
Forest Science, 2024, 70, 228–241
https://doi.org/10.1093/forsci/fxae015
Advance access publication 29 March 2024
Research Article

Received: October 31, 2023. Accepted: March 8, 2024.
© The Author(s) 2024. Published by Oxford University Press on behalf of the Society of American Foresters. All rights reserved. For commercial re-use, 
please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via 
the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.

Geospatial Technologies

An Accuracy Assessment of Field and Airborne Laser 
Scanning–Derived Individual Tree Inventories using Felled 
Tree Measurements and Log Scaling Data in a Mixed 
Conifer Forest
Aaron M. Sparks,1,*,  Mark V. Corrao,1,2 Robert F. Keefe,1 Ryan Armstrong,2 and 
Alistair M.S. Smith3

1Department of Forest, Rangeland, and Fire Sciences, College of Natural Resources, University of Idaho, Moscow, Idaho, 83844, USA (asparks@
uidaho.edu, mcorrao@uidaho.edu, robk@uidaho.edu). 
2Northwest Management Incorporated, Moscow, Idaho, 83843, USA (mcorrao@uidaho.edu, armstrong@northwestmanagement.com). 
3Department of Earth and Spatial Sciences, College of Science, University of Idaho, Moscow, Idaho, 83844, USA (alistair@uidaho.edu).
*Corresponding author email: asparks@uidaho.edu

Abstract 
On-the-ground sample-based forest inventory methods have been the standard practice for more than a century, however, remote sensing 
technologies such as airborne laser scanning (ALS) are providing wall-to-wall inventories based on individual tree measurements. In this study, 
we assess the accuracy of individual tree height, diameter, and volume derived from field-cruising measurements and three ALS data-derived 
methods in a 1.1 ha stand using direct measurements acquired on felled trees and log-scale volume measurements. Results show that although 
height derived from indirect conventional field measurements and ALS were statistically equivalent to felled tree height measurements, ALS 
measured heights had lower root mean square error (RMSE) and bias. Individual tree diameters modeled using a height-to-diameter-at-breast-
height model derived from local forest inventory data and the software ForestView had moderate RMSE (8.3–8.5 cm) and bias (-3.0 – -0.3 cm). 
The ALS-based methods underdetected trees but accounted for 78%–91% of the field reference harvested merchantable volume and 71%–
99% of the merchantable volume scaled at the mill. The results also illustrate challenges of using mill-scaled volume estimates as validation data 
and highlight the need for more research in this area. Overall, the results provide key insights to forest managers on accuracies associated with 
conventional field-derived and ALS-derived individual tree inventories.

Study Implications:  Forest inventory data provide critical information for operational decisions and forest product supply chain planning. 
Traditionally, forest inventories have used field sampling of stand conditions, which is time-intensive and cost-prohibitive to conduct at large 
spatial scales. Remote sensing technologies such as airborne laser scanning (ALS) provide wall-to-wall inventories based on individual tree 
measurements. This study advances our understanding of the accuracy of conventional field-derived and ALS-derived individual tree inventories 
by evaluating these inventories with felled tree and log scaling data. The results provide key insights to forest managers on errors associated 
with conventional field and ALS-derived individual tree measurements.
Keywords: airborne laser scanning, lidar, forest inventory, stem volume, felled tree, log scaling, validation

Forest inventory is a fundamental component of forest man-
agement and the forest products supply chain or the flow 
of wood products from the forest to the end user. Inventory 
data provides critical information for long-term forest plan-
ning, operational decisions, harvest scheduling, invest-
ment, and forest product supply chain planning (Maltamo 
et al. 2021; Tinkham et al. 2018). For more than a century, 
forest inventories have relied on field sampling of forest 
stand conditions (Frayer and Furnival 2000; Maltamo et al. 
2021), which are time-intensive, accuracy-limited (Luoma 
et al. 2017) and cost-prohibitive to collect wall-to-wall (i.e., 
spatially complete) (Durrieu et al. 2015; Vauhkonen et al. 
2014a). With advances in remote sensing, forest inventories 

have shifted toward incorporating technologies such as air-
borne scanning light detection and ranging (LiDAR), also re-
ferred to as airborne laser scanning (ALS), as it can gather 
wall-to-wall, three-dimensional forest structural data. These 
technologies can provide wall-to-wall data at a lower cost per 
unit area than conventional field sampling, especially when 
applied over large spatial scales or cost-shared (Hudak et al. 
2020; White et al. 2016).

Wall-to-wall forest inventories using ALS data are derived 
either through area-based or individual tree detection (ITD) 
approaches (Holopainen et al. 2014; Vauhkonen et al. 2014a; 
White et al. 2016). Area-based methods use gridded summaries 
of the ALS point cloud (e.g., height percentiles, height stratified 
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return densities) and ground-based sampling to model stand-
level attributes across the fixed grid (Næsset 2002). Area-based 
techniques have comparable accuracies to conventional inven-
tory methods for stand-level averages of stem volume, basal 
area, and height, with root mean square error (RMSE) typi-
cally lower than 10% (Persson et al. 2022; White et al. 2016). 
However, area-based methods have limitations capturing 
species-specific structural information, which is important for 
accurate volume estimates and better-informed harvest planning 
and silvicultural applications (Holopaninen et al. 2014; Keefe et 
al. 2022; Maltamo et al. 2021; Tompalski et al. 2014). In con-
trast to area-based methods, ALS-based ITD forest inventories 
rely on the identification and segmentation of individual trees 
from ALS point clouds or canopy height models and in some 
cases can provide near-census-level tree identification. Because 
ITD provides individual tree geolocation and attribute informa-
tion, it has significant potential to improve growth and yield 
projections (Jeronimo et al. 2018; Tinkham et al. 2016), mon-
itor tree-scale growth and mortality (Duncanson and Dubayah 
2018), and optimize harvesting and planning (Keefe et al. 2022; 
Vauhkonen et al. 2014b). Studies have shown that ITD-derived 
stand level attributes such as mean height, mean diameter at 
breast height (DBH) and total stem volume are comparable 
to those derived through area-based analyses (RMSE within 
~2%), however, accuracy can vary depending on the pulse den-
sity of the ALS data (Frank et al. 2020; Peuhkurinen et al. 2011; 
Yu et al. 2010). For example, several studies have reported large 
total stand volume errors (RMSE = ~29%) when ITD methods 
are applied to low pulse density ALS data (<3 ppm) (Soininen et 
al. 2022; Vastaranta et al. 2011).

Among the various measurements acquired during a con-
ventional forest inventory, tree height and DBH are two fun-
damental attributes necessary for forest management and 
planning because of their correlation with tree competition, 
volume of wood, and ultimately, forest value (Tinkham et 
al. 2016; White et al. 2014). Conventional variable-radius-
plot sampling and continual forest inventory monitoring 
approaches vary widely in specifications for the complete-
ness of height and DBH measurements of on-plot trees, 
often for efficiency purposes (Deo et al. 2016; Scott 1990). 
Height for any unmeasured tree is often modeled using al-
lometric relationships between DBH and height (Qiu et al. 
2021; Wykoff et al. 1982), and there is a long history of allo-
metric relationship development using DBH to model height 
and other tree attributes for numerous species and size classes 
(Curtis 1967; Gonzalez-Benecke et al. 2014; Meyer 1940; 
Qiu et al. 2021). The ALS data, by comparison, can provide 
highly accurate height measurements but does not directly 
measure DBH. Thus, research efforts have shifted toward 
developing allometric relationships that use tree height and 
other tree attributes, such as crown diameter and tree density, 
to model DBH, taper, and stem volume (Corrao et al. 2022; 
Heurich 2008; Popescu 2007; Salas et al. 2010; Tinkham 
et al. 2016). Modeled DBH derived from ALS data metrics 
has reported RMSE ranging from ~3.8 to 5.9 cm (Heurich 
2008; Popescu 2007; Tinkham et al. 2016). Alternatively, 
dense point clouds derived from uncrewed aerial systems 
(UAS) LiDAR and structure from motion (SfM) imagery have 
been used to directly extract DBH from stem returns with 
lower RMSE (~0.8–4.8 cm) (Kukkonen et al. 2022; Swayze 
et al. 2021). Others have used UAS point cloud metrics to 
model DBH with high accuracy (RMSE = 1.9–2.5 cm) (Sun 
et al. 2022). Although promising, many present-day UAS are 

inefficient compared with ALS for large area (i.e., >1,000 ha) 
data collection (White et al. 2016).

Although the shift from sample-based field inventories to 
ALS-derived wall-to-wall inventories is promising, the ac-
curacy and errors of measured and modeled individual tree 
attributes are not well characterized (Lisiewicz et al. 2022; 
Lara-Gómez et al. 2023). Studies have shown that accurate 
height measurements are critical for accurate estimates of stem 
volume and have a greater influence on stem volume error than 
the choice of generic or species-specific allometric equations 
(Tompalski et al. 2014). Field measured height has been re-
ported as a reliable way to evaluate ALS-derived individual 
tree height accuracy (Heurich 2008; Popescu and Wynne 
2004; Sparks and Smith 2022; Wang et al. 2019). Field meas-
ured height typically relies on indirect measurements from 
clinometers and/or laser hypsometers that use trigonometric 
principles to calculate tree height using measurements of angles 
to the tree base and treetop, along with the horizontal distance 
to the tree stem. It is widely accepted that these methods gen-
erally underestimate the maximum tree height due to treetop 
occlusion by branches and other trees, especially under dense 
canopy cover and steep slope conditions, leading to studies 
questioning whether field measured height is of sufficient ac-
curacy to quantify errors in ALS-derived tree height (Hyyppä 
et al. 2004; Jurjević et al. 2020; Wang et al. 2019). Conversely, 
research using direct measurements of height, typically through 
felled tree measurements, has found ALS-derived heights ex-
hibit less error (RMSE = 0.36–0.41 m) and bias compared with 
indirect field-measured heights (RMSE = 0.58–1.0 m) (Corrao 
et al. 2022; Ganz et al. 2019). However, the accuracy of tree 
heights from ALS can depend on several factors, such as pulse 
density, scanner type, and processing methods, as other studies 
have found that field-derived indirect height measurements 
were more accurate than height measurements derived from 
low pulse density ALS data (<7 ppm) (Andersen et al. 2006; 
Soininen et al. 2022; Tinkham et al. 2016). Given the time 
and cost constraints associated with conducting direct meas-
urement experiments, relatively few studies have undertaken 
the effort to cut down mature trees, yet information from di-
rect measurement studies remains a critical research need for 
understanding error associated with conventional and ALS-
derived forest inventories. These experiments are also useful 
for validating novel height derivation methods and new sensor 
systems that become available such as from UAS.

Postharvest measurements, such as scaled volume, pro-
vide an additional independent data source to validate 
preharvest volume estimates, although few studies have 
used such datasets. Some studies have used log scale data 
collected at the processing mill to validate field and ALS-
derived stand volume estimates and have found that ALS-
derived volume has close agreement with scaled volume 
(estimates within 10%) (White et al. 2014; Woods et al. 
2011). Others have used harvester-derived volume to as-
sess field and ALS-derived estimates and found volume 
estimates were within ~4%–34% (Holopainen et al. 2010; 
Korhonen et al. 2008; Persson et al. 2022; Peuhkurinen 
et al. 2007). Regardless of the method, there are several 
challenges associated with validation using postharvest 
volume measurements. Total standing tree volume is often 
greater than harvester-derived volume due to bucking 
criteria for standardized log lengths and sizes resulting 
from small-end-diameter limits, trim allowances (which can 
be ≥15 cm per log), and desired product types to be milled 
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by processing facilities (Adebayo et al. 2007; Hartsough et 
al. 1997). Additionally, depending on physical tree defects, 
such as double tops, crooks, sweep, and/or breakage, a har-
vester may cut out other portions of a tree bole, further 
reducing the volume delivered to and scaled at the mill. 
Furthermore, some log scaling rules systematically underes-
timate wood volume as they treat segments as nontapering 
cylinders (Spelter 2004), which can lead to large volume 
differences between estimated and scaled volume (Fonseca 
2005). Regardless of these challenges, comparisons be-
tween field-measured, modeled, and scaled volumes provide 
useful information that is understood by a range of forest 
research, inventory, and management personnel.

In this study, the overall objective was to assess the ability 
of conventional field inventory and three ALS-based methods 
to accurately characterize individual tree height, DBH, and 
volume in a mixed conifer stand in north-central Idaho, USA. 
The three ALS-based methods included two “open source” 
methods that used a common allometric modeling approach 
and one commercial “gray box” method that used the 
ForestView software. To address the overall objective we (1) 
assessed the accuracy of conventional cruise indirect-height 
measurements and ALS-derived height measurements with 
direct-height measurements taken after the trees were felled, 
(2) assessed the accuracy of individual tree diameter derived 
from local and regional height-to-DBH models and diameter 
derived from ForestView with direct DBH measurements ac-
quired in the field, and (3) compared modeled gross harvested 
wood volume calculated from conventional cruise data and 
ALS-derived height and DBH measurements to the gross 
volume of harvested logs scaled at the processing mill.

Materials and Methods
Study Area and Experimental Design
This study was conducted within the University of Idaho 
Experimental Forest (UIEF), located in the Palouse Range of 

north-central Idaho, USA (~ N 46.82° W 116.80°). The study 
area focuses on a 1.1 ha mixed conifer stand (figure 1). The 
study stand was composed of mature trees with an average 
DBH (±SE) of 38.5 ± 0.9 cm and average height (±SE) of 
23.2 ± 0.3 m. Species included Pseudotsuga menziesii (Mirb.) 
Franco var. glauca (Beissn.) Franco (Douglas-fir) (72% of live 
stems), with smaller proportions of Pinus ponderosa Dougl. 
ex Laws. (ponderosa pine) (16% of live stems), Pinus contorta 
Douglas (lodgepole pine) (9% of live stems), Thuja plicata 
Donn ex D. Don (western redcedar) (1% of live stems), Larix 
occidentalis Nutt. (western larch) (1% of live stems), Abies 
grandis (Douglas ex D. Don) Lindl. (grand fir) (0.5% of live 
stems), and Picea engelmannii Parry ex Engelm. (Engelmann 
spruce) (0.5% of live stems). The local climate is characterized 
by cool wet winters and warm dry summers. Over the 1991–
2020 period, mean summer (June–August) temperature was 
17.2°C, mean summer precipitation was 81 mm, and annual 
precipitation was 622 mm (NOAA 2022).

The stand was thinned in June 2022. Figure 1 shows the 
ALS-derived canopy height models prethinning (2020) and 
postthinning (2022). The prethinning tree density was 293.7 
trees ha-1 and basal area was 37.9 m2 ha-1. The thinning treat-
ment reduced the tree density to 146.1 trees ha-1 and basal 
area to 21.9 m2 ha-1.

Field Validation Datasets
A stem-mapped cruise of the trees within the stand was 
conducted prior to thinning. The irregular shape of the 
cruised area within the stand (figure 1 “Cruise area”) resulted 
from active harvesting within the stand prior to the initiation 
of this research and thus, the boundaries were constrained 
to the remaining nonharvested area. During the cruise, the 
location of each tree within the study area was acquired with 
submeter precision using a JAVAD Triumph-2, which has a 
reported horizontal accuracy of 0.01 m (JAVAD EMS, Silicon 
Valley, CA). Unique identification numbers were painted 
on each tree and each tree was additionally marked with a 

Figure 1 Study location and ALS-derived canopy height models for the study stand and surrounding area (masked area) preharvest (a) and postharvest 
(b). In (a) and (b), lighter shades indicate greater height and darker shades indicate lower height. Detected and matched individual trees are symbolized 
by field-classified species and are overlaid on all panes. Unmatched field-geolocated trees are displayed as “×” symbols.
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metal tag below stump height. All trees >1.5 m in height were 
measured for DBH using a logger’s tape and for crown base 
height and total height using a Vertex Laser Geo 360 laser 
hypsometer (Haglof, Sweden) following standard methods. 
Height at which the stem diameter is 80% of DBH was also 
measured for each tree using a Spiegel relaskop (SILVANUS, 
Kirchdorf, Austria) and was used to inform stem taper. Live 
or dead status, species and crown position (i.e., dominant, 
codominant, intermediate, and suppressed) adapted from 
(Kraft 1884) were also assessed. In total, 339 individual trees 
were geolocated and measured.

During the thinning treatment, all trees were felled by hand 
and remained near their respective stump for measurement. 
The total height for all cruised and felled trees (N = 191) was 
remeasured with a logger’s tape from the stump to the end of 
each leader.

ALS Data and Individual Tree Detection and 
Measurement
The ALS data were acquired across the study area in 
September 2020 using a RIEGL VQ-1560II sensor (RIEGL, 
Horn, Austria) mounted on a fixed-wing aircraft with a gyro-
stabilized mount. The sensor has a 58° field-of-view and the 
aircraft varied the elevation above ground level between 1600 
and 1900 m to achieve a 55% flight-line overlap. The average 
pulse density was twenty pulses per square meter and the av-
erage per-pulse return rate was four. The supplier conducted 
several preprocessing routines, including laser intensity nor-
malization and return classification into bare earth, vegeta-
tion, water, buildings, and noise.

Individual tree detection was conducted on the ALS dataset 
using the ForestView ITD software (Corrao et al. 2022). 
ForestView ITD was selected as it exhibits comparable de-
tection accuracies (60%–75% of dominant and codominant 
trees) with other commonly used ITD approaches in mixed 
conifer forest (Sparks et al. 2022). As described below, fol-
lowing detection of each individual tree, we compared three 
different approaches to infer DBH and volume. Although 
the ForestView ITD method is described elsewhere (Corrao 
et al. 2022; Sparks and Smith 2021), a brief description 
follows. The ForestView ITD software was developed by 
Northwest Management Incorporated (NMI, Moscow, 
Idaho) and provides individual tree location, height, DBH, 
stem volume, live or dead status and estimates of species. The 
approach relies on classified ALS point cloud data and de-
rivative datasets including high resolution (0.3 m spatial res-
olution) canopy height models (CHM). Peaks in the CHM 
are assumed to be treetops and are detected using CHM and 
point cloud-based ITD methods, similar to valley following, 
watershed segmentation, and local max filtering (Popescu and 
Wynne 2004). Height percentiles, stratified point densities, 
and crown shape derived from the point cloud for each 
detected tree are used to refine initial tree detections and de-
rive other tree attribute information (Corrao et al. 2022). 
Individual tree DBH is modeled using multivariate regression 
that includes these point cloud metrics in combination with 
tree dominance, crown radius, live crown height, predicted 
species, and allometric relationships derived from field-
collected verification data (Corrao et al. 2022). The reference 
data used to train the ForestView model included individual 
tree GPS locations, heights, species, DBH, live crown heights, 
and crown widths at various locations across the University 
of Idaho Experimental Forest. No data from the study stand 

were used in the training process. Once trained, the final DBH 
model was applied to the detected trees within the study site. 
All trees measured in the field were manually matched to 
ForestView-detected trees using their respective submeter lo-
cation and height data, a high-resolution CHM (0.3 m spatial 
resolution), and additional notes taken by the field personnel. 
In total, 203 of the 339 (60%) cruised trees were successfully 
matched with ForestView-detected trees and 99 of these trees 
were felled during the study.

To account for the temporal difference between the ALS 
data collection (September 2020) and the felled tree data 
(June 2022), annual height change between September 
2020 and June 2022 was calculated by differencing the 
2020 ALS scan and an ALS scan acquired in July 2022 for 
each nonharvested tree in the study site and dividing by the 
number of growth seasons. Mean annual height increments, 
aggregated by species, were applied to the 2020 tree heights. 
These “growth-adjusted” height values were used to calcu-
late three DBH estimates for each tree, two DBH estimates 
using open-source allometric modeling methods, documented 
in the following analyses, and one DBH estimate using the 
ForestView software.

Height-to-DBH Models Developed Using Local and 
Regional Data
Forest inventory data collected at the local and regional 
scale was used to derive species-agnostic local and regional 
height-to-DBH models. The local model used data from an 
existing dataset of sixty-seven 0.053 ha plots acquired in 
2020 across the UIEF (Sparks and Smith 2021; Sparks et al. 
2022). As allometric relationships have been shown to vary 
along competition gradients (Hulshof et al. 2015; Qiu et al. 
2021) we only used data from plots that had a basal area 
per hectare within ±10 m2 ha-1 of our study stand. In total, 
747 individual trees were used to develop the local height-
to-DBH model.

The regional height-to-DBH model used data from the 
USDA Forest Service Inventory and Analysis (FIA) pro-
gram. The FIA program conducts a systematic forest in-
ventory across the entire United States using field-based 
observations and measurements from permanent plots that 
are remeasured every 5–10 years (Bechtold and Patterson 
2005). We acquired data from conifer-dominated plots 
in Idaho counties encompassing similar ecoregions to 
our study area. Specifically, plots within Environmental 
Protection Agency level IV ecoregions “Northern Idaho 
Hills and Low Relief Mountains,” “Palouse Hills,” “Grassy 
Potlatch Ridges,” and “Dissected Loess Uplands” were used 
(McGrath et al. 2002). Similar to the local model param-
eterization, we only used data from FIA plots that had a 
basal area per hectare within ±10 m2 ha-1 of our study area. 
In total, 1,811 individual trees were used to develop the re-
gional height-to-DBH model.

Relationships between height and DBH for both the local 
and regional scales were assessed using regression modeling, 
where DBH was the response variable and height was the pre-
dictor variable. Linear, logarithmic, and power-law function 
regression models were evaluated separately for each dataset. 
The best fit model was determined by the lowest Akaike 
Information Criterion (AIC) value (Akaike 1974). The best 
fit model using local and regional data was applied to the 
growth-adjusted ALS-derived heights to model DBH for each 
tree in the study area.
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Height and DBH Accuracy Assessment
Several statistical tests were used to evaluate the similarity 
of cruised and ALS-derived individual tree height and DBH 
to felled tree height and DBH. A Kolmogorov-Smirnov test 
was used to assess whether cruised and ALS-derived height 
distributions were statistically similar to the felled tree height 
distribution. This test further assessed the similarity of mod-
eled and ALS-derived DBH distributions to the cruised 
DBH distribution. The Kolmogorov-Smirnov test identifies 
differences in the cumulative distribution function of two data 
distributions. The test statistic (D) is the maximum difference 
between the cumulative distribution functions, where D values 
close to 0 indicate significant overlap in the data distributions 
and values close to one indicate little to no overlap in the data 
distributions. For this test, the null hypothesis is that the test 
dataset distribution follows a reference dataset distribution, 
and the alternate hypothesis is that the distributions are not 
similar. The null hypothesis is rejected if P < .05. This test is 
particularly useful for quantifying the similarity of the shape 
of two distributions. For example, two distributions with the 
same mean but different shape will produce large D values.

The accuracy of cruised and ALS-derived individual tree 
height and DBH was assessed using regression-based equiv-
alence tests (Robinson et al. 2005). For these tests, the null 
hypothesis is that the regression slope and intercept between 
paired sets of data are significantly different, and the alter-
nate hypothesis is that they are not significantly different. A 
linear regression model is fit using the paired datasets and 
an upper and a lower one-sided 95% confidence interval for 
both the intercept and slope is computed using the standard 
error regression outputs. The null hypothesis of dissimilarity 
is rejected if the joint one-sided 95% confidence intervals 
are entirely contained within a user-defined region of equiv-
alence (e.g., ±X%). Intercept equality implies the means of 
two datasets are not significantly different and slope equality 
implies that the regression slope is not significantly different 
than one. Many similar studies (Corrao et al. 2022; Falkowski 
et al. 2008; Robinson et al. 2005; Sparks and Smith 2021; 
Sparks et al. 2022) have used an arbitrarily selected region of 
equality (±25%) for the intercept and slope. Here, we follow 
the Robinson et al. (2005) suggestion of reporting the min-
imum region of equivalence that would still result in the re-
jection of the null hypothesis of dissimilarity. Equivalence 
was assessed separately between cruised tree height and felled 
tree height and ALS-derived tree height and felled tree height. 
Similarly, equivalence between modeled DBH (local and re-
gional models) and cruised DBH and ALS-derived growth-
adjusted DBH and cruised DBH were also assessed. The 
average RMSE (1) and mean bias (2) were calculated for all 
modeled and ALS-derived height and DBH as follows:

RMSE =

 ∑n
i=1 (x̂− xi)

2

n� (1)

Mean bias =
∑n

i=1 (x̂− xi)
n� (2)

where x̂ are the predicted values, xi are the observed values, 
and n is the number of observations. All statistical analyses 
were conducted in R (R Core Team 2023), and we used the 
“equivalence” R package (Robinson 2016) to conduct the 
regression-based equivalence tests.

Comparison of Harvested Volume
We calculated gross harvested merchantable and pulp volume 
for all harvested trees within the cruise area and compared 
the total volume estimated by the cruise and ALS-derived 
methods. Specifically, we compared total volume estimates 
for (1) matched cruise and ALS-detected trees and (2) all trees 
within the cruise area (i.e., matched and unmatched trees). 
The cubic volume of each harvested tree was calculated using 
five sets of height and DBH measurements: (1) felled height 
and cruised DBH, (2) cruised height and DBH, (3) ALS-
derived height and DBH modeled using the local forest inven-
tory dataset, (4) ALS-derived height and DBH modeled using 
the regional forest inventory dataset, and (5) ForestView-
derived height and DBH. For all sets of measurements, we 
estimated diameter inside bark using the Kozak (2004) taper 
equation from 0.3 m, assumed to be the stump height, to the 
treetop in 0.5 m segments. We used regionally derived taper 
equation parameters (Pancoast 2018; Poudel et al. 2018) and 
the Smalian formula (3) for calculating the cubic volume (V, 
m3) of all segments of each harvested tree:

V =
L
2
(A1 + A2)

� (3)

where L is the length of the log (m), A1 is the area of the small 
end of the log (m2), and A2 is the area of the large end of the 
log (m2). The total volume of each tree was calculated as the 
sum of merchantable volume, or volume of the stem where 
the diameter was greater than 15.24 cm, and pulp volume, 
or volume of the stem where the diameter was less than 
15.24 cm but greater than 7.62 cm. All harvested individual 
tree volumes were summed to provide gross harvested mer-
chantable and pulp volume for the cruise area. The volume 
derived using felled heights and cruised DBH was assumed 
to be the most accurate and served as the reference volume 
estimate.

We also compared gross harvested merchantable volume 
for the entire study stand to scaled merchantable volume 
conducted at the processing mill. Harvest of the study stand 
largely occurred on separate days from harvesting of the sur-
rounding stand, so it was possible to assign harvested trees 
within the study area to the specific truckloads taken to the 
mill. One exception was a single harvesting day where logs 
from the study area and the surrounding stand were mixed. 
Ground personnel estimated that up to two truckloads out of 
the six for that day originated from the study area. Due to this 
complexity, we report scaled volume with uncertainty bounds 
ranging from zero truckloads (0% of harvested volume for 
that day) to two truckloads (~33% of harvested volume for 
that day).

All logs on ten out of the twelve log loads originating 
from the study stand were scaled at the processing mill using 
the Scribner decimal C log rule. This log rule estimates the 
number of one-inch-thick boards spaced one-quarter inch 
apart that can fit inside the circular area of a log’s smallest 
end. Board foot yield of this scaling cylinder can be calcu-
lated by summing the widths of each board, dividing by 
12, and multiplying by the length of the log. Most logs are 
tapered and are not perfect cylinders, which means that 
this method ignores volume outside the scaling cylinder. 
Other cubic scales provide a more accurate estimate of 
total usable fiber (e.g., Newton and Smalian cubic volume 
formulations), however, the Scribner decimal C log rule 
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remains one of the most widely used log scaling rules in the 
western United States (Saralecos et al. 2014; Spelter 2004). 
The volume of the two remaining loads was estimated via a 
weight-to-volume conversion factor. The two weight-scaled 
loads were taken to the mill on the same day as the other 
Scribner-scaled loads and had similar species proportions. 
The mill data provided species, gross and net board feet, 
and net tons for each log load harvested from the study 
area. Given that smaller diameter second-growth trees tend 
to be more tapered and thus have higher volume underes-
timation (Spelter 2002), gross board feet were converted 
to cubic volume using log-diameter dependent conversion 
ratios compiled by the Idaho Board of Scaling Practices 
(IBSP 2018).

The scaled merchantable volume provided a reference 
volume range to compare with the ALS-derived volume. 
Cruise-derived volume estimates were not compared to scaled 
volume as the entire stand was not cruised (figure 1).

Results
Individual Tree Height Accuracy
Individual tree height distributions and associated cu-
mulative distribution functions for cruised tree height 
and felled tree height are shown in figure 2a and b. Tree 
height distributions and associated cumulative distribution 
functions for ALS-derived growth-adjusted tree height and 
felled tree height are shown in figure 2c and d. Both cruised 

and ALS-derived growth-adjusted height means were within 
0.5 m of the felled height mean and both distributions 
exhibited similar distribution shape to the felled tree height 
distribution (figure 2a and c). The Kolmogorov-Smirnov 
test statistic D was close to zero for cruised height versus 
felled height (D = 0.152, P = .169) and for ALS-derived 
growth-adjusted height versus felled height (D = 0.121, 
P = .44), indicating significant overlap between the paired 
distributions. Given the P-values were greater than .05, the 
null hypothesis that the cruised and ALS-derived height 
distributions follow the felled height distribution was not 
rejected.

The regression-based equivalence tests for cruised heights 
versus felled heights and ALS-derived growth-adjusted 
heights versus felled heights are shown in figure 3a and b, 
respectively. The intercept values for the cruised versus felled 
height and ALS-derived growth-adjusted versus felled height 
relationships were equivalent at a region of equivalence of 
±4% or greater and ±3% or greater, respectively. The slope 
values for the cruised versus felled height and ALS-derived 
growth-adjusted versus felled height relationships were 
equivalent at a region of equivalence of ±14% or greater and 
±11% or greater, respectively. The linear relationship between 
cruised height and felled height had a high r2 (0.88) and low 
RMSE (1.52 m) and bias (-0.47 m). Similarly, the linear re-
lationship between ALS-derived growth-adjusted height and 
felled height had a high r2 (0.88) and low RMSE (1.48 m) and 
bias (0.32 m).

Figure 2 Individual tree height distribution comparison and associated cumulative distribution functions for cruised tree height versus felled tree height 
(a,b) and ALS-derived growth-adjusted tree height versus felled tree height (c,d). Data for the ninety-nine matched and felled trees are shown. In (a,c), 
purple coloration indicates where the two distributions overlap and the dashed vertical lines indicate the mean of each distribution. The Kolmogorov-
Smirnov test statistic D and associated P-value are reported for each of the paired distributions in (b,d).
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Height-to-DBH Models
Figure 4 shows the allometric relationships between height 
and DBH for the local forest inventory dataset (figure 4a) 
and the regional forest inventory dataset (figure 4b). The 
best-fit regression model for both the local and regional 
datasets used a power-law function (local results: power-law 
AIC: 350.7, logarithmic AIC: 11278.6, linear AIC: 10889.8; 
regional results: power-law AIC: 300.2, linear AIC: 12447.5, 
logarithmic AIC: 12714.5). The relationship between height 
and DBH for the local dataset had a high r2 (0.80) and low 
residual standard error (0.3 cm). The relationship between 
height and DBH for the regional dataset had a lower r2 
(0.70) and low residual standard error (0.3 cm).

Individual Tree DBH Accuracy
Figure 5 shows individual tree DBH distributions and as-
sociated cumulative distribution functions derived from the 
local and regional height-to-DBH models and ForestView in 
comparison with the cruised DBH distribution. All models 
produced unimodal DBH distributions with a peak around 
30 cm, whereas the cruised DBH distribution was bimodal 
with peaks around 25 cm and 40 cm. The Kolmogorov-
Smirnov test statistic D was closer to zero than one for all 
modeled DBH versus cruised DBH tests, indicating signifi-
cant overlap in the paired distributions. However, the null 
hypothesis that the modeled DBH distribution follows 
the cruised DBH distribution was rejected for both the 

Figure 3 Regression-based equivalence test graphs for cruised height versus felled height (a) and ALS-derived growth-adjusted height versus felled 
height (b). Data for the ninety-nine matched and felled trees are shown. The minimum region of equivalence (R.o.E.) that would still lead to rejection 
of null hypothesis of dissimilarity is reported for both the intercept and slope. The grey polygon represents the minimum region of equivalence for the 
intercept. The cruised and ALS-derived mean heights are equivalent to the mean felled heights when the vertical red bar is completely within the grey 
polygon. The grey dashed lines represent the minimum region of equivalence for the slope. If the vertical black bar is within the grey dashed lines, 
then the regression slope is significantly similar to one. The solid black line represents the best-fit linear regression model, and the black dashed line 
represents the 1:1 line. The coefficient of determination (r2) and associated P-value for the linear regression models are also presented. Individual trees 
are symbolized by field-classified species and are shown for illustrative purposes.

Figure 4 Relationships between height and DBH using the local forest inventory dataset (a) and the regional forest inventory dataset (b). The black line 
represents the best-fit regression model. The scatterplot point densities, calculated using a ~2 × 2 quantization of the plot axes, are displayed with a 
rainbow color scale.
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regional-modeled DBH (P < .001) (figure 5c and d) and 
ForestView-modeled DBH (P = .001) (figure 5e and f). The 
null hypothesis that the local forest inventory data–modeled 
DBH distribution follows the cruised DBH distribution was 
not rejected (P = .106).

The DBH modeled using the local dataset exhibited a 
-0.4 cm bias and RMSE of 8.5 cm compared with the cruised 
DBH, whereas DBH modeled using the regional dataset 
exhibited a -4.6 cm bias and RMSE of 10 cm compared 
with the cruised DBH. The DBH modeled using ForestView 
exhibited a -3.0 cm bias and RMSE of 8.3 cm compared 
with cruised DBH. The regression-based equivalence tests 
for modeled DBH versus cruised DBH are shown in figure 6. 
The intercept and slope for the local dataset modeled DBH 
versus cruised DBH relationships were equivalent at a region 
of equivalence of ±6% or greater and ±33% or greater, re-
spectively (figure 6a). Similarly, the intercept and slope for the 
ForestView-modeled DBH versus cruised DBH relationships 

were equivalent at a region of equivalence of ±14% or greater 
and ±23% or greater, respectively (figure 6c). The intercept 
and slope for the regional dataset modeled DBH versus 
cruised DBH relationships were equivalent at a region of 
equivalence of ±20% or greater and ±75% or greater, respec-
tively (figure 6b).

Comparison of Harvested Volume
The gross harvested merchantable and pulp volume for 
cruised and felled trees that were matched with ALS-detected 
trees is shown in figure 7a. Gross harvested merchantable 
volume calculated using the cruise data (83.4 m2), local (81.4 
m3) and regional (61.7 m3) forest inventory datasets and 
ForestView (72.0 m3) were 0.7%, 3.1%, 26.5%, and 14.3% 
lower than the reference volume derived from felled heights 
and cruised DBH (84.0 m3), respectively.

The gross harvested merchantable and pulp volume for 
all trees within the cruise area (matched and unmatched) is 

Figure 5 Individual tree DBH distribution comparison and associated cumulative distribution functions for the local model-derived DBH versus cruised 
DBH (a,b), the regional model-derived DBH versus cruised DBH (c,d) and ForestView-derived DBH versus cruised DBH (e,f). Data for the ninety-nine 
matched and felled trees are shown. In (a,c,e) purple coloration indicates where the two distributions overlap and the dashed vertical lines indicate the 
mean of each distribution. The Kolmogorov-Smirnov test statistic D and associated P-value are reported for each of the paired distributions in (b,d,f).
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shown in figure 7b. Gross harvested merchantable volume 
calculated using the cruise data (99.1 m3), local (91.1 m3) and 
regional (69.3 m3) forest inventory datasets and ForestView 
(77.8 m3) were 1.3%, 9.3%, 30.1%, and 22.5% lower than 
the reference volume derived from felled heights and cruised 
DBH (100.4 m3), respectively.

The gross harvested merchantable volume for all trees 
within the study stand is shown in figure 7c. Due to uncer-
tainty in truckloads taken from the stand on one harvesting 
day, scaled gross harvested merchantable volume ranges from 
116.7 to 157.0 m3. Gross harvested merchantable volume 
calculated using ALS-derived height and DBH modeled using 
the local (115.6 m3) and regional (89.9 m3) forest inven-
tory datasets and ForestView (111.8 m3) were 1%–26.4%, 
23.0%–42.7%, and 4.2%–28.8%, lower than the reference 
scaled volume, respectively.

Discussion
This study assessed individual tree height and DBH accuracy 
derived from conventional forest inventory methods and three 
ALS data-derived methods. We show that although both in-
direct heights from cruising and ALS-derived height were sta-
tistically equivalent to direct height measurements on felled 
trees at regions of equivalence of ±3% or greater for the in-
tercept and ±11% or greater for the slope, ALS-derived height 
exhibited lower RMSE and bias. The comparison results also 
show that DBH modeled using a generic height-to-DBH al-
lometric relationship derived using local field data and DBH 
modeled using ForestView are statistically equivalent to 
cruised DBH at regions of equivalence of ±6% or greater for 
the intercept and ±23% or greater for the slope. On the con-
trary, DBH modeled using regional field data was statistically 
equivalent to cruised DBH at regions of equivalence that were 

Figure 6 Regression-based equivalence test graphs for local model-derived DBH versus cruised DBH (a), regional model-derived DBH versus cruised 
DBH (b), and ForestView-derived DBH versus cruised DBH (c). Data for the ninety-nine matched and felled trees are shown. The smallest region of 
equivalence (R.o.E.) that would still lead to rejection of null hypothesis of dissimilarity is reported for both the intercept and slope. The grey polygon 
represents the minimum region of equivalence for the intercept. The modeled DBH means are equivalent to the cruised DBH mean when the vertical 
red bar is completely within the grey polygon. The grey dashed lines represent the minimum region of equivalence for the slope. If the vertical black 
bar is within the grey dashed lines, then the regression slope is significantly similar to one. The solid black line represents the best-fit linear regression 
model, and the black dashed line represents the 1:1 line. The coefficient of determination (r2) and associated P-value for the linear regression models 
are also presented. Individual trees are symbolized by field-classified species and are shown for illustrative purposes.

Figure 7 Comparison of gross harvested volume differentiated by pulp and merchantable volume, for (a) matched and felled trees within the cruise 
area, (b) all trees within the cruise area (matched and unmatched), and (c) all trees within the study stand. Due to the reported uncertainty in log loads, 
only merchantable volume is shown in (c). “Cr. DBH Fell. Ht.” volume was calculated using felled height and cruised DBH measurements; “Cr. DBH 
Cr. Ht.” volume was calculated using cruised height and DBH measurements; “Local data” volume was calculated using ALS-derived height and DBH 
modeled using the local forest inventory dataset; “Regional data” volume was calculated using ALS-derived height and DBH modeled using the regional 
forest inventory dataset; and “FV” volume was calculated using ForestView-derived height and DBH. The “Scaled” volume error bar in (c) shows the 
estimated range of volume due to uncertainty in log loads taken from the study area on one harvesting day.
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much greater (±20% or greater for the intercept and ±75% 
or greater for the slope). This finding suggests that locally de-
rived height-to-DBH models will likely provide more accurate 
estimates of individual tree DBH than DBH modeled using re-
gional datasets. When considered with other studies (Heurich 
2008; Persson et al. 2002; Popescu and Wynne 2004; Salas et 
al. 2010; Tinkham et al. 2016), these height-to-DBH results 
are promising, as they suggest DBH can be modeled with rel-
atively high accuracy for ALS-detected trees. The comparison 
of estimated gross harvested merchantable volume extends 
this finding further by showing that the best ALS methods 
volume estimates accounted for 78%–91% of the field refer-
ence harvested volume and 71%–99% of the scaled volume. 
However, as these results represent a single mixed conifer 
stand, this analysis should be repeated in other stands/forest 
types.

Detection of individual trees is a primary driver of ALS-
derived individual tree inventory accuracy. Most ITD 
approaches detect dominant and codominant trees, some 
intermediate trees, and miss most subcanopy trees. As may 
be expected, the detection rate is highly dependent on stand 
density (Eysn et al. 2015; Sparks et al. 2022; Vauhkonen et 
al. 2012), ALS data density (Duncanson and Dubayah 2018; 
Marinelli et al. 2019; Soininen et al. 2022; Wang et al. 2016), 
and tree detection approach. The ITD benchmarking studies 
have shown that different approaches can detect between 
66% and 85% of dominant and codominant trees, whereas 
subdominant trees are detected at much lower rates (<~31%) 
(Eysn et al. 2015; Sparks et al. 2022; Vauhkonen et al. 2012; 
Wang et al. 2016). Underdetection of trees can result in bi-
ased mean height and DBH (Vauhkonen et al. 2010) and large 
stand volume errors (RMSE: ~29%) (Vastaranta et al. 2011). 
Underdetection of subdominant trees may not present an 
issue for managers primarily interested in merchantable stand 
volume and biomass, as dominant trees represent the majority 
of stand volume and biomass and subdominant trees are as-
sociated with lower value pulp products (Lutz et al. 2012; 
O’Hara 1988; Vastaranta et al. 2011). For example, Persson 
et al. (2002) showed that although 71% of trees were detected 
within their study stands, dominant trees represented ~91% 
of total stem volume. On the other hand, managers concerned 
with growth and yield projections may need understory re-
generation and ingrowth information depending on their 
silvicultural objectives. Modeling undetected trees, such as 
using theoretical height distribution functions, may provide 
a way to supplement automatic ITD approaches and more 
accurately estimate stand-level parameters (e.g., Maltamo et 
al. 2004). In this study, we matched trees manually, with an 
overall detection rate of 60%. Like other studies, we show 
that despite the underdetection of trees, a majority of the 
reference merchantable volume (derived from felled heights 
and cruised DBH) was estimated by the local data–derived 
ALS method (90.7%), the regional data–derived ALS method 
(69.0%) and ForestView (77.5%) (figure 7b). The largest 
error source in volume estimation was the underdetection of 
trees (omission error), followed by error in DBH and height. 
For example, when only considering the omission error (i.e., 
assuming no error in DBH and height) for the most accu-
rate ALS method (local data derived ALS method), merchant-
able volume error was 16%, whereas only considering DBH 
error or height error resulted in volume errors of 6% and 
2%, respectively. Likewise, when only considering omission 
error, pulp volume error was 55%, whereas only considering 

DBH error or height error resulted in volume errors of 15% 
and 4%, respectively. Vastaranta et al. (2011) also observed 
larger volume error (29%) when the only error source was 
omission error (omission error of 39.8%) than when the 
only error source was DBH or height error (volume error less 
than 1.2%). Given the large error in volume due to unde-
tected trees observed in this study and others (Vastaranta et 
al. 2011), more research is warranted to explore approaches 
that increase the tree detection rate.

This study supports prior work demonstrating that indi-
vidual tree heights derived from high pulse density ALS (i.e., 
>20 ppm) exhibit less measurement error than conventional 
indirect field measurements. Studies using high pulse density 
ALS have shown that ALS-derived individual tree heights 
have lower RMSE (0.36 m for Pseudotsuga menziesii, 0.41 
m for Pinus taeda) than heights derived from indirect field 
measurements (1.02 m for Pseudotsuga menziesii, 0.58 m for 
Pinus taeda) (Corrao et al. 2022; Ganz et al. 2019). Similarly, 
we found that ALS-derived height had lower RMSE (1.48 m) 
than indirect field measurements (1.52 m) for the conifers 
assessed in this study. The height RMSE in this study is likely 
higher than other studies due to error introduced by averaging 
height change between the ALS acquisitions. Nevertheless, 
indirect field tree height measurements are known to have 
greater measurement error due to observer bias, obscuration 
of tree bases and treetops by other trees, undergrowth, and ter-
rain (Hyyppä et al. 2004; Wang et al. 2019). Thus, high pulse 
density ALS is likely superior to indirect field measurements in 
many cases. In contrast, studies using lower pulse density ALS 
(i.e., <7 ppm) have shown that ALS-derived individual tree 
heights have slightly higher RMSE (0.73 m for Pseudotsuga 
menziesii and Pinus ponderosa, 1.87 m for Abies grandis) 
than heights measured using indirect field methods (0.27 m 
for Pseudotsuga menziesii and Pinus ponderosa, 1.54 m for 
Abies grandis) (Andersen et al. 2006; Tinkham et al. 2016). 
This result agrees with prior studies where low pulse density 
ALS was shown to underestimate individual tree heights at 
pulse densities lower than 7 ppm (Yu et al. 2004; Zhao et al. 
2018). Thus, indirect field measurements may be more accu-
rate than ALS for measuring height in forests where ALS with 
≤~8 ppm is available (Soininen et al. 2022). In all cases, ALS 
has the advantage of providing wall-to-wall measurements of 
individual tree height, whereas acquiring wall-to-wall field 
measured height is logistically and economically infeasible.

Our results show that DBH can be modeled with moderate 
accuracy from ALS-derived height measurements. Both the 
DBH modeled using a species-agnostic field measurement–de-
rived height-to-DBH allometric relationship and ForestView-
derived DBH were statistically equivalent to field-measured 
DBH and had moderate RMSE (8.5 cm and 8.3 cm, respec-
tively) and bias (-0.4 cm and -3.0 cm, respectively). Although 
statistically equivalent, the distribution shape mismatch be-
tween modeled DBH (unimodal distribution) and observed 
DBH (bimodal distribution) (figure 5) suggests that species-
specific height-to-DBH models may be preferrable to generic 
height-to-DBH models. For example, Pseudotsuga menziesii 
and Pinus ponderosa diameter tended to be underpredicted 
(figure 6) and Pinus contorta diameter tended to be 
overpredicted (figure 6), likely due to their different growth 
forms. Beyond species, modeling DBH using more tree 
attributes and stand and site predictors would likely produce 
a more accurate result. Studies that have modeled DBH using 
both height and crown diameter as predictor variables have 
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achieved lower DBH errors (RMSE: 3.8–5.9 cm) than those 
in this study (RMSE: 8.28–10 cm) (Heurich 2008; Persson 
et al. 2002; Popescu 2007; Salas et al. 2010). For example, 
Popescu (2007) observed an RMSE of 4.9 cm in Pinus taeda 
L.–dominated stands, Persson et al. (2002) observed RMSE of 
3.8 in Picea abies L. Karst. and Pinus sylvestris L. stands, and 
Heurich (2008) observed RMSE of 4.6–5.9 in Picea abies and 
Fagus sylvatica stands. It is likely that incorporating a refined 
screening process in the local and regional height-to-DBH 
modeling to select plots with similar site conditions to our 
study stand would result in more accurate DBH estimates. 
However, including simple height-to-DBH models in this anal-
ysis is useful information in cases where a forest manager has 
limited ALS-derived data and processing capability (i.e., no 
available individual crown diameter data). Additionally, like 
the observed height error, RMSE in this study is likely higher 
than in other studies due to error introduced by using average 
diameter growth between the ALS acquisition in 2020 and 
felled tree measurements in 2022. Tree DBH modeled from 
UAS LiDAR and SfM data has been shown to have higher ac-
curacy (RMSE: ~0.8–4.8 cm) than DBH modeled from ALS 
data (Kukkonen et al. 2022; Sun et al. 2022; Swayze et al. 
2021), however, data acquisition using ALS is more efficient 
over large areas (i.e., >1,000 ha) compared with present day 
UAS (White et al. 2016).

Scaled volume provides a promising independent vali-
dation data source; however, as this study illustrates, there 
are many challenges and uncertainties associated with using 
this data. First, it should be noted that although we tried to 
minimize tree detection and matching errors using manual 
matching methods, the overall detection rate was 60%. This 
underdetection is likely the primary factor of the ~1%–
29% merchantable volume underestimation of the top ALS 
methods. Second, uncertainty in log loads originating from 
the study area is a significant source of volume error. Tracking 
harvested trees is a challenge given that harvesting and log 
transport logistics sometimes necessitate mixed log loads that 
incorporate harvested trees from different parts of the stand 
or multiple stands. Third, as volume of two of the twelve 
log loads was estimated via a weight-to-volume conversion 
factor, underestimation or overestimation could occur due 
to weight-to-volume conversion factor error. Furthermore, 
the Scribner-scaled loads could be underestimated compared 
to volume calculated using the Smalian formula, as this rule 
assumes a quarter-inch kerf allowance. Uncertainty in ALS-
estimated DBH and board feet to cubic volume conversion 
factors could contribute to the volume mismatch. The ALS-
based methods tended to underpredict DBH (figure 6), which 
directly translates into lower individual tree volume estimates 
than cruised volume estimates (figure 7a). We could not find 
error estimates associated with board feet to cubic volume 
conversion factors, which is a research need, considering the 
widespread use of both board feet and cubic volume in the 
western United States (Saralecos et al. 2014; Spelter 2002, 
2004) and the likely increasing use of scaled volume as ALS-
derived forest inventory validation data. Other studies have 
shown moderate agreement between ALS-derived volume 
estimates and postharvest volume measures. White et al. 
(2014) found that volume derived from cover type–adjusted 
volume tables underestimated weight scale volumes by 
19.8% whereas volume derived from ALS area-based analysis 
had much closer agreement to weight scale volumes (+0.6%) 
in coniferous boreal forest in Alberta, Canada. Likewise, 

Woods et al. (2011) reported that mean area–based anal-
ysis estimates of stand volume from ALS data were within 
10% of scaled volume in a coniferous boreal forest stand in 
Ontario, Canada. Other studies have shown that individual 
tree volume derived from ALS measurements was within ~4% 
of harvester-derived individual tree volume (Peuhkurinen et 
al. 2007).

A potential limitation of this study was the number of 
matched individual trees (N = 99), representing five conifer 
species from a single stand. Although this may appear to 
be a small sample size, it is comparable to the upper end of 
previous studies using direct measurements on felled trees 
or high-precision measurements acquired using terrestrial 
laser scanning (TLS). Although focused on a single stand, 
the species variability in this study is also greater than most 
earlier studies that mainly focused on only one or two spe-
cies. For example, Tinkham et al. (2016) used measurements 
from 60 felled Abies grandis in the intermountain western 
United States, Sibona et al. (2017) used measurements from 
100 felled conifers in the Italian Alps, Ganz et al. (2019) 
used measurements from 30 felled Pseudotsuga menziesii in 
Germany, and Corrao et al. (2022) used measurements from 
139 felled Pinus taeda in the southern United States. Likewise, 
Andersen et al. (2006) compared ALS measurements to TLS 
measurements for fifty-nine total Pseudotsuga menziesii and 
Pinus ponderosa individuals. The primary reason for these 
small sample sizes is the time and person hours required to 
acquire felled-tree measurements. It is also often infeasible to 
fell trees or collect measurements on felled trees due to safety 
or logistical issues, leading most ITD validation studies to use 
field-collected indirect heights. However, studies that use di-
rect measurement are critical for validation of remotely sensed 
measurements, and the relative lack of such studies indicates 
that more are needed to assess ALS-derived measurement ac-
curacy across diverse species and stand conditions. Equally, 
these types of field measurements are essential for assessing 
the accuracy and utility of larger spatial scale projects and 
commercial applications.

Conclusions
Accurate forest inventories are necessary for forest manage-
ment and forest products supply chain planning. This study 
advances our understanding of the accuracy of conventional 
field and ALS-derived individual tree inventories by evaluating 
these inventories with felled tree measurements and log 
scaling data in a coniferous forest stand with diverse species 
composition and structure. The results show that although 
ALS-derived and indirect field measurements of height are 
statistically equivalent to direct height measurements, ALS-
derived height had lower RMSE (1.48 m) and bias (0.32 m) 
for this stand than field measurements (RMSE = 1.52 m, bias 
= -0.47 m). Our results also highlight the utility and uncer-
tainty of using ALS-derived individual tree height to model 
DBH. In this stand, although both ForestView-derived DBH 
and DBH derived from local height-to-DBH models were 
statistically equivalent to field measured DBH, RMSE was 
moderate (8.3–8.5 cm). The results show that the largest 
error source in volume estimation was the underdetection 
of trees, followed by error in DBH and height. Like prior 
studies, this study shows that although there was an 
underdetection of trees (60% detection rate), the best ALS-
derived volume estimates accounted for 78%–91% of the 
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reference gross harvested merchantable volume estimated 
via felled heights and field-measured DBH measurements. 
The comparison of estimated gross harvested merchantable 
volume and scaled volume extends these findings by showing 
that these ALS-based methods accounted for 71%–99% of 
the scaled gross volume. However, this study also highlights 
the challenges of using scaled data as validation, including 
tracking log loads, volume underestimation associated with 
the log scaling methods, and error associated with board 
feet to cubic volume conversion factors. More research is 
warranted on these topics given the likely increasing use of 
scaled volume as ALS-derived forest inventory validation 
data. Overall, the results highlight the potential—and uncer-
tainty associated with—using high pulse density (≥20 ppm) 
ALS to conduct individual tree inventories in mixed-species 
coniferous forests.
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