy of the unstable equilibrium points, this time character-
ized by the plane defined by Eqs. (24) and (25) and Eqs. (26) and
(27) for the elastic and plastic arches, respectively.

3.3 Three-Degree-of-Freedom Approximation. For N= 3,
the inclusion of a3 preserves the two stable equilibrium points
with symmetric (elastic) or asymmetric (plastic) energy wells and

two more unstable equilibrium points are generated. However, the
associated energies of these new unstable equilibrium points are
higher than the energy of the unstable equilibrium points generated
by the second mode. Thus, the energy wells of the three-
dimensional model are still defined by the energy barrier from the
unstable equilibrium points found for N= 2 via Eqs. (24) and (26)
for the elastic and plastic arches, respectively. The wells for the
N = 3 system are visualized by plotting the boundaries of the
wells in the a1, a2, a3 coordinate system for the elastic (Fig. 1(d ))
and plastic arches (Fig. 1( f )). It is seen that in the elastic case,
the energy wells remain symmetric about the plane a1= 0, while
for the plastic case, the energy wells are asymmetric and separated
by the plane described by Eq. (20).
For any combination of a1, a2, …, aN, we can determine which

region of the energy landscape the structure is in. First, we calculate
the potential energy for a given a using Eq. (11). If V(a) >Vcr, the
structure is not in either well. Otherwise, the current configuration’s
energy well can be located by comparing the component of a1 to the
unstable equilibrium point from N= 1 described by Eq. (14) for an
elastic arch or Eq. (20) for a plastic arch.

4 Frequency Response
To introduce oscillatory loads, we begin with a discussion of

the natural frequencies of the shallow arch. Analytical formula-
tions for the natural frequencies of arches have been derived for
various boundary conditions [41,42]. As shown in Ref. [43], the
first natural frequency of a hinged–hinged arch about an elasti-
cally buckled configuration is a function of the initial rise of
the arch while higher frequencies are independent of the initial
rise. Following this derivation, we develop closed-form expres-
sions for the natural frequencies of the elastic deformed shallow
arch. From these expressions, the initial rise can be chosen to
investigate sub or super harmonics between the first and the n-
th frequencies. In addition, we identify integer internal harmonics
between pairs of n-th and j-th natural frequencies for hinged–
hinged elastically deformed arch. Finally, we demonstrate the
nonlinear effects of the bistable arch using frequency response
curves.

4.1 Elastic Arch Natural Frequencies. Following the deriva-
tion from Ref. [43], we consider the linear vibrations around an
undamped, unforced elastic arch assuming small deflections about
the mode shape and a separable time-harmonic solution (Eq. (5)).
The first natural frequency ω1 is found by imposing a homogeneous
solution that satisfies [43]

b2

2
− ω2

( )
C5 = −

b2

π
sin(x)

∫π
0
cos(x)Φ′

h dx

( )
(28)

where C5 is an arbitrary constant and Φh represents the homoge-
neous solution. The first natural frequency is found by considering
the trivial homogeneous solution, Φh≡ 0. In order to maintain a
non-trivial solution, C5 must be nonzero, so the first term on the left-
hand side of (28) must be zero. In non-dimensional form from
Ref. [43], the first natural frequency is

ω1 =
b

��
2

√

2
(29)

Higher frequencies are found by imposing the boundary conditions
for the homogeneous solution. For a hinged–hinged arch, the
boundary conditions are

Φ(0) =Φ′′(0) =Φ(π) =Φ′′(π) = 0 (30)
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Applying the boundary conditions, higher natural frequencies are
found by solving the eigenvalue problem [43]

0 1 0 1
0 −λ21 0 λ22

sin λ1π cos λ1π sinh λ2π cosh λ2π
−λ21 sin λ1π −λ21 cos λ1π λ22 sinh λ2π λ22 cosh λ2π

⎡
⎢⎢⎣

⎤
⎥⎥⎦

×

C1

C2

C3

C4

⎡
⎢⎢⎣

⎤
⎥⎥⎦ =

0
0
0
0

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (31)

where C1, C2, C3, and C4 are undetermined coefficients of the
homogeneous solution. For a non-trivial solution, we impose that
the determinant of the coefficient matrix must be zero:

−(λ21 + λ22)
2 sin λ1π sinh λ2π = 0 (32)

The condition is true when the first sine term evaluates to zero. The
roots for this expression are

λ1 =
1
2
+

���������
1 + 4ω2

n

√
2

[ ]1/2

= n (33)

The non-dimensional n-th natural frequency can be solved for

ωn =
��������
n4 − n2

√
(34)

for n> 1. The first ten natural frequencies are plotted against the
initial rise of the arch in Appendix A, Fig. 8.

4.2 Linear Frequency Response. To verify the analytical
expression for the natural frequencies of the shallow arches, we
implemented frequency sweep analyses using the software AUTO

[44] based on a pseudo-arclength continuation technique. The fre-
quency responses of the following three cases are investigated: (i)
elastic arch about a stable equilibrium point, (ii) plastic arch
about its lower energy stable equilibrium point, and (iii) plastic
arch about its higher energy stable equilibrium point.

Using a seven degrees-of-freedom (DOFs) representation of the
arch (N= 7), the systems of differential equations described by
Eq. (6) are cast into first-order form and used for a continuation
analysis. An initial rise b= 40 and e= 40 are chosen for
the elastic and plastic arches, respectively. We excite the arches at
η= 1/8 with a force amplitude Q= 0.1 and we assume light
modal damping β= 0.1. Figures 2(a), 2(b), and 2(c) report the
maximum amplitude modal response of the first five modes
against the normalized excitation frequency Ω/ω1 for the three
cases. The analytical results for natural frequencies described by
Eqs. (29) and (34) are plotted with vertical dashed lines. It is seen
that peaks in the modal response from the elastically deformed
arch precisely align with analytical values. The results for both
cases of the plastically deformed arch include a slight shift in
natural frequencies with respect to the elastic arch. When excited
in the lower energy well, the plastically deformed arch presents a
slight shift to the right of all the natural frequencies. Indeed, this
suggests that the system is stiffer in this configuration, slightly
increasing the natural frequencies. Similarly, a shift to the left is
observed when exciting the plastic arch about its higher energy
well, suggesting a less stiff system.

4.3 Internal Resonances. Internal resonances between the
first and n-th mode can be found by taking advantage of the first
mode’s dependency on the initial rise. An integer Z harmonic is
expressed as

Z =
ωn

ω1
(35)

The initial rise b, which imposes a harmonic, can be solved for by
substituting the expressions for the first natural frequency (Eq. (29))
and n-th natural frequency (Eq. (34)):

b = Z
�����������
2(n4 − n2)

√
(36)

for n> 1. For example, a 1 : 2 internal resonance between the second
and first modes can be found by choosing b = 4

��
6

√
. This finding has

been verified using the software AUTO and plotting the modal

Fig. 2 Frequency response for (a) elastic arch (b=40 and η=0.125) and plastic arch (e=40) about (b) the lower and (c) the
higher energy wells. Internal resonance phenomenon for (d) the elastic arch (b= 4

��
6

√
) and (e and f) the plastic arch

(e= 4
��
6

√
) about the lower and the higher energy wells, respectively.
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amplitude response of the first two modes for each of the three pre-
vious cases (Figs. 2(d ), 2(e), and 2( f )). The analytical model accu-
rately predicts the resonance for the elastic case as the frequency
shifts observed in the plastically deformed arch remain.
Moreover, it is interesting to consider internal resonances

between the n-th and j-th frequency:

Z =
ωn

ωj
(37)

for n≠ j, n> 1, j> 1. Substituting in the expression for the n-th and j-
th natural frequencies from Eq. (34),

Z =
n4 − n2

j4 − j2
(38)

for n≠ j, n> 1, j> 1. All constant terms cancel out and these har-
monics become independent of the geometry of the arch, inherent
to all shallow arch structures. Sets of {n, j, Z} which satisfy Eq.
(38) typically involve higher modes that require very high energies
to activate. The smallest frequency ratio that satisfies Eq. (38) is a
14 : 1 ratio between the seventh and second natural frequency.
These higher energy modes are not commonly observed in experi-
ments of the arch nor included in formulations.

4.4 Nonlinear Frequency Response. For sufficiently large
forcing amplitudes Q, nonlinear phenomena can be observed in
the frequency response of the shallow arches. For a small initial
rise b= 5 (elastic) and e= 5 (plastic), we determine the dynamic
response of each case for increasing forcing amplitudes (Q= 0.25,
Q= 0.5, and Q= 0.75). Using AUTO’s pseudo-arc length continua-
tion method, we observe a nonlinear softening behavior in the
elastic arch case (Fig. 3(a)) as well as in the plastically deformed
arch when excited both about its lower (Fig. 3(b)) and higher
(Fig. 3(c)) energy wells. Despite the same initial rise, different
amplitude responses are found between cases. The plastic arch
excited about its lower energy well has the smallest amplitude
response, consistent with the linear frequency response

(Fig. 2(b)), suggesting the system requires more energy to oscillate
around this well. Concurrently, when excited about the higher
energy well, the plastic arch has the largest nonlinear response,
demonstrating that the system requires less energy for oscillating
around this well as also shown for linear vibrations (Fig. 2(c)).
For each force amplitude Q, the nonlinear response of the elastic
arch has vibration amplitudes in between the two previous plastic
arches cases. In all the cases, an increase in the forcing amplitude
results in an increased nonlinear effect, such as the nonlinear soft-
ening behavior and a larger range of unstable solutions. Arches
with larger initial rises also exhibit nonlinear phenomena. An
elastic arch with rise b= 25 subjected to an external force (Q=
0.50 and Q= 1.25) located at the midpoint of the arch η= 0.5 pre-
sents similar nonlinearities (Fig. 3(d )). Since the arch is excited
about its midpoint, only the odd number modes are activated. The
frequency response plot demonstrates a 1 : 2 internal resonance
(ω1≅ 2ω3) which is found for Ω≅ 0.5 ω1.

5 Parameter Space
We first introduce an energy-based criterion to characterize the

motion of the arch over ranges of forcing amplitude Q and fre-
quency Ω. In the first approximation, we explore the design space
leveraging the Duffing oscillator as the archetypal SDOF model
of the bistable arch. Then, we investigate the parameter space for
a three-DOF model of the bistable elastic and plastic arches.

5.1 Motion Classification. To characterize the structure’s
response to a given pair of Q and Ω, we solve the equations of
motion (Eq. (6)) and determine the response over NC forcing fre-
quency periods which are divided into two portions

NC = NT ∧ NS (39)

where NT stands for number of transient cycles and NS for number
of steady-state cycles. The transient response represents the
response at the beginning of the time interval and is sensitive to

Fig. 3 Nonlinear frequency response for (a) the elastic arch (b=5) and (b and c) the plastic arch (e=5) excited about the
lower and higher energy wells, respectively. (d) Elastic arch (b=25) with a 1 : 2 internal resonance (ω1≅2ω3). Solid and
dashed lines represent stable and unstable solutions, respectively.
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the initial conditions of the arch. Thus, NT is chosen to be large
enough so that the effects of the initial conditions are sufficiently
minimized by the end of this time period. The steady-state response
represents the long-term behavior of the arch and NS is chosen to be
large enough to perform accurate calculations of the Lyapunov
exponents [45].
We classify the response of the structure into one of five regimes

(Fig. 4): intrawell motion, switching motion, reverting motion, peri-
odic vacillation, and aperiodic vacillation [46]. Intrawell motion is
constrained to a single well over the entire time period NC (intrawell
in Fig. 4). If the motion ever escapes the initial well, we examine the
behavior in NS. If during NS the structure is constrained to a single
well, then the motion is either “switching” or “reverting.” Switching
motion is classified as motion constrained to the well opposite the
initial well. In this case, the structure “switched” from the initial
energy well to the other well (switching in Fig. 4). Reverting
motion is constrained to the original well over NS. Reverting is dif-
ferent from intrawell motion since for reverting over the period NT,
the structure must have visited the other well at least once. In this
case, although the opposite well was visited, the structure reverted
to its original position (reverting in Fig. 4). The motion is described
as vacillating when the structure is not constrained to a single well
over the steady-state response NS. Vacillating motion can be one of
two types: periodic vacillation (periodic in Fig. 4) or aperiodic
(chaotic) vacillation (aperiodic in Fig. 4).
The algorithm implemented to classify the behavior is repre-

sented as a flowchart in Fig. 4 together with schematics of the
time response and corresponding positions in the energy land-
scapes. First, the system is integrated over the entire range NC

using the fourth-order Runge–Kutta time integration scheme. By
examining the time response, we check if the motion is constrained
to a single well. If true, the algorithm exits and the system is clas-
sified as intrawell. Otherwise, we check which wells are visited
over the NS period. If over the entire steady-state period the
motion is confined to the well opposite the initial well, the
motion is switching. If instead over the entire steady-state period
the motion is confined to the initial well, the motion is described
as reverting. If none of the above conditions are met, the motion
is described as vacillating and the Lyapunov exponents are calcu-
lated to distinguish the motion between periodic and aperiodic

[47]. If the largest Lyapunov exponent is less than zero, the
motion is periodic. If instead the largest Lyapunov exponent is
greater than zero, the system’s motion is chaotic (aperiodic).
We also track the energy of the system to test the strength of the

condition for interwell motion described by the critical energy (Eq.
(23)). Indeed, it is predicted that the system will have sufficient
energy to move between wells when the total kinetic and potential
energy exceeds the critical energy. For each trial, we tabulate the
maximum total energy achieved in NS period and compare it
against the critical energy defined by Eq. (22). If the maximum
combined kinetic and potential energy exceeds the critical energy,
it is expected that the structure vacillates between wells. If the
maximum combined kinetic and potential energy is less than the
critical energy, the motion is expected to be confined to a well
over the period NS and either be intrawell, switching, or reverting
motion. Since the critical energy is a necessary but not sufficient
condition, we anticipate there to be cases with energy that
exceeds the critical energy but does not escape the well.

5.2 Design Space for a SDOFModel. We begin by exploring
the design space of the one-dimensional model of an elastically
deformed arch. Choosing an initial height of b= 25 and damping
β= 1, the forcing frequency Ω/ω1 and the magnitude of the force
Q are varied from 0.2 to 1.2 and from 50 to 1500, respectively.
For each pair of Ω and Q, the system is integrated in time for NT

and NS cycles. Using the algorithm described in Fig. 4, the
regimes of motion are determined, the Lyapunov exponents are cal-
culated, values of the modal amplitude a1 are sampled to generate
bifurcation diagrams, and the maximum total energy is calculated
over the NS range.
The parameter space sampled points are colored according to the

type of response (Fig. 5(a)). The majority of the plot is characterized
by intrawell motion (plotted in yellow). As expected, low forcing
magnitude result in intrawell motion. The critical force required
to induce interwell motion varies with the forcing frequency as
shown in the triangular structures descending from the top of the
plot. These stalactite features representing interwell motion [49]
are commonly called “Arnold’s” tongues and they have several
practical implications. When large motion is favorable, such as in

Fig. 4 Algorithm for classifying the motion in intrawell, switching, reverting, periodic, and aperiodic
interwells. W1 and W2 are the two energy wells of the energy landscape. NT and NS represent the
cycles in the transient and steady state, respectively.
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energy harvesting, the bistable structure should be operated within
the bounds of these tongues to maximize motion [50]. An alterna-
tive use of the tongues is sensing critical frequencies for a constant
force or critical forces for a constant frequency. The detection of the
critical parameter could be aligned with the boundaries of the
tongue, so interwell motion is achieved when the critical value is
found [51].
Multiple analytical methods have been proposed for predicting

the onset interwell motion [52,53,36]. To validate our findings,
we consider the method proposed by Virgin et al. [48] which uti-
lizes a harmonic balance method. Using a harmonic steady-state
response, the first critical force that produces energy sufficient to
overcome the energy barrier is determined. The corresponding
force–energy relationship is then plotted in solid black (Fig. 5(a)).
The analytical model presents very close agreement with the peak
around the frequency Ω/ω1= 0.8. Since this model assumed that
the structure’s motion has the same frequency as the forcing term,
only the main tongue feature can be predicted.
As an additional method of visualizing the arch’s response, bifur-

cation diagrams are obtained using the method described by Parker
and Chua [45]. For Q= 1000, we sweep over the same frequency
range and sample the position of a1 once every period of the
forcing frequency is over the interval NS. Plotting all values of a1
for each frequency produces the bifurcation plot (Fig. 5(d )). With
this method, period one motion appears as single points for a
given value of Ω. Values of Ω that result in chaotic behavior
appear on the bifurcation diagram as large sets of points.
Toward the right end of the plot in the region dominated by

switching and reverting, there appears to be a region of period
two motion fromΩ/ω1 > 1; however, this is misleading. In actuality,
what is occurring is the motion changing from switching to revert-
ing and vice versa for adjacent values ofΩ. As this occurs, the bifur-
cation plot switches from having a cluster of points at a1≈ 25 to
having a cluster of points at a1≈−25. When this occurs for small
changes in Ω, the bifurcation plot appears to be a period-2
motion. A similar phenomenon occurs around Ω/ω1≈ 0.921.

Although only used to distinguish between periodic and aperi-
odic vacillation, the Lyapunov exponents were calculated for each
pair of (Ω, Q) of the design space. The largest Lyapunov exponent
λ1 calculated for each trial is plotted within the parameter
space (Fig. 5(b)) where the regions of periodic (λ1 < 0) and aperiodic
(λ1 > 0) motion can be distinguished.
To visualize both Lyapunov exponents, a slice of the parameter

space is taken for Q= 1000 while varying the value of Ω
(Fig. 5(e)). It can be observed that the two Lyapunov exponents syn-
chronously move with one another; as λ1 increases, λ2 decreases by
approximately the same amount. In second-order non-autonomous
systems, at least one Lyapunov exponent must be negative. Further-
more, for a chaotic attractor, since contraction must outweigh expan-
sion when one Lyapunov exponent is positive, the other λ2 <−λ1
[45]. This relationship between the two Lyapunov exponents is
seen as an inverse relationship between the two lines (Fig. 5(e)).
Over the final NS period, the maximum of combined potential and

kinetic energy was calculated in the parameter space (Fig. 5(c)). The
maximum total energy has been compared with the critical energy:
values below the critical energy predicted by Eq. (22) are plotted in
blue and values which exceed the criteria are shaded yellow to red.
Overall, our results show that critical energy is an excellent predic-
tor of interwell motion. Although the energy criterion represents a
necessary, but not sufficient condition, in only a few cases the
maximum energy exceeds the critical energy but the motion
remains intrawell.
A slice of the energy plot for Q= 1000 compares the critical

energy plotted in a dashed line to the calculated energy
(Fig. 5( f )). It is seen that all cases of interwell motion exceed this
energy, and only a few cases of intrawell motion fall below the
line. Reaffirming the necessary but not sufficient property of
the critical energy, we can further examine why it is possible for
the energy to exceed the critical energy, but motion not be interwell.
Since the total energy is a combination of both kinetic and potential
energy, the kinetic energy could be large enough to exceed the crit-
ical energy, but oscillating with very high frequency in a single

Fig. 5 One-mode approximation of the elastic arch (b=25, NS=450, and NT=50). (a) Parameter space and analyt-
ically predicted critical force frequency plotted in black [48]; (b) largest Lyapunov exponent calculated for each set of
forcing frequencies; and (c) maximum critical energy in NS. (d) Bifurcation diagram, (e) Lyapunov exponents, and
(f) the maximum energy V for Q=1000.
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well. For example, when the structure oscillates about a stable equi-
librium with small amplitude motion but for a given set of frequen-
cies, there might be enough kinetic energy to predict escape. The
equivalent plots made for the two cases of the plastically deformed
arch (i.e., high and low energy wells) are included in the appendix
(Fig. 10) and they showcase a similar trend when compared to the
elastic case.
Within the parameter space, the periodicity of the structure’s

response can be further explored. For periodic motion, we can
compare the ratio of the period of the structure to the period of
the forcing frequency. The ratio between the forcing frequency
and the structure’s frequency is plotted (Fig. 6). In most cases,
the period of the structure is equal to the period of the forcing fre-
quency, but higher period motion is also possible. The highest peri-
odicity of response was found to be period-7 motion detected within
the region dominated by the switching and reverting motion.

5.3 Design Space for the Three-Degrees-of-Freedom
Model. While a single-mode approximation of the arch presents

strong connections with the Duffing oscillator, this model is not
always sufficient to accurately describe the motion of the arch
for large displacements. Experimental comparisons between ana-
lytical models and experimental results of the bistable arch sug-
gested that a three-mode approximation can accurately describe
the motion of the arch undergoing snap-through instability [23].
The analytical approach we introduced in this study can be
easily applied to higher dimensional models of the bistable arch,
and hence we report the investigation of the structure dynamical
response for N= 3.
For N= 3, the parameter space is shown to be dominated by

chaotic motion (Fig. 7(a)) and it significantly differs from the cor-
responding N= 1 parameter space (Fig. 5(a)). It is found that an
approximate minimum value of Q≈ 80 is required for the arch to
escape the starting well. Above this threshold value of Q, the
motion is almost entirely classified as interwell vacillation.
Clearly defined tongues descending from the top of the plot
observed in the SDOF approximation disappear in the three-DOF
model of the arch. Very few cases of reverting or switching beha-
vior are observed in the three-DOF design space.
The Lyapunov exponents have been determined within the

parameter space and the largest exponent was used to verify if the
interwell motion was periodic or chaotic (Fig. 7(b)). It is interesting
to observe that for low forcing magnitudes, despite the motion being
intrawell, the largest Lyapunov exponent is larger than zero in many
cases. While the one-mode approximation saw very few points of
intrawell motion with positive (or near zero) values of the largest
Lyapunov exponent, the N= 3 model presents cases of chaotic
intrawell motion. To visualize all six Lyapunov exponents, we con-
sider the case of Q= 1000. Since modes are coupled via Eq. (6),
when a single mode is chaotic, the chaos is transferred to the
other two modes. Because of this coupling, it is expected that
either all three modes will behave chaotically or all three modes
will behave periodically. Indeed, this is observed in the bifurcation
diagram for Q= 1000 (Fig. 7(d )) where either all three modes
present a chaotic or a periodic behavior.

Fig. 6 Periodicity of motion for limit cycles and the type of
chaotic attractor for the N=1 model of the elastic arch (NS=
450 and NT=50)

Fig. 7 Three-mode approximation of the elastic arch (b=25,NS=450, andNT=50). One-mode approximation of the elastic
arch (b=25, NS=450, and NT=50). (a) Parameter space and analytically predicted critical force frequency plotted in black;
(b) largest Lyapunov exponent calculated for each set of forcing frequencies; and (c) maximum critical energy in NS.
(d) Bifurcation diagram, (e) Lyapunov exponents, and (f) the maximum energy V for Q=1000.
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Lastly, we turn our attention to the critical energy criteria. As
previously mentioned, the inclusion of the second mode introduces
an unstable solution that lowers the energy barrier with respect to
the N= 1 case. Thus, we expect the critical energy required to
escape the wells to be much lower than the case of the single-
mode approximation. This is consistent with the parameter space
plot (Fig. 7(a)), where the majority of cases are characterized by
interwell motion. Comparing the maximum combined energy
from the parameter space with the critical energy shows that
very few points are below the critical energy (Fig. 7(c)). Serving
as a necessary but not sufficient criterion, the critical energy pre-
dicts if the structure is expected to escape an energy well, but due
to such a small critical energy very few points do not escape. The
energy plot for Q= 1000 (Fig. 7( f )) emphasizes the surplus of
energy that the structure has with respect to the critical energy rep-
resented by the dashed horizontal line. Though higher dimensional
systems may require both an excess of energy and a specific tra-
jectory, the critical energy criteria can still provide powerful
insight into the capacity of the system to demonstrate interwell
motion.

6 Conclusion
In this work, we have analytically investigated the dynamics of

elastically and plastically deformed bistable arches subjected to
oscillatory loads. To characterize the response of the structure
from intrawell to chaotic motion, we introduced a method based
on the system’s location in the double-welled potential energy land-
scape. Thanks to this approach, a single scalar can conveniently
encapsulate sufficient information to classify the motion for high-
dimensional models of the system.
We first derived a closed-form solution for the natural frequen-

cies of the structure and identified internal resonances. Tuning the
natural frequencies based on the initial rise of the arches can repre-
sent a powerful tool in designing band gaps or frequency filters in
arrays of arches. Moreover, we explored the nonlinear dynamic
behavior of the system in which a softening behavior was observed
for both the elastically and plastically deformed arches.
Finally, we thoroughly investigated the response of the structure

within the parameter space by varying the force amplitude and
excitation frequency. Using the energy wells to classify the
motion, we identified five regimes of motion: intrawell, switching,
reverting, interwell periodic, and aperiodic. Bifurcation diagrams,
Lyapunov exponents, and critical energy plots have been intro-
duced to identify the different regimes. These results were pre-
sented for both a single-mode and a three-mode approximation
of the arch. In particular, the prediction of interwell motion and
the onset of chaos are of significant relevance for engineering
applications of bistable arches. To conclude, this study provides
a deep understanding on the nonlinear dynamics of the elastically
and plastically deformed shallow arches subjected to oscillatory
loads. Thanks to its rich nonlinear behavior, the bistable arch is
a promising building block for the design of next generation multi-
stable mechanical metamaterials, passive control devices, and
mechanical computers.
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Appendix A: Elastic Arch Natural Frequencies
In Eq. (29), it was shown that the first natural frequency of the

arch is a function of the initial rise of the arch. Higher natural fre-
quencies are independent of the initial rise. The non-dimensional
natural frequency is plotted against the non-dimensional rise of
the arch (Fig. 8). From this plot, it can be seen that values for b
can be chosen to induce integer ratios between the first and n-th fre-
quencies. Integer ratios also exist between higher harmonics, but
these harmonics are sparse and inherent to the structure of the arch.

Appendix B: Nonlinear Frequency Response Plastic
Arches
The nonlinear phenomena of the plastically deformed arches

were studied using pseudo-arclength continuation with the software
AUTO. Choosing an initial rise of e= 25 for the plastically deformed
arch and exciting the arch about its midpoint to activate only the
odd-numbered modes, nonlinear phenomena can be seen for suffi-
ciently large values of Q (Fig. 9).

Appendix C: Parameter Space Plastic Arch N= 1
The parameter space can be determined for plastically deformed

arches with a SDOF approximation using the same method as
described in the paper. For an initial rise e= 25, and performing
time integration for NT= 450 and NS= 50, the method described
in Fig. 4 is used to classify the motion into one of the five
regimes (Fig. 10). The general structure of the stalactite-like
tongues descending from the top of the graph remains consistent
with what was seen for the elastically deformed arch.

Appendix D: Parameter Space Plastic Arch N= 3
The parameter space can be determined for plastically deformed

arches with a three-DOF approximation using the same method as
described in the paper. Choosing an initial rise e= 25, and perform-
ing time integration for NT= 450 and NS= 50, Fig. 11 was obtained
using the algorithm shown in Fig. 4 to classify the motion into one

Fig. 8 Natural frequencies (ω1, …, ω10) of the elastic arch with
respect to the initial rise b
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of the five regimes. The parameter space is very similar to that seen
in the elastically deformed cases, governed primarily by chaotic
interwell motion.
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