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Abstract Solar energetic particle (SEP) events, originating from solar flares and Coronal Mass Ejections,

present significant hazards to space exploration and technology on Earth. Accurate prediction of these high‐

energy events is essential for safeguarding astronauts, spacecraft, and electronic systems. In this study, we

conduct an in‐depth investigation into the application of multimodal data fusion techniques for the prediction of

high‐energy SEP events, particularly >100 MeV events. Our research utilizes six machine learning (ML)

models, each finely tuned for time series analysis, including Univariate Time Series (UTS), Image‐based model

(Image), Univariate Feature Concatenation (UFC), Univariate Deep Concatenation (UDC), Univariate Deep

Merge (UDM), and Univariate Score Concatenation (USC). By combining time series proton flux data with

solar X‐ray images, we exploit complementary insights into the underlying solar phenomena responsible for

SEP events. Rigorous evaluation metrics, including accuracy, F1‐score, and other established measures, are

applied, along with K‐fold cross‐validation, to ensure the robustness and generalization of our models.

Additionally, we explore the influence of observation window sizes on classification accuracy.

Plain Language Summary This study is centered on forecasting solar energetic particle (SEP)

events, which can pose serious risks to astronauts and technology. We employed advanced machine learning

(ML) techniques to make these predictions. Our research involved integrating various data sources, including

information about protons and X‐rays emitted by the Sun, to enhance the accuracy of our forecasts. We

evaluated the performance of four distinct multimodal time series data fusion models along with two distinct

unimodal time series models to determine the most effective approach for predicting these solar events.

Additionally, we examined how the choice of time window for predictions influenced their accuracy. To aid in

interpreting the results, we utilized visual representations known as heatmaps, which provide a graphical view

of the data. Our findings have significant implications for improving the safety and success of space missions.

By achieving precise predictions of SEP events, we can better protect astronauts, spacecraft, and vital electronic

systems both in space and on Earth.

1. Introduction

Solar energetic particle (SEP) events, arising from the intense activities of the Sun, specifically solar flares and

coronal mass ejections (CMEs), represent a formidable challenge and concern for space exploration (For-

bush, 1946; Reames, 1995). These events release torrents of high‐energy particles, including protons, electrons,

and heavy ions, which ripple through the vast expanse of space, posing substantial risks to astronauts, spacecraft,

and terrestrial electronic devices (Wu et al., 2009). Accurate prediction of SEP events is crucial to ensure the

safety and success of space missions and interplanetary exploration. In light of the National Aeronautics and

Space Administration's (NASA) ambitious plans to explore the Moon and Mars in the coming decades (Smith

et al., 2020; Watson‐Morgan et al., 2023), the urgency of developing advanced monitoring and predictive systems

for SEP events cannot be overstated.

SEP events are uniquely characterized by the rapid expulsion of these energetic particles from the Sun. These

particles, when they interact with astronauts, present health risks such as cancer and skin reactions (Fogtman

et al., 2023; Simonsen & Slaba, 2021; Walsh et al., 2019). Furthermore, they can wreak havoc on electronic

devices and communication systems here on Earth (J.‐z. Wang et al., 2022; Chen, Carver, et al., 2021). Addi-

tionally, the consequences of SEP events extend into the realm of space missions, potentially jeopardizing their

success. This has been notably emphasized in the context of Mars missions, where the unpredictability of SEP
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events has led to critical mission planning challenges. Hence, the accurate forecasting and proactive mitigation of

risks associated with SEP events call for the development of advanced monitoring and predictive systems.

The scientific community has approached the prediction of SEP events through two principal methodologies:

physics‐based models and data‐driven models (Whitman et al., 2022). Physics‐based models delve into the

intricate mechanisms underpinning SEP events, seeking to understand the conversion of magnetic energy into

thermal energy during solar flares, among other phenomena. While these models, exemplified by the SOLar

Particle Engineering Code (SOLPENCO), have proven effective in predicting gradual SEP events and have been

widely adopted, they are constrained by their reliance on a priori assumptions and simplified representations of

the complex solar processes (Aran et al., 2006). However, factors like computational time and the utilization of

non‐real‐time input observations can hinder physics‐based models' capacity to deliver forecasts with the

immediacy essential for operational decision‐making (Lario, 2005).

In contrast, data‐driven models, often leveraging machine learning (ML) techniques, extract knowledge from

historical observations to discern patterns and precursors of SEP events for predicting future occurrences. These

models circumvent the need for explicit physical models and have exhibited promise in predicting SEP events,

particularly in classification tasks. For instance, the work of Boubrahimi et al. (2017) illuminated that multivariate

time series of X‐ray and proton flux data can serve as precursors for predicting SEP events exceeding 100 MeV

(Boubrahimi et al., 2017). Moreover, Aminalragia‐Giamini et al. (2021) achieved success by training a deep

learning model using solar flare soft X‐ray measurements to predict the onset of SEP events (Aminalragia‐

Giamini et al., 2021). Also, the UMASEP (University of MAlaga Solar particle Event Predictor) model in-

corporates ML in its prediction process (Núñez & Paul‐Pena, 2020). This model has been operational in real‐time

at the CCMC (Community Coordinated Modeling Center) for many years.

Lavasa et al. (2021) utilized a variety of ML techniques for predicting SEPs, including logistic regression|Linear

Regression (LR), fully connected multi‐layer perceptron neural networks, random forests (RF), support vector

machines (SVM), decision trees (DTs), extremely randomized trees (XT), and extreme gradient boosting (XGB).

Additionally, Stumpo et al. (2021) employed SVM and LR methods to achieve SEP predictions similar to the

empirical model for solar proton events real time alert concept (Laurenza et al., 2009). Furthermore, multivariate

time series data augmentation techniques have been effectively applied toMLmodels to enhance the prediction of

SEP events (Bahri et al., 2023; Hosseinzadeh et al., 2023, 2024).

In a bid to further elevate the precision of SEP event prediction, we have turned to data fusion techniques, which

combine information from multiple data sources or modalities (Baltrušaitis et al., 2018). In our study, we

concentrate on time series data fusion methods, which combine time series proton flux data and solar X‐ray image

data. These modalities furnish complementary insights into the solar phenomena underpinning SEP events. Prior

research has underscored the efficacy of multimodal approaches in enhancing prediction accuracy (Ismail

et al., 2020; Ngiam et al., 2011; W. Wang et al., 2020). By harnessing the insights derived from both proton flux

data and solar X‐ray images, our objective is to fashion a comprehensive and robust predictive system tailored for

SEP events exceeding 100 MeV.

This paper represents a comprehensive exploration of time series data fusion techniques for the prediction of

>100 MeV SEP events. We employ six ML models, meticulously tailored for time series analysis, comprising

univariate time series (UTS), Image‐based model (Image), univariate feature concatenation (UFC), univariate

deep concatenation (UDC), univariate deep merge (UDM), and univariate score concatenation (USC). These

models have gained attention for their effectiveness in a variety of time series prediction tasks (Sleeman IV

et al., 2022), and they potentially provide a wide range of approaches for exploring the domain of SEP event

classification.

To assess the performance of our models, we apply stringent evaluation metrics, including accuracy, F1‐score,

and other pertinent measures that are commonplace in similar studies (Alshammari et al., 2024; Aminalragia‐

Giamini et al., 2021; Bain et al., 2018; Saini et al., 2024). We conduct 5‐fold cross‐validation and engage in

extensive testing to ensure the robustness of our models' performance evaluation and their capacity for gener-

alization. Additionally, we delve into vector analysis to investigate the influence of different observation window

sizes on the classification accuracy of our models, in line with the work of Boubrahimi et al. (2017).

Through the development of accurate prediction models for >100 MeV SEP events, our aim is to significantly

enhance the safety and success of space missions. Our findings not only contribute to the evolving field of SEP
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event prediction but also align seamlessly with NASA's strategic objectives in lunar and Martian exploration, as

outlined in Whitman et al. (2022). By using data fusion techniques and advanced MLmodels, our focus lies in the

accurate classification of high‐energy SEP events. While our approach enhances the ability to differentiate be-

tween these event types, it's crucial to clarify that our model doesn't directly address real‐time operational

forecasting or provide estimations regarding the timing of SEP occurrences. Instead, our emphasis is on effec-

tively categorizing these events, contributing to the broader understanding of space weather dynamics without

delving into the real‐time prediction of their occurrences or timing.

2. Data and Methods

In this section, we initiate by providing an overview of the data sources and detailing the data collection pro-

cedures. Following this introduction to our data sets, we then proceed to elucidate the various methods employed

in this study for the fusion of multimodal data.

2.1. Data Set

Consider a scenario involving multiple data sources, denoted as M1, M2, …, Mn. Each Mi represents a distinct

data modality. In this context, we have a sample, x = (x0, x1, …, xn), where each xi corresponds to the features or

representation of the modality Mi. These samples are associated with a set of exclusive classes, C1, C2, …, Cl,

which are used to train a multimodal classifier, denoted as f: M → C, where M represents the feature space with a

dimension of T.

The fusion‐based multimodal classifiers in this research were trained using two distinct data modalities: time

series data and image data. Modality M1 represents the time series proton flux data of the Sun, collected from the

Geostatioanry Operational Environmental Satellite (GOES) satellite. These data are publicly accessible at:

GOES Space Environment Monitor Data: https://www.ncei.noaa.gov/data/goes‐space‐environment‐monitor/

access/avg/. The analysis exclusively utilized data from primary spacecraft within the GOES program. Spe-

cifically, data from primary spacecraft were employed, while data from secondary spacecraft were not included.

Consequently, the potential difference in particle flux between primary and secondary spacecraft was not a factor

in this study. We considered proton flux P6 channel (P6_flux) data recorded by the Energetic Proton, Electron

and Alpha Detectors. Time series data play a crucial role in understanding the dynamic behavior of SEP events,

providing valuable information about the intensity and temporal characteristics of proton flux emanating from

the Sun.

The second modality, M2, consists of images of the Sun captured by Solar and Heliospheric Observatory (SOHO)

from AIA (Atmospheric Imaging Assembly) 304, and is available at Helioviewer: https://helioviewer.org/. These

images provide a visual representation of solar activity and help capture the spatial characteristics of the Sun

during SEP events. To effectively utilize these images in our analysis, we employed an autoencoder, a neural

network architecture consisting of two main components: an encoder and a decoder.

During the training phase, the encoder is responsible for downsizing input images to a latent space, effectively

capturing essential features while reducing dimensionality. The decoder then reconstructs these representations to

match the original image size. This process aims to minimize differences between the original images and their

reconstructions, effectively learning data compression while preserving critical information. After training, we

can use the encoder's hidden layer as a compact and meaningful image representation, highlighting salient fea-

tures in a lower‐dimensional space (Thomas et al., 2016). Therefore, we convert the images into vectors.

Figure 1 illustrates the key steps involved in our data‐driven approach, encompassing data collection, data fusion,

and the subsequent classification process. The process initiates with the collection of data related to both SEP and

NSEP (non‐SEP) events. SEP events are obtained from the GSEP catalog (https://dataverse.harvard.edu/dataset.

xhtml?persistentId=doi:10.7910/DVN/DZYLHK), while NSEP events are sourced from the HEK website

(https://www.lmsal.com/isolsearch). In this work, non‐SEP events are defined as X‐ray events (solar flares)

whose peak intensity is at least C1.3 but did not lead to any SEP event. Therefore, we assume that a >100 MeV

impulsive event may occur if the parent X‐ray event peak is at least C1.3 since SEP events are associated with

solar flares as was suggested in Boubrahimi et al. (2017); Núñez (2011). These data sources provide essential

information about the occurrences of SEP and NSEP events. Subsequently, from each of these event lists, we
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collect the respective data sets from appropriate sources. These data sets serve as the foundational information for

our subsequent analysis.

Data fusion, a process integral to our study, involves the strategic combination of information from both time

series and X‐ray images data sets. This merging technique is pivotal as it integrates the diverse yet complementary

perspectives provided by the time series and image data modalities. By synthesizing these distinct sources of

information, our approach aims to construct a unified, comprehensive portrayal of the solar events. This method

enables us to capitalize on the distinctive strengths of each modality, using the precise temporal details from time

series data and the spatial context offered by image data. This combined representation facilitates a more profound

and nuanced understanding of the underlying solar phenomena associated with these events, enhancing the

robustness and depth of our analysis. Finally, the fused data sets are employed in the classification process, where

MLmodels, as detailed in the previous section, are applied to predict SEP events associated with>100MeV. This

integrated approach, spanning data collection, fusion, and classification, forms the core of our research meth-

odology and contributes to the accurate prediction of high‐impact SEP events.

Figure 2 shows two different processes employed for time series and image‐based data. Focusing on proton flux

channel P6 in the time series data suggests a targeted analysis approach in >100 MeV events prediction. This

channel likely holds specific relevance or exhibits distinctive patterns crucial to the study. Further investigation

into the behavior of this channel could lead to insights valuable for space weather forecasting and radiation hazard

mitigation strategies. On the other hand, employing autoencoders to convert images to vectors for image data

processing indicates a transformational approach. Autoencoders compress the image data into lower‐dimensional

vectors, capturing essential features while reducing noise and irrelevant information. This method can facilitate

easier processing and analysis of the images by condensing them into a more manageable format. The contrast in

methodologies highlights the tailored strategies for handling different data types.

Figure 3 provides a visual representation of our data using t‐SNE, a technique that reduces the dimensionality of

data and projects it into two dimensions while preserving data patterns. In this visualization, we combined 5‐hr

time series observation windows with 60‐Dimensional image transformation vectors to create the t‐SNE pro-

jection. Specifically, we employed t‐SNE to visualize the extracted features, including mean and standard de-

viation, from both time series and vector data.

The t‐SNE projection effectively separates time series data from image data, underscoring the diverse nature of

the data modalities and the complementary information they offer. While it is expected that the 2D projections of

completely diverse data samples, such as vector embeddings of single‐shot images and time‐series observations,

Figure 1. Data collection, fusion, and classification diagram.
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may not be similar, the visualization serves as a valuable tool for understanding the inherent structures within each

modality. Essentially, the takeaway from Figure 3 is the insight it provides into the underlying data distribution.

Table 1 highlights critical information such as the SEP start time, flare start time, flare peak time, flare class, and

NOAA active region for SEP events used in our study. Notably, the flare start time and flare peak time signify the

initiation time of the solar flare and the moment of maximum X‐ray flux during the flare event, respectively. It is

important to note that for this work, we adopt the flare start time as the last observed time within our specified and

fixed observation window for time series data. This specific data from the observation window serves as the input

to our time series data to be fed to the models, ensuring consistency and relevance.

Likewise, we selected an X‐ray image captured before the start time of the corresponding solar flare, for both SEP

and NSEP events. However, it is essential to acknowledge the limitations in the data provided by SOHO that may

affect our image data collection process. Due to the nature of SOHO's data availability, these single‐snapshots were

collected approximately a few hours before the solar flare start time. While there is no specific time mentioned for

each sample, we ensured that the datawere collected very close to the solar flare start time and did not surpass it.We

made sure that we collect the image no more than 4 hr away from the solar flare start time. This is because SOHO

provides images at specific times each day (but not frequently), andwe aimed to select an image captured as close to

the solar flare start time as possible. It is important to note that this variability in the timing of the X‐ray images can

indeed make it slightly harder for our predictive models to accurately predict SEP/NSEP events.

2.2. Methodology

In this study, we employed four distinct multimodal fusion techniques to harness the combined power of time

series proton flux data and solar X‐ray image data, as shown in Figure 4, and two unimodal techniques, for the

accurate prediction of SEP events that associate with >100 MeV events. We utilized Time Series Forest (TSF)

model as the primary classifier across all scenarios to train and test the data. TSF, implemented using the “sktime”

library (Löning et al., 2019), operates as an ensemble technique, employing multiple DTs organized into a forest.

Each DT within TSF is constructed via random interval‐based sampling from the time series data, ensuring

robustness and flexibility in capturing temporal patterns (Rigatti, 2017). This approach allows TSF to effectively

model complex temporal relationships present in the data. To optimize the TSF model's performance, we con-

ducted hyper‐parameter tuning, focusing on adjusting the number of estimators. Through this process, we found

that setting the number of estimators to 150 consistently yielded the most favorable results across all experiments.

Figure 2. Selecting proton flux channel P6 for time series data alongside image vectorization via Autoencoders for X‐ray

images using toy data.
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The findings presented in this paper stem from the model optimization process applied to the entire data set.

However, we illustrate a scenario wherein hyper‐parameter tuning has been exclusively conducted on the train/

validation sets.

The multimodal fusion techniques employed in this study are derived from a review paper by Sleeman IV

et al. (2022), which outlines a comprehensive framework for integrating diverse data sources using multimodal

fusion approaches (Sleeman IV et al., 2022). These methods offer different strategies for integrating and

exploiting information from multiple modalities to improve predictive accuracy. Let us delve into the details of

each of these multimodal fusion techniques, along with two unimodal approaches.

• Univariate Time Series (UTS): The UTS method utilizes only unimodal data, specifically time series data.

This approach focuses solely on the temporal characteristics of the proton flux data, offering a unimodal

perspective to predict SEP events based on time series patterns.

• Image‐based (Image): Similarly, the Image‐based approach relies solely on unimodal data, specifically solar

X‐ray image data. By concentrating exclusively on the spatial characteristics observed in the images, this

method provides insights into SEP event prediction through image analysis.

• Univariate feature concatenation (UFC): Feature concatenation involves merging features from multiple

modalities into a single unified vector representation. In our case, this means combining the information from

Figure 3. Data visualization of two modalities using 5 h time series observation window and 60‐Dimensional image

transformation vector data.
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time series proton flux data and solar X‐ray images into a single feature vector. This concatenated vector

serves as the input for a classification model. UFC is known for its simplicity and ease of implementation,

making it a suitable choice for the initial exploration of multimodal data fusion (Usman & Rajpoot, 2017).

Table 1

List of Solar Energetic Particle Events Associated With >100 MeV Energy Band and Their Corresponding Solar Flare

Characteristics Based on GSEP Catalog

ID SEP start time Flare start time Flare peak time Flare class Active region

1 1997–11–04 06:05:00 1997–11–04 05:52:00 1997–11–04 05:58:00 X2.1 8100

2 1997–11–06 12:20:00 1997–11–06 11:49:00 1997–11–06 11:55:00 X9.4 8100

3 1998–04–20 11:00:00 1998–04–20 09:38:00 1998–04–20 10:21:00 M1.4 8202

4 1998–05–06 08:15:00 1998–05–06 07:58:00 1998–05–06 08:09:00 X2.7 8210

5 1998–11–14 06:10:00 1998–11–14 05:00:00 1998–11–14 05:08:00 C1.3 8375

6 2000–06–10 17:00:00 2000–06–10 16:40:00 2000–06–10 17:02:00 M5.2 9026

7 2000–07–14 10:15:00 2000–07–14 10:03:00 2000–07–14 10:24:00 X5.7 9077

8 2000–07–22 11:50:00 2000–07–22 11:17:00 2000–07–22 11:34:00 M3.7 9085

9 2000–09–12 14:00:00 2000–09–12 11:31:00 2000–09–12 12:13:00 M1.0 9163

10 2000–10–16 08:00:00 2000–10–16 06:40:00 2000–10–16 07:28:00 M2.5 9182

11 2000–11–24 06:00:00 2000–11–24 04:55:00 2000–11–24 05:02:00 X2.0 9236

12 2000–11–24 15:55:00 2000–11–24 14:51:00 2000–11–24 15:13:00 X2.3 9236

13 2000–11–26 00:05:00 2000–11–25 00:59:00 2000–11–25 01:31:00 M8.2 9240

14 2001–01–28 16:45:00 2001–01–28 15:40:00 2001–01–28 16:00:00 M1.5 9313

15 2001–04–09 16:05:00 2001–04–09 15:20:00 2001–04–09 15:34:00 M7.9 9415

16 2001–04–15 13:50:00 2001–04–15 13:19:00 2001–04–15 13:50:00 X14.4 9415

17 2001–04–18 02:35:00 2001–04–18 02:11:00 2001–04–18 02:14:00 C2.2 9415

18 2001–05–20 06:55:00 2001–05–20 06:00:00 2001–05–20 06:03:00 M6.4 9455

19 2001–06–15 15:55:00 2001–06–15 16:15:00 – C2.2 9494

20 2001–09–24 11:15:00 2001–09–24 09:32:00 2001–09–24 10:38:00 X2.6 9672

21 2001–10–22 16:35:00 2001–10–22 14:27:00 2001–10–22 15:08:00 M6.7 9672

22 2001–11–22 09:15:00 2001–11–22 20:18:00 2001–11–22 20:36:00 M3.7 9704

23 2001–12–26 05:45:00 2001–12–26 04:32:00 2001–12–26 05:40:00 M7.1 9742

24 2002–04–21 01:40:00 2002–04–21 00:43:00 2002–04–21 01:51:00 X1.5 9906

25 2002–08–24 01:15:00 2002–08–24 00:49:00 2002–08–24 01:12:00 X3.1 10,069

26 2003–05–28 05:25:00 2003–05–28 00:17:00 2003–05–28 00:27:00 X3.6 10,365

27 2003–05–31 02:40:00 2003–05–31 02:13:00 2003–05–31 02:24:00 M9.3 10,365

28 2003–10–26 17:40:00 2003–10–26 17:21:00 2003–10–26 18:19:00 X1.2 10,484

29 2003–10–28 11:35:00 2003–10–28 09:51:00 2003–10–28 11:10:00 X17.2 10,486

30 2003–10–29 21:45:00 2003–10–29 20:37:00 2003–10–29 20:49:00 X10.0 10,486

31 2003–1–04 21:40:00 2003–11–04 19:29:00 2003–11–04 19:50:00 X28.0 10,486

32 2011–06–07 06:55:00 2011–06–07 06:16:00 2011–06–07 06:41:00 M2.5 11,226

33 2011–08–09 08:10:00 2011–08–09 07:48:00 2011–08–09 08:05:00 X6.9 11,263

34 2011–09–06 01:45:00 2011–09–06 22:12:00 2011–09–06 22:20:00 X2.1 11,283

35 2012–01–23 04:10:00 2012–01–23 03:38:00 2012–01–23 03:59:00 M8.7 11,402

36 2012–01–27 17:55:00 2012–01–27 17:37:00 2012–01–27 18:37:00 X1.7 11,402

37 2012–03–13 17:35:00 2012–03–13 17:12:00 2012–03–13 17:41:00 M7.9 11,429

Note: Unknown data are denoted as: –.
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• Univariate deep concatenation (UDC): Deep concatenation, also known as deep feature concatenation, goes a

step further by merging features at a deep representation level. Separate deep neural networks are used to

extract high‐level representations from each modality's data. These learned high‐level representations are then

concatenated before being used for the final prediction. UDC enables the model to capture complex in-

teractions and dependencies between modalities, making it a powerful approach for multimodal fusion (Kang

& Kang, 2017).

• Univariate deep merge (UDM): Deep Merge integrates features from different modalities at a lower level

within the neural network. Typically, element‐wise operations like summation or multiplication are used to

combine these features. UDM aims to effectively capture both shared and unique information present in each

modality, allowing for a more nuanced representation of the data. This technique can be particularly valuable

when modalities contain complementary information (Yang et al., 2020).

• Univariate score concatenation (USC): The Score Concatenation technique involves training separate models

for each modality. These individual models generate prediction scores. These scores are then concatenated and

utilized as input to a final classification model. USC leverages the strengths of each modality‐specific model

and effectively combines their predictions, similar to an ensemble learning approach. This method is bene-

ficial when modalities have distinct predictive power and characteristics (Guggenmos et al., 2020).

The selection of these multimodal fusion techniques and the inclusion of unimodal methods, UTS and Image,

allows us to explore various strategies for leveraging the information present in time series proton flux data and

solar X‐ray images. Each method brings its unique advantages to the table, and our study aims to determine which

model yields themost accurate predictions for SEP events>100MeV. These techniques are integral to our research

methodology, contributing to the development of robust predictive models for high‐impact SEP events.

We explain the metrics used in this paper to evaluate the classification of our models. Accuracy, as defined in

Equation 1, quantifies the proportion of correct predictions made by the model. In contrast, the F1‐score, as

expressed in Equation 4, serves as a comprehensive metric that balances precision and recall, effectively iden-

tifying positive cases while minimizing the occurrence of both false positives and false negatives. The specific

formulas for F1‐score, precision (Equation 2), and recall (Equation 3) provide a quantitative representation of

these critical performance measures.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

Figure 4. Architecture of multimodal data fusion models. (a) univariate feature concatenation, (b) univariate deep

concatenation, (c) univariate deep merge, and (d) univariate score concatenation.
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F1_score = 2 ∗

Precision ∗Recall

Precision + Recall
(4)

True skill statistic (TSS) and updated Heidke Skill Score (HSS2) have been particularly used in the task of flare

forecasting problem to assess the models in Chen, Kempton, et al. (2021). The TSS and HSS2 metrics are defined

by Equations 5 and 6.

TSS =
TP

TP + FN
−

FP

FP + TN
(5)

HSS2 =
2 ∗ ((TP ∗TN) − (FN ∗FP))

(TP + FN) ∗ (FN + TN) + (FP + TN) ∗ (TP + FP)
(6)

where, TP, FP, TN, and FN represent True Positive, False Positive, True Negative, and False Negative,

respectively.

In our analyses, we employed a five‐fold cross‐validation approach to rigorously evaluate the performance of our

predictive models. In this scheme, the data set is randomly partitioned into five equal‐sized subsets, with each

subset serving as a validation set once while the remaining data is used for training. This process is repeated five

times, ensuring that every data point is included in the validation set exactly once. With five‐fold cross‐validation,

we ensure that each fold contains a reasonable portion of the data for both training and testing in each fold while

still providing a reasonable number of values for evaluating model performance metrics. Specifically, we used 37

SEP and 37 NSEP samples in the balanced setting, leaving 14 samples out of 74 for testing purposes.We also used

stratified 5‐fold cross‐validation for imbalanced data to preserve class ratios across folds. In the imbalanced

setting, we utilized 37 SEP samples and 104 NSEP samples, resulting in an SEP/NSEP ratio of 0.35.

3. Results

In this section, we present the experimental results of our study in detail. Our analysis involved the utilization of

six ML models, each tailored for time series analysis, to predict SEP events with proton flux data and solar X‐ray

images. The first set of results focuses on the influence of different time series observation window sizes and

feature vector lengths on model accuracy, represented through box plots and heatmaps.

We examined the effect of varying observation window sizes and feature vector lengths on the accuracy of two

model types: UTS and Image. To assess the performance of UTS in the balanced setting, we created box plots

showing the accuracy variations for different observation window sizes: 15 hr, 12 hr, 9 hr, 6 hr, and 3 hr, as shown

in Figure 5. The results reveal that the 6‐hr observation window size yields the best performance, with an accuracy

of 79%, accompanied by minimal variance. Notably, the 9‐hr and 12‐hr observation window sizes also show

strong performance. For the Image‐based models, the box plots depict the accuracy variation with different

feature vector lengths: 100, 200, 300, 400, and 500. In our study, the implementation of autoencoders was crucial

for dynamically resizing images to various dimensions, specifically 100, 200, 300, 400, and 500. Leveraging the

capabilities of autoencoders, we devised a sophisticated process to encode the original images into a latent space

representation. This method not only ensures preservation of crucial image features but also enables seamless and

efficient resizing without compromising the integrity or quality of the visuals. The adaptability of autoencoders in

this context has significantly streamlined our workflow, allowing for versatile image manipulation while

maintaining fidelity across multiple dimensions. Among these, image sizes of 300 and 500 exhibit the highest

accuracy, indicating their superior predictive capabilities.

Moving beyond UTS and Image‐based models, we employed heatmaps to visualize the performance of the

remaining models: UFC, UDC, UDM, and USC. These heatmaps represent the average accuracy of each model

(along with their variance estimates) while considering both observation window size (M1) and feature vector

length (M2) as variables. As shown in Figure 5, the heatmap for UFC shows that the model's performance has

been influenced by both observation window size and image size. It shows that the 6‐hr observation window size

and smaller image sizes result in higher accuracy, reaching 77%. UDC exhibits a pattern where smaller image

sizes are beneficial when combined with a 6‐hr observation window size, achieving an accuracy of 77%. Sur-

prisingly, UDC performs exceptionally well with a larger observation window size of 15 hr, reaching an accuracy
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of 84%. In the case of UDM, a 15‐hr observation window combined with a small image size of 100 leads to the

highest accuracy, with an impressive 85%. USC did not demonstrate outstanding performance in our analysis,

with accuracy variations depending on the choice of observation window size and image size. Nevertheless, it

performed relatively better with a 9‐hr observation window and image sizes of 200 or 300.

These results provide valuable insights into the optimal configurations for different ML models to predict high‐

energy SEP events. The data fusion techniques, as shown by these experiments, highlight the importance of

selecting appropriate observation window sizes and image data lengths to enhance prediction accuracy, ultimately

contributing to the safety and success of space missions and the protection of astronauts, spacecraft, and terrestrial

electronic systems.

It is important to note that the inconsistency in the results and the variations in performance across these diverse

dimensions underscore the intricate relationship between the data modalities and the fusion models employed.

Figure 5. Box plots and average accuracy heatmaps with variance for all models using different time series observation

window sizes and different feature vector lengths. The results are from five‐fold cross validation performed on balanced data.

SpaceWeather 10.1029/2024SW003982

HOSSEINZADEH ET AL. 10 of 18

 1
5

4
2

7
3

9
0

, 2
0

2
4

, 6
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://ag
u

p
u

b
s.o

n
lin

elib
rary

.w
iley

.co
m

/d
o

i/1
0

.1
0

2
9

/2
0

2
4

S
W

0
0

3
9

8
2

 b
y

 M
o

ro
cco

 H
in

ari N
P

L
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [2

4
/0

6
/2

0
2
4
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d

itio
n

s) o
n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v

ern
ed

 b
y

 th
e ap

p
licab

le C
reativ

e C
o
m

m
o

n
s L

icen
se



The observed fluctuations can be attributed to the inherent complexities arising from the interaction between the

temporal granularity of time series data and the spatial resolution of image data. Different fusion models might

exhibit varying degrees of sensitivity or robustness to changes in these dimensions, leading to the observed

performance disparities. This inconsistency elucidates the intricate interplay between data granularity and fusion

model adaptability, emphasizing the need for a more nuanced understanding of how varying data dimensions

influence fusion model performance. Further analysis and interpretation of these results will be incorporated to

offer deeper insights into the implications of data dimensionality on the efficacy of fusion models in capturing the

complexities of solar phenomena.

In Figure 6, we present the results of our evaluation of various ML models using a specific configuration: a 6‐hr

time series observation window and 200‐Dimensional image transformation vector data. This configuration was

chosen based on the insights gained from Figure 5 of box plots and heatmaps, which identified it as one of the

most promising settings for prediction accuracy.

The figure consists of six violin plots for balanced and imbalanced data, each representing different performance

metrics, namely Accuracy, F1‐score, Precision, Recall, TSS, and HSS2. These plots provide a comprehensive

view of how each model performed under the specified conditions. Each plot shows the results of the 5‐fold cross‐

validation training and testing process. As it can be seen in Figure 8, all models have higher performance on the

balanced setting.

Notably, the UDMmodel emerges as the top performer across multiple metrics. It achieved an accuracy of 80% on

the balanced setting, indicating its proficiency in accurately predicting high‐energy SEP events. Furthermore, the

F1‐score, which balances precision and recall, highlights UDM's ability to strike a harmonious equilibrium,

scoring an impressive 79% on the balanced setting.

Figure 6. Evaluation of different models using 6 h time series observation window and 200‐Dimensional image transformation vector data on balanced and imbalanced

settings.
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Precision is another crucial metric, as it gauges the model's capacity to minimize false positive predictions.

Univariate Deep Merge shines in this regard with an 81% precision score, implying that it excels in reducing

erroneous predictions, thus enhancing the reliability of its forecasts.

In addition to these key metrics, the figure also provides insights into Recall, TSS, and HSS2 for all the evaluated

models. UDM's strength becomes evident in its exceptional recall rate, affirming its capability to correctly

identify positive instances, as well as its ability to discriminate between positive and negative cases, as indicated

by its high TSS score. Moreover, its high HSS2 score underscores its skill in distinguishing between positive and

negative cases while considering random chance. However, UTS shows significant precision and recall with the

least variant among other models.

It is important to highlight the comparative performance of the Image‐based model in the context of the results

presented in Figure 6. The Image‐based model exhibits the least favorable performance among the models

evaluated. This outcome is largely anticipated due to the model's exclusive reliance on X‐ray images, without

considering the time series proton flux data. In the context of predicting high‐energy SEP events, the absence of

crucial time‐dependent information is a significant limitation, and the results clearly reflect this constraint.

In summary, the results from Figure 6 reveal that, among the six models, UDM consistently shows superior

performance with 80% accuracy, 79% F1‐score, and 81% precision. These findings emphasize UDM's effec-

tiveness in predicting high‐energy SEP events in the specified configuration, reinforcing its potential to enhance

the safety and success of space missions and to safeguard astronauts, spacecraft, and terrestrial electronic systems.

In this part of our experimental results, we investigate the performance of our ML models under varying levels of

Gaussian noise. The aim is to assess how these models respond to different types of noise and different noise

levels when predicting high‐energy SEP events. We introduced three types of Gaussian noise—Noise 1, Noise 2,

and Noise 3, each with a mean of 0 and different standard deviations, with Noise three exhibiting the highest

standard deviation.

The results are presented in Figure 7, which consists of six subplots, each corresponding to one of our six models:

UTS, Image, UFC, UDC, UDM, and USC. The x‐axis in each subplot represents the levels of added noise, ranging

from 0% (no noise) to 100% (maximum noise affecting all test data samples). The y‐axis displays the F1‐score,

which provides a balanced measure of precision and recall.

Figure 7. Average F1‐score for models after applying different Gaussian noise levels to parts of test data samples. 0% defines the case where there is no noise. 100%

signifies that every test data sample is impacted by noise.
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The results show a clear trend where, as noise levels increase, the performance of all models consistently de-

teriorates. This decline is observed in all six models, reaffirming the sensitivity of the models to the presence of

noise in the input data.

Furthermore, different types of noise (Noise 1, Noise 2, and Noise 3) influence model predictions differently.

Among these, Noise 3 stands out as it has the most significant impact on model performance, especially when

applied to all test data samples at the highest noise level. It notably degrades predictions in all models, with the

exception of the Image‐based model, which displays some fluctuations in performance. This distinction can be

attributed to the fact that the Image‐based model does not rely on time series data, and as such, the impact of noise

on its performance exhibits different characteristics.

These findings are based on the average F1‐scores obtained from 5‐fold cross‐validation, ensuring robust and

reliable assessments. The standard deviation values used for Noise 1, Noise 2, and Noise 3 are 0.2, 0.4, and 0.6,

respectively, highlighting the varying intensities of noise introduced to the training data.

The primary goal of this analysis is to show how our models behave in the presence of different types of noise and

varying noise levels or amounts. These insights are essential for understanding the robustness of the models and

their potential to make accurate predictions under real‐world conditions, where noise in data is often inevitable.

Specifically, we applied noise to distinct types of input data, enabling us to evaluate each model's response to

noisy time series and image data separately.

Finally, our investigation concludes with a comparison between our leading model, the UDM, and a variety of

state‐of‐the‐art models prevalent in the SEP event prediction field, as delineated in Figure 8. This plot provides a

comprehensive overview, illustrating the comparative performance of various models concerning both F1‐score

and average TSS. In this case, we decided to perform all classifiers on imbalanced data with 100 samples

including both SEP and NSEP events, as shown in Figure 8a. Furthermore, we performed hyper‐parameter tuning

on train/validation sets and received the best hyper‐parameters for each model, then applied the classification

solely on test data sets. Notably, our evaluation encompasses influential models widely cited in SEP event

prediction research, including XGBoost (Lavasa et al., 2021), SVM (Brea et al., 2018), RF classifier (Arnaut

et al., 2023), and DT (DT) models (Boubrahimi et al., 2017; Ma et al., 2017). These models, recognized within the

SEP and solar flare prediction community for their efficacy, contribute to the depth of our analysis, enriching the

contextual understanding of our UDM's performance. univariate deep merge uses two different modalities (i.e.,

time series proton fluxes and extracted vectors) while other classifiers shown in Figure 8 use only time series

proton flux data. We also show the results for balanced data in Figure 8b for the sake of comparison.

As our findings reveal, our UDM remarkably outperforms the other models in terms of both F1‐score and average

TSS. Specifically, in comparison with XGBoost, SVM, RF, and DT, our UDM consistently show superior

performance. XGBoost exhibits a narrower variance in F1‐score boxplots compared to other unimodal models.

Notably, XGBoost emerges as the frontrunner among the evaluated models, showcasing higher average F1‐score

and average TSS than SVM. Moreover, RF and DT exhibit relatively lower performance in comparison, with RF

displaying greater variance. This comprehensive comparison underscores the unequivocal efficacy of our UDM

in predicting SEP events, highlighting its dominance across diverse performance metrics.

Figure 8. Comparison on model F1‐score and average true skill statistic across different models on imbalanced and balanced settings.
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4. Discussion

4.1. Model Performance and Fusion Methodology

The performance disparities observed among the various fusion models, as illustrated in Figures 5 and 6, are

reflective of the intricate interplay between data fusion methodologies and the inherent characteristics of distinct

data modalities. The discrepancies in Figure 5 arise from the unique fusion strategies employed, where models

like UDM excel in capturing complex interdependencies within the data. Conversely, the lower performance of

the image‐based model depicted in Figure 6 is indicative of the challenges encountered in leveraging image data

for solar event prediction. The inherent complexities in image representation and the sensitivity of the model to

variations in visual features contribute to this observed performance. Moreover, the exclusive reliance of the

image‐based model on visual cues might hinder its ability to capture nuanced temporal characteristics present in

the solar event data, potentially leading to fluctuations in performance under different noise conditions.

4.2. Flare Class Distribution and Solar Cycle Insights

The flare class distribution, as shown in Figure 9, provides insights into the occurrence of solar flares across

different classes, namely C, M, and X. It is essential to acknowledge that our focus on showcasing >100 MeV

SEP events might influence the representation of flare classes in the plot, emphasizing the instances associated

with higher‐intensity flares. While the plot suggests a relatively higher representation of X‐class flares among the

observed >100 MeV SEP events, this selection bias could potentially amplify the visibility of these events. In

reality, C‐class flares are more frequently observed in solar activity. However, Figure 9 only demonstrates that

SEPs are more correlated with strong flares. Therefore, the visualization, by nature of highlighting >100 MeV

SEP events, accentuates the occurrences of higher‐intensity flares without fully representing the overall distri-

bution of solar flares across different classes.

We coupled this information with solar cycle data to gain a deeper understanding of the relationship between solar

activity and SEP events. The barplots show the number of SEP events occurring within each solar cycle for each

solar flare class. This analysis is crucial as it provides evidence of the cyclical nature of solar activity and its direct

impact on space weather. It is worth noting that the solar cycle counts can be influenced by various factors,

including the Sun's magnetic field dynamics, sunspot activity, and solar flare occurrence. We also present the

peak intensity of solar X‐ray radiation, or X‐ray Flux, measured in W/m2. This data has been collected from the

GOES database, accessible at https://www.ngdc.noaa.gov/stp/space‐weather/solar‐data/solar‐features/solar‐

flares/x‐rays/goes/xrs/.

4.3. Addressing Class Imbalance and Refining Data Selection

One of the core challenges in predicting SEP events is the extreme class imbalance within the data set, which

significantly complicates the training and validation of predictive models. In practical scenarios, SEP events are

rare compared to the vast number of non‐SEP events, a fact that is mirrored by our selective data extraction from

the HEK database. Out of a potential 19,568 flares ≥C1.3 from 1997 to 2012, only 37 flares led to>100MeV SEP

events, as cataloged by GSEP. However, our analysis did not utilize all possible non‐SEP events. Instead, we

selectively included non‐SEP events that met specific criteria to ensure relevance and manageability, resulting in

a data set that does not reflect the entire spectrum of available data but is tailored for more focused analysis.

Initially, we employed a balanced data set as a proof‐of‐concept to establish a performance baseline in controlled

conditions. This approach allowed us to fine‐tune our models effectively without the overwhelming influence of

non‐SEP events. However, it is crucial to acknowledge that this method does not perfectly simulate the challenges

encountered in operational environments where the data is highly imbalanced. Therefore, our results, while

promising, serve primarily as a preliminary demonstration of the models' capabilities rather than a definitive

assessment of their operational readiness.

In our study, we further refined our approach to handling real‐world data distributions by employing careful

selection criteria for non‐SEP events. We excluded flares that, although not resulting in recognized SEP events,

occurred close in time to significant SEP events and might have been associated with lower energy SEP events

(e.g., 10, 30, 60 MeV). This careful curation aimed to reduce potential biases in model training and ensure the

reliability of our predictions. Moving forward, future research should continue to explore additional techniques
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such as synthetic minority over‐sampling and other data augmentation methods to enhance the models' sensitivity

to rare SEP events.

4.4. Data Collection Challenges and Model Validation

A critical limitation in the field arises from the scarcity of historical data, primarily stemming from the protracted

duration of solar cycles. The availability of comprehensive records for >100 MeV SEP events is notably limited,

posing challenges in constructing reliable ML models. Such data scarcity may lead to the issue of overfitting,

which can undermine prediction accuracy. To address this challenge, we performed our final evaluations on

unseen test data, as shown in Figure 8. Furthermore, we used a higher number of data samples by collecting more

NSEP events (reaching to 141 samples including both events), creating an imbalanced setting to evaluate the

models on a more realistic application. The quality and accessibility of data constitute a pivotal challenge, as solar

monitoring instruments have inherent limitations, potentially resulting in data gaps or inaccuracies. Therefore,

addressing data quality concerns is of utmost importance in bolstering the trustworthiness of predictive models.

Figure 9. SEP X‐ray flux and flare class distribution, and their corresponding solar cycle counts.
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4.5. Prospects for Real‐Time Prediction and Future Research

The demand for real‐time prediction in the context of space mission planning amplifies the complexity of the

field. In contemplating the potential transition of our methodology to real‐time forecasting, several crucial ele-

ments come into play. Firstly, the availability of real‐time data sources, such as ongoing streams of solar activity

observations, is imperative. Secondly, the development of predictive models optimized for real‐time applications

would be necessary, considering the dynamic nature of space weather phenomena. Furthermore, a thorough

analysis and classification on highly imbalanced setting is needed prior to begin with a real‐time classification

scenario. Lastly, establishing a robust infrastructure capable of continuous monitoring and processing of

incoming data would facilitate the timely and effective utilization of classification methodologies for real‐time

forecasting. While our current study establishes effective classification techniques, the practical implementa-

tion of these methods for real‐time forecasting warrants dedicated research and collaboration within the space

weather monitoring community.

4.6. Addressing Anomalies and Data Quality

The susceptibility of space weather data to noise and anomalies constitutes a challenge that necessitates effective

management. The detection and mitigation of data irregularities are pivotal to preserving prediction accuracy and

reliability. Lastly, the effectiveness of predictive models is intimately connected to the quality and accessibility of

data. Continuous endeavors to refine data collection infrastructure and space weather monitoring systems

represent an ongoing challenge within the field.

It is essential to acknowledge that several of these challenges and limitations were actively addressed in our work.

Sensitivity analysis was employed, utilizing noise injection, to assess the robustness of our models under varying

conditions. Additionally, it is noteworthy that the data used for X‐ray observations were comparatively more rare

and less abundant than the time series proton flux data, underscoring the importance of addressing these dis-

parities in data availability and quality. Addressing these challenges is important in advancing the accuracy and

reliability of >100 MeV SEP event predictions, and it remains a cornerstone of ensuring the safety and success of

space missions. Future research endeavors should focus on refining ML models and enhancing data collection

infrastructure.

5. Conclusions

In this study, we conducted a thorough analysis of predicting high‐energy Solar Energetic Particle (SEP) events,

particularly those within the approximately 100 MeV energy range, which pose significant hazards to space

exploration and terrestrial technology. Our research has leveraged the power of multimodal data fusion by

combining time series proton flux data with solar X‐ray images, thereby enhancing the prediction accuracy of

these potentially catastrophic events. Through the application of six finely‐tuned ML models, including UTS,

image‐based models (image), univariate feature concatenation (UFC), UDC, UDM, and USC, we have strived to

provide precise predictions and a deeper understanding of the underlying solar phenomena responsible for SEP

events.

The results of our investigation have yielded valuable insights. We have demonstrated that prediction accuracy is

influenced by the choice of observation window size and image transformation vector size. Notably, the 6‐hr

observation window size and smaller image transformation vector sizes have shown promising accuracy

levels, thus indicating their potential for enhancing prediction outcomes. However, it is essential to recognize that

different models exhibit varying performance based on these parameters. univariate deep merge, for instance,

excels with a 6‐hr observation window and small image data, achieving 80% accuracy. These findings emphasize

the significance of tailoring model configurations to specific input data characteristics for optimal performance.

Furthermore, In addition to examining balanced settings, we also tested our models in scenarios with imbalanced

data to ensure their applicability to real‐world situations. Our study has also explored the impact of noise levels on

model performance, revealing the sensitivity of our models to noise in the training data. This sensitivity analysis

underlines the importance of data quality and preprocessing in the prediction of SEP events.

In conclusion, our study exemplifies the innovative application of data fusion techniques and advanced ML

models in enhancing the prediction of high‐energy SEP events. While we have made significant strides in

addressing the challenges and limitations, there is still much work to be done to refine and improve the accuracy
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of these predictions. Our research aligns with the objectives of safeguarding astronauts, spacecraft, and terrestrial

electronic systems, ultimately contributing to the success and safety of space missions in lunar and Martian

exploration. As we continue to advance our understanding of space weather, our work paves the way for more

robust and reliable SEP event prediction systems.

Future research directions in SEP event prediction encompass data collection enhancements, advancements in

ML techniques, feature engineering, and interdisciplinary collaborations. These efforts can lead to more robust

and accurate predictions, further contributing to improved space weather forecasting systems.

Data Availability Statement

The research presented in this manuscript relies on various data sources. The space environment monitoring data

used can be accessed from the National Centers for Environmental Information (NCEI, 2020). Solar observation

data was obtained from the Helioviewer Project, and details can be found at Helioviewer Project (2024). We also

utilized solar observation data from Lockheed Martin Solar and Astrophysics Laboratory, available at (Lockheed

Martin Solar &Astrophysics Laboratory, 2024). Furthermore, the GSEP data set directly related to this research is

archived and accessible on Dataverse Harvard (Rotti et al., 2022). Finally, our source codes and experimental

evaluations are publicly available (Hosseinzadeh et al., 2024a, 2024b). These data sources are provided to ensure

transparency, accessibility, and reproducibility in support of collaborative research and the advancement of

knowledge in the field.
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