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Statistical Analysis of Cavity Quality Factor Due to
Localized Losses With the Stochastic Green’s
Function Method
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Abstract—The statistical characterization of the cavity quality
factor (QQ-factor) holds significant practical importance, especially
in the context of large and complex metallic enclosures. While
there are existing methods for analyzing Q-factor statistics at-
tributed to distributed and uniform losses, there is a noticeable
gap in addressing the statistical cavity Q-factor arising from lo-
calized losses, such as aperture leakage, wall coating, and ab-
sorptive loading. This article introduces a physics-oriented, hybrid
deterministic-stochastic approach to predict the statistical distribu-
tion of cavity Q-factor due to localized losses. The key ingredient
of this method is the stochastic Green’s function integral equation
formulation, grounded in a statistical description of the cavity
eigenmodes within an enclosed electromagnetic environment. The
computational model is evaluated through both numerical and
laboratory experiments, validating its reliability and applicability
in real-world scenarios.

Index Terms—Chaos, Green function, mode-stirred reverbera-
tion chambers (MSRCs), quality factor (Q-factor), statistical
analysis.

I. INTRODUCTION

N CONFINED electromagnetic (EM) environments, the
quality factor (()-factor) is an essential parameter to charac-
terize the energy loss inside the cavity, and also a key quality in
understanding and analyzing the properties of internal EM fields.
Applications include electromagnetic compatibility (EMC) test-
ing in mode-stirred reverberation chambers (MSRCs) [1], [2],
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[31, [4], [5], the study of intentional electromagnetic interference
(EMI) to electronics housed inside metallic enclosures [6], [7],
[8], [9], [10], [11], [12], and the analysis of channel properties
(coherent bandwidth, spatial correlation, power decay profile) in
the indoor wireless over-the-air (OTA) testing [13], [14], [15],
[16].

Historically in the study of cavity resonators, the modal Q-
factor was introduced as a measure to account for dielectric and
wall losses inside the cavity for a single eigenmode. This param-
eter, defined by the ratio of stored energy to dissipated power,
multiplied by the modal frequency [17], [18], laid the ground-
work for understanding power and energy behavior within these
resonators. However, the modal (Q-factor becomes less effective
in analyzing the high-frequency reverberation, as the complex
boundary of the enclosure can lead to high modal density and
high modal overlap. As a result, the literature introduced the
composite, effective (Q-factor as an average value (frequency-
averaged or stir-averaged) of the cavity Q)-factor [19], [20]. Itis
noted that the composite ()-factor typically varies smoothly with
operating frequency. It does not characterize the quasi-random
fluctuations between nearby frequencies or different cavity con-
figurations. This limitation underscores the need for character-
izing the cavity )-factor in terms of a statistical measure, such
as the probability density function (PDF).

Broadly speaking, the losses inside a realistic cavity can be
characterized into two categories. One refers to homogeneous,
distributed losses throughout the cavity surface and volume, e.g.,
wall loss due to the power dissipated in the metal walls and
material loss from power absorbed in the dielectric materials
uniformly filled in the cavity. For those distributed losses, it is
predicted that the PDF of Q-factor exhibits a Fisher—Snedecor
F-distribution [21], [22], [23], assuming statistically homoge-
neous and isotropic cavity fields. The theoretical prediction is
verified experimentally in the MSRC setting. Another notice-
able work utilizing the volumetric number of independent field
samples and the central limit theorem is presented in [24], [25],
and [26], which concludes that the @Q)-factor PDF is basically
normal distribution in the overmoded regime of well-stirred
reverberation chambers.

While existing research has primarily focused on the Q-factor
statistics for cavities with homogeneous, distributed losses, there
has been little discussion of the statistical cavity ()-factor due
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to localized losses (e.g., aperture leakage, absorptive loading).
Unlike the case of homogeneous losses, localized losses depend
on the specific lossy components involved. Taking the aperture
leakage as an example, the power loss through the aperture
depends on the aperture shape, surface area, and operating fre-
quency of interest. Therefore, it becomes necessary to integrate
these component-specific attributes into the statistical ()-factor
prediction.

The contribution of this work is a hybrid deterministic-
stochastic model that is built upon a recently developed stochas-
tic Green’s function (SGF) method [27], [28], [29]. The SGF can
be considered as a physics-oriented, statistical surrogate model
for the vector wave equation in large, complex enclosures. It pro-
vides a computationally efficient approximation of enclosed EM
environments based on a statistical representation of the cavity
eigenfunctions and eigenvalues. By leveraging the SGF method
as a cavity surrogate model, we integrate the component-specific
features of the localized losses through an SGF surface integral
equation (IE) formulation. The statistical predictions of aperture
leakage, absorptive loading, and wall coating are validated by
numerical simulations and experimental results. To the best of
authors’ knowledge, the work represents an original contribution
and the first result to analyze the statistical (-factor for localized
losses in the literature.

We remark that the initial study of this work has been reported
in a conference paper [30]. This article significantly extends and
elaborates the approaches and numerical experiments presented
in [30].

II. METHODOLOGY FOR ABSORPTIVE LOADING
A. Background and Problem Statement

The Q-factor of the enclosure is a key quality in calculating
the statistical properties of internal EM fields in an electrically
large cavity. Generally, the Q-factor @ is defined as

Us (w)
Pd (w)

Qw)=w (1)

where w is the angular frequency, Us is the steady-state energy
stored in the cavity, and Py is the dissipated power. It is noted
that the macroscopic definition of Q)-factor as in [21], [24], and
[23]1is considered here, instead of modal (Q-factors for individual
cavity eigenmodes. We are interested in studying the fluctuation
of the )-factor for an ensemble of statistically similar cavity
environments, i.e., varying stir states in an MSRC, or changing
the frequency within the coherence bandwidth.

Broadly speaking, the statistical fluctuation of the @Q)-factor
depends on the nature of the loss mechanisms contributing to
the dissipated power P,. If the loss is distributed throughout the
enclosure, the fluctuations in -factor are small. This was an
assertion that was tested early in the development of what is
known as “wave chaos” [31]. Howeyver, if the loss is localized in
the cavity, the Q-factor can fluctuate significantly, which is the
primary interest of this article.

Consider an electrically large, complex cavity with both uni-
form distributed losses and localized losses, the (Q-factor can be

Mode stirrer
Dielectri i
electric  Tx dipole ~
Ipading T [~
. [~
b b 5]
Rx dipole sets
“MSRC
Fig. 1. Illustration of the design of the numerical experiment for dielectric
loading.

TABLE I
QUANTITATIVE MEASURE OF THE STATISTICAL PREDICTION

Mean value KL divergence
Methods Cube Sphere Cube Sphere
RPW 2201.69 | 4015.17 N.A. N.A.
Full-wave 2169.58 | 3818.86
Proposed work (o« = 0.1) | 2015.06 | 3713.79 | 0.0753 | 0.0193
Proposed work (o = 1) 2035.10 | 3764.69 | 0.1094 | 0.0165
Proposed work (o = 10) | 2050.85 | 3809.20 | 0.1120 | 0.0175
expressed as
-1 -1 -1
Q (W) = Quni (OJ) + Qloc (w)
_ 1 Pyuni (W) | 1 Pyjoc (w) @)
w U (w) w U (w)

In the following, we will analyze the statistical Q)-factor, denoted
as Qoc, attributed to three distinct localized loss mechanisms:
absorptive loading (discussed in this section), aperture leakage,
and wall coating (covered in Section III).

Taking the case of dielectric loading as an example, the design
of the numerical experiment is illustrated in Fig. 1. Here, a
small electric dipole is placed inside the cavity as the transmitter
(Tx). This Tx dipole is responsible for the cavity excitation. The
other sets of receiving (Rx) electric dipoles are utilized as the
probe devices to measure the received vectorial electric fields
(E-fields), denoted as E*, EY, and E*.

Next, we introduce an artificial surface Sq over the boundary
of the dielectric object to facilitate the calculation of surface
electric and magnetic currents. By leveraging the data collected
from the internal E-fields and surface currents, we can obtain
the stored energy U, within the cavity and the dissipated power
Py 10c in the dielectric loading. The ratio between wU, and Py joc
gives rise to the Qq, according to (2).

To acquire a statistical ensemble of cavity @Q-factor Qjoc,
one may rotate the mode stirrer in numerical experiment and
collect the U and Py o for each stirrer state. It is clear that
when first-principles numerical modeling is used, we need many
full-wave simulations to obtain a statistical ensemble of U, and
Py 1oc. The computation complexity is prohibitively expensive
for electrically large cavities. In this work, we address this
challenge by harnessing the capabilities of a recently developed
statistical wave model known as the stochastic dyadic Green’s
function (S-DGF). This model serves as an efficient and effective
statistical solution to the vector wave equation within large
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and complex enclosures. The utilization of S-DGF significantly
enhances the computational efficiency of our numerical analysis.

B. Introduction of S-DGF

The S-DGEF is based on a statistical description of the eigen-
modes of an enclosed EM environment. Let us consider a 3-D
metallic cavity of volume V featuring distributed losses. The
cavity wall is modeled as a perfect electric conductor (PEC)
boundary condition. Within the cavity, the volume is filled
with a homogeneous medium characterized by permittivity €,
permeability 1o, and conductivity o. It is noted that the medium
conductivity o is introduced to account for the homogeneous,
distributed losses occurring within the cavity.

Consider the second-order vector wave equation

V x VXE(r) —k’E(r) = —jwued (r') 3)
where k2 is the square of complex wave number, defined by

K = wlpoeo — jwpoo = k* — jk? /Qun @)
in which k& = w,/lg€q is the free-space wavenumber, and the

cavity Q-factor Qun = wep/o.
The electric dyadic Green’s function satisfies

VxVxG (r,r) kG (r,r)=-I6(r—1) (5

where T is the unit dyad (idemfactor) and superscript ee identifies

the contribution from the electric current source to the E-field.
The stochastic DGF in the dyadic form can be constructed

through the expansion of eigenfunctions [29, Appendix A]

e (r, k;) @ W (v, k;
Wen=LEFEEEY o
i ? Quni
where ® indicates an outer product between two vectors. W5 and
k; are the ¢th electric eigenvector and eigenvalue of the cavity.
In prior work, we proposed the substitution of approximate, sta-
tistically defined eigenvectors and eigenvalues. Specifically, the
statistics of eigenvectors are derived from Berry’s random wave
model (RWM) [32], taking into account different orientations of
polarization. The statistics for eigenvalues are generated using

Wigner’s random matrix theory (RMT) [33].

After incorporating the RWM and RMT approximation, the
expression of S-DGF for a pair of source and field points is given
by [29]

v, v’ km) KV
i 272

Gg (r,r') =Re [@‘{f (r, r’)} + Z (7
where é;e(& r’) is the electric dyadic Green’s function of
free-space. Dyg (r,1’; ky,) is a dyadic product of correlated
Gaussian random variables. We have shown that the mean value
of Dg (r,1’; ky,) is related to the homogeneous Green’s dyadic
as

9 _
(DS (s k) ) = = Im [G (r, )] ®)

kmV
The eigenvalues A are calculated from the Gaussian orthogo-
nal ensemble (GOE) of random matrices, and « is a macroscopic
dimensionless loss-parameter defined by o = k3 V/ (272 Quni)-

C. Extension of S-DGF

In order to conduct surface IE-based modeling of the dielectric
object, it is imperative to extend the S-DGF of electric type to
general forms of Green’s dyadic. These dyadics characterize the
contributions from the magnetic current source to the magnetic
field (é‘;“m), from the electric current source to the mag-

. —~me .

netic field (Gg ), and from the magnetic current source to the
E-field (Gg ).

Consider the second-order vector wave equation

V xVxH(r)—kH(r) = —jweM (r'). )
The magnetic dyadic Green’s function satisfies
VxVxG(r,r)— kG (r,r) =I5 (r—1'). (10)

It is easy to show that a similar eigenfunction expansion exists
for Gmm, denoted by

—mm ’ ‘Il,an r,ki ®‘I’?l r/,ki
L ey =y MR B W R

K2 — kY — o

(1)

9

where ¥}" is the 7th magnetic eigenvector of the cavity. In a
cavity resonator, these magnetic eigenvectors can be constructed
from the electric eigenvectors by the relation k; W' = V x ¥?
[34].

We recall that after incorporating the RWM, the vector com-
ponents of W¢ are expressed as a superposition of many plane
waves with uniformly distributed orientation and polarization.
In the Cartesian coordinate system, we have

WS (r k) =0 (o) X+ 007 (r)y + 057 (r) 2 (12)

where the vector components are

N
Uo* (r) ~ lim

N—o0
n=1

— sin,, cos ¢y, cos b,,) cos (k;€, v+ ()]

[an (_ COS Q/Jn sin ¢n

13)

N
U2V (r) ~ lim

N—o0
n=1

— sin ), sin ¢, cos ,,) cos (k;&, -r+ )]

N
U (r) ~ Alfim [ay, sin 1y, sin 0,, cos (k;&, r+0,)].
—00

n=1

[ay, (cos 1, cos ¢y,

(14)

5)

The polarization angle v,,, direction €,, and phase (3,, are inde-
pendent, uniform random variables. The amplitude a,, satisfies
(Aman) = ﬁ&mn, in which V is the volume of the cavity.

Correspondingly, the vector components of magnetic eigen-
vector W™ can be approximated as

N
U (r) ~ lim

v N—o0
n=1

— siny, sin ¢y, ) sin (k;&, v+ 3,)]

[, (cos iy, cos ¢y, cos b,

(16)
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Fig. 2. Notation for the covariance derivation.
N
UMY (r) ~ lim Z [an (cos iy, sin ¢, cos O,
N—o0 1
n—

+ sin ey, cos ¢y, ) sin (ki€ -+ B,)] (17)

N
U (r) ~ Al{gnooz [—an, cos iy, sin O, sin (k; &, - v+ B,)] .
n=1
(18)

By leveraging the central limit theorem, we note that all
three vector components W;*, &Y and ¥;"* are zero mean
Gaussian random variables. The statistics of the ¥ (r, k;) ®
W (r/, k;) can be elucidated through the outer product of cor-
related Gaussian random variables, denoted as Dyg (r,1’; k;).
This is achieved using the discrete Karhunen—Loeve expansion,
a method well-documented in the literature [35], [36]. Specifi-
cally, considering the source point r’ and the observation point
r are located along z-axis, as illustrated in Fig. 2, the covariance
function between vectorial components can be derived and the
proofs for these derivations are provided in Appendix A

CIm(R) = (W (1), WP () = 5 A (R B) (19)
Cm(R) = (WP (1) WP () = 5 f (WR)(20)

1
C(R) = (W)™ (v), U™ () = 337 fy/ (ki) 2D

where the distance R = |r — 1’|, and f| (k;R) and f,,(k;R)
represent transversal and longitudinal correlation described by

3 |sink;R sink;R— k;Rcosk;R
k; = — - 22
sin (k;R) — kiR cos (k;R)
kR) =3 : . 23
fry (kiR) R (23)

The results are essentially the same as the case of electric
eigenvectors in [29]. The mean value of the dyadic expression
in the numerator of (11) is

(D" (e, x5 k) ) = (W1 (x, k) @ WP (', )
= Cop (R)XX + C (R)YY + CI(R)22
21

= 7I<;<V1m [@I)nm (r,r'; kz)}

(24)

where G, (r,r') is the magnetic dyadic Green’s function in
free space, defined by

e (25)

By following the derivation in Section I1.B [29], we can derive
the magnetic S-DGF as

—-mm = A\VAV4 e*ij
G (e, k) = (T4~ .
o (rr5k) ( + ) IR

m(r, k) KV

—mm — mm ﬁm
Gg (r,r’):Re[GO (r,r’)}—&—z SX 52" (26)

m — J&
Next, we will derive Green’s dyadic, denoted as ége, repre-
senting the contribution from the electric current source to the
magnetic field. It satisfies
G (r,r') =V x Gy (r,r)
-y V x W (r, k) @ ¥ (v, k;)
o 2 g2 k2
i k kl ] Quni

K2 =k~ j

i
To reveal the statistical property of érsne, we first derive the
covariance function between vectorial components of ¥} and

W?. As is shown in Appendix B, the results are obtained as

m,x e, / sz
Co(R) = (W (), W3V () = Sy (RiF)  28)
m,? e,xr (. / sz
Cz(R) = (W1 (v) W5 (1) = =g fy (kiR) - @9)
Crx(R) =Cypy(R) =CIE(R) =0 (30)
Crz(R) = CTE(R) = CyZ(R) = CZj(R) = 0. 3D

We recall the expression of the free-space dyadic Green’s
function Gy (r, 1’), given by

G, (r,r';k) =V x Gy (r,v';k) = Veiij x1 (32)
0 9 Ll - 0 9 ) - 47T'R .
The explicit dyadic form of (32) can be written as
- . 1 efij . —
Gy (r,r';k) = (—]k — R) TR RxL  6¥

Regarding the two points given in Fig. 2, we have the real and
imaginary parts
ERsinkR + coskR
4dmR?
—me /. _ sinkR — kRcoskR
Im [GO (r,r ,k;)} = IR

By comparing (28)—(31) with (35), we have the mean value
of the dyadic expression in (27)

Re [ég“e(r, r'; k)] - (§% — X9) (34)

Fx—-%y9). (35

(D& s k) = (O (v, k) © W5 (1, k)
= CM(R)RY + CM(R)§%
27

=———Im [@ge (r,r'; k:z)] .

v (36)
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The mean of stochastic Green’s dyadic Gg (r,r’) can be
obtained as follows:

e ki (Ds. (r,7'; k)
<Gs (I‘,r/)> - ZZ: kg _Sk;—eruni>
Im [GO (r,r’;ki)}

_7ZA — k2

=Gy (r,1).

In the abovementioned derivation, we have utilized the expres-
sion of mean space between two adjacent squared eigenvalues
A(k?) = 22 /(k;V), the Sokhotski—Plemelj theorem for the
real line, and the Kramer—Kronig relation between the real part
and imaginary part of ége(ly r’). Finally, the Green’s dyadic
Gy (r, 1) can be constructed as

I Qe
37

e, k) K2V
272

Gg(r,r)= Re[GO (r,r) }—FZD

m

38
)L —ju (38)

The Green’s dyadic G¢'(r,r') has the same expression as
Gy (r,r’) based on the duality principle.

D. Analysis of Electric Dipoles Inside Enclosures

The electric S-DGF can be directly utilized to analyze electric
dipole problems shown in Fig. 1. Specifically, we consider the Tx
dipole characterized by a thin, short conducting wire of length
[ placed inside a 3-D metallic enclosure. In this scenario, both
the electrical length and the radius of the wire are significantly
smaller than the wavelength, allowing us to apply the thin-wire
approximation. We assume that the electric current on the dipole
follows a vector triangle function, denoted as Vt(I‘/ ), with the
peak current at the center represented by J. The radiated E-field
can be expressed using the electric field integral equation (EFIE)

r) = jw,u/@; (r,r')

The Tx dipole acts as the source to generate the stochastic EM
field within the cavity. We may introduce another small electric
dipole as an Rx probe device. Utilizing the Galerkin method
and vector triangle basis and testing functions, the EFIE can
be formulated as [Zg] - J, = [Cg] - J¢, where J, is the electric
current at the center of the Rx dipole. The self-term and coupling-
term impedances are determined by the following expressions:

Zs =jwu/vr<r>-/@§e(
Cs = —jwp / vi(r)- / Gg (r,r)

Substituting (7) into (40) and (41), we can obtain the explicit
form of Zg and Cg as (see Appendix C for detailed derivation)

Zs = jXI + jz\/fTr - /R§

[Vi(x')J]dr'.  (39)

v (r')dr'dr (40)

vi(r)dr'de.  (41)

Tx dipole

f

MSRC
€05 Ho> O

Fig. 3. Notations for the cavity dielectric loading problem.

/%

where R{, and X{ are the real and imaginary parts of the dipole
impedance, Zy = jX{ + R{, using free-space dyadic Green’s
function as the kernel. w!, and w?, represent independent, zero
mean, unit variance Gaussian random variables.

In order to measure received vectorial E-fields, we can place
three independent Rx dipoles along with the X-, §-, and Z-axis,
respectively. The resulting matrix equation is given by

; t
Csz_lz /RB.M.

™ )"m_ja

75 Jx Cs"
A R (0400 IS PN )
Zg'] L cg'

Equation (42) can be straightforwardly extended to include many
Rx dipoles inside the enclosure.

E. Analysis of Cavity Dielectric Loading

Considering a homogeneous dielectric object illuminated by
an electric dipole inside the enclosure, as shown in Fig. 3. The
boundary of the dielectric object is denoted as S4. The boundary
value problem can be decomposed into the interior subproblem,
i.e., the solution of the wave equation within the dielectric object,
and the exterior subproblem with the wave solution exterior to
the dielectric object. The entire domain solution is obtained
by the enforcement of electric and magnetic field continuities
across the bounding surface of the dielectric object.

In this work, we employ a surface IE method known as the
Poggio—Miller—-Chang—Harrington—Wu-Tsai (PMCHWT) for-
mulation [37] to analyze the dielectric object. The homogeneous
(DGF) is utilized for the interior dielectric subregion, while the
stochastic DGF is employed for the cavity subregion outside of
the dielectric object.

Regarding the interior dielectric subregion, we have EFIE and
magnetic field integral equation (MFIE) using Green’s function
in the homogeneous dielectric medium

E(r) = jwu/ Gy (r,r') - J (r')dS'

/GH r,r)

M (1) dS' (43)

J(r')dS’
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+ jwe / Gy (r,r')-M(r)dS'. (44)
For the cavity subregion, we have EFIE and MFIE using the
SGF

Es (r) = jwuo / Gg (r,r') - J (') dS’

+ / Gg' (r,r')-M(r)dS’' (45)

Hs (r) = / Gg (r,r')-J(r')dS'

+ jweo / Gg' (r,r')-M(r')dS.  (46)

To derive the discrete matrix equation, the dielectric surface
S is discretized using a collection of triangular meshes denoted
by K. Both trial and test functions employ the surface div-
conforming vector Rao—Wilton—Glisson (RWG) functions [38],
v, which are defined over K.

By applying the interface conditions, i.e., tangential continu-
ities of EM fields across the dielectric boundary, and Galerkin
testing method [39], the surface IE in (43), (44), (45), and (46)
can be represented in a matrix equation as

23+ 2y 2T+ Zg™ | | Ja Ccy' - T,
Cg’t - Ji

h,j h,j h, h,
2+ 2y 23T+ 2™ | [ My

] NG

The impedance submatrix blocks labeled with subscript S
utilize the SGF as the integral kernel, while those marked with
H utilize the homogeneous Green’s function of the dielectric
medium. The Jq and My represent the solution vectors for
surface electric and magnetic currents on the dielectric surface
Sa. The right-hand side characterizes the cavity electric and
magnetic fields radiated from the electric dipole. The explicit
expression of (47) is provided in Appendix D.

FE. Calculation of Statistical Cavity Q-factor

We are now ready to analyze the statistical cavity @)-factor for
the problem statement illustrated in Fig. 1. The wave physics
involving the Tx dipole, Rx dipoles, and the dielectric object
is modeled by an IE matrix equation of the following compact
form:

e,j e,j e,m e,m e,X e,y e,z

7S 4+Z8 7SNz o ey e Ja
. . h )

ZOHZY ZETHZET CEY o CgY Cyt|[My
X,j X,m X,X <
cy! (o5 % hE
C%-,J CgJH Zé’y J¥
Z,j Z,m Z,Z Z
c C? 72" || 37

T
= [cgta cbtae oxtae cytae gt @)

In (48), JX/Y/% are the solution vectors of electric current for
a finite number NV sets of X-, ¥-, and 2z- directed Rx dipoles. In
addition to the matrix blocks described in previous sections, we
have introduced matrices Cg/ 0x/¥/% 5 ccounting for the coupling
between the dielectric surface currents and Rx dipole sets. It is

Rx dipole sets

’ Al
7’ 71
T SRR o
| Dielectric ~ Tx dipole : :
' oading 1 I
@ T .
1 1 1
1 1 1
: S S :
| i
1 1
I 1
I,

Fig. 4.
problem.

Ilustration of the reduced-order model for the dielectric loading

noted that there are no coupling terms between Rx dipoles, as
they are used as probing devices.

We remark that the matrix equation (48) only involves the
wire currents on the Tx/Rx dipoles and the surface currents
on the dielectric surface. The coupling between these currents
and their interaction with the cavity interior are statistically
characterized through the S-DGF model. Therefore, this is no
need for the discretization of the cavity enclosure and mode
stirrer. Compared to the original problem statement in Fig. 1,
the reduced-order model is illustrated in Fig. 4.

After obtaining the solution of (48), the dissipated power
Py av1 18 then calculated by integrating the Poynting vector over
the surface of the dielectric object, that is

Pyan = %Re [Z / / J¢ xn; - (M) dSl} (49)

where M¢ and J¢ represent the surface electric and mag-
netic currents on each triangle. n; is the corresponding normal
direction.

Given the use of linear triangular basis functions for the Rx
dipole currents, retrieving the vectorial E-field from the electric
current solution is straightforward. For example, the X-directed
E-fields at Rx probe locations can be obtained by

x_ 2

E
l

VA (50)

Subsequently, the cavity energy density can be approximated by

€

We= 7 [(B)T- (B%)"+(EY) " (BY)"+ (B9 T (B)].

(D
The energy stored in the cavity is calculated as U; = W, - V.

Finally, the cavity @Q-factor due to the absorptive dielectric
loading is obtained by using (2)

Us
w .
Pd,abl

Qavl (W) = (52)

By repeating the abovementioned procedure with different S-
DGF IE matrices, we can predict the statistics of cavity ()-factor
due to the dielectric loading.
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exterior

Cavity Wall (PEC)

interior

Tx dipole

Fig. 5. Illustration of the aperture leakage problem.

III. EXTENSION TO OTHER LOCALIZED LOSSES
A. Extension to Aperture Leakage

1) Surface IE Formulation for Aperture: Consider a locally
quasi-planar cavity wall with an irregular aperture situated in
the xy-plane, as illustrated in Fig. 5. The surface of the aperture
opening is represented by S,. The objective is to calculate the
surface magnetic current M = E x Z at the aperture, induced
by an internal Tx dipole inside the cavity.

Based on the equivalence principle, an equivalent interior
problem can be derived by considering the aperture covered by
a PEC [40]. At the aperture surface, the magnetic field relation
is expressed as

H; (r) = 2H™ (r) + H"" (r) onS,. (53)

Here, H, represents the tangential components of the total
magnetic field. The H* denotes the tangential components
of the magnetic field radiated by the Tx dipole. The H?’f
represents the tangential components of the radiated magnetic
field by the surface magnetic current M

() = 2L ([ @

where the n = \E is the wave impedance, 7, (®) is a tangential
trace operator defined by: 7(u) := i x (u x i)

Another equivalent problem can be established for the exterior
region by filling the interior cavity region with a PEC. The aper-
ture surface IE for the exterior region in terms of the magnetic
field is given by

-t

Finally, by applymg the boundary condition at the aperture, i.e.,
the continuity of magnetic fields for exterior and interior regions,
H/(r)(:= H}"") = H,(r), we have

HY* (r) - H® (r) = 2H* (r) on S,,.

) - M(r) dS’) (54)

) - M(r') dS’) . (55)

(56)

To derive the discrete matrix equation, the aperture surface S,
is discretized using triangular elements denoted by K. Both trial
and test functions make use of the RWG functions v" defined
over K", Through the application of interface condition and
Galerkin testing method [39], the SIEs in (54), (55), and (56)
can be expressed in a matrix equation as

Y3+ Y3 M, =C¥ . J,. (57)

Mode stirrer

Aperture Txdipole |

I >

) <>
e

Rx dipole sets
~"MSRC

Fig. 6. Illustration of the design of the numerical experiment for the aperture
leakage problem.

Here, M, is the solution vector for the magnetic current at the
aperture. Y§ is the aperture admittance matrix for the exterior
region in terms of free-space dyadic Green’s function, which is
calculated by

e[

K Kh

Gor )-v (r’)}ds'ds. (58)

The matrix Y§ consists of real and imaginary parts, expressed
as Y§ = R + 7X§. Following the steps outlined in Appendix
F [29], we can construct the aperture admittance matrix Y § for
the interior cavity region

. a | a \T
Yg:jxg+%zm.w.

Ja

VRE.

(39)

The coupling matrix between the Tx dipole and aperture currents
is given as
a,t ?n - (wy )
Cy' = Z VRS- e \/5 (60)

The solution of the aperture magnetic current can then be used
to analyze the power leakage from the aperture.

2) Calculation of Statistical Cavity Q-factor: To analyze the
statistical cavity @-factor for aperture leakage, the design of
the numerical experiment is illustrated in Fig. 6. By leveraging
the proposed statistical surrogate model using S-DGF, the wave
physics associated with the Tx dipole, Rx dipoles, and the
aperture is modeled by an IE matrix equation of the following
compact form:

Y;+Y: Cy* oCyYoCcyl M, cyt
X,a X, X x X,t
Cia % NENS - = Cbsut ~Ji. (61)
CS 7 JY CS
z,a 7,2 7 z,t
CS ZS Jr CS

After obtaining the solution of (61), the power leakage

through the aperture can be calculated as

]' * *

Pue = 5Re[Mg - (Y§)" - M]. (62)

Following the similar procedure given in Section II-F, the

probabilistic Q-factor (Qi,) caused by aperture leakage can be
generated.
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Fig. 7. Illustration of the design of the numerical experiment for Q.

Fig. 8.  Transmission line analogy for EM reflection from coated surfaces.

B. Extension to Wall Coating

We extend our methodology to predict the statistical proper-
ties of the )-factor, denoted as @)y, attributed to the presence of
a localized wall coating. In Fig. 7, we observe the application
of a lossy, thin coating on the cavity wall. This coating consists
of asingle layer of dense dielectric material with a high dielectric
constant. The thickness of the coating layer is denoted as 7.

In the subsequent analysis, particularly when dealing with a
dielectric material characterized by a high relative permittivity,
we utilize the equivalent surface impedance of the coating,
denoted as Z... To provide a visual representation of this concept,
refer to the transmission line analogy depicted in Fig. 8. For the
details of the impedance calculation, readers are directed to [41,
Table I].

In comparison to the aperture leakage problem elaborated in
the previous section, the wall coating problem exhibits a similar
reduced-order model and the corresponding surface IE matrix
equation. The distinction arises from the admittance matrix
governing the relationship between the electric current J and
the magnetic current M on the coating surface. By using the
equivalent impedance Z., we have the following impedance
boundary condition at the coating surface

ZJ—nxM=0. (63)

Through the Galerkin testing method, the admittance matrix
for the coating region can be described as

(64)

Here, G,,, is a Gram matrix, with matrix entries determined by
the inner product of the testing and basis RWG functions. We can
then replace the matrix Y§ by Y§ in (61) to obtain the surface
IE matrix equation for the system model.

Following the same procedure described in the previous sec-
tion, we can generate samples of cavity Q-factor, Qy., due to
the wall coating.

IV. FURTHER TECHNICAL DISCUSSION
A. Impact of the Choice of «

Initially, it may seem counterintuitive that the construction
of the S-DGF in (7) also requires an input parameter known
as the cavity loss-parameter «. It is crucial to note, however,
that the choice of « does not affect the statistical distribution
of the calculated cavity Q-factor due to localized losses. This
can be explained as follows. The parameter « is related to the
Q-factor, Qyni, which is related to the uniform loss of the cavity.
In this article, the stochastic (Q-factor of the localized losses is
directly calculated by Qioc(w) = wUs/ Py 1oc. As we are solving
acoupled stochastic system of equations involving the Tx dipole,
Rx dipoles, and lossy components, different o values give rise
to different cavity E-field solutions. But both the stored energy
(numerator) and dissipated power (denominator) in (2) are pro-
portional to the E-field square. Thereby, the calculated statistical
cavity Q-factor due to localized losses remains unaffected by the
choice of o

The methodology can be conceptually compared to the ab-
sorbing cross-section (ACS) measurement of dielectric loading
in reverberation chambers. For each mode stirrer configuration,
the cavity stored energy is expressed as U = € <|EC|2> V', where
<|EC|2> is the spatial averaged squared magnitude of the cavity
E-field, also known as the chamber constant. The dissipated
power due to dielectric loss is denoted by P; = o, (|Ec|?) /n,
in which o, is the ACS of the dielectric loading. As both U
and P, are contingent on the chamber constant, the ACS value
calculated by the ratio of dissipated power to stored energy is
related to the dielectric object itself, independent of the specific
reverberation chambers under consideration.

B. Applicability of the Proposed Work

The research results are particularly relevant in the context
of electrically large cavities exhibiting high modal density and
modal overlap. In such scenarios, where a macroscopic cavity
Q-factor is more relevant than the modal @)-factor, the proposed
methodology is shown to be useful and valuable. It is essential to
emphasize that, owing to the stochastic nature of the S-DGF, the
results do not provide precise Q-factor values for a specific, well-
defined cavity geometry or locations of the lossy components.
Instead, they provide predictions for the probability distribution
of the cavity Q-factor across an ensemble of statistically similar
cavity environments.

V. VERIFICATION AND VALIDATION

A. Verification of Cavity Q-Factor for Absorptive Loading

1) Problem Description: The first numerical study concerns
the cavity Q-factor resulting from power dissipation under lossy
objects within the enclosure. The goal is to validate the predicted
statistics of ()-factor with full-wave numerical simulations.
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Fig. 9. Illustration of the numerical experiment setup.

The numerical experiment setup is illustrated in Fig. 9. The
dimension of the cavity is 1m x 1m X 1m in length, width,
and height. The cavity wall is treated as the PEC boundary
condition. An electric dipole of length [ = 7.5 cm directed along
with Z-axis is used as the cavity excitation. The cavity is loaded
with a dielectric cube of size 0.1 m and constitutive parame-
ters, €, = 10, u, = 1, and loss tangent 6 = 0.2. To generate a
configuration ensemble, we have included an irregular Z-folded
stirrer consisting of five 0.3 m x 0.3 m metallic plates that are
arranged in different folding angles. The center of the stirrer is
located at x = —0.25m and y = —0.25 m.

2) Numerical Approaches: We have considered the follow-
ing three numerical approaches to characterize the cavity Q-
factor. In the first approach, we conduct full-wave simulations
using commercial software. The mode stirrer is rotated through
12 positions over 360° for a frequency range of 1.99 to 2.01 GHz
with 2 MHz frequency stepping. At each stirrer position and
frequency, we uniformly collect E-fields within the cavity to
compute the stored energy stored Uy, and the S-parameter S11
of the radiating dipole. The dissipated power is then approxi-
mated by the radiated poweras Py =~ P, = 1 — [S1; |2. The total
number of cavity ()-factor samples is 132, obtained using (1).

As an additional comparison, we explore the well-known ran-
dom plane wave (RPW) [42] approach, which has been applied
to determine the absorption cross section of lossy materials
under arandom field excitation [43]. The mean-value ACS, (o),
is obtained by averaging M = 5000 RPW simulations. Each
full-wave simulation uses /V,, = 100 RPWs as excitation and is
solved by the PMCHWT IE matrix equation. Consequently, a
deterministic -factor, denoted as Qabl, is obtained using the
formula

2V
CHIE

The third approach utilizes the proposed work for the statis-
tical prediction of cavity Q-factor for absorptive loading. We
employ electrically small electric dipoles of length [ = 5 mm as
both the cavity excitation and E-field probes. These dipoles are
modeled by the EFIE (42). The dielectric loading is modeled
by the PMCHWT (47), incorporating both the homogeneous
DGF and stochastic DGF as integral kernels. The overall system
of matrix equation is provided in (48). To verify the assertion

Qubl = (65)

x107 ‘
—Full-wave simulation
1 = Statistical prediction («=0.1)
& o Statistical prediction (a=1)
¥/ -Statistical prediction (a=10)
0.8 gﬁ' * RPW simulation
%:
L o
00.6 5
o
0.4
0.2
0 - P [
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abl
Fig. 10. PDF of the cavity @Q-factor for dielectric cube loading.
x107*
—Full-wave simulation
5- - Statistical prediction (a=0.1)-
@% - Statistical prediction (a=1)
T\ -=-Statistical prediction (a=10)
4 ; \i * RPW prediction
53
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a
Fig. 1. PDF of the cavity Q-factor for dielectric sphere loading.

that the choice of «a in the S-DGF does not affect the PDF of
calculated cavity @-factor, we have considered three different
choices, « = 0.1, 1, and 10, corresponding to a cavity factor
Quni = 37311.11, 3731.11, 373.11 for homogeneous, uniform
loss. A statistical ensemble of S-DGF IE matrices in (48) was
generated using 5000 GOE random matrices with dimensions
of 2000 x 2000. This results in a total number of 5000 Q.
samples.

3) Comparison: The PDF of cavity )-factor obtained from
full-wave simulation and the proposed work are plotted in
Fig. 10. The mean value of (), predicted by the RPW approach
is also included. As is seen in Fig. 10, the results show generally
good agreement between the first-principles simulation and
the statistical prediction. Next, we replace the dielectric cube
with a dielectric sphere loading of diameter 0.1 m. The same
constitutive parameters are used. The comparison of full-wave
simulation, RPW approach, and the proposed work is shown in
Fig. 11. The results again agree well.

Table I presents quantitative measures for comparing the
mean values and probability distributions obtained through both
full-wave simulation and the proposed methodology. The PDF
obtained from the full-wave simulation serves as the reference
distribution for comparison. Statistical distance is evaluated
using the Kullback-Leibler Divergence metric [44]. The results
indicate a generally good agreement between the results of the
first-principles simulation and the statistical predictions. The
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Fig. 12.  Comparison of the cavity QQ-factor for wall coating case.

small discrepancy observed may be attributed to the limited size
of our cavity ensemble (12 stirrer configurations) in the full-wave
simulation.

Both the stochastic and full-wave simulations were conducted
on a workstation with Intel Xeon silver 4114 CPU and 208 GB of
memory. Taking the dielectric cube case as an example, the con-
struction of S-DGF IE matrices took 18.4 min, and the solution of
the IE matrices was obtained in 12 min. Regarding the full-wave
simulations of 12 cavity configurations, each simulation took
7 h and 31 min on average. Thereby a total time of 5412 min is
required to obtain the results of the configuration ensemble.

B. Verification of Cavity Q-Factor for Wall Coating

The next numerical experiment is to evaluate the statistics of
Q-factor due to the power dissipated in the wall coating. Specifi-
cally, we consider an Eccosorb LS-24 absorber with a thickness
of 7 = 5mm serving as a wall coating. This thin absorber is
applied to a confined area on the PEC wall of a 3-D closed
cavity with a volume of V' = 1 m?. The relative permittivity and
permeability of the absorber are €, = 13.7666 — 14.96817 and
- =1 at 1 GHz, respectively. The composite (QQ-factor (Qyer)
obtained using the formulation (7.116) in [17] are considered as
reference results.

In our proposed approach, we employ simple small electric
dipoles with a length of [ = 5 mm as the cavity excitation and
E-field probes. Following the procedure outlined in Section II-
I-B, we use 5k GOE random matrices with dimensions of
2000 x 2000 to generate a statistical ensemble of S-DGF IE
matrices. Consequently, a total of Sk QQ-factor samples are com-
puted. The average Q-factor ({Qwc)) is obtained by averaging
these samples. The results for varying surface coating areas (A)
are plotted in Fig. 12, demonstrating a good agreement between
the proposed approach and the reference results.

Moreover, Fig. 13 plots the PDFs of the calculated Q-factor
concerning the wall coating areas. For each of the probability
distributions, we calculate the mean value p and the standard
derivation o. It is noted that as the coating area increases, the
loss mechanism tends toward the distributed case. The statistics
of the cavity @-factor closely resemble a Gaussian distribu-
tion A'(p,0), as discussed in [24]. In addition, the standard

mStatistical prediction (A = 0.2m?)
N (10794, 2892)
mStatistical prediction (4 = 0.4m?)
N (5278, 1110)

Statistical prediction (A = 0.6 m?)
- N(3481, 637)

u 0.8 mStatistical prediction (A = 0.8m?)
2 - N(2579, 435)
0.6 Statistical prediction (4 = 1.0m?)

N (2046, 320)

0~
02 04 06 08 1 12 14 16 18 2
wel x10*
Fig. 13. PDFs of Q-factor as the wall coating area increases.
Anechoic chamber
Aperture 2 S
P>
Mode stirrer
Aperture 1
Fig. 14.  Tllustration of the experiment setup.

derivation in the ()-factor decreases as the surface coating area
increases.

C. Validation of Cavity Q-Factor for Aperture Leakage

Finally, we experimentally validate the proposed work for
predicting the statistics of ()-factor attributed to the power loss
through aperture leakage. The experimental setup is illustrated
in Fig. 14. A SMART 800 MSRC is placed inside an anechoic
chamber. The dimension of the MSRC is 0.784 m x 1.494m X
1m. Two square apertures of dimension 0.3048 m x 0.3048 m
are located on the opposite walls of MSRC. We can open one
aperture at a time to examine the effects of power loss, as
depicted in Fig. 15(a). The Tx and receiver are implemented
using two monocone antennas, as shown in Fig. 15(b). The
configuration ensemble is generated by rotating a paddle wheel
acting as the mechanical mode stirrer.

We first perform the S-parameter measurement with both
apertures closed. The stirrer is rotated 100 positions over 360°.
At each stir state, S-parameters of Tx and Rx antennas, S,
and Ss;, are measured and recorded from 1 to 1.25 GHz with
0.025 MHz frequency stepping. To avoid measurements at mul-
tiple locations to calculate cavity energy density, we utilize
the ensemble average over the stirrer states. The frequency-
dependent )-factor is obtained by [45], [46]

_ 1672V |S21(f)|2
Qo(f) = NTXIRXAS <1 — [5u ()P >stirT 0

where V' is the volume of MSRC, nrx and nrx are the Tx
and Rx antenna efficiencies. A total number of 10001 Q-factor
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Fig. 16.  Measurement result of Q-factor and Qjxg.

samples are obtained from 1 to 1.25 GHz. We then perform the
measurement with the same experimental setting while opening
the aperture at the front panel of the MSRC. The resulting cavity
Q-factor is denoted by Q.. Therefore, the ()-factor due to the
aperture leakage Qi can be recovered by

Qg =1/(1/Q¢ —1/Qo) .

Finally, we repeat the experiment by opening the aperture on the
back panel of the MSRC. Thereby, two sets of measurement data
(denoted by front panel and back panel) for Qy, are obtained.
As depicted in Fig. 16, quasi-random fluctuations between fre-
quencies are observed due to the stochastic nature of the cavity
field.

The objective of this study is to predict the probability dis-
tribution of @y, within the frequency range 1-1.25 GHz. To

(67)

CIMeasurement (front panel)
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[CStatistical prediction

* RPW prediction

.
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Fig. 17. PDF of the cavity Q-factor for aperture leakage.

achieve this, we divide the range into five frequency bands, each
with bandwidth 50 MHz. Our proposed procedure, detailed in
Section III-A, is then applied at frequencies ranging from 1
to 1.25 GHz with increments of 0.05 GHz. At each frequency
point, we employ 10 k GOE random matrices to generate an
ensemble of S-DGF IE matrices in (61). Therefore, a total of
60k Q-factor samples are computed with the proposed work.
Moreover, we have used the RPW method at these frequency
points and computed the mean value of the cavity Q)-factor. The
results are illustrated in Fig. 17. We notice that the prediction
from the proposed work shows a good agreement with the
measurement results.

VI. CONCLUSION

This article aims to address an open question about the sta-
tistical characterization of cavity )-factor caused by localized
losses, such as aperture leakage and absorptive loading. A novel
hybrid deterministic-stochastic computing model is proposed
that integrates component-specific (loading) and site-specific
(aperture) features with the statistical representation of com-
plex cavity environments. Experimental results are supplied to
validate the proposed work.

The research findings hold significant practical applications
in the power balance method [20], [47] for characterizing the
response of a complex EM system to a high-frequency external
excitation, in which the cavity @)-factor is one of the most im-
portant input parameters. Given that the proposed work provides
a statistical cavity (Q-factor, a natural extension is to develop a
statistical power balance model to analyze the stochastic power
flow in complex systems. Moreover, leveraging the calculated
cavity ()-factor, the applications extend to the computation of
the energy decay factor, the analysis of the power delay profile,
and the control of the coherence bandwidth in the wireless OTA
testing in loaded reverberation chambers [48].

APPENDIX

. . . o~ mm
A. Covariance of Eigenvectors in Gg

As illustrated in Fig. 2, the covariance function of transverse
vector components can be calculated by

(O (x), U7, (x'))
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9 ..
_2 < (COS U, COS by 08 By — Sin Wy si0 ¢n)2 Similarly, we could also have
4 1 sink;R — k;Rcosk;R

WP (0,05 () = =

cos (ki&, - T+ B,) cos (ki&, - ' + 3,) >

1
= e < (coszwn cos® On c0s260,,—2 cosb,, COSYy, COSO,, SINYy, Sineg,, (kiR)

+ sin24p,, sin? ¢n) [cos(kién -2 R) +cos(kibn-(r+1')+2 5n)}> and all the other elements in the covariance matrix are zero.

_ 1 l/ﬁ 1 1 cos2 0, + 1 cos (ki R cos 6, sin 0,6 C. Finite-Dimensional Discretization of SIE Matrices for
V2)J, |2 2 2 2 Electric Dipole Case
1 ) 7 Let us start with the general expression of the impedance
3V (u® +1) cos (k; Ru) du matrix Zg described as
1 [sink;R sink;R— k;Rcosk;R VARVAS —ee
— 1 o (3 (3 1 Z — S S _ . / /G d d
v |: ]%R k?R3 :| S [Zg,t Zgr Jwp 0 I' I' ) rdar.

1 (68)
Obviously, Zg = Zg" and Cg = —er’t will satisfy (40) and (41),

Similarly, we could also derive the other two covariance respectively. Substituting (7) into (68), we have

functions —ree
Zs = jwu / v(r) - / Re [GO (r, r’)} v(r)drdr  (69)
1 |sink;R smkiR—kiRcos kR
(W (), P () = B
¢ ! 2V| kR k:R)® Ds(rrk ) kV o
. (kiR) + jwp Z P ja o2 -v(r')dr'dr.
=3yt (kiRR) (70)
m, 2 m,z 1 sink;R — k;Rcosk; R Accordingly, the impedance matrix Zg consists of two part. The
(037 (r), &) = Vv (kR)‘3 first part gives us
%f// (k:R). jwu/v(r) . /Re [@ge (r, r’)] -v(r')dr'dr = jX,.
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B. Covariance of Eigenvectors in Gg numerator
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In the abovementioned derivation, we have used the result of (8)
and the fact of k,,, = k. Then, the correlated Gaussian random
variables associated with individual triangle functions can be
constructed using the discrete Karhunen—Loeve expansion

['J’m} = m[wm]-

Therefore, the impedance matrix Zg is written as

~T
'LU w
ZS—on-i-jZ m_]a

In the diffusive case

t,t t,
Zg" Zg' = X5
A/ 0

i

J R{ 0 |wt,
AN

0 Wiy,

1 {t r} Ry 0
e wl, w
om — jar 0 R

Thus, we have the explicit form of Zg and Cg as

— . (W) e
ZS:jXO—’_;; Rom R‘O
e -\/Rb.

D. Finite-Dimensional Discretization of SIE Matrices for
Dielectric Loading Case

Csg =—

Zﬁ

In (47), we first have the impedance matrices for the dielectric
medium

zij=jon [ [ [vo) [m (Grir.r)) i) as'as 2

VTR // // 77 @;m(rr)) (r’)} ds'ds  (73)
Zhi = / / / / WT GH(r r)) (r’)} ds'dS  (74)

WT GHm(r r)) (r’)}ds’ds. (75)

sl oo

For the impedance matrices using the stochastic DGF, we have

i oo

iPs GS(r r)) (')]ds’ds (76)

75" = / / / /v(r)-[ﬂ'T (E‘;m(r,r’))-v(r’)} ds'ds (17
hJ—//// WT G;(r r)) (r’)} ds'dS  (78)

s [ [ oo

Following the similar procedure of the derivation in Appendix
C, we can derive

iPs GS "(r, ))~v(r’)}d5’dS. (79)

Ze,J le,J .7 Z w,, ('ijn)T

m— jo

(80)

, JUNE 2024
1 ’lIJe (’lIJm)T
Ze,m _ Re,m . ~m m 81
S DY S (81)
: C1 = ™ (w8, T
Zh,] _ RIl,J - ~7n m 82
' =Ry’ - — ; TL e (82)
h h, J T
ZM = jX "+ 7. 83
s Z "o (83)

Thus, combining (80)—(83), we have the final expression of the
impedance matrix for dielectric loading as
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where w,,, are correlated Gaussian random variables associated
with individual RWG functions, which can be constructed using
the discrete Karhunen—Loeve expansion
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And wj, and wj; are zero mean, unit variance independent
Gaussian random variables.
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