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Abstract

On-the-ground sample-based forest inventory methods have been the standard practice for more than a century, however, remote sensing
technologies such as airborne laser scanning (ALS) are providing wall-to-wall inventories based on individual tree measurements. In this study,
we assess the accuracy of individual tree height, diameter, and volume derived from field-cruising measurements and three ALS data-derived
methods in a 1.1 ha stand using direct measurements acquired on felled trees and log-scale volume measurements. Results show that although
height derived from indirect conventional field measurements and ALS were statistically equivalent to felled tree height measurements, ALS
measured heights had lower root mean square error (RMSE) and bias. Individual tree diameters modeled using a height-to-diameter-at-breast-
height model derived from local forest inventory data and the software ForestView had moderate RMSE (8.3-8.5 cm) and bias (-3.0 —-0.3 cm).
The ALS-based methods underdetected trees but accounted for 78%-91% of the field reference harvested merchantable volume and 71%-—
99% of the merchantable volume scaled at the mill. The results also illustrate challenges of using mill-scaled volume estimates as validation data
and highlight the need for more research in this area. Overall, the results provide key insights to forest managers on accuracies associated with
conventional field-derived and ALS-derived individual tree inventories.

Study Implications: Forest inventory data provide critical information for operational decisions and forest product supply chain planning.
Traditionally, forest inventories have used field sampling of stand conditions, which is time-intensive and cost-prohibitive to conduct at large
spatial scales. Remote sensing technologies such as airborne laser scanning (ALS) provide wall-to-wall inventories based on individual tree
measurements. This study advances our understanding of the accuracy of conventional field-derived and ALS-derived individual tree inventories
by evaluating these inventories with felled tree and log scaling data. The results provide key insights to forest managers on errors associated
with conventional field and ALS-derived individual tree measurements.

Keywords: airborne laser scanning, lidar, forest inventory, stem volume, felled tree, log scaling, validation

Forest inventory is a fundamental component of forest man-
agement and the forest products supply chain or the flow
of wood products from the forest to the end user. Inventory
data provides critical information for long-term forest plan-
ning, operational decisions, harvest scheduling, invest-
ment, and forest product supply chain planning (Maltamo
et al. 2021; Tinkham et al. 2018). For more than a century,
forest inventories have relied on field sampling of forest
stand conditions (Frayer and Furnival 2000; Maltamo et al.
2021), which are time-intensive, accuracy-limited (Luoma
et al. 2017) and cost-prohibitive to collect wall-to-wall (i.e.,
spatially complete) (Durrieu et al. 2015; Vauhkonen et al.
2014a). With advances in remote sensing, forest inventories

have shifted toward incorporating technologies such as air-
borne scanning light detection and ranging (LiDAR), also re-
ferred to as airborne laser scanning (ALS), as it can gather
wall-to-wall, three-dimensional forest structural data. These
technologies can provide wall-to-wall data at a lower cost per
unit area than conventional field sampling, especially when
applied over large spatial scales or cost-shared (Hudak et al.
2020; White et al. 2016).

Wall-to-wall forest inventories using ALS data are derived
either through area-based or individual tree detection (ITD)
approaches (Holopainen et al. 2014; Vauhkonen et al. 2014a;
White et al. 2016). Area-based methods use gridded summaries
of the ALS point cloud (e.g., height percentiles, height stratified
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return densities) and ground-based sampling to model stand-
level attributes across the fixed grid (Naesset 2002). Area-based
techniques have comparable accuracies to conventional inven-
tory methods for stand-level averages of stem volume, basal
area, and height, with root mean square error (RMSE) typi-
cally lower than 10% (Persson et al. 2022; White et al. 2016).
However, area-based methods have limitations capturing
species-specific structural information, which is important for
accurate volume estimates and better-informed harvest planning
and silvicultural applications (Holopaninen et al. 2014; Keefe et
al. 2022; Maltamo et al. 2021; Tompalski et al. 2014). In con-
trast to area-based methods, ALS-based ITD forest inventories
rely on the identification and segmentation of individual trees
from ALS point clouds or canopy height models and in some
cases can provide near-census-level tree identification. Because
ITD provides individual tree geolocation and attribute informa-
tion, it has significant potential to improve growth and yield
projections (Jeronimo et al. 2018; Tinkham et al. 2016), mon-
itor tree-scale growth and mortality (Duncanson and Dubayah
2018), and optimize harvesting and planning (Keefe et al. 2022;
Vauhkonen et al. 2014b). Studies have shown that ITD-derived
stand level attributes such as mean height, mean diameter at
breast height (DBH) and total stem volume are comparable
to those derived through area-based analyses (RMSE within
~2%), however, accuracy can vary depending on the pulse den-
sity of the ALS data (Frank et al. 2020; Peuhkurinen et al. 2011;
Yu et al. 2010). For example, several studies have reported large
total stand volume errors (RMSE = ~29%) when ITD methods
are applied to low pulse density ALS data (<3 ppm) (Soininen et
al. 2022; Vastaranta et al. 2011).

Among the various measurements acquired during a con-
ventional forest inventory, tree height and DBH are two fun-
damental attributes necessary for forest management and
planning because of their correlation with tree competition,
volume of wood, and ultimately, forest value (Tinkham et
al. 2016; White et al. 2014). Conventional variable-radius-
plot sampling and continual forest inventory monitoring
approaches vary widely in specifications for the complete-
ness of height and DBH measurements of on-plot trees,
often for efficiency purposes (Deo et al. 2016; Scott 1990).
Height for any unmeasured tree is often modeled using al-
lometric relationships between DBH and height (Qiu et al.
2021; Wykoff et al. 1982), and there is a long history of allo-
metric relationship development using DBH to model height
and other tree attributes for numerous species and size classes
(Curtis 1967; Gonzalez-Benecke et al. 2014; Meyer 1940;
Qiu et al. 2021). The ALS data, by comparison, can provide
highly accurate height measurements but does not directly
measure DBH. Thus, research efforts have shifted toward
developing allometric relationships that use tree height and
other tree attributes, such as crown diameter and tree density,
to model DBH, taper, and stem volume (Corrao et al. 2022;
Heurich 2008; Popescu 2007; Salas et al. 2010; Tinkham
et al. 2016). Modeled DBH derived from ALS data metrics
has reported RMSE ranging from ~3.8 to 5.9 cm (Heurich
2008; Popescu 2007; Tinkham et al. 2016). Alternatively,
dense point clouds derived from uncrewed aerial systems
(UAS) LiDAR and structure from motion (SfM) imagery have
been used to directly extract DBH from stem returns with
lower RMSE (~0.8-4.8 cm) (Kukkonen et al. 2022; Swayze
et al. 2021). Others have used UAS point cloud metrics to
model DBH with high accuracy (RMSE = 1.9-2.5 ¢cm) (Sun
et al. 2022). Although promising, many present-day UAS are

inefficient compared with ALS for large area (i.e., >1,000 ha)
data collection (White et al. 2016).

Although the shift from sample-based field inventories to
ALS-derived wall-to-wall inventories is promising, the ac-
curacy and errors of measured and modeled individual tree
attributes are not well characterized (Lisiewicz et al. 2022;
Lara-Gémez et al. 2023). Studies have shown that accurate
height measurements are critical for accurate estimates of stem
volume and have a greater influence on stem volume error than
the choice of generic or species-specific allometric equations
(Tompalski et al. 2014). Field measured height has been re-
ported as a reliable way to evaluate ALS-derived individual
tree height accuracy (Heurich 2008; Popescu and Wynne
2004; Sparks and Smith 2022; Wang et al. 2019). Field meas-
ured height typically relies on indirect measurements from
clinometers and/or laser hypsometers that use trigonometric
principles to calculate tree height using measurements of angles
to the tree base and treetop, along with the horizontal distance
to the tree stem. It is widely accepted that these methods gen-
erally underestimate the maximum tree height due to treetop
occlusion by branches and other trees, especially under dense
canopy cover and steep slope conditions, leading to studies
questioning whether field measured height is of sufficient ac-
curacy to quantify errors in ALS-derived tree height (Hyyppa
et al. 2004; Jurjevi€ et al. 2020; Wang et al. 2019). Conversely,
research using direct measurements of height, typically through
felled tree measurements, has found ALS-derived heights ex-
hibit less error (RMSE = 0.36-0.41 m) and bias compared with
indirect field-measured heights (RMSE = 0.58-1.0 m) (Corrao
et al. 2022; Ganz et al. 2019). However, the accuracy of tree
heights from ALS can depend on several factors, such as pulse
density, scanner type, and processing methods, as other studies
have found that field-derived indirect height measurements
were more accurate than height measurements derived from
low pulse density ALS data (<7 ppm) (Andersen et al. 2006;
Soininen et al. 2022; Tinkham et al. 2016). Given the time
and cost constraints associated with conducting direct meas-
urement experiments, relatively few studies have undertaken
the effort to cut down mature trees, yet information from di-
rect measurement studies remains a critical research need for
understanding error associated with conventional and ALS-
derived forest inventories. These experiments are also useful
for validating novel height derivation methods and new sensor
systems that become available such as from UAS.

Postharvest measurements, such as scaled volume, pro-
vide an additional independent data source to validate
preharvest volume estimates, although few studies have
used such datasets. Some studies have used log scale data
collected at the processing mill to validate field and ALS-
derived stand volume estimates and have found that ALS-
derived volume has close agreement with scaled volume
(estimates within 10%) (White et al. 2014; Woods et al.
2011). Others have used harvester-derived volume to as-
sess field and ALS-derived estimates and found volume
estimates were within ~4%-34% (Holopainen et al. 2010;
Korhonen et al. 2008; Persson et al. 2022; Peuhkurinen
et al. 2007). Regardless of the method, there are several
challenges associated with validation using postharvest
volume measurements. Total standing tree volume is often
greater than harvester-derived volume due to bucking
criteria for standardized log lengths and sizes resulting
from small-end-diameter limits, trim allowances (which can
be 215 cm per log), and desired product types to be milled
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by processing facilities (Adebayo et al. 2007; Hartsough et
al. 1997). Additionally, depending on physical tree defects,
such as double tops, crooks, sweep, and/or breakage, a har-
vester may cut out other portions of a tree bole, further
reducing the volume delivered to and scaled at the mill.
Furthermore, some log scaling rules systematically underes-
timate wood volume as they treat segments as nontapering
cylinders (Spelter 2004), which can lead to large volume
differences between estimated and scaled volume (Fonseca
2005). Regardless of these challenges, comparisons be-
tween field-measured, modeled, and scaled volumes provide
useful information that is understood by a range of forest
research, inventory, and management personnel.

In this study, the overall objective was to assess the ability
of conventional field inventory and three ALS-based methods
to accurately characterize individual tree height, DBH, and
volume in a mixed conifer stand in north-central Idaho, USA.
The three ALS-based methods included two “open source”
methods that used a common allometric modeling approach
and one commercial “gray box” method that used the
ForestView software. To address the overall objective we (1)
assessed the accuracy of conventional cruise indirect-height
measurements and ALS-derived height measurements with
direct-height measurements taken after the trees were felled,
(2) assessed the accuracy of individual tree diameter derived
from local and regional height-to-DBH models and diameter
derived from ForestView with direct DBH measurements ac-
quired in the field, and (3) compared modeled gross harvested
wood volume calculated from conventional cruise data and
ALS-derived height and DBH measurements to the gross
volume of harvested logs scaled at the processing mill.

Materials and Methods

Study Area and Experimental Design

This study was conducted within the University of Idaho
Experimental Forest (UIEF), located in the Palouse Range of

A. M. Sparks et al.

north-central Idaho, USA (~ N 46.82° W 116.80°). The study
area focuses on a 1.1 ha mixed conifer stand (figure 1). The
study stand was composed of mature trees with an average
DBH (+SE) of 38.5+0.9 cm and average height (+SE) of
23.2 + 0.3 m. Species included Pseudotsuga menziesii (Mirb.)
Franco var. glauca (Beissn.) Franco (Douglas-fir) (72% of live
stems), with smaller proportions of Pinus ponderosa Dougl.
ex Laws. (ponderosa pine) (16% of live stems), Pinus contorta
Douglas (lodgepole pine) (9% of live stems), Thuja plicata
Donn ex D. Don (western redcedar) (1% of live stems), Larix
occidentalis Nutt. (western larch) (1% of live stems), Abies
grandis (Douglas ex D. Don) Lindl. (grand fir) (0.5% of live
stems), and Picea engelmannii Parry ex Engelm. (Engelmann
spruce) (0.5% of live stems). The local climate is characterized
by cool wet winters and warm dry summers. Over the 1991—
2020 period, mean summer (June—August) temperature was
17.2°C, mean summer precipitation was 81 mm, and annual
precipitation was 622 mm (NOAA 2022).

The stand was thinned in June 2022. Figure 1 shows the
ALS-derived canopy height models prethinning (2020) and
postthinning (2022). The prethinning tree density was 293.7
trees ha'! and basal area was 37.9 m? ha''. The thinning treat-
ment reduced the tree density to 146.1 trees ha! and basal
area to 21.9 m?> ha'.

Field Validation Datasets

A stem-mapped cruise of the trees within the stand was
conducted prior to thinning. The irregular shape of the
cruised area within the stand (figure 1 “Cruise area”) resulted
from active harvesting within the stand prior to the initiation
of this research and thus, the boundaries were constrained
to the remaining nonharvested area. During the cruise, the
location of each tree within the study area was acquired with
submeter precision using a JAVAD Triumph-2, which has a
reported horizontal accuracy of 0.01 m (JAVAD EMS, Silicon
Valley, CA). Unique identification numbers were painted
on each tree and each tree was additionally marked with a
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Figure 1 Study location and ALS-derived canopy height models for the study stand and surrounding area (masked area) preharvest (a) and postharvest
(b). In (a) and (b), lighter shades indicate greater height and darker shades indicate lower height. Detected and matched individual trees are symbolized
by field-classified species and are overlaid on all panes. Unmatched field-geolocated trees are displayed as “x" symbols.
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metal tag below stump height. All trees >1.5 m in height were
measured for DBH using a logger’s tape and for crown base
height and total height using a Vertex Laser Geo 360 laser
hypsometer (Haglof, Sweden) following standard methods.
Height at which the stem diameter is 80% of DBH was also
measured for each tree using a Spiegel relaskop (SILVANUS,
Kirchdorf, Austria) and was used to inform stem taper. Live
or dead status, species and crown position (i.e., dominant,
codominant, intermediate, and suppressed) adapted from
(Kraft 1884) were also assessed. In total, 339 individual trees
were geolocated and measured.

During the thinning treatment, all trees were felled by hand
and remained near their respective stump for measurement.
The total height for all cruised and felled trees (N = 191) was
remeasured with a logger’s tape from the stump to the end of
each leader.

ALS Data and Individual Tree Detection and
Measurement

The ALS data were acquired across the study area in
September 2020 using a RIEGL VQ-1560II sensor (RIEGL,
Horn, Austria) mounted on a fixed-wing aircraft with a gyro-
stabilized mount. The sensor has a 58° field-of-view and the
aircraft varied the elevation above ground level between 1600
and 1900 m to achieve a 55% flight-line overlap. The average
pulse density was twenty pulses per square meter and the av-
erage per-pulse return rate was four. The supplier conducted
several preprocessing routines, including laser intensity nor-
malization and return classification into bare earth, vegeta-
tion, water, buildings, and noise.

Individual tree detection was conducted on the ALS dataset
using the ForestView ITD software (Corrao et al. 2022).
ForestView ITD was selected as it exhibits comparable de-
tection accuracies (60%-75% of dominant and codominant
trees) with other commonly used ITD approaches in mixed
conifer forest (Sparks et al. 2022). As described below, fol-
lowing detection of each individual tree, we compared three
different approaches to infer DBH and volume. Although
the ForestView ITD method is described elsewhere (Corrao
et al. 2022; Sparks and Smith 2021), a brief description
follows. The ForestView ITD software was developed by
Northwest Management Incorporated (NMI, Moscow,
Idaho) and provides individual tree location, height, DBH,
stem volume, live or dead status and estimates of species. The
approach relies on classified ALS point cloud data and de-
rivative datasets including high resolution (0.3 m spatial res-
olution) canopy height models (CHM). Peaks in the CHM
are assumed to be treetops and are detected using CHM and
point cloud-based ITD methods, similar to valley following,
watershed segmentation, and local max filtering (Popescu and
Wynne 2004). Height percentiles, stratified point densities,
and crown shape derived from the point cloud for each
detected tree are used to refine initial tree detections and de-
rive other tree attribute information (Corrao et al. 2022).
Individual tree DBH is modeled using multivariate regression
that includes these point cloud metrics in combination with
tree dominance, crown radius, live crown height, predicted
species, and allometric relationships derived from field-
collected verification data (Corrao et al. 2022). The reference
data used to train the ForestView model included individual
tree GPS locations, heights, species, DBH, live crown heights,
and crown widths at various locations across the University
of Idaho Experimental Forest. No data from the study stand

were used in the training process. Once trained, the final DBH
model was applied to the detected trees within the study site.
All trees measured in the field were manually matched to
ForestView-detected trees using their respective submeter lo-
cation and height data, a high-resolution CHM (0.3 m spatial
resolution), and additional notes taken by the field personnel.
In total, 203 of the 339 (60%) cruised trees were successfully
matched with ForestView-detected trees and 99 of these trees
were felled during the study.

To account for the temporal difference between the ALS
data collection (September 2020) and the felled tree data
(June 2022), annual height change between September
2020 and June 2022 was calculated by differencing the
2020 ALS scan and an ALS scan acquired in July 2022 for
each nonharvested tree in the study site and dividing by the
number of growth seasons. Mean annual height increments,
aggregated by species, were applied to the 2020 tree heights.
These “growth-adjusted” height values were used to calcu-
late three DBH estimates for each tree, two DBH estimates
using open-source allometric modeling methods, documented
in the following analyses, and one DBH estimate using the
ForestView software.

Height-to-DBH Models Developed Using Local and
Regional Data

Forest inventory data collected at the local and regional
scale was used to derive species-agnostic local and regional
height-to-DBH models. The local model used data from an
existing dataset of sixty-seven 0.053 ha plots acquired in
2020 across the UIEF (Sparks and Smith 2021; Sparks et al.
2022). As allometric relationships have been shown to vary
along competition gradients (Hulshof et al. 2015; Qiu et al.
2021) we only used data from plots that had a basal area
per hectare within =10 m? ha! of our study stand. In total,
747 individual trees were used to develop the local height-
to-DBH model.

The regional height-to-DBH model used data from the
USDA Forest Service Inventory and Analysis (FIA) pro-
gram. The FIA program conducts a systematic forest in-
ventory across the entire United States using field-based
observations and measurements from permanent plots that
are remeasured every 5-10 years (Bechtold and Patterson
2005). We acquired data from conifer-dominated plots
in Idaho counties encompassing similar ecoregions to
our study area. Specifically, plots within Environmental
Protection Agency level IV ecoregions “Northern Idaho
Hills and Low Relief Mountains,” “Palouse Hills,” “Grassy
Potlatch Ridges,” and “Dissected Loess Uplands” were used
(McGrath et al. 2002). Similar to the local model param-
eterization, we only used data from FIA plots that had a
basal area per hectare within +10 m? ha™! of our study area.
In total, 1,811 individual trees were used to develop the re-
gional height-to-DBH model.

Relationships between height and DBH for both the local
and regional scales were assessed using regression modeling,
where DBH was the response variable and height was the pre-
dictor variable. Linear, logarithmic, and power-law function
regression models were evaluated separately for each dataset.
The best fit model was determined by the lowest Akaike
Information Criterion (AIC) value (Akaike 1974). The best
fit model using local and regional data was applied to the
growth-adjusted ALS-derived heights to model DBH for each
tree in the study area.
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Height and DBH Accuracy Assessment

Several statistical tests were used to evaluate the similarity
of cruised and ALS-derived individual tree height and DBH
to felled tree height and DBH. A Kolmogorov-Smirnov test
was used to assess whether cruised and ALS-derived height
distributions were statistically similar to the felled tree height
distribution. This test further assessed the similarity of mod-
eled and ALS-derived DBH distributions to the cruised
DBH distribution. The Kolmogorov-Smirnov test identifies
differences in the cumulative distribution function of two data
distributions. The test statistic (D) is the maximum difference
between the cumulative distribution functions, where D values
close to 0 indicate significant overlap in the data distributions
and values close to one indicate little to no overlap in the data
distributions. For this test, the null hypothesis is that the test
dataset distribution follows a reference dataset distribution,
and the alternate hypothesis is that the distributions are not
similar. The null hypothesis is rejected if P < .05. This test is
particularly useful for quantifying the similarity of the shape
of two distributions. For example, two distributions with the
same mean but different shape will produce large D values.
The accuracy of cruised and ALS-derived individual tree
height and DBH was assessed using regression-based equiv-
alence tests (Robinson et al. 2005). For these tests, the null
hypothesis is that the regression slope and intercept between
paired sets of data are significantly different, and the alter-
nate hypothesis is that they are not significantly different. A
linear regression model is fit using the paired datasets and
an upper and a lower one-sided 95% confidence interval for
both the intercept and slope is computed using the standard
error regression outputs. The null hypothesis of dissimilarity
is rejected if the joint one-sided 95% confidence intervals
are entirely contained within a user-defined region of equiv-
alence (e.g., £X%). Intercept equality implies the means of
two datasets are not significantly different and slope equality
implies that the regression slope is not significantly different
than one. Many similar studies (Corrao et al. 2022; Falkowski
et al. 2008; Robinson et al. 2005; Sparks and Smith 2021;
Sparks et al. 2022) have used an arbitrarily selected region of
equality (x25%) for the intercept and slope. Here, we follow
the Robinson et al. (2005) suggestion of reporting the min-
imum region of equivalence that would still result in the re-
jection of the null hypothesis of dissimilarity. Equivalence
was assessed separately between cruised tree height and felled
tree height and ALS-derived tree height and felled tree height.
Similarly, equivalence between modeled DBH (local and re-
gional models) and cruised DBH and ALS-derived growth-
adjusted DBH and cruised DBH were also assessed. The
average RMSE (1) and mean bias (2) were calculated for all
modeled and ALS-derived height and DBH as follows:

> (X — xi)z

RMSE =
n N

Mean bias = M
n o

where X are the predicted values, x, are the observed values,
and 7 is the number of observations. All statistical analyses
were conducted in R (R Core Team 2023), and we used the
“equivalence” R package (Robinson 2016) to conduct the
regression-based equivalence tests.

A. M. Sparks et al.

Comparison of Harvested Volume

We calculated gross harvested merchantable and pulp volume
for all harvested trees within the cruise area and compared
the total volume estimated by the cruise and ALS-derived
methods. Specifically, we compared total volume estimates
for (1) matched cruise and ALS-detected trees and (2) all trees
within the cruise area (i.e., matched and unmatched trees).
The cubic volume of each harvested tree was calculated using
five sets of height and DBH measurements: (1) felled height
and cruised DBH, (2) cruised height and DBH, (3) ALS-
derived height and DBH modeled using the local forest inven-
tory dataset, (4) ALS-derived height and DBH modeled using
the regional forest inventory dataset, and (5) ForestView-
derived height and DBH. For all sets of measurements, we
estimated diameter inside bark using the Kozak (2004) taper
equation from 0.3 m, assumed to be the stump height, to the
treetop in 0.5 m segments. We used regionally derived taper
equation parameters (Pancoast 2018; Poudel et al. 2018) and
the Smalian formula (3) for calculating the cubic volume (V,
m?) of all segments of each harvested tree:

L
V= z(Al +Az) 3)

where L is the length of the log (m), A, is the area of the small
end of the log (m?), and A, is the area of the large end of the
log (m?). The total volume of each tree was calculated as the
sum of merchantable volume, or volume of the stem where
the diameter was greater than 15.24 cm, and pulp volume,
or volume of the stem where the diameter was less than
15.24 cm but greater than 7.62 cm. All harvested individual
tree volumes were summed to provide gross harvested mer-
chantable and pulp volume for the cruise area. The volume
derived using felled heights and cruised DBH was assumed
to be the most accurate and served as the reference volume
estimate.

We also compared gross harvested merchantable volume
for the entire study stand to scaled merchantable volume
conducted at the processing mill. Harvest of the study stand
largely occurred on separate days from harvesting of the sur-
rounding stand, so it was possible to assign harvested trees
within the study area to the specific truckloads taken to the
mill. One exception was a single harvesting day where logs
from the study area and the surrounding stand were mixed.
Ground personnel estimated that up to two truckloads out of
the six for that day originated from the study area. Due to this
complexity, we report scaled volume with uncertainty bounds
ranging from zero truckloads (0% of harvested volume for
that day) to two truckloads (~33% of harvested volume for
that day).

All logs on ten out of the twelve log loads originating
from the study stand were scaled at the processing mill using
the Scribner decimal C log rule. This log rule estimates the
number of one-inch-thick boards spaced one-quarter inch
apart that can fit inside the circular area of a log’s smallest
end. Board foot yield of this scaling cylinder can be calcu-
lated by summing the widths of each board, dividing by
12, and multiplying by the length of the log. Most logs are
tapered and are not perfect cylinders, which means that
this method ignores volume outside the scaling cylinder.
Other cubic scales provide a more accurate estimate of
total usable fiber (e.g., Newton and Smalian cubic volume
formulations), however, the Scribner decimal C log rule
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remains one of the most widely used log scaling rules in the
western United States (Saralecos et al. 2014; Spelter 2004).
The volume of the two remaining loads was estimated via a
weight-to-volume conversion factor. The two weight-scaled
loads were taken to the mill on the same day as the other
Scribner-scaled loads and had similar species proportions.
The mill data provided species, gross and net board feet,
and net tons for each log load harvested from the study
area. Given that smaller diameter second-growth trees tend
to be more tapered and thus have higher volume underes-
timation (Spelter 2002), gross board feet were converted
to cubic volume using log-diameter dependent conversion
ratios compiled by the Idaho Board of Scaling Practices
(IBSP 2018).

The scaled merchantable volume provided a reference
volume range to compare with the ALS-derived volume.
Cruise-derived volume estimates were not compared to scaled
volume as the entire stand was not cruised (figure 1).

Results

Individual Tree Height Accuracy

Individual tree height distributions and associated cu-
mulative distribution functions for cruised tree height
and felled tree height are shown in figure 2a and b. Tree
height distributions and associated cumulative distribution
functions for ALS-derived growth-adjusted tree height and
felled tree height are shown in figure 2c and d. Both cruised
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and ALS-derived growth-adjusted height means were within
0.5 m of the felled height mean and both distributions
exhibited similar distribution shape to the felled tree height
distribution (figure 2a and c). The Kolmogorov-Smirnov
test statistic D was close to zero for cruised height versus
felled height (D =0.152, P =.169) and for ALS-derived
growth-adjusted height versus felled height (D =0.121,
P = .44), indicating significant overlap between the paired
distributions. Given the P-values were greater than .05, the
null hypothesis that the cruised and ALS-derived height
distributions follow the felled height distribution was not
rejected.

The regression-based equivalence tests for cruised heights
versus felled heights and ALS-derived growth-adjusted
heights versus felled heights are shown in figure 3a and b,
respectively. The intercept values for the cruised versus felled
height and ALS-derived growth-adjusted versus felled height
relationships were equivalent at a region of equivalence of
+4% or greater and 3% or greater, respectively. The slope
values for the cruised versus felled height and ALS-derived
growth-adjusted versus felled height relationships were
equivalent at a region of equivalence of +14% or greater and
+11% or greater, respectively. The linear relationship between
cruised height and felled height had a high r* (0.88) and low
RMSE (1.52 m) and bias (-0.47 m). Similarly, the linear re-
lationship between ALS-derived growth-adjusted height and
felled height had a high r? (0.88) and low RMSE (1.48 m) and
bias (0.32 m).

Height (m)

Figure 2 Individual tree height distribution comparison and associated cumulative distribution functions for cruised tree height versus felled tree height
(a,b) and ALS-derived growth-adjusted tree height versus felled tree height (c,d). Data for the ninety-nine matched and felled trees are shown. In (a,c),
purple coloration indicates where the two distributions overlap and the dashed vertical lines indicate the mean of each distribution. The Kolmogorov-
Smirnov test statistic D and associated P-value are reported for each of the paired distributions in (b,d).
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Height-to-DBH Models

Figure 4 shows the allometric relationships between height
and DBH for the local forest inventory dataset (figure 4a)
and the regional forest inventory dataset (figure 4b). The
best-fit regression model for both the local and regional
datasets used a power-law function (local results: power-law
AIC: 350.7, logarithmic AIC: 11278.6, linear AIC: 10889.8;
regional results: power-law AIC: 300.2, linear AIC: 12447.5,
logarithmic AIC: 12714.5). The relationship between height
and DBH for the local dataset had a high r? (0.80) and low
residual standard error (0.3 ¢cm). The relationship between
height and DBH for the regional dataset had a lower r?
(0.70) and low residual standard error (0.3 cm).
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Individual Tree DBH Accuracy

Figure 5 shows individual tree DBH distributions and as-
sociated cumulative distribution functions derived from the
local and regional height-to-DBH models and ForestView in
comparison with the cruised DBH distribution. All models
produced unimodal DBH distributions with a peak around
30 cm, whereas the cruised DBH distribution was bimodal
with peaks around 25 ¢cm and 40 cm. The Kolmogorov-
Smirnov test statistic D was closer to zero than one for all
modeled DBH versus cruised DBH tests, indicating signifi-
cant overlap in the paired distributions. However, the null
hypothesis that the modeled DBH distribution follows
the cruised DBH distribution was rejected for both the
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Figure 3 Regression-based equivalence test graphs for cruised height versus felled height (a) and ALS-derived growth-adjusted height versus felled
height (b). Data for the ninety-nine matched and felled trees are shown. The minimum region of equivalence (R.o.E.) that would still lead to rejection

of null hypothesis of dissimilarity is reported for both the intercept and slope. The grey polygon represents the minimum region of equivalence for the
intercept. The cruised and ALS-derived mean heights are equivalent to the mean felled heights when the vertical red bar is completely within the grey
polygon. The grey dashed lines represent the minimum region of equivalence for the slope. If the vertical black bar is within the grey dashed lines,
then the regression slope is significantly similar to one. The solid black line represents the best-fit linear regression model, and the black dashed line
represents the 1:1 line. The coefficient of determination (r?) and associated P-value for the linear regression models are also presented. Individual trees
are symbolized by field-classified species and are shown for illustrative purposes.
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Figure 4 Relationships between height and DBH using the local forest inventory dataset (a) and the regional forest inventory dataset (b). The black line
represents the best-fit regression model. The scatterplot point densities, calculated using a ~2 x 2 quantization of the plot axes, are displayed with a

rainbow color scale.
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Figure 5 Individual tree DBH distribution comparison and associated cumulative distribution functions for the local model-derived DBH versus cruised
DBH (a,b), the regional model-derived DBH versus cruised DBH (c,d) and ForestView-derived DBH versus cruised DBH (e,f). Data for the ninety-nine
matched and felled trees are shown. In (a,c,e) purple coloration indicates where the two distributions overlap and the dashed vertical lines indicate the
mean of each distribution. The Kolmogorov-Smirnov test statistic D and associated P-value are reported for each of the paired distributions in (b,d,f).

regional-modeled DBH (P <.001) (figure 5¢ and d) and
ForestView-modeled DBH (P =.001) (figure Se and f). The
null hypothesis that the local forest inventory data—modeled
DBH distribution follows the cruised DBH distribution was
not rejected (P =.106).

The DBH modeled using the local dataset exhibited a
-0.4 ¢cm bias and RMSE of 8.5 cm compared with the cruised
DBH, whereas DBH modeled using the regional dataset
exhibited a -4.6 cm bias and RMSE of 10 cm compared
with the cruised DBH. The DBH modeled using ForestView
exhibited a -3.0 cm bias and RMSE of 8.3 cm compared
with cruised DBH. The regression-based equivalence tests
for modeled DBH versus cruised DBH are shown in figure 6.
The intercept and slope for the local dataset modeled DBH
versus cruised DBH relationships were equivalent at a region
of equivalence of 6% or greater and £33% or greater, re-
spectively (figure 6a). Similarly, the intercept and slope for the
ForestView-modeled DBH versus cruised DBH relationships

were equivalent at a region of equivalence of +14% or greater
and +23% or greater, respectively (figure 6c). The intercept
and slope for the regional dataset modeled DBH versus
cruised DBH relationships were equivalent at a region of
equivalence of +20% or greater and +75% or greater, respec-
tively (figure 6b).

Comparison of Harvested Volume
The gross harvested merchantable and pulp volume for
cruised and felled trees that were matched with ALS-detected
trees is shown in figure 7a. Gross harvested merchantable
volume calculated using the cruise data (83.4 m?), local (81.4
m?) and regional (61.7 m?) forest inventory datasets and
ForestView (72.0 m?) were 0.7%, 3.1%, 26.5%, and 14.3%
lower than the reference volume derived from felled heights
and cruised DBH (84.0 m?), respectively.

The gross harvested merchantable and pulp volume for
all trees within the cruise area (matched and unmatched) is
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Figure 6 Regression-based equivalence test graphs for local model-derived DBH versus cruised DBH (a), regional model-derived DBH versus cruised
DBH (b), and ForestView-derived DBH versus cruised DBH (c). Data for the ninety-nine matched and felled trees are shown. The smallest region of
equivalence (R.o.E.) that would still lead to rejection of null hypothesis of dissimilarity is reported for both the intercept and slope. The grey polygon
represents the minimum region of equivalence for the intercept. The modeled DBH means are equivalent to the cruised DBH mean when the vertical
red bar is completely within the grey polygon. The grey dashed lines represent the minimum region of equivalence for the slope. If the vertical black
bar is within the grey dashed lines, then the regression slope is significantly similar to one. The solid black line represents the best-fit linear regression
model, and the black dashed line represents the 1:1 line. The coefficient of determination (r?) and associated P-value for the linear regression models
are also presented. Individual trees are symbolized by field-classified species and are shown for illustrative purposes.
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Figure 7 Comparison of gross harvested volume differentiated by pulp and merchantable volume, for (a) matched and felled trees within the cruise
area, (b) all trees within the cruise area (matched and unmatched), and (c) all trees within the study stand. Due to the reported uncertainty in log loads,
only merchantable volume is shown in (c). “Cr. DBH Fell. Ht" volume was calculated using felled height and cruised DBH measurements; “Cr. DBH

Cr. Ht" volume was calculated using cruised height and DBH measurements; “Local data” volume was calculated using ALS-derived height and DBH
modeled using the local forest inventory dataset; “Regional data” volume was calculated using ALS-derived height and DBH modeled using the regional
forest inventory dataset; and “FV" volume was calculated using ForestView-derived height and DBH. The “Scaled” volume error bar in (c) shows the
estimated range of volume due to uncertainty in log loads taken from the study area on one harvesting day.

shown in figure 7b. Gross harvested merchantable volume
calculated using the cruise data (99.1 m?), local (91.1 m?®) and
regional (69.3 m?) forest inventory datasets and ForestView
(77.8 m®) were 1.3%, 9.3%, 30.1%, and 22.5% lower than
the reference volume derived from felled heights and cruised
DBH (100.4 m?), respectively.

The gross harvested merchantable volume for all trees
within the study stand is shown in figure 7c. Due to uncer-
tainty in truckloads taken from the stand on one harvesting
day, scaled gross harvested merchantable volume ranges from
116.7 to 157.0 m3. Gross harvested merchantable volume
calculated using ALS-derived height and DBH modeled using
the local (115.6 m?) and regional (89.9 m?) forest inven-
tory datasets and ForestView (111.8 m®) were 1%-26.4%,
23.0%-42.7%, and 4.2%-28.8%, lower than the reference
scaled volume, respectively.

Discussion

This study assessed individual tree height and DBH accuracy
derived from conventional forest inventory methods and three
ALS data-derived methods. We show that although both in-
direct heights from cruising and ALS-derived height were sta-
tistically equivalent to direct height measurements on felled
trees at regions of equivalence of +3% or greater for the in-
tercept and +11% or greater for the slope, ALS-derived height
exhibited lower RMSE and bias. The comparison results also
show that DBH modeled using a generic height-to-DBH al-
lometric relationship derived using local field data and DBH
modeled using ForestView are statistically equivalent to
cruised DBH at regions of equivalence of 6% or greater for
the intercept and +23% or greater for the slope. On the con-
trary, DBH modeled using regional field data was statistically
equivalent to cruised DBH at regions of equivalence that were
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much greater (x20% or greater for the intercept and £75%
or greater for the slope). This finding suggests that locally de-
rived height-to-DBH models will likely provide more accurate
estimates of individual tree DBH than DBH modeled using re-
gional datasets. When considered with other studies (Heurich
2008; Persson et al. 2002; Popescu and Wynne 2004; Salas et
al. 2010; Tinkham et al. 2016), these height-to-DBH results
are promising, as they suggest DBH can be modeled with rel-
atively high accuracy for ALS-detected trees. The comparison
of estimated gross harvested merchantable volume extends
this finding further by showing that the best ALS methods
volume estimates accounted for 78%-91% of the field refer-
ence harvested volume and 71%-99% of the scaled volume.
However, as these results represent a single mixed conifer
stand, this analysis should be repeated in other stands/forest
types.

Detection of individual trees is a primary driver of ALS-
derived individual tree inventory accuracy. Most ITD
approaches detect dominant and codominant trees, some
intermediate trees, and miss most subcanopy trees. As may
be expected, the detection rate is highly dependent on stand
density (Eysn et al. 2015; Sparks et al. 2022; Vauhkonen et
al. 2012), ALS data density (Duncanson and Dubayah 2018;
Marinelli et al. 2019; Soininen et al. 2022; Wang et al. 2016),
and tree detection approach. The ITD benchmarking studies
have shown that different approaches can detect between
66% and 85% of dominant and codominant trees, whereas
subdominant trees are detected at much lower rates (<~31%)
(Eysn et al. 2015; Sparks et al. 2022; Vauhkonen et al. 2012;
Wang et al. 2016). Underdetection of trees can result in bi-
ased mean height and DBH (Vauhkonen et al. 2010) and large
stand volume errors (RMSE: ~29%) (Vastaranta et al. 2011).
Underdetection of subdominant trees may not present an
issue for managers primarily interested in merchantable stand
volume and biomass, as dominant trees represent the majority
of stand volume and biomass and subdominant trees are as-
sociated with lower value pulp products (Lutz et al. 2012;
O’Hara 1988; Vastaranta et al. 2011). For example, Persson
etal. (2002) showed that although 71% of trees were detected
within their study stands, dominant trees represented ~91%
of total stem volume. On the other hand, managers concerned
with growth and yield projections may need understory re-
generation and ingrowth information depending on their
silvicultural objectives. Modeling undetected trees, such as
using theoretical height distribution functions, may provide
a way to supplement automatic ITD approaches and more
accurately estimate stand-level parameters (e.g., Maltamo et
al. 2004). In this study, we matched trees manually, with an
overall detection rate of 60%. Like other studies, we show
that despite the underdetection of trees, a majority of the
reference merchantable volume (derived from felled heights
and cruised DBH) was estimated by the local data—derived
ALS method (90.7%), the regional data—derived ALS method
(69.0%) and ForestView (77.5%) (figure 7b). The largest
error source in volume estimation was the underdetection of
trees (omission error), followed by error in DBH and height.
For example, when only considering the omission error (i.e.,
assuming no error in DBH and height) for the most accu-
rate ALS method (local data derived ALS method), merchant-
able volume error was 16 %, whereas only considering DBH
error or height error resulted in volume errors of 6% and
2%, respectively. Likewise, when only considering omission
error, pulp volume error was 55 %, whereas only considering

DBH error or height error resulted in volume errors of 15%
and 4%, respectively. Vastaranta et al. (2011) also observed
larger volume error (29%) when the only error source was
omission error (omission error of 39.8%) than when the
only error source was DBH or height error (volume error less
than 1.2%). Given the large error in volume due to unde-
tected trees observed in this study and others (Vastaranta et
al. 2011), more research is warranted to explore approaches
that increase the tree detection rate.

This study supports prior work demonstrating that indi-
vidual tree heights derived from high pulse density ALS (i.e.,
>20 ppm) exhibit less measurement error than conventional
indirect field measurements. Studies using high pulse density
ALS have shown that ALS-derived individual tree heights
have lower RMSE (0.36 m for Pseudotsuga menziesii, 0.41
m for Pinus taeda) than heights derived from indirect field
measurements (1.02 m for Pseudotsuga menziesii, 0.58 m for
Pinus taeda) (Corrao et al. 2022; Ganz et al. 2019). Similarly,
we found that ALS-derived height had lower RMSE (1.48 m)
than indirect field measurements (1.52 m) for the conifers
assessed in this study. The height RMSE in this study is likely
higher than other studies due to error introduced by averaging
height change between the ALS acquisitions. Nevertheless,
indirect field tree height measurements are known to have
greater measurement error due to observer bias, obscuration
of tree bases and treetops by other trees, undergrowth, and ter-
rain (Hyyppa et al. 2004; Wang et al. 2019). Thus, high pulse
density ALS is likely superior to indirect field measurements in
many cases. In contrast, studies using lower pulse density ALS
(i.e., <7 ppm) have shown that ALS-derived individual tree
heights have slightly higher RMSE (0.73 m for Pseudotsuga
mengziesii and Pinus ponderosa, 1.87 m for Abies grandis)
than heights measured using indirect field methods (0.27 m
for Pseudotsuga mengziesii and Pinus ponderosa, 1.54 m for
Abies grandis) (Andersen et al. 2006; Tinkham et al. 2016).
This result agrees with prior studies where low pulse density
ALS was shown to underestimate individual tree heights at
pulse densities lower than 7 ppm (Yu et al. 2004; Zhao et al.
2018). Thus, indirect field measurements may be more accu-
rate than ALS for measuring height in forests where ALS with
<~8 ppm is available (Soininen et al. 2022). In all cases, ALS
has the advantage of providing wall-to-wall measurements of
individual tree height, whereas acquiring wall-to-wall field
measured height is logistically and economically infeasible.

Our results show that DBH can be modeled with moderate
accuracy from ALS-derived height measurements. Both the
DBH modeled using a species-agnostic field measurement—de-
rived height-to-DBH allometric relationship and ForestView-
derived DBH were statistically equivalent to field-measured
DBH and had moderate RMSE (8.5 cm and 8.3 cm, respec-
tively) and bias (-0.4 cm and -3.0 c¢m, respectively). Although
statistically equivalent, the distribution shape mismatch be-
tween modeled DBH (unimodal distribution) and observed
DBH (bimodal distribution) (figure 5) suggests that species-
specific height-to-DBH models may be preferrable to generic
height-to-DBH models. For example, Pseudotsuga menziesii
and Pinus ponderosa diameter tended to be underpredicted
(figure 6) and Pinus contorta diameter tended to be
overpredicted (figure 6), likely due to their different growth
forms. Beyond species, modeling DBH using more tree
attributes and stand and site predictors would likely produce
a more accurate result. Studies that have modeled DBH using
both height and crown diameter as predictor variables have
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achieved lower DBH errors (RMSE: 3.8-5.9 cm) than those
in this study (RMSE: 8.28-10 cm) (Heurich 2008; Persson
et al. 2002; Popescu 2007; Salas et al. 2010). For example,
Popescu (2007) observed an RMSE of 4.9 cm in Pinus taeda
L.—dominated stands, Persson et al. (2002) observed RMSE of
3.8 in Picea abies L. Karst. and Pinus sylvestris L. stands, and
Heurich (2008) observed RMSE of 4.6-5.9 in Picea abies and
Fagus sylvatica stands. It is likely that incorporating a refined
screening process in the local and regional height-to-DBH
modeling to select plots with similar site conditions to our
study stand would result in more accurate DBH estimates.
However, including simple height-to-DBH models in this anal-
ysis is useful information in cases where a forest manager has
limited ALS-derived data and processing capability (i.e., no
available individual crown diameter data). Additionally, like
the observed height error, RMSE in this study is likely higher
than in other studies due to error introduced by using average
diameter growth between the ALS acquisition in 2020 and
felled tree measurements in 2022. Tree DBH modeled from
UAS LiDAR and SfM data has been shown to have higher ac-
curacy (RMSE: ~0.8-4.8 cm) than DBH modeled from ALS
data (Kukkonen et al. 2022; Sun et al. 2022; Swayze et al.
2021), however, data acquisition using ALS is more efficient
over large areas (i.e., >1,000 ha) compared with present day
UAS (White et al. 2016).

Scaled volume provides a promising independent vali-
dation data source; however, as this study illustrates, there
are many challenges and uncertainties associated with using
this data. First, it should be noted that although we tried to
minimize tree detection and matching errors using manual
matching methods, the overall detection rate was 60%. This
underdetection is likely the primary factor of the ~1%-
29% merchantable volume underestimation of the top ALS
methods. Second, uncertainty in log loads originating from
the study area is a significant source of volume error. Tracking
harvested trees is a challenge given that harvesting and log
transport logistics sometimes necessitate mixed log loads that
incorporate harvested trees from different parts of the stand
or multiple stands. Third, as volume of two of the twelve
log loads was estimated via a weight-to-volume conversion
factor, underestimation or overestimation could occur due
to weight-to-volume conversion factor error. Furthermore,
the Scribner-scaled loads could be underestimated compared
to volume calculated using the Smalian formula, as this rule
assumes a quarter-inch kerf allowance. Uncertainty in ALS-
estimated DBH and board feet to cubic volume conversion
factors could contribute to the volume mismatch. The ALS-
based methods tended to underpredict DBH (figure 6), which
directly translates into lower individual tree volume estimates
than cruised volume estimates (figure 7a). We could not find
error estimates associated with board feet to cubic volume
conversion factors, which is a research need, considering the
widespread use of both board feet and cubic volume in the
western United States (Saralecos et al. 2014; Spelter 2002,
2004) and the likely increasing use of scaled volume as ALS-
derived forest inventory validation data. Other studies have
shown moderate agreement between ALS-derived volume
estimates and postharvest volume measures. White et al.
(2014) found that volume derived from cover type—adjusted
volume tables underestimated weight scale volumes by
19.8% whereas volume derived from ALS area-based analysis
had much closer agreement to weight scale volumes (+0.6%)
in coniferous boreal forest in Alberta, Canada. Likewise,
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Woods et al. (2011) reported that mean area-based anal-
ysis estimates of stand volume from ALS data were within
10% of scaled volume in a coniferous boreal forest stand in
Ontario, Canada. Other studies have shown that individual
tree volume derived from ALS measurements was within ~4%
of harvester-derived individual tree volume (Peuhkurinen et
al. 2007).

A potential limitation of this study was the number of
matched individual trees (N = 99), representing five conifer
species from a single stand. Although this may appear to
be a small sample size, it is comparable to the upper end of
previous studies using direct measurements on felled trees
or high-precision measurements acquired using terrestrial
laser scanning (TLS). Although focused on a single stand,
the species variability in this study is also greater than most
earlier studies that mainly focused on only one or two spe-
cies. For example, Tinkham et al. (2016) used measurements
from 60 felled Abies grandis in the intermountain western
United States, Sibona et al. (2017) used measurements from
100 felled conifers in the Italian Alps, Ganz et al. (2019)
used measurements from 30 felled Pseudotsuga menziesii in
Germany, and Corrao et al. (2022) used measurements from
139 felled Pinus taeda in the southern United States. Likewise,
Andersen et al. (2006) compared ALS measurements to TLS
measurements for fifty-nine total Pseudotsuga menziesii and
Pinus ponderosa individuals. The primary reason for these
small sample sizes is the time and person hours required to
acquire felled-tree measurements. It is also often infeasible to
fell trees or collect measurements on felled trees due to safety
or logistical issues, leading most ITD validation studies to use
field-collected indirect heights. However, studies that use di-
rect measurement are critical for validation of remotely sensed
measurements, and the relative lack of such studies indicates
that more are needed to assess ALS-derived measurement ac-
curacy across diverse species and stand conditions. Equally,
these types of field measurements are essential for assessing
the accuracy and utility of larger spatial scale projects and
commercial applications.

Conclusions

Accurate forest inventories are necessary for forest manage-
ment and forest products supply chain planning. This study
advances our understanding of the accuracy of conventional
fieldand ALS-derived individual tree inventories by evaluating
these inventories with felled tree measurements and log
scaling data in a coniferous forest stand with diverse species
composition and structure. The results show that although
ALS-derived and indirect field measurements of height are
statistically equivalent to direct height measurements, ALS-
derived height had lower RMSE (1.48 m) and bias (0.32 m)
for this stand than field measurements (RMSE = 1.52 m, bias
= -0.47 m). Our results also highlight the utility and uncer-
tainty of using ALS-derived individual tree height to model
DBH. In this stand, although both ForestView-derived DBH
and DBH derived from local height-to-DBH models were
statistically equivalent to field measured DBH, RMSE was
moderate (8.3-8.5 cm). The results show that the largest
error source in volume estimation was the underdetection
of trees, followed by error in DBH and height. Like prior
studies, this study shows that although there was an
underdetection of trees (60% detection rate), the best ALS-
derived volume estimates accounted for 78%-91% of the
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reference gross harvested merchantable volume estimated
via felled heights and field-measured DBH measurements.
The comparison of estimated gross harvested merchantable
volume and scaled volume extends these findings by showing
that these ALS-based methods accounted for 71%-99% of
the scaled gross volume. However, this study also highlights
the challenges of using scaled data as validation, including
tracking log loads, volume underestimation associated with
the log scaling methods, and error associated with board
feet to cubic volume conversion factors. More research is
warranted on these topics given the likely increasing use of
scaled volume as ALS-derived forest inventory validation
data. Overall, the results highlight the potential—and uncer-
tainty associated with—using high pulse density (=20 ppm)
ALS to conduct individual tree inventories in mixed-species
coniferous forests.
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