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Abstract—The statistical characterization of the cavity quality
factor (Q-factor) holds significant practical importance, especially
in the context of large and complex metallic enclosures. While
there are existing methods for analyzing Q-factor statistics at-
tributed to distributed and uniform losses, there is a noticeable
gap in addressing the statistical cavity Q-factor arising from lo-
calized losses, such as aperture leakage, wall coating, and ab-
sorptive loading. This article introduces a physics-oriented, hybrid
deterministic-stochastic approach to predict the statistical distribu-
tion of cavity Q-factor due to localized losses. The key ingredient
of this method is the stochastic Green’s function integral equation
formulation, grounded in a statistical description of the cavity
eigenmodes within an enclosed electromagnetic environment. The
computational model is evaluated through both numerical and
laboratory experiments, validating its reliability and applicability
in real-world scenarios.

Index Terms—Chaos, Green function, mode-stirred reverbera-
tion chambers (MSRCs), quality factor (Q-factor), statistical
analysis.

I. INTRODUCTION

I
N CONFINED electromagnetic (EM) environments, the

quality factor (Q-factor) is an essential parameter to charac-

terize the energy loss inside the cavity, and also a key quality in

understanding and analyzing the properties of internal EM fields.

Applications include electromagnetic compatibility (EMC) test-

ing in mode-stirred reverberation chambers (MSRCs) [1], [2],
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[3], [4], [5], the study of intentional electromagnetic interference

(EMI) to electronics housed inside metallic enclosures [6], [7],

[8], [9], [10], [11], [12], and the analysis of channel properties

(coherent bandwidth, spatial correlation, power decay profile) in

the indoor wireless over-the-air (OTA) testing [13], [14], [15],

[16].

Historically in the study of cavity resonators, the modal Q-

factor was introduced as a measure to account for dielectric and

wall losses inside the cavity for a single eigenmode. This param-

eter, defined by the ratio of stored energy to dissipated power,

multiplied by the modal frequency [17], [18], laid the ground-

work for understanding power and energy behavior within these

resonators. However, the modal Q-factor becomes less effective

in analyzing the high-frequency reverberation, as the complex

boundary of the enclosure can lead to high modal density and

high modal overlap. As a result, the literature introduced the

composite, effective Q-factor as an average value (frequency-

averaged or stir-averaged) of the cavity Q-factor [19], [20]. It is

noted that the compositeQ-factor typically varies smoothly with

operating frequency. It does not characterize the quasi-random

fluctuations between nearby frequencies or different cavity con-

figurations. This limitation underscores the need for character-

izing the cavity Q-factor in terms of a statistical measure, such

as the probability density function (PDF).

Broadly speaking, the losses inside a realistic cavity can be

characterized into two categories. One refers to homogeneous,

distributed losses throughout the cavity surface and volume, e.g.,

wall loss due to the power dissipated in the metal walls and

material loss from power absorbed in the dielectric materials

uniformly filled in the cavity. For those distributed losses, it is

predicted that the PDF of Q-factor exhibits a Fisher–Snedecor

F -distribution [21], [22], [23], assuming statistically homoge-

neous and isotropic cavity fields. The theoretical prediction is

verified experimentally in the MSRC setting. Another notice-

able work utilizing the volumetric number of independent field

samples and the central limit theorem is presented in [24], [25],

and [26], which concludes that the Q-factor PDF is basically

normal distribution in the overmoded regime of well-stirred

reverberation chambers.

While existing research has primarily focused on theQ-factor

statistics for cavities with homogeneous, distributed losses, there

has been little discussion of the statistical cavity Q-factor due
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to localized losses (e.g., aperture leakage, absorptive loading).

Unlike the case of homogeneous losses, localized losses depend

on the specific lossy components involved. Taking the aperture

leakage as an example, the power loss through the aperture

depends on the aperture shape, surface area, and operating fre-

quency of interest. Therefore, it becomes necessary to integrate

these component-specific attributes into the statistical Q-factor

prediction.

The contribution of this work is a hybrid deterministic-

stochastic model that is built upon a recently developed stochas-

tic Green’s function (SGF) method [27], [28], [29]. The SGF can

be considered as a physics-oriented, statistical surrogate model

for the vector wave equation in large, complex enclosures. It pro-

vides a computationally efficient approximation of enclosed EM

environments based on a statistical representation of the cavity

eigenfunctions and eigenvalues. By leveraging the SGF method

as a cavity surrogate model, we integrate the component-specific

features of the localized losses through an SGF surface integral

equation (IE) formulation. The statistical predictions of aperture

leakage, absorptive loading, and wall coating are validated by

numerical simulations and experimental results. To the best of

authors’ knowledge, the work represents an original contribution

and the first result to analyze the statisticalQ-factor for localized

losses in the literature.

We remark that the initial study of this work has been reported

in a conference paper [30]. This article significantly extends and

elaborates the approaches and numerical experiments presented

in [30].

II. METHODOLOGY FOR ABSORPTIVE LOADING

A. Background and Problem Statement

The Q-factor of the enclosure is a key quality in calculating

the statistical properties of internal EM fields in an electrically

large cavity. Generally, the Q-factor Q is defined as

Q (ω) = ω
Us (ω)

Pd (ω)
(1)

where ω is the angular frequency, Us is the steady-state energy

stored in the cavity, and Pd is the dissipated power. It is noted

that the macroscopic definition of Q-factor as in [21], [24], and

[23] is considered here, instead of modalQ-factors for individual

cavity eigenmodes. We are interested in studying the fluctuation

of the Q-factor for an ensemble of statistically similar cavity

environments, i.e., varying stir states in an MSRC, or changing

the frequency within the coherence bandwidth.

Broadly speaking, the statistical fluctuation of the Q-factor

depends on the nature of the loss mechanisms contributing to

the dissipated power Pd. If the loss is distributed throughout the

enclosure, the fluctuations in Q-factor are small. This was an

assertion that was tested early in the development of what is

known as “wave chaos” [31]. However, if the loss is localized in

the cavity, the Q-factor can fluctuate significantly, which is the

primary interest of this article.

Consider an electrically large, complex cavity with both uni-

form distributed losses and localized losses, the Q-factor can be

Fig. 1. Illustration of the design of the numerical experiment for dielectric
loading.

TABLE I
QUANTITATIVE MEASURE OF THE STATISTICAL PREDICTION

expressed as

Q−1 (ω) = Q−1
uni (ω) +Q−1

loc (ω)

=
1

ω

Pd,uni (ω)

Us (ω)
+

1

ω

Pd,loc (ω)

Us (ω)
. (2)

In the following, we will analyze the statisticalQ-factor, denoted

as Qloc, attributed to three distinct localized loss mechanisms:

absorptive loading (discussed in this section), aperture leakage,

and wall coating (covered in Section III).

Taking the case of dielectric loading as an example, the design

of the numerical experiment is illustrated in Fig. 1. Here, a

small electric dipole is placed inside the cavity as the transmitter

(Tx). This Tx dipole is responsible for the cavity excitation. The

other sets of receiving (Rx) electric dipoles are utilized as the

probe devices to measure the received vectorial electric fields

(E-fields), denoted as Ex, Ey, and Ez.

Next, we introduce an artificial surface Sd over the boundary

of the dielectric object to facilitate the calculation of surface

electric and magnetic currents. By leveraging the data collected

from the internal E-fields and surface currents, we can obtain

the stored energy Us within the cavity and the dissipated power

Pd,loc in the dielectric loading. The ratio between ωUs and Pd,loc

gives rise to the Qloc, according to (2).

To acquire a statistical ensemble of cavity Q-factor Qloc,

one may rotate the mode stirrer in numerical experiment and

collect the Us and Pd,loc for each stirrer state. It is clear that

when first-principles numerical modeling is used, we need many

full-wave simulations to obtain a statistical ensemble of Us and

Pd,loc. The computation complexity is prohibitively expensive

for electrically large cavities. In this work, we address this

challenge by harnessing the capabilities of a recently developed

statistical wave model known as the stochastic dyadic Green’s

function (S-DGF). This model serves as an efficient and effective

statistical solution to the vector wave equation within large
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and complex enclosures. The utilization of S-DGF significantly

enhances the computational efficiency of our numerical analysis.

B. Introduction of S-DGF

The S-DGF is based on a statistical description of the eigen-

modes of an enclosed EM environment. Let us consider a 3-D

metallic cavity of volume V featuring distributed losses. The

cavity wall is modeled as a perfect electric conductor (PEC)

boundary condition. Within the cavity, the volume is filled

with a homogeneous medium characterized by permittivity ε0,

permeability μ0, and conductivity σ. It is noted that the medium

conductivity σ is introduced to account for the homogeneous,

distributed losses occurring within the cavity.

Consider the second-order vector wave equation

∇×∇×E (r)− k̃2E (r) = −jωμ0J (r′) (3)

where k̃2 is the square of complex wave number, defined by

k̃2 = ω2μ0ε0 − jωμ0σ = k2 − jk2/Quni (4)

in which k = ω
√
μ0ε0 is the free-space wavenumber, and the

cavity Q-factor Quni = ωε0/σ.

The electric dyadic Green’s function satisfies

∇×∇×G
ee
(r, r′)− k̃2G

ee
(r, r′) = −Iδ (r− r′) (5)

where I is the unit dyad (idemfactor) and superscript ee identifies

the contribution from the electric current source to the E-field.

The stochastic DGF in the dyadic form can be constructed

through the expansion of eigenfunctions [29, Appendix A]

G
ee

S (r, r′) =
∑

i

Ψe
i (r, ki)⊗Ψe

i (r
′, ki)

k2 − k2i − j k2

Quni

(6)

where⊗ indicates an outer product between two vectors.Ψe
i and

ki are the ith electric eigenvector and eigenvalue of the cavity.

In prior work, we proposed the substitution of approximate, sta-

tistically defined eigenvectors and eigenvalues. Specifically, the

statistics of eigenvectors are derived from Berry’s random wave

model (RWM) [32], taking into account different orientations of

polarization. The statistics for eigenvalues are generated using

Wigner’s random matrix theory (RMT) [33].

After incorporating the RWM and RMT approximation, the

expression of S-DGF for a pair of source and field points is given

by [29]

G
ee

S (r, r′) = Re
[

G
ee

0 (r, r′)
]

+
∑

m

D
ee

S (r, r
′; km)

λ̃m − jα

kV

2π2
(7)

where G
ee

0 (r, r
′) is the electric dyadic Green’s function of

free-space. D
ee

S (r, r
′; km) is a dyadic product of correlated

Gaussian random variables. We have shown that the mean value

of D
ee

S (r, r
′; km) is related to the homogeneous Green’s dyadic

as
〈

D
ee

S (r, r
′; km)

〉

= − 2π

kmV
Im
[

G
ee

0 (r, r′)
]

. (8)

The eigenvalues λ̃ are calculated from the Gaussian orthogo-

nal ensemble (GOE) of random matrices, andα is a macroscopic

dimensionless loss-parameter defined by α = k3 V/(2π2Quni).

C. Extension of S-DGF

In order to conduct surface IE-based modeling of the dielectric

object, it is imperative to extend the S-DGF of electric type to

general forms of Green’s dyadic. These dyadics characterize the

contributions from the magnetic current source to the magnetic

field (G
mm

S ), from the electric current source to the mag-

netic field (G
me

S ), and from the magnetic current source to the

E-field (G
em

S ).

Consider the second-order vector wave equation

∇×∇×H (r)− k̃2H (r) = −jωεM (r′) . (9)

The magnetic dyadic Green’s function satisfies

∇×∇×G
mm

(r, r′)− k̃2G
mm

(r, r′) = −Iδ (r− r′) . (10)

It is easy to show that a similar eigenfunction expansion exists

for G
mm

, denoted by

G
mm

S (r, r′) =
∑

i

Ψm
i (r, ki)⊗Ψm

i (r′, ki)

k2 − k2i − j k2

Quni

(11)

where Ψm
i is the ith magnetic eigenvector of the cavity. In a

cavity resonator, these magnetic eigenvectors can be constructed

from the electric eigenvectors by the relation kiΨ
m
i = ∇×Ψe

i

[34].

We recall that after incorporating the RWM, the vector com-

ponents of Ψe
i are expressed as a superposition of many plane

waves with uniformly distributed orientation and polarization.

In the Cartesian coordinate system, we have

Ψe
i (r, ki) = Ψe,x

i (r) x̂+Ψe,y
i (r) ŷ +Ψe,z

i (r) ẑ (12)

where the vector components are

Ψe,x
i (r) � lim

N→∞

N
∑

n=1

[an(− cosψn sinφn

− sinψn cosφn cos θn) cos (kiên ·r+ βn)] (13)

Ψe,y
i (r) � lim

N→∞

N
∑

n=1

[an(cosψn cosφn

− sinψn sinφn cos θn) cos (kiên ·r+ βn)] (14)

Ψe,z
i (r)� lim

N→∞

N
∑

n=1

[an sinψn sin θn cos (kiên ·r+βn)] .

(15)

The polarization angle ψn, direction ên and phase βn are inde-

pendent, uniform random variables. The amplitude an satisfies

〈aman〉 = 2
(NV )δmn, in which V is the volume of the cavity.

Correspondingly, the vector components of magnetic eigen-

vector Ψm
i can be approximated as

Ψm,x
i (r) � lim

N→∞

N
∑

n=1

[an(cosψn cosφn cos θn

− sinψn sinφn) sin (kiên ·r+ βn)] (16)
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Fig. 2. Notation for the covariance derivation.

Ψm,y
i (r) � lim

N→∞

N
∑

n=1

[an(cosψn sinφn cos θn

+ sinψn cosφn) sin (kiên ·r+ βn)] (17)

Ψm,z
i (r)� lim

N→∞

N
∑

n=1

[−an cosψn sin θn sin (kiên ·r+ βn)] .

(18)

By leveraging the central limit theorem, we note that all

three vector components Ψm,x
i , Ψm,y

i , and Ψm,z
i are zero mean

Gaussian random variables. The statistics of the Ψm
i (r, ki)⊗

Ψm
i (r

′, ki) can be elucidated through the outer product of cor-

related Gaussian random variables, denoted as D
mm

S (r, r′; ki).
This is achieved using the discrete Karhunen–Loeve expansion,

a method well-documented in the literature [35], [36]. Specifi-

cally, considering the source point r′ and the observation point

r are located along z-axis, as illustrated in Fig. 2, the covariance

function between vectorial components can be derived and the

proofs for these derivations are provided in Appendix A

Cmm
xx (R) = 〈Ψm,x

i (r) ,Ψm,x
i (r′)〉 = 1

3V
f⊥ (kiR) (19)

Cmm
yy (R) = 〈Ψm,y

i (r) ,Ψm,y
i (r′)〉 = 1

3V
f⊥ (kiR) (20)

Cmm
zz (R) = 〈Ψm,z

i (r) ,Ψm,z
i (r′)〉 = 1

3V
f// (kiR) (21)

where the distance R = |r− r′|, and f⊥(kiR) and f//(kiR)
represent transversal and longitudinal correlation described by

f⊥ (kiR) =
3

2

[

sin kiR

kiR
− sin kiR− kiR cos kiR

(kiR)3

]

(22)

f// (kiR) = 3
sin (kiR)− kiR cos (kiR)

(kiR)3
. (23)

The results are essentially the same as the case of electric

eigenvectors in [29]. The mean value of the dyadic expression

in the numerator of (11) is
〈

D
mm

S (r, r′; ki)
〉

= 〈Ψm
i (r, ki)⊗Ψm

i (r′, ki)〉

= Cmm
xx (R)x̂x̂+ Cmm

yy (R)ŷŷ + Cmm
zz (R)ẑẑ

= − 2π

kiV
Im
[

G
mm

0 (r, r′; ki)
]

(24)

where G
mm

0 (r, r′) is the magnetic dyadic Green’s function in

free space, defined by

G
mm

0 (r, r′; k) =

(

I+
∇∇
k2

)

e−jkR

4πR
. (25)

By following the derivation in Section II.B [29], we can derive

the magnetic S-DGF as

G
mm

S (r, r′)=Re
[

G
mm

0 (r, r′)
]

+
∑

m

D
mm

S (r, r′; km)

λ̃m − jα

kV

2π2
. (26)

Next, we will derive Green’s dyadic, denoted as G
me

S , repre-

senting the contribution from the electric current source to the

magnetic field. It satisfies

G
me

S (r, r′) = ∇×G
ee

S (r, r′)

=
∑

i

∇×Ψe
i (r, ki)⊗Ψe

i (r
′, ki)

k2 − k2i − j k2

Quni

=
∑

i

kiΨ
m
i (r, ki)⊗Ψe

i (r
′, ki)

k2 − k2i − j k2

Quni

. (27)

To reveal the statistical property of G
me

S , we first derive the

covariance function between vectorial components of Ψm
i and

Ψe
i . As is shown in Appendix B, the results are obtained as

Cme
xy(R) = 〈Ψm,x

i (r) ,Ψe,y
i (r′)〉 = kiR

6V
f// (kiR) (28)

Cme
yx(R) = 〈Ψm,y

i (r) ,Ψe,x
i (r′)〉 = −kiR

6V
f// (kiR) (29)

Cme
xx(R) = Cme

yy (R) = Cme
zz (R) = 0 (30)

Cme
xz (R) = Cme

zx(R) = Cme
yz (R) = Cme

zy (R) = 0. (31)

We recall the expression of the free-space dyadic Green’s

function G
me

0 (r, r′), given by

G
me

0 (r, r′; k) = ∇×G
ee

0 (r, r′; k) = ∇e−jkR

4πR
× I. (32)

The explicit dyadic form of (32) can be written as

G
me

0 (r, r′; k) =

(

−jk − 1

R

)

e−jkR

4πR
R̂× I. (33)

Regarding the two points given in Fig. 2, we have the real and

imaginary parts

Re
[

G
me

0 (r, r′; k)
]

=−kR sin kR+ cos kR

4πR2
(ŷx̂− x̂ŷ) (34)

Im
[

G
me

0 (r, r′; k)
]

=
sin kR− kR cos kR

4πR2
(ŷx̂− x̂ŷ) . (35)

By comparing (28)–(31) with (35), we have the mean value

of the dyadic expression in (27)
〈

D
me

S (r, r′; ki)
〉

= 〈Ψm
i (r, ki)⊗Ψe

i (r
′, ki)〉

= Cme
xy(R)x̂ŷ + Cme

yx(R)ŷx̂

= − 2π

k2i V
Im
[

G
me

0 (r, r′; ki)
]

. (36)
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The mean of stochastic Green’s dyadic G
me

S (r, r′) can be

obtained as follows:

〈

G
me

S (r, r′)
〉

=
∑

i

ki

〈

D
me

S (r, r′; ki)
〉

k2 − k2i − j k2

Quni

= − 1

π

∑

i

∆(k2i )
Im
[

G
me

0 (r, r′; ki)
]

k2 − k2i − j k2

Quni

= G
me

0 (r, r′) . (37)

In the abovementioned derivation, we have utilized the expres-

sion of mean space between two adjacent squared eigenvalues

∆(k2i ) = 2π2/(kiV ), the Sokhotski–Plemelj theorem for the

real line, and the Kramer–Kronig relation between the real part

and imaginary part of G
me

0 (r, r′). Finally, the Green’s dyadic

G
me

S (r, r′) can be constructed as

G
me

S (r, r′)=Re
[

G
me

0 (r, r′)
]

+
∑

m

D
me

S (r, r′; km)

λ̃m − jα

k2 V

2π2
. (38)

The Green’s dyadic G
em

S (r, r′) has the same expression as

G
me

S (r, r′) based on the duality principle.

D. Analysis of Electric Dipoles Inside Enclosures

The electric S-DGF can be directly utilized to analyze electric

dipole problems shown in Fig. 1. Specifically, we consider the Tx

dipole characterized by a thin, short conducting wire of length

l placed inside a 3-D metallic enclosure. In this scenario, both

the electrical length and the radius of the wire are significantly

smaller than the wavelength, allowing us to apply the thin-wire

approximation. We assume that the electric current on the dipole

follows a vector triangle function, denoted as vt(r′), with the

peak current at the center represented by Jt. The radiated E-field

can be expressed using the electric field integral equation (EFIE)

ES (r) = jωμ

∫

G
ee

S (r, r′) ·
[

vt(r′) Jt
]

dr′. (39)

The Tx dipole acts as the source to generate the stochastic EM

field within the cavity. We may introduce another small electric

dipole as an Rx probe device. Utilizing the Galerkin method

and vector triangle basis and testing functions, the EFIE can

be formulated as [ZS] · Jr = [CS] · Jt, where Jr is the electric

current at the center of the Rx dipole. The self-term and coupling-

term impedances are determined by the following expressions:

ZS = jωμ

∫

vr(r) ·
∫

G
ee

S (r, r′) · vr(r′)dr′dr (40)

CS = −jωμ

∫

vr(r) ·
∫

G
ee

S (r, r′) · vt(r′)dr′dr. (41)

Substituting (7) into (40) and (41), we can obtain the explicit

form of ZS and CS as (see Appendix C for detailed derivation)

ZS = jXr
0 +

j

π

∑

m

√

Rr
0 ·

(wr
m)2

λ̃m − jα
·
√

Rr
0

Fig. 3. Notations for the cavity dielectric loading problem.

CS = − j

π

∑

m

√

Rr
0 ·

wr
mwt

m

λ̃m − jα
·
√

Rt
0

where Rr
0 and Xr

0 are the real and imaginary parts of the dipole

impedance, Zr
0 = jXr

0 +Rr
0, using free-space dyadic Green’s

function as the kernel. wr
m and wt

m represent independent, zero

mean, unit variance Gaussian random variables.

In order to measure received vectorial E-fields, we can place

three independent Rx dipoles along with the x̂-, ŷ-, and ẑ-axis,

respectively. The resulting matrix equation is given by

⎡

⎢

⎣

Zx,x
S

Zy,y
S

Zz,z
S

⎤

⎥

⎦
·

⎡

⎢

⎣

Jxr
Jyr
Jzr

⎤

⎥

⎦
=

⎡

⎢

⎣

Cx,t
S

Cy,t
S

Cz,t
S

⎤

⎥

⎦
· Jt. (42)

Equation (42) can be straightforwardly extended to include many

Rx dipoles inside the enclosure.

E. Analysis of Cavity Dielectric Loading

Considering a homogeneous dielectric object illuminated by

an electric dipole inside the enclosure, as shown in Fig. 3. The

boundary of the dielectric object is denoted as Sd. The boundary

value problem can be decomposed into the interior subproblem,

i.e., the solution of the wave equation within the dielectric object,

and the exterior subproblem with the wave solution exterior to

the dielectric object. The entire domain solution is obtained

by the enforcement of electric and magnetic field continuities

across the bounding surface of the dielectric object.

In this work, we employ a surface IE method known as the

Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) for-

mulation [37] to analyze the dielectric object. The homogeneous

(DGF) is utilized for the interior dielectric subregion, while the

stochastic DGF is employed for the cavity subregion outside of

the dielectric object.

Regarding the interior dielectric subregion, we have EFIE and

magnetic field integral equation (MFIE) using Green’s function

in the homogeneous dielectric medium

E (r) = jωμ

∫∫

G
ee

H (r, r′) · J (r′) dS′

+

∫∫

G
em

H (r, r′) ·M (r′) dS′ (43)

H (r) =

∫∫

G
me

H (r, r′) · J (r′) dS′
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+ jωε

∫∫

G
mm

H (r, r′) ·M (r′) dS′. (44)

For the cavity subregion, we have EFIE and MFIE using the

SGF

ES (r) = jωμ0

∫∫

G
ee

S (r, r′) · J (r′) dS′

+

∫∫

G
em

S (r, r′) ·M (r′) dS′ (45)

HS (r) =

∫∫

G
me

S (r, r′) · J (r′) dS′

+ jωε0

∫∫

G
mm

S (r, r′) ·M (r′) dS′. (46)

To derive the discrete matrix equation, the dielectric surface

Sd is discretized using a collection of triangular meshes denoted

by Kh. Both trial and test functions employ the surface div-

conforming vector Rao–Wilton–Glisson (RWG) functions [38],

vh, which are defined over Kh.

By applying the interface conditions, i.e., tangential continu-

ities of EM fields across the dielectric boundary, and Galerkin

testing method [39], the surface IE in (43), (44), (45), and (46)

can be represented in a matrix equation as
[

Z
e,j
S + Z

e,j
H Z

e,m
S + Z

e,m
H

Z
h,j
S + Z

h,j
H Z

h,m
S + Z

h,m
H

][

Jd

Md

]

=

[

C
e,t
S · Jt

C
h,t
S · Jt

]

. (47)

The impedance submatrix blocks labeled with subscript S
utilize the SGF as the integral kernel, while those marked with

H utilize the homogeneous Green’s function of the dielectric

medium. The Jd and Md represent the solution vectors for

surface electric and magnetic currents on the dielectric surface

Sd. The right-hand side characterizes the cavity electric and

magnetic fields radiated from the electric dipole. The explicit

expression of (47) is provided in Appendix D.

F. Calculation of Statistical Cavity Q-factor

We are now ready to analyze the statistical cavity Q-factor for

the problem statement illustrated in Fig. 1. The wave physics

involving the Tx dipole, Rx dipoles, and the dielectric object

is modeled by an IE matrix equation of the following compact

form:
⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Z
e,j
S +Z

e,j
H Z

e,m
S +Z

e,m
H C

e,x
S C

e,y
S C

e,z
S

Z
h,j
S +Z

h,j
H Z

h,m
S +Z

h,m
H C

h,x
S C

h,y
S C

h,z
S

C
x,j
S C

x,m
S Z

x,x
S

C
y,j
S C

y,m
S Z

y,y
S

C
z,j
S C

z,m
S Z

z,z
S

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

Jd

Md

Jx
r

Jy
r

Jz
r

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=
[

C
e,t
S ·Jt C

h,t
S ·Jt C

x,t
S ·Jt C

y,t
S ·Jt C

z,t
S ·Jt

]T

. (48)

In (48), J
x/y/z
r are the solution vectors of electric current for

a finite number N sets of x̂-, ŷ-, and ẑ- directed Rx dipoles. In

addition to the matrix blocks described in previous sections, we

have introduced matricesC
e/h,x/y/z
S accounting for the coupling

between the dielectric surface currents and Rx dipole sets. It is

Fig. 4. Illustration of the reduced-order model for the dielectric loading
problem.

noted that there are no coupling terms between Rx dipoles, as

they are used as probing devices.

We remark that the matrix equation (48) only involves the

wire currents on the Tx/Rx dipoles and the surface currents

on the dielectric surface. The coupling between these currents

and their interaction with the cavity interior are statistically

characterized through the S-DGF model. Therefore, this is no

need for the discretization of the cavity enclosure and mode

stirrer. Compared to the original problem statement in Fig. 1,

the reduced-order model is illustrated in Fig. 4.

After obtaining the solution of (48), the dissipated power

Pd,abl is then calculated by integrating the Poynting vector over

the surface of the dielectric object, that is

Pd,abl =
1

2
Re

[

∑

i

∫∫

Jd
i × ni ·

(

Md
i

)∗
dSi

]

(49)

where Md
i and Jd

i represent the surface electric and mag-

netic currents on each triangle. ni is the corresponding normal

direction.

Given the use of linear triangular basis functions for the Rx

dipole currents, retrieving the vectorial E-field from the electric

current solution is straightforward. For example, the x̂-directed

E-fields at Rx probe locations can be obtained by

Ex =
2

l
Z

x,x
S · Jx

r . (50)

Subsequently, the cavity energy density can be approximated by

Wc=
ε

N

[

(Ex)T ·(Ex)∗+(Ey)T ·(Ey)∗+(Ez)T ·(Ez)∗
]

.

(51)

The energy stored in the cavity is calculated as Us = Wc · V .

Finally, the cavity Q-factor due to the absorptive dielectric

loading is obtained by using (2)

Qabl (ω) = ω
Us

Pd,abl

. (52)

By repeating the abovementioned procedure with different S-

DGF IE matrices, we can predict the statistics of cavity Q-factor

due to the dielectric loading.
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Fig. 5. Illustration of the aperture leakage problem.

III. EXTENSION TO OTHER LOCALIZED LOSSES

A. Extension to Aperture Leakage

1) Surface IE Formulation for Aperture: Consider a locally

quasi-planar cavity wall with an irregular aperture situated in

the xy-plane, as illustrated in Fig. 5. The surface of the aperture

opening is represented by Sa. The objective is to calculate the

surface magnetic current M = E× ẑ at the aperture, induced

by an internal Tx dipole inside the cavity.

Based on the equivalence principle, an equivalent interior

problem can be derived by considering the aperture covered by

a PEC [40]. At the aperture surface, the magnetic field relation

is expressed as

H−
t (r) = 2HTx

t (r) +H
R,−
t (r) onSa. (53)

Here, H−
t represents the tangential components of the total

magnetic field. The HTx
t denotes the tangential components

of the magnetic field radiated by the Tx dipole. The H
R,−
t

represents the tangential components of the radiated magnetic

field by the surface magnetic current M

H
R,−
t (r) = −2

jk0
η

πτ

(
∫∫

Sa

G
mm

S (r, r′) ·M(r′) dS ′
)

(54)

where the η =
√

μ
ε is the wave impedance, πτ (•) is a tangential

trace operator defined by: πτ(u) := n̂× (u× n̂)|Sa
.

Another equivalent problem can be established for the exterior

region by filling the interior cavity region with a PEC. The aper-

ture surface IE for the exterior region in terms of the magnetic

field is given by

H
R,+
t (r) = 2

jk0
η

πτ

(
∫∫

Sa

G
mm

0 (r, r′) ·M(r′) dS ′
)

. (55)

Finally, by applying the boundary condition at the aperture, i.e.,

the continuity of magnetic fields for exterior and interior regions,

H+
t (r)(:= H

R,+
t ) = H−

t (r), we have

HR,+ (r)−HR,−(r) = 2HTx
t (r) onSa. (56)

To derive the discrete matrix equation, the aperture surfaceSa

is discretized using triangular elements denoted byKh. Both trial

and test functions make use of the RWG functions vh defined

over Kh. Through the application of interface condition and

Galerkin testing method [39], the SIEs in (54), (55), and (56)

can be expressed in a matrix equation as

[Ya
0 +Ya

S] ·Ma = C
a,t
S · Jt. (57)

Fig. 6. Illustration of the design of the numerical experiment for the aperture
leakage problem.

Here, Ma is the solution vector for the magnetic current at the

aperture. Ya
0 is the aperture admittance matrix for the exterior

region in terms of free-space dyadic Green’s function, which is

calculated by

Ya
0 = 2

jk0
η

∫∫

Kh

∫∫

Kh

vh(r)·
[

G0(r, r
′)·vh(r′)

]

dS ′dS. (58)

The matrix Ya
0 consists of real and imaginary parts, expressed

as Ya
0 = Ra

0 + jXa
0. Following the steps outlined in Appendix

F [29], we can construct the aperture admittance matrix Ya
S for

the interior cavity region

Ya
S = jXa

0 +
j

π

∑

m

√

Ra
0 ·

w
a
m · (wa

m)T

λ̃m − jα
·
√

Ra
0. (59)

The coupling matrix between the Tx dipole and aperture currents

is given as

C
a,t
S = − j

π

∑

m

√

Ra
0 ·

w
a
m · (wt

m)

λ̃m − jα
·
√

Rt
0. (60)

The solution of the aperture magnetic current can then be used

to analyze the power leakage from the aperture.

2) Calculation of Statistical Cavity Q-factor: To analyze the

statistical cavity Q-factor for aperture leakage, the design of

the numerical experiment is illustrated in Fig. 6. By leveraging

the proposed statistical surrogate model using S-DGF, the wave

physics associated with the Tx dipole, Rx dipoles, and the

aperture is modeled by an IE matrix equation of the following

compact form:

⎡

⎢

⎢

⎢

⎣

Ya
0 +Ya

S C
a,x
S C

a,y
S C

a,z
S

C
x,a
S Z

x,x
S

C
y,a
S Z

y,y
S

C
z,a
S Z

z,z
S

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

Ma

Jx
r

Jy
r

Jz
r

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

C
a,t
S

C
x,t
S

C
y,t
S

C
z,t
S

⎤

⎥

⎥

⎥

⎦

·Jt. (61)

After obtaining the solution of (61), the power leakage

through the aperture can be calculated as

Pd,lkg =
1

2
Re[MT

a · (Ya
0)

∗ ·M∗
a]. (62)

Following the similar procedure given in Section II-F, the

probabilistic Q-factor (Qlkg) caused by aperture leakage can be

generated.
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Fig. 7. Illustration of the design of the numerical experiment for Qwcl.

Fig. 8. Transmission line analogy for EM reflection from coated surfaces.

B. Extension to Wall Coating

We extend our methodology to predict the statistical proper-

ties of theQ-factor, denoted asQwcl, attributed to the presence of

a localized wall coating. In Fig. 7, we observe the application

of a lossy, thin coating on the cavity wall. This coating consists

of a single layer of dense dielectric material with a high dielectric

constant. The thickness of the coating layer is denoted as τ .

In the subsequent analysis, particularly when dealing with a

dielectric material characterized by a high relative permittivity,

we utilize the equivalent surface impedance of the coating,

denoted asZc. To provide a visual representation of this concept,

refer to the transmission line analogy depicted in Fig. 8. For the

details of the impedance calculation, readers are directed to [41,

Table I].

In comparison to the aperture leakage problem elaborated in

the previous section, the wall coating problem exhibits a similar

reduced-order model and the corresponding surface IE matrix

equation. The distinction arises from the admittance matrix

governing the relationship between the electric current J and

the magnetic current M on the coating surface. By using the

equivalent impedance Zc, we have the following impedance

boundary condition at the coating surface

ZcJ− n̂×M = 0. (63)

Through the Galerkin testing method, the admittance matrix

for the coating region can be described as

Yc
0 =

1

Zc
Gm. (64)

Here, Gm is a Gram matrix, with matrix entries determined by

the inner product of the testing and basis RWG functions. We can

then replace the matrix Ya
0 by Yc

0 in (61) to obtain the surface

IE matrix equation for the system model.

Following the same procedure described in the previous sec-

tion, we can generate samples of cavity Q-factor, Qwcl, due to

the wall coating.

IV. FURTHER TECHNICAL DISCUSSION

A. Impact of the Choice of α

Initially, it may seem counterintuitive that the construction

of the S-DGF in (7) also requires an input parameter known

as the cavity loss-parameter α. It is crucial to note, however,

that the choice of α does not affect the statistical distribution

of the calculated cavity Q-factor due to localized losses. This

can be explained as follows. The parameter α is related to the

Q-factor, Quni, which is related to the uniform loss of the cavity.

In this article, the stochastic Q-factor of the localized losses is

directly calculated by Qloc(ω) = ωUs/Pd,loc. As we are solving

a coupled stochastic system of equations involving the Tx dipole,

Rx dipoles, and lossy components, different α values give rise

to different cavity E-field solutions. But both the stored energy

(numerator) and dissipated power (denominator) in (2) are pro-

portional to the E-field square. Thereby, the calculated statistical

cavityQ-factor due to localized losses remains unaffected by the

choice of α.

The methodology can be conceptually compared to the ab-

sorbing cross-section (ACS) measurement of dielectric loading

in reverberation chambers. For each mode stirrer configuration,

the cavity stored energy is expressed as U = ε
〈

|Ec|2
〉

V , where
〈

|Ec|2
〉

is the spatial averaged squared magnitude of the cavity

E-field, also known as the chamber constant. The dissipated

power due to dielectric loss is denoted by Pd = σa

〈

|Ec|2
〉

/η,

in which σa is the ACS of the dielectric loading. As both U
and Pd are contingent on the chamber constant, the ACS value

calculated by the ratio of dissipated power to stored energy is

related to the dielectric object itself, independent of the specific

reverberation chambers under consideration.

B. Applicability of the Proposed Work

The research results are particularly relevant in the context

of electrically large cavities exhibiting high modal density and

modal overlap. In such scenarios, where a macroscopic cavity

Q-factor is more relevant than the modal Q-factor, the proposed

methodology is shown to be useful and valuable. It is essential to

emphasize that, owing to the stochastic nature of the S-DGF, the

results do not provide preciseQ-factor values for a specific, well-

defined cavity geometry or locations of the lossy components.

Instead, they provide predictions for the probability distribution

of the cavity Q-factor across an ensemble of statistically similar

cavity environments.

V. VERIFICATION AND VALIDATION

A. Verification of Cavity Q-Factor for Absorptive Loading

1) Problem Description: The first numerical study concerns

the cavity Q-factor resulting from power dissipation under lossy

objects within the enclosure. The goal is to validate the predicted

statistics of Q-factor with full-wave numerical simulations.
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Fig. 9. Illustration of the numerical experiment setup.

The numerical experiment setup is illustrated in Fig. 9. The

dimension of the cavity is 1m × 1m × 1m in length, width,

and height. The cavity wall is treated as the PEC boundary

condition. An electric dipole of length l = 7.5 cm directed along

with ẑ-axis is used as the cavity excitation. The cavity is loaded

with a dielectric cube of size 0.1m and constitutive parame-

ters, εr = 10, μr = 1, and loss tangent δ = 0.2. To generate a

configuration ensemble, we have included an irregular Z-folded

stirrer consisting of five 0.3m × 0.3m metallic plates that are

arranged in different folding angles. The center of the stirrer is

located at x = −0.25m and y = −0.25m.

2) Numerical Approaches: We have considered the follow-

ing three numerical approaches to characterize the cavity Q-

factor. In the first approach, we conduct full-wave simulations

using commercial software. The mode stirrer is rotated through

12 positions over 360◦ for a frequency range of 1.99 to 2.01GHz

with 2MHz frequency stepping. At each stirrer position and

frequency, we uniformly collect E-fields within the cavity to

compute the stored energy stored Us, and the S-parameter S11

of the radiating dipole. The dissipated power is then approxi-

mated by the radiated power asPd ≈ Pt = 1− |S11|2. The total

number of cavity Q-factor samples is 132, obtained using (1).

As an additional comparison, we explore the well-known ran-

dom plane wave (RPW) [42] approach, which has been applied

to determine the absorption cross section of lossy materials

under a random field excitation [43]. The mean-value ACS, 〈σa〉,
is obtained by averaging M = 5000 RPW simulations. Each

full-wave simulation uses Np = 100 RPWs as excitation and is

solved by the PMCHWT IE matrix equation. Consequently, a

deterministic Q-factor, denoted as Q̄abl, is obtained using the

formula

Q̄abl =
2πV

λ 〈σa〉M
. (65)

The third approach utilizes the proposed work for the statis-

tical prediction of cavity Q-factor for absorptive loading. We

employ electrically small electric dipoles of length l = 5mm as

both the cavity excitation and E-field probes. These dipoles are

modeled by the EFIE (42). The dielectric loading is modeled

by the PMCHWT (47), incorporating both the homogeneous

DGF and stochastic DGF as integral kernels. The overall system

of matrix equation is provided in (48). To verify the assertion

Fig. 10. PDF of the cavity Q-factor for dielectric cube loading.

Fig. 11. PDF of the cavity Q-factor for dielectric sphere loading.

that the choice of α in the S-DGF does not affect the PDF of

calculated cavity Q-factor, we have considered three different

choices, α = 0.1, 1, and 10, corresponding to a cavity factor

Quni = 37311.11, 3731.11, 373.11 for homogeneous, uniform

loss. A statistical ensemble of S-DGF IE matrices in (48) was

generated using 5000 GOE random matrices with dimensions

of 2000× 2000. This results in a total number of 5000 Qabl

samples.

3) Comparison: The PDF of cavity Q-factor obtained from

full-wave simulation and the proposed work are plotted in

Fig. 10. The mean value of Qabl predicted by the RPW approach

is also included. As is seen in Fig. 10, the results show generally

good agreement between the first-principles simulation and

the statistical prediction. Next, we replace the dielectric cube

with a dielectric sphere loading of diameter 0.1m. The same

constitutive parameters are used. The comparison of full-wave

simulation, RPW approach, and the proposed work is shown in

Fig. 11. The results again agree well.

Table I presents quantitative measures for comparing the

mean values and probability distributions obtained through both

full-wave simulation and the proposed methodology. The PDF

obtained from the full-wave simulation serves as the reference

distribution for comparison. Statistical distance is evaluated

using the Kullback–Leibler Divergence metric [44]. The results

indicate a generally good agreement between the results of the

first-principles simulation and the statistical predictions. The
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Fig. 12. Comparison of the cavity Q-factor for wall coating case.

small discrepancy observed may be attributed to the limited size

of our cavity ensemble (12 stirrer configurations) in the full-wave

simulation.

Both the stochastic and full-wave simulations were conducted

on a workstation with Intel Xeon silver 4114 CPU and 208 GB of

memory. Taking the dielectric cube case as an example, the con-

struction of S-DGF IE matrices took 18.4 min, and the solution of

the IE matrices was obtained in 12 min. Regarding the full-wave

simulations of 12 cavity configurations, each simulation took

7 h and 31 min on average. Thereby a total time of 5412 min is

required to obtain the results of the configuration ensemble.

B. Verification of Cavity Q-Factor for Wall Coating

The next numerical experiment is to evaluate the statistics of

Q-factor due to the power dissipated in the wall coating. Specifi-

cally, we consider an Eccosorb LS-24 absorber with a thickness

of τ = 5 mm serving as a wall coating. This thin absorber is

applied to a confined area on the PEC wall of a 3-D closed

cavity with a volume of V = 1m3. The relative permittivity and

permeability of the absorber are εr = 13.7666− 14.9681j and

μr = 1 at 1 GHz, respectively. The composite Q-factor (Qref)

obtained using the formulation (7.116) in [17] are considered as

reference results.

In our proposed approach, we employ simple small electric

dipoles with a length of l = 5mm as the cavity excitation and

E-field probes. Following the procedure outlined in Section II-

I-B, we use 5k GOE random matrices with dimensions of

2000× 2000 to generate a statistical ensemble of S-DGF IE

matrices. Consequently, a total of 5kQ-factor samples are com-

puted. The average Q-factor (〈Qwcl〉) is obtained by averaging

these samples. The results for varying surface coating areas (A)

are plotted in Fig. 12, demonstrating a good agreement between

the proposed approach and the reference results.

Moreover, Fig. 13 plots the PDFs of the calculated Q-factor

concerning the wall coating areas. For each of the probability

distributions, we calculate the mean value μ and the standard

derivation σ. It is noted that as the coating area increases, the

loss mechanism tends toward the distributed case. The statistics

of the cavity Q-factor closely resemble a Gaussian distribu-

tion N (μ, σ), as discussed in [24]. In addition, the standard

Fig. 13. PDFs of Q-factor as the wall coating area increases.

Fig. 14. Illustration of the experiment setup.

derivation in the Q-factor decreases as the surface coating area

increases.

C. Validation of Cavity Q-Factor for Aperture Leakage

Finally, we experimentally validate the proposed work for

predicting the statistics of Q-factor attributed to the power loss

through aperture leakage. The experimental setup is illustrated

in Fig. 14. A SMART 800 MSRC is placed inside an anechoic

chamber. The dimension of the MSRC is 0.784m× 1.494m×
1m. Two square apertures of dimension 0.3048m × 0.3048m
are located on the opposite walls of MSRC. We can open one

aperture at a time to examine the effects of power loss, as

depicted in Fig. 15(a). The Tx and receiver are implemented

using two monocone antennas, as shown in Fig. 15(b). The

configuration ensemble is generated by rotating a paddle wheel

acting as the mechanical mode stirrer.

We first perform the S-parameter measurement with both

apertures closed. The stirrer is rotated 100 positions over 360◦.

At each stir state, S-parameters of Tx and Rx antennas, S11

and S21, are measured and recorded from 1 to 1.25 GHz with

0.025 MHz frequency stepping. To avoid measurements at mul-

tiple locations to calculate cavity energy density, we utilize

the ensemble average over the stirrer states. The frequency-

dependent Q-factor is obtained by [45], [46]

Qo(f) =
16π2 V

ηTXηRXλ3

〈

|S21(f)|2
1− |S11(f)|2

〉

stirr

(66)

where V is the volume of MSRC, ηTX and ηRX are the Tx

and Rx antenna efficiencies. A total number of 10 001 Q-factor
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Fig. 15. Configuration of the MSRC testing environment. (a) Exterior view.
(b) Interior view.

Fig. 16. Measurement result of Q-factor and Qlkg.

samples are obtained from 1 to 1.25 GHz. We then perform the

measurement with the same experimental setting while opening

the aperture at the front panel of the MSRC. The resulting cavity

Q-factor is denoted by Qt. Therefore, the Q-factor due to the

aperture leakage Qlkg can be recovered by

Qlkg = 1/ (1/Qt − 1/Qo) . (67)

Finally, we repeat the experiment by opening the aperture on the

back panel of the MSRC. Thereby, two sets of measurement data

(denoted by front panel and back panel) for Qlkg are obtained.

As depicted in Fig. 16, quasi-random fluctuations between fre-

quencies are observed due to the stochastic nature of the cavity

field.

The objective of this study is to predict the probability dis-

tribution of Qlkg within the frequency range 1–1.25GHz. To

Fig. 17. PDF of the cavity Q-factor for aperture leakage.

achieve this, we divide the range into five frequency bands, each

with bandwidth 50 MHz. Our proposed procedure, detailed in

Section III-A, is then applied at frequencies ranging from 1

to 1.25GHz with increments of 0.05GHz. At each frequency

point, we employ 10 k GOE random matrices to generate an

ensemble of S-DGF IE matrices in (61). Therefore, a total of

60 k Q-factor samples are computed with the proposed work.

Moreover, we have used the RPW method at these frequency

points and computed the mean value of the cavity Q-factor. The

results are illustrated in Fig. 17. We notice that the prediction

from the proposed work shows a good agreement with the

measurement results.

VI. CONCLUSION

This article aims to address an open question about the sta-

tistical characterization of cavity Q-factor caused by localized

losses, such as aperture leakage and absorptive loading. A novel

hybrid deterministic-stochastic computing model is proposed

that integrates component-specific (loading) and site-specific

(aperture) features with the statistical representation of com-

plex cavity environments. Experimental results are supplied to

validate the proposed work.

The research findings hold significant practical applications

in the power balance method [20], [47] for characterizing the

response of a complex EM system to a high-frequency external

excitation, in which the cavity Q-factor is one of the most im-

portant input parameters. Given that the proposed work provides

a statistical cavity Q-factor, a natural extension is to develop a

statistical power balance model to analyze the stochastic power

flow in complex systems. Moreover, leveraging the calculated

cavity Q-factor, the applications extend to the computation of

the energy decay factor, the analysis of the power delay profile,

and the control of the coherence bandwidth in the wireless OTA

testing in loaded reverberation chambers [48].

APPENDIX

A. Covariance of Eigenvectors in G
mm

S

As illustrated in Fig. 2, the covariance function of transverse

vector components can be calculated by

〈Ψm,x
i (r) ,Ψm

i , x (r
′)〉
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=
2

V

〈

(cosψn cosφn cos θn − sinψn sinφn)
2

cos (kiên · r+ βn) cos (kiên · r′ + βn)
〉

=
1

V

〈(

cos2ψn cos
2φn cos

2θn−2 cosθn cosψn cosφn sinψn sinφn

+sin2ψn sin
2φn

)

[cos(kiên ·ẑR)+cos(kiên ·(r+r′)+2βn)]
〉

=
1

V

1

2

∫ π

0

[

1

2
× 1

2
cos2 θn +

1

2
× 1

2

]

cos (kiR cos θn) sin θndθn

=
1

8V

∫ 1

−1

(

u2 + 1
)

cos (kiRu) du

=
1

2V

[

sin kiR

kiR
− sin kiR− kiR cos kiR

k3iR
3

]

=
1

3V
f⊥ (kiR) .

Similarly, we could also derive the other two covariance

functions

〈Ψm,y
i (r) ,Ψm,y

i (r′)〉 = 1

2V

[

sin kiR

kiR
− sin kiR−kiR cos kiR

(kiR)3

]

=
1

3V
f⊥ (kiR)

〈Ψm,z
i (r) ,Ψm,z

i (r′)〉 = 1

V

sin kiR− kiR cos kiR

(kiR)3

=
1

3V
f// (kiR) .

B. Covariance of Eigenvectors in G
me

S

Substituting (16) and (14) into Cme
xy(R), we can obtain

〈Ψm,x
i (r) ,Ψe,y

i (r′)〉

=
2

V

〈

(cosψn cosφn cosθn−sinψn sinφn) (−sinψn sinφn cosθn

+cosψn cosφn) sin (kiên · r+ βn) cos (kiên · r′ + βn)
〉

=
1

V

〈(

−cosψn cosφn sinψn sinφn cos
2θn+cosθn

(

cos2ψn

× cos2φn + sin2 ψn sin
2 φn

)

− cosψn cosφn sinψn sinφn

)

[sin (kiên · ẑR) + sin (kiên · (r+ r′) + 2βn)]〉

=
1

V

1

2

∫ π

0

[(

1

2
× 1

2
+
1

2
× 1

2

)

cos θn

]

sin (kiR cos θn) sin θndθn

=
1

4V

∫ 1

−1

u sin (kiRu) du

=
1

2V

sin kiR− kiR cos kiR

(kiR)2

=
kiR

6V
f// (kiR) .

Similarly, we could also have

〈Ψm,y
i (r) ,Ψe,x

i (r′)〉 = − 1

2V

sin kiR− kiR cos kiR

(kiR)2

= −kiR

6V
f// (kiR)

and all the other elements in the covariance matrix are zero.

C. Finite-Dimensional Discretization of SIE Matrices for

Electric Dipole Case

Let us start with the general expression of the impedance

matrix ZS described as

ZS =

[

Zt,t
S Zt,r

S

Zr,t
S Zr,r

S

]

= jωμ

∫

v(r) ·
∫

G
ee

0 (r, r′) · v(r′)dr′dr.

(68)

Obviously,ZS = Zr,r
S andCS = −Zr,t

S will satisfy (40) and (41),

respectively. Substituting (7) into (68), we have

ZS = jωμ

∫

v(r) ·
∫

Re
[

G
ee

0 (r, r′)
]

· v(r′)dr′dr (69)

+ jωμ

∫

v(r) ·
∫

∑

m

D
ee

S (r, r
′; km)

λ̃m − jα

kV

2π2
· v(r′)dr′dr.

(70)

Accordingly, the impedance matrix ZS consists of two part. The

first part gives us

jωμ

∫

v(r) ·
∫

Re
[

G
ee

0 (r, r′)
]

· v(r′)dr′dr = jX0.

For the second part, we first consider the outer product in the

numerator
∫

v(r) ·
∫

D
ee

S (r, r
′; km) · v(r′)dr′dr

=

∫

v(r) ·
∫

(Ψe
i (r, ki)⊗Ψe

i (r
′, ki)) · v(r′)dr′dr

=

∫∫

[v(r) ·Ψe
i (r, ki)] [Ψ

e
i (r

′, ki) · v(r′)] dr′dr. (71)

Based on the property of RWM approximation, it is easy to

show that both [v(r) ·Ψe
i (r, ki)] and [Ψe

i (r
′, ki) · v(r′)] follow

Gaussian distribution. After multiplying the remaining coeffi-

cient jωμ kV
2π2 in (70), the matrix entries in (71) are the results

of the product of Gaussian random variables, whose covariance

between trial and testing triangle function is expressed by
〈

jωμ

∫

v(r) ·
[
∫

D
ee

S (r, r
′; km)

kV

2π2
· v(r′)

]

dr′dr

〉

= jωμ

∫

v(r) ·
∫

〈

D
ee

S (r, r
′; km)

〉 kV

2π2
· v(r′)dr′dr

≈ jωμ

∫∫

v(r) ·
(

− 1

π
Im
[

G0 (r, r
′; k)

]

· v(r′)
)

dr′dr

=
j

π
R0.
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In the abovementioned derivation, we have used the result of (8)

and the fact of km ≈ k. Then, the correlated Gaussian random

variables associated with individual triangle functions can be

constructed using the discrete Karhunen–Loeve expansion

[w̃m] =
√

R0 [wm] .

Therefore, the impedance matrix ZS is written as

ZS = jX0 +
j

π

∑

m

w̃mw̃
T
m

λ̃m − jα
.

In the diffusive case

[

Zt,t
S Zt,r

S

Zr,t
S Zr,r

S

]

= j

[

Xt
0 0

0 Xr
0

]

+
j

π

∑

m

{

√

√

√

√

[

Rt
0 0

0 Rr
0

][

wt
m

wr
m

]

· 1

λ̃m − jα
·
[

wt
m wr

m

]

√

√

√

√

[

Rt
0 0

0 Rr
0

]}

.

Thus, we have the explicit form of ZS and CS as

ZS = jXr
0 +

j

π

∑

m

√

Rr
0 ·

(wr
m)2

λ̃m − jα
·
√

Rr
0

CS = − j

π

∑

m

√

Rr
0 ·

wr
mwt

m

λ̃m − jα
·
√

Rt
0.

D. Finite-Dimensional Discretization of SIE Matrices for

Dielectric Loading Case

In (47), we first have the impedance matrices for the dielectric

medium

Z
e,j
H =jωμ

∫∫ ∫∫

v(r)·
[

πτ

(

G
ee

H(r, r
′)
)

·v(r′)
]

dS ′dS (72)

Z
e,m
H =

∫∫ ∫∫

v(r)·
[

πτ

(

G
em

H (r, r′)
)

·v(r′)
]

dS ′dS (73)

Z
h,j
H =

∫∫ ∫∫

v(r)·
[

πτ

(

G
me

H (r, r′)
)

·v(r′)
]

dS ′dS (74)

Z
h,m
H =jωε

∫∫ ∫∫

v(r)·
[

πτ

(

G
mm

H (r, r′)
)

·v(r′)
]

dS ′dS. (75)

For the impedance matrices using the stochastic DGF, we have

Z
e,j
S =jωμ

∫∫ ∫∫

v(r)·
[

πτ

(

G
ee

S(r, r
′)
)

·v(r′)
]

dS ′dS (76)

Z
e,m
S =

∫∫ ∫∫

v(r)·
[

πτ

(

G
em

S (r, r′)
)

·v(r′)
]

dS ′dS (77)

Z
h,j
S =

∫∫ ∫∫

v(r)·
[

πτ

(

G
me

S (r, r′)
)

·v(r′)
]

dS ′dS (78)

Z
h,m
S =jωε

∫∫ ∫∫

v(r)·
[

πτ

(

G
mm

S (r, r′)
)

·v(r′)
]

dS ′dS. (79)

Following the similar procedure of the derivation in Appendix

C, we can derive

Z
e,j
S = jXe,j

0 +
j

π

∑

m

w̃
e
m(w̃e

m)T

λ̃m − jα
(80)

Z
e,m
S = R

e,m
0 − 1

π

∑

m

w̃
e
m(w̃m

m)T

λ̃m − jα
(81)

Z
h,j
S = R

h,j
0 − 1

π

∑

m

w̃
m
m(w̃e

m)T

λ̃m − jα
(82)

Z
h,m
S = jXh,m

0 +
j

π

∑

m

w̃
m
m(w̃m

m)T

λ̃m − jα
. (83)

Thus, combining (80)–(83), we have the final expression of the

impedance matrix for dielectric loading as
[

Z
e,j
S Z

e,m
S

Z
h,j
S Z

h,m
S

]

=

[

jXe,j
0 R

e,m
0

R
h,j
0 jXh,m

0

]

+
j

π

∑

m

w̃mw̃
T
m

λ̃m − jα
(84)

where w̃m are correlated Gaussian random variables associated

with individual RWG functions, which can be constructed using

the discrete Karhunen–Loeve expansion

[w̃m] =

[

R
e,j
0 jXe,m

0

jXh,j
0 R

h,m
0

]1/2 [

w
e
m

w
m
m

]

.

And w
e
m and w

m
m are zero mean, unit variance independent

Gaussian random variables.
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