Tainted Secure Multi-Execution to Restrict Attacker Influence

McKenna McCall Abhishek Bichhawat Limin Jia
Carnegie Mellon University Indian Institute of Technology Carnegie Mellon University
Pittsburgh, USA Gandhinagar Pittsburgh, USA

mckennak@cmu.edu

Gandhinagar, India

liminjia@cmu.edu

abhishek.b@iitgn.ac.in

ABSTRACT

Attackers can steal sensitive user information from web pages via
third-party scripts. Prior work shows that secure multi-execution
(SME) with declassification is useful for mitigating such attacks,
but that attackers can leverage dynamic web features to declassify
more than intended. The proposed solution of disallowing events
from dynamic web elements to be declassified is too restrictive to
be practical; websites that declassify events from dynamic elements
cannot function correctly.

In this paper, we present SMET, a new information flow monitor
based on SME which uses taint tracking within each execution to
remember what has been influenced by an attacker. The result-
ing monitor is more permissive than what was proposed by prior
work and satisfies both knowledge- and influence-based defini-
tions of security for confidentiality and integrity policies (respec-
tively). We also show that robust declassification follows from our
influence-based security condition, for free. Finally, we examine
the performance impact of monitoring attacker influence with SME
by implementing SMET on top of Featherweight Firefox.

CCS CONCEPTS

« Security and privacy — Formal security models; Web appli-
cation security.

KEYWORDS

information flow; knowledge-based noninterference; robust declas-
sification; secure multi-execution; taint tracking

ACM Reference Format:

McKenna McCall, Abhishek Bichhawat, and Limin Jia. 2023. Tainted Secure
Multi-Execution to Restrict Attacker Influence. In Proceedings of the 2023
ACM SIGSAC Conference on Computer and Communications Security (CCS
’23), November 26-30, 2023, Copenhagen, Denmark. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3576915.3623110

1 INTRODUCTION

Online services, for example, banking, social media, and shopping,
typically require access to a user’s personal information, such as
their phone number, location, or credit card details. Web attackers
have been known to steal sensitive user data [25], sometimes via
third-party scripts, which have been observed indiscriminately col-
lecting data, including personal information, from web forms [39].

® This work is licensed under a Creative Commons Attribution
o International 4.0 License.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0050-7/23/11.
https://doi.org/10.1145/3576915.3623110

Information flow control (IFC) monitors are a promising way to
prevent sensitive information from leaking to attackers [21, 31, 35].
They have been used to secure applications in many domains [20,
22, 26, 27, 40, 44]. The canonical IFC security property is nonin-
terference. The simplest form of noninterference says that public
outputs (least privileged) should never be influenced by secret in-
puts (requiring the most privilege). However, in many real-world
applications, this definition is too restrictive to be practical. Sup-
porting principled declassification, which allows selected sensitive
information to be leaked while maintaining an otherwise provably
secure system, is important for many useful web services like web-
site analytics. For instance, if a company wants to know which
products are being clicked on, they may want to track some of their
customers’ interactions on their site. Declassification can ensure
that these third-party analytics will have access to the information
they need (e.g., which products are clicked on), without releasing
other sensitive information.

Prior work that allowed declassification by web scripts either did
not prove formal properties about declassification [11, 12], or used
a simplified model missing some dynamic JavaScript features that
could be leveraged by an attacker to leak information [41]. Later
work explored the threat posed by declassifying events associated
with dynamically added page elements and developed a technique
using secure multi-execution (SME) to prevent these leaks [30]
(detailed discussion in Section 2.2). However, the proposed solution
disallows all events from dynamically generated web elements
from being declassified. While this technique is provably secure, it
risks altering the behavior of secure programs and could prevent
declassification in the benign example described above.

This paper aims to develop an IFC monitor that allows flexi-
ble declassification without sacrificing security. Since SME enjoys
strong security guarantees and do not need to abort the program
(as opposed to NSU [7]), which is desirable for web applications,
we build on prior work on securing dynamic secrets with SME [30]
to develop a more fine-grained technique for protecting dynamic
features from leaking secrets due to declassification.

One key insight is that leaks caused by attackers’ interactions
with declassification can be stopped if the monitor tracks attacker
influence on the page, only preventing declassification when it
involves code added by the attacker. We provide more detailed
examples in Section 3.

We design SMET by extending prior work [30] with techniques
based on integrity labels to enforce robust declassification [19, 43].
Specifically, SMET uses taint tracking within each execution to re-
member the trustworthiness of page elements and their event han-
dlers via integrity labels. These integrity labels indicate attacker
influence and decide whether declassification is allowed.

https://doi.org/10.1145/3576915.3623110
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3576915.3623110

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

2 () tg PP —~X
dv—> Q
(S)

S_E_ s

S—>

Figure 1: Standard SME (left) and SME with declassification
and multiple DOMs (right)

We define our security conditions based on knowledge-based
noninterference [1, 4, 6, 9, 10]. We present a novel knowledge-
based security condition where robust declassification follows from
influence-based security for free.

The same techniques may be applied to knowledge-based secu-
rity conditions to prove transparent endorsement [18] (the integrity
dual of robust declassification), but in this paper, we focus on robust
declassification for ease of understanding. We prove that the design
of SMET is secure. We implement our model on top of Featherweight
Firefox as a sanity check on our semantics and to understand the
impact of our more complex security lattice on performance.

This paper makes the following technical contributions.

e A novel IFC monitor design that combines SME and taint
tracking for more permissive declassification

e Novel security conditions that capture confidentiality, in-
tegrity, and robust declassification.

e Proofs that SMET is secure.

e A prototype implementation in Featherweight Firefox.

Detailed definitions and proofs be found in our companion tech-
nical report [29]. The implementation of our model on top of
Featherweight Firefox is available at https://github.com/CompIFC/
tainted-sme.git.

2 BACKGROUND AND RELATED WORK

2.1 Reactive systems and IFC monitors

Reactive systems have been widely used to model web applications.
A reactive program is a set of event handlers which execute when
they are triggered by events [16]. We consider a single-threaded
model where event handlers execute one at a time. While an event
handler is running, the system is in Producer state. After the event
handlers finish execution, the system waits in Consumer state for
more events to process.

Secure multi-execution (SME) enforces IFC policies in reactive
programs by executing event handlers multiple times—once at each
security level. Each execution only receives the inputs it has privi-
lege to see, and only outputs to channels matching the security level
of the execution [23, 24]. Consider a two-point security lattice with
labels P (Public) and S (Secret), and the ordering P C S (meaning
information can flow from P to S but not vice versa). As shown in
Figure 1, SME would run event handlers twice, where both copies
of the execution see P-labeled data. The S copy of the execution
can see all of the data, but can only output to privileged (Secret)
channels. In the P copy of the execution, Secrets are replaced with
a default value (dv) and can only output to Public channels.

McKenna McCall, Abhishek Bichhawat, & Limin Jia

Faceted execution [8, 14] is a similar multi-execution technique.
Rather than running all of the code multiple times, this approach
creates “facets” of values for every level in the lattice, only when
they depend on a secret. The code runs once until the control flow
depends on a faceted value and the execution splits to evaluate each
facet. Later work combines SME and faceted execution [37] (and an
optimization [2]) and proposes “generalized” multiple facets [33]
to balance the security and performance tradeoffs of the two multi-
execution techniques (in the first two cases), consider a more gen-
eral security lattice (in the last case), and each achieves stronger
(termination-sensitive) security guarantees than offered by tradi-
tional faceted execution. SMET also uses a general security lattice.
The techniques SMET uses may be relevant to faceted execution,
but we focus on SME because the semantics are simpler.

Taint tracking approaches enforce IFC policies by attaching la-
bels to the data in the system, which indicates their secrecy and
trustworthiness. The label on the data determines if an output is
permitted (if the channel trusts the data and has enough privilege
to receive it) or not. Taint tracking is susceptible to implicit leaks
when branching on a secret. One solution is to abort the execution
when updating public data in secret contexts (called no sensitive
upgrade [7]), or simply permit the leaks and block only explicit
leaks that output secret information to public channels (satisfying
a weaker security condition called explicit secrecy [28, 38]). SMETis
a new monitor which composes SME with taint tracking so that we
can keep track of the trustworthiness of the event handlers within
each execution. These labels are determined when the event han-
dler is initially registered and remain fixed throughout execution,
so we don’t need to worry about sensitive upgrades, nor do we
have to resort to an explicit secrecy security condition.

2.2 Declassification with dynamic features

The monitors described above enforce strict noninterference, where
secret inputs are never allowed to influence public outputs. But
this is often too restrictive for common use cases such as analyt-
ics where an online shop wants to learn which products users are
clicking on most, or user authentication where a bank wants to
know a user’s location. Declassification offers a principled way to
release some information. Vanhoef et al. developed an approach to
stateful declassification in SME [41], where declassification policies
are flexible enough to release events, as well as aggregated/approx-
imated data. For instance, “the user’s approximate location may be
released after they give permission” and “the average location of
every 100 mouse clicks may be released” are both stateful policies.

However, our prior work [30] showed that dynamic features
can be used by an attacker to leak more than is allowed by these
declassification policies via the following attack, illustrated in Fig-
ure 2. Consider the 2-point security lattice from before and a web
page with the policy: all user events are secret, click events and the
occurrence of keypress events may be declassified (however, which
key was pressed should remain secret). The P copy of the page is
visible to the attacker, and receives only the public (or declassified)
events, while the S copy is visible to the user and receives all of the
events. Suppose the attacker registers the event handler shown in
Figure 2a which runs whenever a key is pressed and adds a different
button to the page, depending on what is typed (stored in secret).

https://github.com/CompIFC/tainted-sme.git
https://github.com/CompIFC/tainted-sme.git

Tainted Secure Multi-Execution to Restrict Attacker Influence

onKeypress(secret) = case secret :
|1 = new(b1);addEH (b1, onClick{outputp(1)});

|n = new(by);addEH(by, onClick{outputp(n)});
| dv. = new(b1);addEH (b1, onClick{outputp(1)});
new(by); addEH(by, onClick{outputp(n)});

(a) Event handler added by the attacker.

e Ke X

b

(b) Resulting attacker view (P) and user view (S) of the page.

Figure 2: Example of dynamic features causing leaks. The dv
case guarantees that the attacker copy will have a matching
button (colored light blue) to capture the declassified event
and leak the secret.

If the user types i, this event handler would add button b; to the
S copy of the page based on the actual value of the secret. The P
copy of the page receives the event with a default value dv to hide
what was typed, so the event handler adds all possible buttons to
the page (shown in Figure 2b). When the user clicks on b; (S copy
of the page), the click is declassified to the P copy, which is guaran-
teed to have a matching button to capture the event. The onClick
event handler executes the statement outputp(i). Since outputs to
P channels are allowed in the P execution, this leaks what the user
typed to the attacker.

To prevent this leak, our prior work [30] proposes an additional
label Sp for dynamically-generated elements, and restrict declassifi-
cation to only apply to elements labeled S, i.e., events dispatched
on elements labeled Sy are never declassified to P. Accordingly, in
the previous example, the button b; is labeled Sa; hence, the mouse
click on b; is not declassified to P, which prevents the attacker from
learning which key was pressed. While this prevents unintentional
leaks, it can be too restrictive to be practical, which is one of the
motivations for this work.

3 MOTIVATING EXAMPLES

Recall the scenario from Section 1 where an online shop wants
to know which of their products are receiving the most attention.
They use JavaScript to dynamically display products on their site
depending on what the user has searched. To measure product pop-
ularity, they use a third-party analytics library to track where users
are clicking on their site. Because they do not want the third-party
to have access to all of the user’s private information, they treat
the script as Public. To give the library access to the relevant click
information, the shop employs a policy where the coordinates of
each click are Secret, but which product is clicked may be declas-
sified. With the solution described above, everything dynamically

| o]

within.news.com

(5,0) -

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

™~

.9 2 (5,T)
oD -) | g

within.news.com

between.news.com ‘;

within.news.com

between.news.com

(P,T)

\ within.news.com /
bdv

between.news.com ‘7

between . news .com

Figure 3: Information is allowed to flow in the direction of
the arrows. The attacker can influence Untrusted executions
to add page elements or event handlers to try to manipulate
declassification directly within an execution (blue case) or
indirectly between executions (orange case).

loaded to the page (even by code not controlled by the attacker)
will be labeled Sp and excluded from declassification, and thus, the
online shop won’t be able to perform their analytics.

The reason the earlier example (Figure 2b) leaked more than
intended is that the attacker leveraged the declassification policy
to leak information by adding buttons to the page. Meanwhile, the
products added to the web page described above are added by the
shop itself, who should be trusted to trigger declassification. The
underlying problem is not the dynamic page elements, but their
source. Instead of disallowing any dynamic features to influence
declassification, an intuitive fix would simply restrict the attacker’s
influence. This involves protecting the integrity of the data, which
is dual to the confidentiality policies we have discussed so far.

3.1 Examples with integrity labels

Consider a 4-point security lattice with 2 confidentiality labels
(Public and Secret) and 2 integrity labels (Trusted and Untrusted).
Information is allowed to flow from Public to Secret and Trusted to
Untrusted. The complete security lattice is a diamond with (P, T) at
the bottom, (S, U) at the top, and the other labels (P, U) and (S, T)
in between. SME can enforce information flow policies drawn from
this lattice by running one execution for each of these 4 security
levels as shown in Figure 3. In this model, the attacker and other
Untrusted parties, like ad.com, are only able to influence the code
running on the Untrusted executions, while Trusted parties (like
news.com) may influence code running in any execution. In our
examples, the (P, U) execution communicates with the attacker via
ad.com and the user is shown the (S, U) version of the webpage.

In the following examples, we show that attackers can influence
declassification irrespective of whether the user interacts with at-
tacker code directly (similar to the leak from [30]) or indirectly (if
a declassification triggers attacker code in another execution).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Example 3.1. Leaks within an execution. Suppose a user visits
a webpage (within.news.com) which explains that it will share their
account preferences with advertisers (ad.com), but only if they
click the “Agree” button (identified in the code as bagree) to consent.
When the page loads, ad.com adds a large bagree button at the
top of the page with the text “Click me!”, as in Figure 3, where
the buttons coming from ad.com are light blue and the ones from
within.news.com are dark blue. A user may click the button, not
realizing it will declassify their preferences. We call this a leak
within an execution because the user is interacting directly with
attacker-controlled code. This is similar to the attacks from prior
work [30], where the user interacts directly with the page element.

Example 3.2. Leaks between executions. Consider another
webpage (between.news.com) which has the policy that keypress
events are Secret, but clicks may be declassified from Secret to
Public. news.com installs an event handler which adds a different
button to the page, depending on which key the user presses (sim-
ilar to onKeypress in Figure 2, without the dv case). Meanwhile,
ad.com adds all possible buttons to the page and registers an event
handler which is triggered by a click to send them a message, telling
them which button was clicked (similar to the dv case from the
onKeypress event handler in Figure 2). The resulting page is shown
in Figure 3, where the dark orange buttons were added by news.com
and the light orange buttons were added by ad.com. Note that be-
cause news.com is Trusted, the dark orange buttons are added to
all copies of the webpage, including the Untrusted ones.

Like the leak from prior work [30], if the user clicks the bsecret
button on the (S,U) page, the event will be declassified to the
(P, U) execution, which is guaranteed to have a matching button to
capture the event and leak the keypress to the attacker. We call this
a leak between executions because the user is interacting with code
added by the host page which triggers attacker-controlled code in
another execution. This example highlights that it is not enough to
only look at the page the user is interacting with, we also need to
consider the executions capturing the declassified events.

To prevent the attacker from influencing declassification, one
approach would be to extend the solution from prior work [30] to
apply to events originating from dynamic elements in Untrusted ex-
ecutions (which might include attacker-controlled code), as well as
events being released to dynamic elements in the Untrusted execu-
tions. But as we described above, this would also prevent innocent
declassifications, like in the online shop. Likewise, it wouldn’t be
enough to prevent the user from interacting directly with attacker-
controlled code by showing them the (S, T) copy of the page instead
of the (S,U) copy, because this would still be susceptible to the
leaks between executions.

3.2 Our approach: Tracking integrity in SME

To prevent these leaks without sacrificing functionality, we develop
SMET (Section 5.2), which is SME with taint tracking to reflect the
trustworthiness of the source of the code adding new page elements
and event handlers. We check that the user trusts the code they’re
interacting with directly to decide if a declassification should be
triggered (preventing leaks within executions), as well as the code
in other executions to decide whether they should receive the event
(preventing leaks between executions).

McKenna McCall, Abhishek Bichhawat, & Limin Jia

4 SME WITH DYNAMIC FEATURES

We first describe the syntax and semantics of SME for reactive
systems with dynamic features (declassification will be added in
the next section). Our semantics are flexible enough to work with
any finite security lattice of confidentiality and integrity labels.
Following prior work [30], we organize our SME semantics into
three levels: the top-most level is responsible for processing inputs
and outputs, looking up event handlers, and switching between
executions. The mid-level manages the execution for a particular
execution. The lowest level runs the current event handler.

4.1 1/0 Processing and EH Lookup

The syntax for these rules is summarized in Figure 4. The security
lattice includes confidentiality labels, I, € L., which specifies the
privilege needed to access data, and integrity labels, [; € .£;, which
specifies how trusted a component is. Information may flow from
(Ic, I;) to (I, 1)) if I has privilege to see data from I (Ic C [;) and
I trusts data from [; (I; C I). Our earlier example used a security
lattice with £, = {P,S} and L; = {T,U} for PC Sand T C U, but
our rules are general enough to accommodate any (finite) lattice.

Events are associated with elements given by unique identifiers
id. Event handlers of the form onEv(x){c} run command ¢ with
argument x when the system receives event Ev (such as a click).
The security label (I, [;) of an event is determined by the security
policy . An execution trace T is zero or more steps of the top-
level system. An SME configuration K is a snapshot of the system
including the SME state ¥ and the configuration stack ks.

3 keeps track of the persistent state for each execution; each
security level pc = (I, I;) has its own store ole 1) which is the
event handler storage (i.e., the DOM) for each exei:’ultion. The event
handler storage maps identifiers id to attributes v and event handler
maps M, which maps events Ev to their respective event handlers
ehi, ..., ehy. This model allows each execution to have its own copy
of the DOM, whose contents may vary in privilege and trust. Each
execution runs its event handlers separately, beginning at the top
of the configuration stack ks. Each element of the configuration
stack determines what event handler to run, given by configuration
k, and in which execution, given by the security level pc.

As the system runs, it may react to/emit various actions, a. In
the reactive setting, the system waits until it receives an input
which is an event triggering (zero or more) event handlers which
may produce some outputs. In our case, inputs are user interac-
tions id.Ev(v) which are events Ev associated with an element id
(possibly) carrying some argument (e.g., which key is pressed for
a keyPress event or the location of a click). Outputs are given by
values sent along a channel ch. The other actions are silent e.

The semantics for the top-most level are shown in Figure 5. Rule
IN receives an event Ev for page element id with parameter v from
the principal with privilege and trustworthiness given by pc. The
security policy tells us the label on the event is pc’. We run the
event handlers associated with the event in each execution with
enough privilege to see the event and who trust the event, i.e.,
at all executions at or above pc U pc’ in the security lattice. The
lookup semantics (2, E ~» ks) looks up the event handlers in ¥ and
constructs a configuration for each execution in E, resulting in ks.

Tainted Secure Multi-Execution to Restrict Attacker Influence

Security lattice: L = LcXL;
Event: Ev == click| keyPress]| ...
Event handler: eh == onEv(x){c}

Security policy: P
Individual event handler

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Single configuration: « = o%¢s,E

Execution state: s P|C

SME traces: T = K|P+T 2K

Event queue: E = -|E, (id.Ev(v), pc)

SME configuration: K = ks

SME state:) = -|Z,pc— agfl

EH state: oFH = .| oFH id s (0, M)

EH map: M -| M, Ev > {ehy, .., eh,}
Configuration stack: ks == -|(x,pc) :: ks

Actions: a = id.Ev(v)|ch(v)|e

Figure 4: SME Syntax

Expression: e == x|vl|id|uope|esbopey
Command: c = skip|cisez|x=elid:=e
| while e do ¢ |if e then ¢ else ¢z
| output che|new(id,e)
| addEh(id, eh) | trigger id.Ev(e)
Pk

P (id.Ev(v)) = pc’

E = ((id-Ev(v), pc”) | pc” € L s.t. pcU pc’ € pc”) 3, E ~> ks :
N
id.E s
Pr3;- G g)‘m) 3; ks
h
producer (k) K Cg)pc > ks’

a = ch(v) if P(ch) = pc a = e otherwise

Out

P+ 35 (k, pe) = ks (a—i.f) ks i ks

producer (k) K %pc > ks’

OUT-SILENT

P (6 pe) 5 ks =) 37k’ i ks

consumer (k)

70 OuT-NEXT
o, pc
P+ 3 (k, pe) = ks =p> > ks

2(pc) (id.Ev(v)) = ¢ 3, E ~> ks
3, (id.Ev(v), pc) :: E ~» (K, pe) = ks

K=-¢P,-

LOOKUP

LOOKUP-EMPTY
3,

Figure 5: Top-level SME rules for processing inputs and out-
puts, and looking up event handlers

The output rules run event handlers one at a time. When an
event handler is running, the configuration at the top of the stack is
in producer state, producer(x). Rule Out handles outputs produced
by the event handler. An execution performs outputs to channels
only if the label on the channel matches the execution context,
ie., P(ch(v)) = pc. Otherwise, the output is suppressed. Rule OuT-
SiLENT handles steps which don’t produce outputs. When the event
handler finishes running, the configuration at the top of the stack is
in consumer state, consumer(x), and rule OuT-NEXT pops the con-
figuration off the stack to run the next event handler. The execution
state is managed by the mid-level semantics, described next.

Example: Example 3.1 of leaks within an execution uses the se-
curity policy that click events are considered secret and trusted,

P (_.Click())) = (S, T)! and page load events are public and trusted,
P(_.load(_)) = (P,T). The user interacts with the (S, U) copy of
the page and the attacker who serves ads from ad.com is listening
on (P, U) channels.

Initially, before any events have been triggered, we assume that
the SME state is well-formed, meaning the source of the code (I;)
loaded to each execution (I/) is trusted (I; £). The attacker-
controlled code from ad.com only appears in Untrusted executions,
while the code from Trusted news.com will appear in all of the
executions. For our example, we also assume that ad.com registers
an onLoadV function to add the “Click me!” button (from Figure 3),
and news.com registers onLoad” to add the “Agree” button. We use
the superscript U and T to distinguish the event handler added by
ad.com from the one added by news.com.

Then, the initial SME configuration is Ko = X¢; ksg where ks
runs body.load for each execution (ksp will be described in more
detail in the next section) in the following SME state:

0= (SSU)+— body+— (_load — {onLoad¥, onLoadT}),
(P,U) — body— (_ load — {onLoadV, onLoad”}),
(8, T) — body (_load — {onLoad™}),
(P,T) — bodyw (_load — {onLoad™}),

Next, the (S, U) execution runs the onLoadV event handler. Rule

(o,(S,U))
OuT-SILENT applies and makes a step: Ko (=>) Kj. The new

configuration Kj has a new button in the (S, U) copy of the store
and the other copies remain unchanged:

Z1= (SSU)+= body (..),bagree = (“Click me!’;)
the rest are the same as X

The same process will repeat to add the “Click me!” button to the
(P,U) store and the “Agree” button to the other executions. Now
that the event handlers have finished running, rule OuT-NEXT pops
the event handler from ks and the system waits for user input.
Suppose the attacker also installed an event handler in the (S, U)
and (P, U) executions which directly sends them the user’s account
preferences. Since they are listening on a (P, U) channel, the rule
ouT would suppress the output from the (S, U) execution which
knows the real preferences (since P(ch) # (S, U)). The same rule
allows the output from the (P, U) execution, which would instead
output a default value dv, with no access to the real preferences.

!Not to be confused with the isTrusted property distinguishing events which come
from a user from events which were generated by an event handler (see [42]).

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

(04
%, 0,c —pc 2,0, c/,E
pc _
[[e]]U,Z =v

ch(v) .
3, 0,output che — pe 20, skip, -

OUTPUT

[[e]]{fz =v E=(idEv(v), pc)

3, o, trigger id.Ev(e) ;pc 3, o, skip, E

TRIGGER

[els =0 =(pe) =™

id¢ o™ 3" =3[pc ot id - (v,)]]

NEW
3, 0,new(id, e) — ¢ ', 0, skip, -

S(pe) =t P (id) = (v, M)
o = o1 [id — (0, M[Ev — M(Ev) U eh])]
3 =%[pe > o]

. ADD-EH
3, 0,addEh(id, Ev, eh) —p. %', 0, skip, -

Figure 6: (Selected) rules for running event handlers

4.2 Execution State and EH Queue

A single configuration « is a snapshot of one execution, including
the local variables ¢ (which are only accessible to the event handler
currently running), the current command c being executed, the
execution state s of the event handler, and the event queue E. The
execution state is either P for producer (meaning an event handler
is running) or C for consumer (meaning the event handlers have
finished and the execution is ready to process a new event). Here,
the event queue, E, is a list of the events triggered by other event
handlers. The events will run in the same execution, so the pc on
each event in the queue will match the current execution context.
Due to space constraints, the semantics for managing the event
handler queue and execution state may be found in the companion
technical report [29].

4.3 Individual Event Handlers

Expressions in the body of an event handler include variables, val-
ues (integers and booleans), page element identifiers, id, unary,
and binary operators. Commands are mostly standard and include
outputs to channels and dynamic behaviors for adding new page ele-
ments (new(id, e)), registering new event handlers (addEh(id, eh)),
and triggering event handlers (trigger id.Ev(e)).

Selected event handler operational semantic rules are in Figure 6.
Expression evaluation is denoted [[e]]‘g CZ where pc tells us which
copy of the shared storage to access in = and o is the store local
to the current event handler. Candidate outputs are produced by
rule ouTPUT. The other rules are for handling dynamic elements,
including triggering event handlers (rule TRIGGER), generating new
page elements (rule NEW), and registering a new event handler (rule
ADD-EH). In each of these rules, we interact with the copy of the
global storage that matches the current execution context. Event
handlers run in the same context they were triggered in, denoted by
pe. New page elements must have a unique identifier, id ¢ o, and

McKenna McCall, Abhishek Bichhawat, & Limin Jia

are initialized with the given attribute and no event handlers, M = -.
When registering a new event handler, the existing event handlers
associated with the event are looked up in the event handler map,
M(Ev). The event handler map is updated to include the original
event handlers plus the new one, M[Ev +— M(Ev) U eh].

5 DECLASSIFICATION AND SME’

We extend the syntax and semantics from Section 4 to include de-
classification. Due to space constraints, we describe the changes to
the rules in this section and present the full rules in our companion
technical report [29].

p.pr K & Kk

P (id.Ev(v)) = pc’
E = ((id.Ev(v), pc”’) | pc”’ € L s.t. pci pc’ T pc”’)
(R’,Ey) = declassify(D, R, 2, (id.Ev(v), pc), pc’)
S,E:Ej~> ks

In
id.E s
P,DFRT;- (V——(Z;) P9 R’; % ks
declassify (D, R, 3, (id.Ev(v), pc)) = (R’,E)
R=(pd) D((dEv(0),p0)pc',p) = (o's00 Eg)
d’ = update(d, vg)
DECLASSIFY

declassify (D, R, 3, (id.Ev(v), pc), pc’) = ((p’,d’), Ey)

Figure 7: Updated input rule for declassification. Key
changes are shown in red text.

5.1 Stateful Declassification

We use stateful declassification [30, 41]. A stateful policy is one that
may involve the system state when deciding whether to declassify.
Here, we describe the syntax for declassification, shown below.

Declass. policy: D

Declass. module: R (p,d)

Declass. state: p -| p, (id1.Ev1, n1)
Declass. channel: d == (11,01),"+ , (in, 0n)

The declassification policy is given by D. Given an event and the
current state, as well as information from the security policy, P,
D updates the current state and decides whether the event should
be declassified. The declassification module R keeps track of the
current state for making decisions about declassification as well as
channels for event handlers to access released values. A declassifi-
cation state p keeps track of relevant state conditions, such as the
number of times an event has been seen, and the declassification
channel d associates locations ¢ (such as a line number in the code)
with the released value accessible by that location.
Rules for the I/O semantics is updated to include O and R:

a
P.DFR; Y ks = R’; 2, ks’

A declassification function (declassify), shown in Figure 7 is added
to the input rule. It uses the declassification policy D to determine
whether the new event should be released to run event handlers

Tainted Secure Multi-Execution to Restrict Attacker Influence

in additional execution contexts E;, whether the system state p
should be updated, and what values should be updated on the
declassification channel d (if any).

Example: Recall Example 3.1 of leaks within an execution, where
the security policy says that clicks are (S, T), and the declassification
policy says that the user’s preferences may be declassified from S
to P when bagree is clicked.

When the user clicks bagree in the (S, U) execution, IN will share
the event with all the executions with enough privilege and trust the
user (just (S, U)), but we also use declassify to determine whether
the event should be declassified to additional executions:

D ((bagree-Click(), (S,U)), (S, T), (bagree-Click, n)) =
((bagree-Click, n + 1), pref; -)

This indicates that the state p has been updated to reflect that one
more click has been seen (n becomes n + 1), the user’s preferences
should be released on the declassification channel (pref), and the
click event should not be released to any additional executions.

For Example 3.2 of leaks between executions, the security policy
says that button clicks and keypresses are both (S, T), but now, the
declassification policy says that button clicks may be released from
S to P. When the user clicks bsecret, IN runs the event as-is in the
(S,U) execution and declassifies the event as follows:

D((bsecret-click(), (S,T)), (S, T), (bsecret-click,m)) =
((bsecret-click,m + 1), none, (bgecret.click(), (P,U)))

Here, p is updated to reflect the click, nothing is updated on the
declassification channel (none), and the click event is released to
the P executions who trust the event. That is, the event is released
to all executions with label [; s.t. [; trusts the event [l’ (determined
by the security policy) and the source of the event [!” (formally,
I; Ul € I;). Here, this is just (bsecret.Click(), (P,U)). The result
is that the onClick event handler will run in both the (S, U) and
(P,U) executions. The rule OuT will suppress the output from the
(S, U) execution, but permit the output from the (P, U) execution,

which is guaranteed to have a matching button to capture the event.

5.2 Robust Declassification in SME”

In the presence of an active attacker who may control some of the
code, we need to ensure that they do not control what/whether data
is declassified [43]. For the declassifications to be robust against
attacker influence, we need to ensure that the source of the event
i trusts the code I/ on the same execution they’re interacting with
(I € I;). Additionally, we need to check that the source of the event
trusts the code which added the page element in the other execution
receiving the declassified event.

SMET composes taint tracking with the SME semantics presented
in the previous section to also keep track of the source of the page
elements in each execution. First, we modify the event handler
storage o so that page elements and event handlers have labels
indicating the trustworthiness of their source:

EH state: P2 := .| oEH id > (0, M)!
EHmap: M == -|M,Evi> {ehlll, ehf{l}
The input rules prevent leaks within executions by using the labels

in o to decide whether to proceed with a declassification. In
order to declassify, the source of the event must trust the source

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

of the page element. We use the shorthand labelOf (o (id)) to
represent the label on the element identified by id in ¢, and
we write pc |} to mean the integrity label in pc. Then, an event
from a user at security level pc associated with a page element
given by id in oH is allowed to be declassified when the following
holds: labelOf (¢BH (id)) C pe |! (rule IN-RELEASE). Otherwise, rule
IN-No-RELEASE only runs the event in the executions which have
enough privilege to see the event and who trust the user.

We use the declassification function described in Section 5.1 to
prevent leaks between executions. The updated declassification rules
are shown in Figure 8. In addition to looking up the declassified
event(s) and the execution(s) they will run in, robust throws out
any executions where the source of the event doesn’t trust the
source of the page element. Rule ROBUST handles the case where
the user trusts the source of the code (the event is sent to the
execution), and rule NOT-ROBUST handles the case where they do
not (the execution does not receive the event). Then, the lookup
semantics (judgement I,r + 3, E ~ ks) ensure only the trusted
event handlers run. We define (eh,I’) |; as eh when I’ C [and
- otherwise. When there is at least one event handler the user
trusts (Z(pc)(id.Ev(v)) |;= c), rule LookuP-R adds the trusted
event handlers to ks and attaches a label Z(pc) U Z(pc) (id.Ev(v))
reflecting the source of the code. When there are no trusted event
handlers (Z(pc) (id.Ev(v)) |;=), rule LookUP-NOTR moves to the
next execution receiving the declassified event. The rules adding
a new page element (NEW) or event handler (App-EH) from the
command semantics are responsible for assigning the labels in the
event handler store, where [, is the label from rule Lookur-R.

Example: We assume that the initial SME state is well-formed, i.e.,
page elements and event handlers are trusted by the execution con-
text they appear in: execution (I, ;) should trust the page elements
and their event handlers, from source [l' , that is, li’ C ;.

For our example of leaks within an execution, there are three
event handlers. onLoadV is added by the attacker via ad.com, who
is Untrusted, and onLoad is added by the host via news.com, who
is Trusted. These event handlers are associated with the body of
the page, which we treat as Trusted. Recall that we assume that
the source of the code is trusted by the execution, meaning code
from ad.com only runs in the Untrusted executions and code from
news.com runs in both the Untrusted and Trusted executions. Then,
the initial SME state with integrity labels is:

o= (S,U)+— body— (_ load — {onLoadV, onLoad”})T
(P,U) = body (_load — {onLoadV, onLoad” })T
(8,T) = body+— (_ load — {onLoad™)T
(P, T) —» body+ (_load — {onLoad™H)T

Now, when the on LoadV event handler runs, the execution
knows the code came from an Untrusted source because of the
label U. When the event handler adds the “Click me!” button, rule
NEW uses the label on the page element T and event handler U to
determine the trustworthiness of the new button T LI U = U. The
state after adding the “Click me!” button to the (S, U) execution is:

1= (SU)+— body (.)T, bagree — (“Click me!”, { HU

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

P orKk D K

P (id.Ev(v)) = pc’ labelOf (2 (pe) (id)) E pe |
E = ((id.Ev(v), pc”) | pc” € L s.t. pcU pd’ T pc”)
(R',Eq) = declassify (D, R, 2, (id.Ev(v), pc), pc’)

3, E ~> ks pe lLre 3 Eg ~ ksg
IN-RELEASE
(id.Ev(v),pc) ,
P,DFR;Z;- = R’;3; ks i ksg

P(id.Ev(v)) = pd’ labelOf (2 (pe) (id)) & pe |
E = ((id.Ev(v), pc”) | pc” € L s.t. pcll pc’ € pc”
>,E ~> ks

(id'Ev:(z;)) R’; % ks

IN-No-RELEASE

P, D+ R;Z;-

declassify (D, R, Z, (id.Ev(v), pe), pcg,) = (R, E)

D((id-Ev(o), pe), pc’, p) = (p', v, Ea)
d’ = update(d, vg) E =robust(3, Eq, pc |")

downgradey, ((p, d), 3, (id.Ev(v), pc), pc’) = ((p’,d’), E)

robust (2, E, pcg,) = E’

DECLASSIFY

labelOf (2(pe) (id)) T I

robust(Z, ((id.Ev(v), pc) = E), 1) =
(id.Ev(v), pc) :: robust(Z, E, I)

ROBUST

labelOf (= (pc) (id)) Z 1
robust(Z, ((id.Ev(v), pc) :: E), 1) =

robust(3, E, I)
pe,r k2, E~> ks

3(pc) (id.Ev(v)) li=c K=-cP,-
Lr+ 2, (id.Ev(v), pc) = E ~>
(k, pe, Z(pc) L Z(pc) (id.Ev(0))) = ks

NOT-ROBUST

Lr+3,E~> ks

LOOKUP-R

3(pc) (id.Ev(v)) 1= - Lr+3,E~> ks
Lr+ 2, (id.Ev(v), pc) :: E ~ ks

LOOKUP-NOTR

————— LOOKUP-REMP
LrkE3, -~ -

a
lye,d 2, 0,¢ —pc ¥, o, c,E

[e f:zzo

S(pe) =0 idg¢ o™ ¥ =3[pers o id s (0,-)5]]
N

. EW
lSrL‘y dr 2,0, neW(id, e) —pc Z,, o, Skip, .

2(pe) =™ o (id) = (0, M)"
3 = 3[pc - ™ [id — (v, M[Ev — M(Ev) U ekl])lid]]

ADD-EH
Iy, d v %, 0,addEh(id, Ev, eh) —pc ¥, o, skip, -

Figure 8: Robust declassification. Key changes are in red.

Figure 9 shows the resulting page after all of the buttons are
loaded, including their labels. When the user clicks the “Click me!”
button on the (S, U) copy of the page, the input rules will use the
label on the button to determine if the declassification is allowed.
The user is treated as a Trusted source of events, so because U IZ T,

McKenna McCall, Abhishek Bichhawat, & Limin Jia

(S,0)]
-

_ within.news.com_ \
Bsecret (58,T)
b, b, b, Bagree
between.news .com ‘;
within.news.com

(P,T)
bsecret

between.news.com bAgree between.news.com

_________ /

within.news.com
bdv

between.news.com p

Figure 9: Insecure example from Section 3 with robustness
checks. The labels tell us the trustworthiness of the source
of the page elements and event handlers, depicted here as
small white labels on each page element.

rule IN-No-RELEASE prevents the event from being declassified and
the attacker doesn’t learn the user’s settings.

For our example of leaks between executions, the host installs
an onKeypress event handler to some field which adds a different
button to the page depending on what the user types, and the
attacker adds all possible buttons to the page. After the user presses
a key, the SME store has one Trusted button per execution, and
several Untrusted buttons in the Untrusted executions:

So= (SSU) - bsecret - ()T b1 (DY, by > (L)Y
(P,U) - bgy = ()T b1 = (DY, by (L)Y
(Sa T) > bsecret H ()T
(P, T) bgy — (.)T

When the user clicks the bsecret button on the (S,U) copy of
the page, rule IN-RELEASE attempts to declassify the event to the
(P,U) execution since the button is Trusted. Next, the robust rules
use the labels on the button capturing the event to determine if
the (P,U) execution should receive the declassified event. In this
case, the button b; capturing the event was added by the attacker.
Since U [Z T, rule NOT-ROBUST skips the (P, U) execution and the
attacker does not learn which key the user pressed.

6 SECURITY

We define two security conditions and prove that SME satisfies
them. First, we define a knowledge-based progress-insensitive non-
interference with declassification (Section 6.1) which ensures that
the attacker’s knowledge of the secret inputs is not refined as the
system runs outside of what is declassified (and the fact that the
system makes progress). Second, we describe a novel influence-
based progress-insensitive noninterference (Section 6.2) which is
the integrity dual to the knowledge-based security condition to
demonstrate that SME” do not allow the attacker to influence the
more trusted components of the system (except the fact that the
system makes progress). Finally, we show if we treat declassifica-
tion as a trusted behavior, the influence-based security condition
may be extended so that robust declassification follows.

Tainted Secure Multi-Execution to Restrict Attacker Influence

6.1 Knowledge-based security (confidentiality)

Knowledge-based security conditions allow precise specification of
what information (if any) is leaked. We informally define several
knowledge conditions (summarized in Figure 10) to set up our
knowledge-based progress-insensitive noninterference definition.
Formal definitions and proofs may be found in our companion
technical report [29].

For someone with enough privilege to observe data up to label
I, their knowledge is the set of all possible inputs which might
have produced the observations they made. Knowledge can also be
thought of as a measure of uncertainty. As the attacker learns more,
they will become more confident about the inputs received by the
system and the knowledge set will become smaller (i.e., the attacker
has become more certain about what the inputs might have been).
We define the knowledge of an observer with privilege [€ L:

K(T, %0, R, P, 1) = {r| AT’ € runs(Zp, R, P),
T zf T, t =in(T")}

The knowledge of an observer with privilege [is the set of all
inputs from execution traces T’ (r = in(T’)) that have observa-
tionally equivalent at [to T (T zf T’) and start from the same
initial state with the same security and declassification policies
(T” € runs(Zp, R, P)). For now, an input is a user-generated event
(id.Ev(v)). We say that two runs are observationally equivalent at
LT f T’, if they look the same to an observer with privilege [
(i.e., they make the same outputs on any [-visible channel and the
[-visible executions behave the same) T l“ T’ lc The observation
of a trace is the sequence of actions observable by an attacker and
include inputs, outputs, silent actions,? and declassifications rls(...).

Sequence of actions: T == |7 a7 rls(id.Ev(v), R, E)

The rules for the observation of a trace are shown in Figure 11.
Note that T lf is parameterized by p, where p = ¢ is for confiden-
tiality and T L? is the observation of a trace at [, and p = i will

be for integrity (Section 6.2) and T l; is the behavior of a trace at
1. The observation of an output is ch(v) if the output is made on
an observable channel £ (ch) C [or by an observable execution
pc |PC [(rule TP-Out2), otherwise the output is skipped (rule
TP-OuT-S1). Inputs are observable if the security policy and source
is observable (rule TP-IN), and declassifications are observable if
they are successful (rule TP-IN-R). Other actions are observable if
they happen in an observable execution (rules TP-OuT1); otherwise,
they are skipped (rule TP-OuT-S2).

A knowledge-based progress-sensitive noninterference says that
an attacker should not be able to refine their knowledge of the
secret inputs by watching the system run:

K(T, %0, R, P.1) €< K(T = K, 20, R, P, 1)

We write A C< B to mean that each element of A is a prefix of
an element in B (since the last step of T = K may be an input).
When the system takes a step (I' = K), the attacker’s knowledge
should not be refined; they should be equally uncertain about the
possible secret inputs before and after the step. Because we run

2We consider silent actions observable only when they come from an observable
execution, which makes proofs for observable executions more uniform. Since our
equivalence definitions force observable executions to be the same anyway, this choice
does not affect our security conditions.

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

event handlers in a single-thread, it is possible for an event handler
to get “stuck” in an infinite loop, which could leak something to the
attacker if the loop condition is secret. Therefore, we will permit
this leak and prove progress-insensitive noninterference instead. We
define progress knowledge as the set of traces producing the same
outputs and making enough progress to accept another input.

A knowledge-based progress-insensitive security condition is:

K (T, 20, R, P, 1) < K(T = K, %0, R, P, 1)

When the system takes a step, the attacker’s knowledge should not
be refined (except that they learn the system makes progress).

This definition has yet to capture declassification. For example, if
a user’s click on a hat b, is declassified for analytics (like for the
shop from Section 3), the attacker’s knowledge would be refined to
inputs that include the click on by,¢. This leak is permitted by de-
classification, but not by the definition above. Therefore, we define
release knowledge as the set of traces producing the same outputs,
making progress, and releasing the same event. Our definition for
knowledge-based progress-insensitive noninterference with declas-
sification says that, outside of declassification, the attacker should
not learn anything by watching the system take a step (except that
the system has made progress) and when something is declassi-
fied, the attacker should only learn what is declassified. We say
releaseA(T = K) if (last(T) = K) l;: rls(...), where last(T) is
the last state in T. That is, releaseA(T = K) means something
was declassified in the last step.

Definition 1 (PINI with Declassification). A system satisfies progress-
insensitive noninterference, outside of what is declassified, against
I-observers forl € L. iff given any initial global store X, security
policy P, and declassification policy R, it is the case that for all traces

T, actions a, and configurations K s.t. (T =a> K) € runs(2g, R, P),
then, the following holds

o IfreleaseA(T = K):
K(T = K, 30, R, P, 1) 2< Krp(T, %0, R, P, 1,)
o Otherwise: K(T = K, 30, R, P, 1) 2< Kp(T, S0, R, P, 1)

Example Recall Example 3.2 of leaks between executions. The se-
curity policy is that keypress events should be Secret, but clicks
may be declassified from Secret to Public. Which button is added
by the host depends on what the user types. The attacker adds all
buttons by, ..., by and registers an onClick event handler to each
button which outputs i to a (P, U) channel if registered for b;. When
the user types, the attacker isn’t sure which key is pressed. Their
knowledge at this point includes all possible keypresses:

K(K,Zo, R, P, P) = {f keyPress(1), ..., f .keyPress(n)}

The keypress triggers the onKeypress event handler which adds
button b; to the user’s page if they pressed i. Suppose the attacker
also registered a Click event handler to bsecret to directly leak the
user’s keypress through a (P, U) channel. If the output were allowed,
the attacker would be able to eliminate the traces where the user
pressed a different key which refines their knowledge.

(K(KzK 20, R, P, P) = {FkeyPress{1), ...

f-keyPress(secret) :: bsecret-Click(_), .. f—keyPressén}}

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

Knowledge K(T,Zo, R, P, 1) =
{7137 eruns(Zo, R, P), T ~; T', v =in(T") }
Progress I (T, %0, R, P, 1) =
Knowledge {7137 e runs(2o, R, P), T ~; T', 7 = in(T"), prog(T’) }
Release I p (T = K, %0, R, P, 1) =
Knowledge {7 | 3T’ € runs(Zg, R, P), T zf T,
7 =in(T’), prog(T’), releaseT (T, @)) }

McKenna McCall, Abhishek Bichhawat, & Limin Jia

All possible inputs producing the same observations

All possible inputs producing the same observations and accept another
input: prog(T’) holds if T’ can reach the consumer state

All possible inputs producing the same observations, accept another input,
and release the same event: releaseT(T’, &) holds if T’ can be extended to
release the same event

Figure 10: Knowledge definitions. Knowledge and progress knowledge are for defining a knowledge-based progress-insensitive
noninterference. Release knowledge accounts for what is leaked to the attacker through declassification.

Tl?zr

———— TP-Base
PrK ll =-

pelPCl a ¢ {id.Ev(v), ch(v)}

() TP-OuTtl
a,pc
@DrK B 1) P=auT |
pclPC IV P(ch) |PEI
(ch(0),p)
i

TP-OuTt2
(P,D+K ') If'= ch(o) = T" |}
pelPR 1P P(ch) [PE
(ch(©),pe)
e

TP-Out-S1
(P.D+K) P=1" 17

a ¢ {id.Ev(v), ch(v)} P-OunS

pelPg
(ll,PC) n (P Y
P,DFK = T)llzT ll
PULEVD) = p (pe)(id) & pe !
7= id.Ev(v) if pc’ [P upc |[PC 1 7 = - otherwise

id.E s
P,Dv 35 E g) #)

TP-In

Ty F=caT 7

P(id.Ev(v)) = pc’ Z(pc)(id) C pe |}
(R’,E) = declassify(D, R, %, (id.Ev(v), pc), pc’)
7 = rls(id.Ev(v), R",E |]) if R # R’
= id.Ev(v) if R=R’ A pc |P Upc |PC 1
T = - otherwise

id.E)
P,DFR;Z;_ a v——<1;) #9)

TP-IN-R
) P=ca1 |F

Figure 11: The observation (p=c) or behavior (p=i) of T at [

Our knowledge-based security condition would correctly iden-
h(i
tify this output as insecure because: K (K C:>(l) K’,..) 2 K(K,...)

In reality, the SME monitor would prevent the output from the
(8,U) execution to the (P, U) channel. The user’s click would not
be able to directly leak their keypress to the attacker, but it could
be declassified to the (P,U) execution. Since the attacker added
all possible buttons by, ..., by, they are guaranteed to trigger the
leaky output and learn which key the user pressed. Because the
releaseA condition allows the attacker’s knowledge to be refined by

declassifications, our security condition for confidentiality does not
catch this leak. Next, we describe our security condition for integrity
and how this condition can be used to describe both progress-
insensitive noninterference as well as robust declassification.

6.2 Influence-based security (integrity)

We measure the attacker’s ability to change the behavior of the
system with a dual condition to knowledge called influence, (based
on attacker power [5]). At a high level, an attacker’s influence is
the set of all untrusted inputs which might have produced the same
trusted behaviors. The attacks in the influence set have the same
relative ability to influence the system’s behavior. If the attacker
has no influence over the system, then the set should include all
possible attacks: all of the attacks are equally powerless. As the
system runs, the refinement of attacker’s influence indicates that
some attacks are more powerful than the others because the ones
eliminated couldn’t have led to the observed behavior. We define
the attacker’s influence over behaviors at [(for [€ £;) below:
I(T,20, R, P, 1) ={r| 3T’ € runs(Zp, R, P),
T~ T’ At =in(T")}

The influence of an attacker over behaviors at [is the set of all
r which are inputs from execution traces T’ (r = in(T’)) that are
behaviorally equivalent at [to T (T z; T’) and start from the same
initial state with the same security and declassification policies
(T” € runs(Zp, R, P)). We say that two runs are behaviorally equiv-
alent at I if they produce the same [-trusted actions (i.e., they make
the same outputs on any I-trusted channel and the I-trusted execu-
tions behave the same). T lf is defined in Figure 11. We summarize
our influence definitions in Figure 12.

An influence-based progress-sensitive noninterference says the
attacker’s influence over a system should never be refined:

I(T,%2, R P, 1) C< I(T = K, 20, R, P,1])

Similar to progress knowledge, we define progress influence as
the set of traces producing the same behaviors and making enough
progress to accept another input. Then, an influence-based progress-
insensitive security condition states that when the system takes a
step, the attacker’s influence should not be refined, outside of what
control they have over whether the system makes progress:

IP(T, 20, R, P, 1) C< I(T= K, 20, R, P, 1)

6.3 Robust declassification

In addition to showing that the attacker doesn’t have influence over
trusted behaviors, we also want to show that the attacker doesn’t

Tainted Secure Multi-Execution to Restrict Attacker Influence

Influence I(T,%, R, P, 1) =
{r | 3T’ e runs(Zp, R, P), T z; T, t=in(T")}
Progress Ip(T, %0, R, P, 1) =

Influence {7137 e runs(Zo, R, P), T ~; T', v = in(T"), prog(T”)
Robust Lp(T =5 K, 30, R, P, 1) =

Influence {7 | 3T" € runs(Z, R, P), T z; T,
7 =in(T"), prog(T’), robustT(T’, a)) }

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

All possible inputs producing the same trusted actions

All possible inputs producing the same trusted actions and accept another
input: prog(T’) holds if T’ can reach the consumer state

All possible inputs producing the same trusted actions, accept another
input, and capable of the same robust declassifications: robustT(T”, @)
holds if 77 can be extended to create the same trusted page event «

Figure 12: Influence definitions. Influence and progress influence are for defining an influence-based progress-insensitive
noninterference. Robust influence is for defining robust declassification.

Figure 13: The states above and below the dotted line are be-
haviorally equivalent at T even there are different products
in the (P,U) and (S, U) states.

influence declassification. We can define robust declassification by
extending our influence-based security condition.

A naive formalization of robust declassification is as follows.
We model an active attacker by treating the addition of a page
element or event handler (new(id, pc), new(id, eh, pc)) as an input.
A system is robust if any of these attacks have equivalent power.
That is, when a new declassification happens, we will know the
attacker’s code influenced the declassification if the set of attacks
without their code could not have led to the same declassification.
However, it turns out that this definition is too strong and leads to
false positives.

Consider the online shop described in Section 3. The buttons
are all loaded by the Trusted host, so they can safely influence
declassification: the declassifications in this example are robust.
The issue is that behavioral equivalence at T only guarantees that
the Trusted executions behave the same. See the example of two
equivalent traces in Figure 13. The (S, T) execution has the same
products in both traces, as does the (P, T) shop, but even among
two equivalent runs, the (S,U) and (P, U) executions may have
different products. When the user clicks byt in the (S, U) execu-
tion, the click is declassified. But it isn’t possible to produce the
same declassification in the equivalent state because there is no
byat for the user to click on. This makes it appear as though the
attacker had some influence over the declassification, even though
the declassification is actually robust against their influence.

To make these benign influence refinements concrete, we in-
troduce robust influence for when trusted page elements are cre-
ated. Robust influence is the set of traces producing the same

a € {new(id, L), new(id, eh, l;g, lsc) }
pc 'zl 7 = r(id, pc) ?f Isre E pe Ik

7 = r(id, eh, pc) if lig U lse T pc |} 7 = - otherwise
P-NEw

(P,D,r K (epo)) =11]

Figure 14: New rule for the behavior of a trace for robust
declassification.

elements, making progress, and capable of producing the same
robust declassifications in the untrusted executions. This is sim-
ilar to release knowledge from Section 6.1. We say robustA(T) if
(last(T) = K) |'=r(...), where last(T) is the last state in T. That
is, robustA(T = K) means something capable of robust declassi-
fication was added to an Untrusted execution.

To model an active attacker’s ability to add code to the page,
we emit an action for dynamically-generated elements and event
handlers. new(id, pc) is a new page element identified, id, added
to the pc execution, while new(id, eh, pc) is a new event handler
eh registered to the element identified by id in the execution at
security level pc. Sequences of actions include page elements/event
handlers which are capable of robust declassification r(...).

id.Ev(v) | ch(v)

new(id, pc) | new(id, eh, pc) | e
|7 a| T rls(id.Ev(v), R, E)

| 7 ::r(id, pe) | T :: r(id, eh, pc)
We modify the behavior of a trace as shown in Figure 14. When a
new page element is created or event handler is registered, this is
not considered an observable action unless it is capable of a robust
declassification (rule TP-NEw).

Actions: o

Sequence of actions : T

Definition 2 (Influence-based PINI with Robust Declassification).
A system satisfies progress-insensitive noninterference with robust
declassification for behaviors at | € L; iff given any initial global
store Eq, security policy P, and declassification policy R, it is the case

that for all traces T, actions «, and configurations K s.t. (T = K) e
runs(Zo, R, P), then, the following holds
o IfrobustA(T = K):
I(T S K 30,RP.1) 2< Ip(T, 50, R, P,)
o Otherwise: I (T == K, 30, R, P,1) 2< I,(T, %0, R, P, 1)

Example: To illustrate how this new definition is sufficient for
defining robust declassification, we will walk through examples

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

from Section 3. In Example 3.1 of a leak within an execution, the
Untrusted attacker registers the event handler onLoadV and the
Trusted host registers onLoad” to add buttons to the page.

After the page finishes loading, we know that the Trusted “Agree”
button, bagree, must have been dynamically loaded because all of
the behaviorally-equivalent Trusted executions have run onLoad” .
On the other hand, we aren’t sure whether the Untrusted “Click
me!” button, was added because the Untrusted pages are equivalent
whether or not onLoadV has run. At this point, the attacks where
the “Click me!” button has been added are equally as powerful as
the attacks without it:3

IT(K, 20, R, P, T) = {new(b)T, new(b)V :: new(b)7, ...}

If the system allowed the click on the Untrusted bagree to be
declassified, it would mean there must be a “Click me!” button on
the (S, U) copy of the page. Therefore, the only viable attack leading
to this behavior are the ones including the Untrusted bagree button:

I(T b=U> K, R P,T) = {rewb)L,
new(b)V :: new(b)T :: bY Click(), ...}

U

Because 7 (T b=> K, R,P,T) 2< Ip(T,R, P, T), the attacker must
have had influence over the declassification, so it isn’t robust.

Example 3.2 of leaks between executions is similar. The Trusted
host adds a different button to the page depending on what the user
has typed, and the Untrusted attacker adds all possible buttons.

After the user presses a key on their keyboard, we know that
there is one button on the (S, T) page (based on the actual secret
value) and another button on the (U, T) page (based on the default
value dv) because all of the behaviorally-equivalent Trusted execu-
tions have run the Trusted event handler in response to the user’s
keypress. We also know that the (S, U) and (P, U) copies of the page
must include bsecret and by, (respectively) because those buttons
are capable of robust declassification since they were added by the
host. On the other hand, we aren’t sure whether the attacker has
added their buttons, because the Untrusted pages are equivalent
with or without those buttons:

I(K, 20, R, P, 1) = {new(bsecret)s & new(bdv)P,
new(bsecret)® = new(bgy)F = new(b1)V = ... = new(bp)Y, ...}

Now, when the user’s click on bsecret in the (S, U) page is declas-
sified to the matching button b; in the (P, U) page, we know there
must be a b; button on the (P,U) copy of the page to capture the
event. Then, the only viable attack is the one where b; has been
added to the page:

I (K, 30, R, P, 1) = {newlbsecrer)>-newtbapl,
new(bsecret)® :: new(bgy)T = new (b)Y = ... i new(bp)Y, ...}

Since the attacker’s influence has been refined we know this exam-
ple is not robust either.

Finally, consider the secure web shop where the host adds prod-
ucts to the page and declassifies click counts so that a (P, U) library
can do analytics for them. All of the elements are added by the
Trusted host, so they are capable of robust declassification. From
the robustA case in Definition 2, the attacker’s influence can be

3Due to space constraints, we write new(b)” instead of new (bagree, (S, T)) and
new (bagree, (P, T)), and likewise for new(b)Y for the Untrusted executions

McKenna McCall, Abhishek Bichhawat, & Limin Jia

refined by the addition of these elements to include only the traces
that load the same products on the web store. This means that
declassifying a user’s click won’t refine the attacker’s influence and
our security condition correctly identifies this as robust.

6.4 Metatheory

We prove that our semantics are sound. Formally:

Theorem 3 (Soundness). VP, D, X, the SME state X satisfies
knowledge-based progress-insensitive noninterference with declassi-
fication at I, € L. and influence-based progress-insensitive nonin-
terference with robust declassification at l; € L; w.r.t. the security

policy P and declassification policy D.

Complete proofs may be found in our companion technical
report [29]. Robust declassification follows from influence-based
progress-insensitive noninterference. If declassifications are trusted
and we prove that untrusted sources cannot influence trusted behav-
iors, then it must be the case that the declassifications are robust.

Corollary 4 (Robust Declassification). VP, D, Xy s.t. Zg satisfies
influence-based progress-insensitive noninterference at l; w.r.t. the
security policy P and declassification policy D, then an attacker at
ll.' € L; with ll.' Z I; has no influence over whether the user’s events
atl; are declassified.

7 IMPLEMENTATION AND EVALUATION

We have prototyped SMETin OCaml on top of Featherweight Fire-
fox [15], which is a lightweight implementation of the web browser
model. The implementation provides a sanity check on the seman-
tics and helps understand the behavior of programs that restrict
declassification to certain cases. The original Featherweight Firefox
does not include recent browser features, but is expressive enough
to enforce all features of our formalization and demonstrate its fea-
sibility in a browser-like setting. Our implementation is available
at https://github.com/CompIFC/tainted-sme.git. We leave en-
forcement in a real browser to future work.

We modify the model to attach labels to nodes on a web page.
The host page has higher integrity than the user and third-party
integrity. We leverage the implementation from prior work [13]
to label input events and the outputs generated. The labels of the
nodes are fixed across all executions of the browser model. We
omit the trigger command from the semantics and assume that
all events are user-generated. We implement the release module
to perform declassification as per the release policies. When an
input event is received, we check the context (label) of the event
(which is user in our case) and compare it against the label of the
node on which the event was triggered. If the label on the node is
not trusted by the source of the event, then the release module is
not called. Otherwise, the release module writes the declassified
value to a shared channel. For simplicity, we declassify all values
in the release module to the confidentiality level P. The declassify
command reads the last declassified value for that level.

Evaluation: To compare against SME models with declassifica-
tion, we also implement versions of the model with the original
stateful declassification approach [41] and the one that prohibits
declassification on dynamically created elements [30]; we modify
the release module to declassify without checking the node label

https://github.com/CompIFC/tainted-sme.git

Tainted Secure Multi-Execution to Restrict Attacker Influence

(for the former) and assigning a special label SD, which never de-
classifies (for the latter). We observe that the example programs
presented earlier leak information with unrestricted declassification
while our approach is more permissive compared to the approach
where declassification is never allowed for events from dynamic
elements. In terms of performance overhead, our monitor performs
worse compared to the existing approaches due to the operations
involving multiple levels and the additional integrity label. More
concretely, the overhead of running our monitor as compared to
the prior approaches is around 22% and 30%, respectively, for the
example presented earlier.

8 DISCUSSION

Robust declassification and attacker control Prior work on ro-
bust declassification that is most similar to our setting involves
attacker control [5] which is the set of attacks (i.e., untrusted in-
puts) with a similar effect on knowledge. They say declassification
is robust if the attacker control (which are the possible attacks
resulting in the same declassification) includes all of the attacks
reaching the declassification; otherwise, the attacker must have in-
fluenced the declassification. Our definition is similar. We relate the
set of possible attacks before and after declassification and consider
the declassification robust if attacks reaching the declassification
could also result in the same declassification. The key benefit of
our condition over prior work is that robust declassification fol-
lows from our influence-based security condition which makes the
definitions more uniform and simplifies the proofs.

(Transparent) endorsement and qualified robustness The fo-
cus of this work is robust declassification, but like our “influence-
based” security condition is the integrity dual of “knowledge-based”
security conditions for confidentiality, (transparent) endorsement is
the integrity dual of (robust) declassification. Endorsement allows
a program to treat untrusted data as if it were more trusted, and
transparent endorsement ensures that the data is sufficiently public
before endorsing. The idea being that if the attacker supplies infor-
mation they do not actually have the privilege to see, we should
not trust it. For example, prior work [18] proposing transparent en-
dorsement explains that without restricting endorsement to what
data the attacker has the privilege to see, they could cheat in a
sealed-bid auction by simply bidding “one more than the other
person” (even though they don’t know what the other person bid).

In our companion technical report [29], we include (transparent)
endorsement by adding an endorsement policy & and module S,
which functions similarly to D and R. We update the input rules
to ensure the source of the event has enough privilege to see the
page element (Z(pc)(id) [°C pc |€). An event may be both declas-
sified and endorsed as long as the original event is both robust and
transparent (we do not declassify before checking for transparency
or vice versa).

The changes to the security conditions are similarly straight-
forward. We add sanitized influence to prove an influence-based
progress-insensitive noninterference with endorsement. Sanitized
influence measures the amount of influence the attacker gains
through endorsement and is defined as the set of all possible inputs
producing the same trusted actions, accepting another input, and
capable of the same endorsements (similar to release knowledge). If

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

we treat endorsements as public, transparent endorsement follows
from our knowledge-based security condition if we add transparent
knowledge which captures the information leaked by adding an
element to a secret execution that is capable of transparent endorse-
ment (similar to robust influence). The supporting definitions for
these security conditions may be found in the technical report [29].

Note that because an event associated with an attacker-controlled
page element might be endorsed, we are actually proving a qualified
robustness condition [32] (and qualified transparency) which says
that the attacker does not have influence over declassifications,
outside of what has been endorsed (and we do not endorse what
the attacker does not have privilege to see, outside of what has been
declassified). This does not change our security conditions because
sanitized influence (and release knowledge) already capture this,
but it does give the attacker more power over what is declassified
since untrusted code could be endorsed and then be permitted to
influence declassification.

Alternative DOM models: In our model, each execution has its
own copy of the DOM, similar to prior work [13, 17, 30]. Another
option would be to have a single DOM [23, 41]. In these models,
the security policy would determine which API calls would suc-
ceed and which would be replaced with a default value. Yet other
work looks at the possibility of using a single DOM with SME by
tracking secrets (taint) through the nodes, attributes, and event
handlers [28]. It would be challenging to allow similar fine-grained
declassifications of events related to dynamically generate elements
in the first model, and the second model is susceptible to implicit
leak through control flow decisions.

Our “DOM” is a flat structure with few APIs since the struc-
ture of the DOM did not contribute directly to the relationship
between attacker influence and robust declassification. As future
work, it would be interesting to have a more realistic tree-structured
DOMs [28, 36] to model more complex DOM features [3, 34] to ex-
plore whether attacker influence over event bubbling order and
pre-emptive event scheduling (for instance) yields new attacks.

9 CONCLUSION

We developed SMET, an IFC monitor, which combines SME and
taint tracking to prevent attackers from influencing declassifica-
tion. SME” permits the benign declassifications involving trusted
dynamic features—without sacrificing security. We proved that
SMET satisfies progress-insensitive noninterference for both confi-
dentiality and integrity using knowledge-based and influence-based
security conditions, respectively. We showed that robust declassifi-
cation follows from our novel influence-based security condition.

ACKNOWLEDGEMENTS

This work was supported in part by the National Science Foundation
via grants CNS1704542 and CNS2245115, the CyLab Presidential
Fellowship at Carnegie Mellon University, and the DST-INSPIRE
Faculty grant DST/INSPIRE/04/2020/002092. We would also like to
thank the anonymous reviewers for their feedback on our paper.

REFERENCES

[1] Amir A. Ahmadian and Musard Balliu. 2022. Dynamic Policies Revisited. In
Proceedings of the 2022 IEEE 7th European Symposium on Security and Privacy

CCS ’23, November 26-30, 2023, Copenhagen, Denmark

[2

[

=

[10]

[11]

[12

[13

[14]

[15

[16]

[17]

[18]

[19]

[20

[21]

[22]

[23]

(EuroS&P).

Maximilian Algehed, Alejandro Russo, and Cormac Flanagan. 2019. Optimising
Faceted Secure Multi-Execution. In Proceedings of the 2019 IEEE Computer Security
Foundations Symposium (CSF).

Ana Gualdina Almeida Matos, José Fragoso Santos, and Tamara Rezk. 2014. An
Information Flow Monitor for a Core of DOM: Introducing References and Live
Primitives. In Proceedings of the International Symposium on Trustworthy Global
Computing (TGC).

Aslan Askarov and Stephen Chong. 2012. Learning is Change in Knowledge:
Knowledge-Based Security for Dynamic Policies. In Proceedings of the 2012 IEEE
Computer Security Foundations Symposium (CSF).

Aslan Askarov and Andrew Myers. 2011. Attacker Control and Impact for
Confidentiality and Integrity. Logical Methods in Computer Science (LMCS) 7
(2011).

Aslan Askarov and Andrei Sabelfeld. 2007. Gradual Release: Unifying Declas-
sification, Encryption and Key Release Policies. In Proceedings of the 2007 IEEE
Symposium on Security and Privacy (SP).

Thomas H. Austin and Cormac Flanagan. 2009. Efficient purely-dynamic infor-
mation flow analysis. In ACM Workshop on Programming Languages and Analysis
for Security (PLAS).

Thomas H. Austin and Cormac Flanagan. 2012. Multiple facets for dynamic
information flow. In Proceedings of the ACM Principles of Programming Languages
(POPL)

Musard Balliu. 2013. A logic for information flow analysis of distributed programs.
In Proceedings of the Nordic Conference on Secure IT Systems (NordSec).

Anindya Banerjee, David A Naumann, and Stan Rosenberg. 2008. Expressive
declassification policies and modular static enforcement. In Proceedings of the
2008 IEEE Symposium on Security and Privacy (SP).

Lujo Bauer, Shaoying Cai, Limin Jia, Timothy Passaro, Michael Stroucken, and
Yuan Tian. 2015. Run-time Monitoring and Formal Analysis of Information Flows
in Chromium. In Proceedings of the 2015 Network and Distributed System Security
Symposium (NDSS).

Abhishek Bichhawat, Vineet Rajani, Jinank Jain, Deepak Garg, and Christian
Hammer. 2017. WebPol: Fine-grained Information Flow Policies for Web Browsers.
In Proceedings of the European Symposium on Research in Computer Security
(ESORICS).

Nataliia Bielova, Dominique Devriese, Fabio Massacci, and Frank Piessens. 2011.
Reactive non-interference for a browser model. In Proceedings of the International
Conference on Network and System Security (NSS).

Nataliia Bielova and Tamara Rezk. 2016. Spot the Difference: Secure Multi-
execution and Multiple Facets. In Proceedings of the European Symposium on
Research in Computer Security (ESORICS).

Aaron Bohannon and Benjamin C. Pierce. 2010. Featherweight Firefox: For-
malizing the Core of a Web Browser. In USENIX Conference on Web Application
Development (WebApps 10).

Aaron Bohannon, Benjamin C. Pierce, Vilhelm Sjéberg, Stephanie Weirich, and
Steve Zdancewic. 2009. Reactive noninterference. In Proceedings of the 2009 ACM
Conference on Computer and Communications Security (CCS).

Roberto Capizzi, Antonio Longo, V. N. Venkatakrishnan, and A. Prasad Sistla.
2008. Preventing Information Leaks through Shadow Executions. In Proceedings
of the 2008 Annual Computer Security Applications Conference (ACSAC).

Ethan Cecchetti, Andrew C. Myers, and Owen Arden. 2017. Nonmalleable Infor-
mation Flow Control. In Proceedings of the 2017 ACM Conference on Computer
and Communications Security (CCS).

Stephen Chong and Andrew C. Myers. 2006. Decentralized Robustness. In Pro-
ceedings of the 19th IEEE Computer Security Foundations Workshop (CSFW).
Stephen Chong, K. Vikram, and Andrew C. Myers. 2007. SIF: Enforcing Confi-
dentiality and Integrity in Web Applications. In Proceedings of the 16th USENIX
Security Symposium (USENIX).

Andrey Chudnov and David A. Naumann. 2010. Information Flow Monitor
Inlining. In Proceedings of the 2010 23rd IEEE Computer Security Foundations
Symposium (CSF).

Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. 2009. Cross-tier, Label-
based Security Enforcement for Web Applications. In Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIGMOD).

Willem De Groef, Dominique Devriese, Nick Nikiforakis, and Frank Piessens.
2012. FlowFox: a web browser with flexible and precise information flow control.

[24

[25

[26

&
=

[28

[29

[30

(31]

@
£,

[33

[34

[35

[36

@
=)

[38

[39

[40

N
fury

[42]

[43

[44

McKenna McCall, Abhishek Bichhawat, & Limin Jia

In Proceedings of the 2012 ACM Conference on Computer and Communications
Security (CCS).

Dominique Devriese and Frank Piessens. 2010. Noninterference through Secure
Multi-execution. In Proceedings of the 2010 IEEE Symposium on Security and
Privacy (SP).

Dongseok Jang, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. 2010. An Empiri-
cal Study of Privacy-violating Information Flows in JavaScript Web Applications.
In Proceedings of the 2010 ACM Conference on Computer and Communications
Security (CCS).

Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer, Michael Stroucken,
Kazuhide Fukushima, Shinsaku Kiyomoto, and Yutaka Miyake. 2013. Run-Time
Enforcement of Information-Flow Properties on Android. In Proceedings of the
European Symposium on Research in Computer Security (ESORICS).

Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. 2007. Information flow control for standard OS
abstractions. In Proceedings of twenty-first ACM SIGOPS symposium on Operating
systems principles (SOSP).

McKenna McCall, Abhishek Bichhawat, and Limin Jia. 2022. Compositional
Information Flow Monitoring for Reactive Programs. In Proceedings of the 2022
IEEE 7th European Symposium on Security and Privacy (EuroS&P).

McKenna McCall, Abhishek Bichhawat, and Limin Jia. 2023. Tainted Secure Multi-
Execution to Restrict Attacker Influence. https://doi.org/10.1184/R1/22296628.v1
Technical Report.

McKenna McCall, Hengruo Zhang, and Limin Jia. 2018. Knowledge-based Secu-
rity of Dynamic Secrets for Reactive Programs. In Proceedings of the 31st IEEE
Computer Security Foundations Symposium (CSF).

Scott Moore and Stephen Chong. 2011. Static Analysis for Efficient Hybrid
Information-Flow Control. In Proceedings of the 24TH IEEE Computer Security
Foundations Symposium (CSF).

Andrew C. Myers, Andrei Sabelfeld, and Steve Zdancewic. 2006. Enforcing Robust
Declassification and Qualified Robustness. Journal of Computer Security (JCS)
14, 2 (2006).

Minh Ngo, Nataliia Bielova, Cormac Flanagan, Tamara Rezk, Alejandro Russo,
and Thomas Schmitz. 2018. A Better Facet of Dynamic Information Flow Control.
In Proceedings of The Web Conference (WWW).

Vineet Rajani, Abhishek Bichhawat, Deepak Garg, and Christian Hammer. 2015.
Information flow control for event handling and the DOM in web browsers. In
Proceedings of the 2015 IEEE Computer Security Foundations Symposium (CSF).
Alejandro Russo and Andrei Sabelfeld. 2010. Dynamic vs. Static Flow-Sensitive
Security Analysis. In Proceedings of the 2010 23rd IEEE Computer Security Founda-
tions Symposium (CSF).

Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. 2009. Tracking Informa-
tion Flow in Dynamic Tree Structures. In Proceedings of the European Symposium
on Research in Computer Security (ESORICS).

Thomas Schmitz, Maximilian Algehed, Cormac Flanagan, and Alejandro Russo.
2018. Faceted Secure Multi Execution. In Proceedings of the 2018 ACM Conference
on Computer and Communications Security (CCS).

Daniel Schoepe, Musard Balliu, Benjamin C. Pierce, and Andrei Sabelfeld. 2016.
Explicit Secrecy: A Policy for Taint Tracking. In Proceedings of the 2016 IEEE 1st
European Symposium on Security and Privacy (EuroS&P).

Steven Sprecher, Christoph Kerschbaumer, and Engin Kirda. 2022. SoK: All
or Nothing - A Postmortem of Solutions to the Third-Party Script Inclusion
Permission Model and a Path Forward. In Proceedings of the 2022 IEEE 7th European
Symposium on Security and Privacy (EuroS&P).

Deian Stefan, Edward Z. Yang, Brad Karp, Petr Marchenko, Alejandro Russo, and
David Mazieres. 2014. Protecting Users by Confining JavaScript with COWL. In
Proceedings of the 8th Symposium on Operating Systems Design and Implementation
(OSDI).

Mathy Vanhoef, Willem De Groef, Dominique Devriese, Frank Piessens, and
Tamara Rezk. 2014. Stateful declassification policies for event-driven programs.
In Proceedings of the 2014 IEEE Computer Security Foundations Symposium (CSF).
MDN web docs. 2023. Event.isTrusted. https://developer.mozilla.org/en-US/
docs/Web/API/Event/isTrusted [Online; accessed 9-January-2023].

Steve Zdancewic and Andrew C Myers. 2001. Robust Declassification.. In Pro-
ceedings of Computer Security Foundations Workshop (CSFW).

Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Maziéres. 2006.
Making information flow explicit in HiStar. In Proceedings of the 7th Symposium
on Operating Systems Design and Implementation (OSDI).

https://doi.org/10.1184/R1/22296628.v1
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Reactive systems and IFC monitors
	2.2 Declassification with dynamic features

	3 Motivating Examples
	3.1 Examples with integrity labels
	3.2 Our approach: Tracking integrity in SME

	4 SME with Dynamic Features
	4.1 I/O Processing and EH Lookup
	4.2 Execution State and EH Queue
	4.3 Individual Event Handlers

	5 Declassification and SMET
	5.1 Stateful Declassification
	5.2 Robust Declassification in SMET

	6 Security
	6.1 Knowledge-based security (confidentiality)
	6.2 Influence-based security (integrity)
	6.3 Robust declassification
	6.4 Metatheory

	7 Implementation and Evaluation
	8 Discussion
	9 Conclusion
	References

