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A B S T R A C T

We study the rate-dependent mechanics of viscoelastic granular packings. Using a two-
dimensional, square lattice of particles as a motif mimicking nominally mono-disperse granular
packings, we perform a suite of finite element simulations under rate-dependent uniaxial
compaction followed by unloading. The focus is on understanding the macroscopic force–
displacement relations and the porosity evolution as a function of the viscoelastic relaxation
parameters. For the constituent parameters considered here, the force–displacement relations
show a two-stage power-law behavior, which is associated with the relative contributions of
viscous dissipation and elastic effects at a particular loading rate. For a given loading rate,
the nonlinearity of the porosity evolution depends on the constituent parameters and is found
to be captured well by a simple analytical model. The heterogeneity of stresses during the
compaction and recovery phases provide insights into the emergent complex micromechanics
in simple granular motifs. Upon unloading, particles may experience transient tensile pressures,
which could have implications on their failure.

1. Introduction

Soft granular assemblies are encountered in many natural systems (Kabla, 2012; Xu et al., 2019) and are important motifs in many
engineered applications, from powder compaction (Jagota et al., 1998; Raps et al., 2015; Zhang et al., 2019) to pharmaceuticals and
iosystems (Horabik and Molenda, 2016; Riley et al., 2019; Highley et al., 2019; Hirsch et al., 2021). Understanding the mechanical
ehaviors of such granular systems is essential for their translational applications (van Hecke, 2009; Menut et al., 2012; Li et al.,
021; Yuk et al., 2021).
In soft granular assemblies, the macroscopic force–displacement (𝐹 − 𝛥) response is expected to be different from the classical

ertzian relation. For instance, compression experiments on spherical hydrogel granular assemblies in cubic lattice arrangements
how 𝐹 ∼ 𝛥𝛽 with 𝛽 = 2.2 ± 0.2 much larger than the Hertzian exponent of 1.5 (Brodu et al., 2015). The high deformability
of individual particles has also been found to influence clogging with potential particle fracturing during their flow through
silos (Ashour et al., 2017).

Sophisticated numerical approaches based on discrete element method (DEM) have been proposed to simulate macroscopic
behaviors of highly deformable granular packings (Gonzalez and Cuitiño, 2012; Giannis et al., 2021). Using this approach it is
found that even in simple lattice-type (square or hexagonal) granular arrangements the inter-particle force distribution and nonlocal
effect are influenced by the type of arrangement and the mechanical property contrasts between individual particles (Li et al.,
2021). DEM based analyses of two-dimensional granular systems comprising incompressible neo-Hookean particles indicate packing
fraction (𝜓) that varies nearly linearly with applied strain (Vu et al., 2019) and a contact relation ⟨𝑍⟩ ∼ 𝜓𝛿 where ⟨𝑍⟩ is the
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Fig. 1. Evolution of (a) normalized force and (b) porosity in randomly arranged mono-disperse granular packings (solid lines) for three viscoelastic materials
signified by parameter 𝜏, discussed et seq.) under uniaxial strain rate of ̇̄𝜖 = 0.03 s−1. Shaded regions shows one standard deviation due to initial porosity
variation (0.19 ≲ 𝜙0 ≲ 0.22) due to diameter variations. Superposed on these results are the responses of square granular packings comprising particles with
dentical diameters (circles) and 𝜙0 = 0.2146.

average number of contacts per particle and 𝛿 ∼ 0.5 (Cantor et al., 2020), which appears to corroborate with experiments (Vu
t al., 2019). This is similar to the scaling observed in bubble models for wet foams (Durian, 1995) although somewhat different
exponents have also been reported for compressible solid elastic particle assemblies (e.g., Makse et al., 2000). More recent DEM
simulations of two-dimensional soft granular systems with compressible neo-Hookean particles (Vu et al., 2021) show that with
increasing compressibility the packing fraction (𝜓 ) evolves more slowly and becomes increasingly nonlinear with applied strain
while the macroscopic stress–strain behavior becomes more compliant.

Often, the role of loading rate and its interaction with the material time-scales in deformable granular packings are of
interest (Karanjgaokar, 2017; Kocharyan and Karanjgaokar, 2020). For instance, experiments on disordered hydrogel granular
packings (Mukhopadhyay and Peixinho, 2011) show 𝐹 ∼ 𝜓𝛽 with a loading-rate dependent exponent values (1.2 ≲ 𝛽 ≲ 1.4) with
the exponent decreasing with increasing loading rate. Interestingly, these exponents lie between those obtained for frictionless
emulsions (∼1.2) and frictional hard-sphere systems (∼1.5). In the same experiments, the unloading response indicates that the
recovery depends on the unloading velocity, which hints at the role of viscous dissipation processes. Such viscoelastic phenomena
also occur in polymer powder compaction and sintering (Jagota and Dawson, 1988a,b; Jagota et al., 1998; Bellehumeur et al.,
1998). It is understood that the mechanics of these systems is fundamentally rooted in the inter-particle interactions associated with
viscoelastic contact mechanics (Graham, 1967; Shull, 2002). Yet, full-scale DEM-based simulations become important as complex
multi-particle interactions can occur in such assemblies (McMeeking et al., 2001).

The focus of this work is on understanding the rate-dependent mechanics of viscoelastic granular packings. We use a finite
lement based DEM approach to simulate the compaction and recovery with an emphasis on the role of viscoelastic constituent
roperties. As an illustration, Fig. 1 shows the averaged (solid lines) normalized force–displacement responses (Fig. 1(a)) and
normalized porosity (Fig. 1(b)) of randomly arranged granular packings with cylindrical particles of diameter 𝑑0 = 1.00 ± 0.07 mm
following a normal distribution, which mimics experimental packings that are nominally mono-disperse (Mukhopadhyay and
Peixinho, 2011; Brodu et al., 2015; Kocharyan and Karanjgaokar, 2020; Vu et al., 2021). The averaging is performed over five
ealizations with each realization comprising approximately 25–40 particles with fully periodic boundary conditions. Superposed in
he figure are the responses (symbols) predicted by square packing modeled as a periodic unit cell (cf. Fig. 2) with 𝑑0 = 1.00 mm.
otably, the square packing reasonably mimics the qualitative and quantitative trends of such nominally mono-disperse packings.
otivated by this, we consider a simple computational system comprising a granular lattice with particles arranged in square packing
o study the deformation behaviors under nominally uniaxial straining.
Section 2 describes the basic computational set up and key theoretical ingredients. Section 3 analyzes the role of the dissipative

nd elastic effects on the macroscopic force–displacement and porosity (packing) evolution. In Section 4, we present an analytical
odel for porosity evolution. Section 5 presents an extended discussion of the results with insights into the role of packing
rchitecture and the influence of constituent parameters in porosity recovery during unloading.
2
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Fig. 2. (a) Illustrative real image of a square granular lattice comprising soft polymer particles, and (b) unit cell used in the calculations.

. Model description

.1. Geometry

Fig. 2(a) shows a two-dimensional square lattice comprising an infinite array of viscoelastic cylindrical particles of diameter
𝑑0 = 1 mm. We assume a plane strain condition in the 𝑧-direction. In this configuration, the initial porosity 𝜙0 = 0.2146. Fig. 2(b)
hows the corresponding unit cell with the periodic boundary conditions. The unit cell is discretized using ∼10, 000 eight-node
ybrid plane strain finite elements with linear pressure (CPE8H) in ABAQUS/STANDARD®. The model incorporates general periodic
oundary conditions on the cell edges using multi-point constraint equations as follows (Garoz et al., 2019):

𝑢i+𝑗 − 𝑢i−𝑗 = 𝜖0𝑖𝑗𝐿
0
𝑖 (1)

here 𝜖0𝑖𝑗 is the applied (nominal) strain on the cell, 𝐿
0
𝑖 the initial length of unit cell in the 𝑖th direction between opposite surfaces.

otivated by uniaxial deformation states investigations in the deformation behaviors of soft granular media (Mukhopadhyay and
eixinho, 2011; Dijksman et al., 2013; Vu et al., 2021), we focus on the response of granular packings subjected to a uniaxial applied
train. With reference to Fig. 2(b), a compressive velocity 𝑣0 is applied in the 𝑦-direction at Rp (which acts as a loading device) so
hat 𝜖0𝑦𝑦(𝑡) ≡ 𝜖 = 𝑣0𝑡∕𝐿0

𝑦. Further, we prescribe 𝑢
y−
𝑦 = 0. Finally, with out-of-plane deformation constrained to zero, a uniaxial strain

tate is maintained by prescribing 𝑢x+𝑥 = 𝑢x−𝑥 = 0, which also ensures symmetry along the 𝑥-axis.
We consider 0.03 mm/s ≤ 𝑣0 ≤ 1 mm/s; with 𝐿0

𝑥 = 𝐿0
𝑦 = 1 mm the investigation is carried out over a nominal strain

ate range of 0.03 s−1 ≤ ̇̄𝜖 ≤ 1 s−1. The inter-particle contact interaction is defined using a general surface–surface contact in
BAQUS/STANDARD®. The pressure-overclosure relationship (normal contact) is modeled using hard contact (default), which
inimizes the inter-surface penetration. It also does not allow the transfer of tensile stress across the interface.1 The tangential
ontact is modeled with a Coulomb friction formulation with friction coefficient, 𝜇 = 0.1. As shown in Fig. S1 of the Supplementary
aterial, the friction coefficient has no measurable effect on the response of the granular system considered in this work.

.2. Brief theoretical background

The present problem is studied in a large strain setting while the underlying rheological behavior is linear viscoelastic, commonly
eferred to as finite linear viscoelasticity (Coleman and Noll, 1961; Lubliner, 1985; Wineman, 2009). We lay out the basic framework
s described in the ABAQUS® Theory Manual (Section 4.8.2 in Version 6.14) but the reader is also referred to Simo (1987) and
Simo and Hughes (2006) for details; here, temperature effects are not considered.

For a compressible linear viscoelastic material, the second Piola–Kirchhoff stress is assumed to be additively split into a volumetric
part and a deviatoric part in the reference configuration. The former is a function of 𝐽 (𝑡) = det 𝐅(𝑡) where 𝐅(𝑡) is the deformation
gradient at time 𝑡 while the latter depends on the distortional gradient, 𝐅̄ = 𝐅∕(𝐽 1∕3), which is volume-preserving. Using push-forward

1 ABAQUS®, User Documentation 2018, Dassault Systemes, RI, USA, 2018.
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approach (Simo and Hughes, 2006) the hereditary integral in the current configuration relates the deviatoric (𝝉D(𝑡)) and hydrostatic
(𝝉H(𝑡)) stress responses to deformation at time 𝑡 as2:

𝝉D(𝑡) = 𝝉D0 (𝑡) + dev
[

∫

𝑡

0

𝐺̇(𝑠)
𝐺0

𝐅̄−1
𝑡 (𝑡 − 𝑠) ⋅ 𝝉D0 (𝑡 − 𝑠) ⋅ 𝐅̄

−𝖳
𝑡 (𝑡 − 𝑠)d𝑠

]

(2a)

𝝉H(𝑡) = 𝝉H0 (𝑡) + ∫

𝑡

0

𝐾̇(𝑠)
𝐾0

𝝉H0 (𝑡 − 𝑠)d𝑠 (2b)

where 𝝉D0 , 𝝉
H
0 are respectively the instantaneous deviatoric and hydrostatic contributions of the Kirchhoff stress 𝝉0 and 𝑠 is a dummy

variable that accounts for the history effects. 𝐺0 and 𝐾0 are the instantaneous (at 𝑡 = 0) small strain shear and bulk moduli,
respectively and 𝐺̇ and 𝐾̇ are the time-derivatives of the small strain shear (𝐺(𝑡)) and bulk (𝐾(𝑡)) relaxation moduli. In Eq. (2a), the
deviator operator in the current configuration is given as dev[◦] ≡ [◦] − (1∕3)[(◦) ∶ 𝐈]𝐈 where 𝐈 is the identity tensor. In ABAQUS®,
he relaxation moduli are expressed in non-dimensional forms. Following that, in the present work we assume the shear and bulk
elaxation functions as follows:

𝑔(𝑡) = 1 − 𝑔1
(

1 − 𝑒−𝑡∕𝜏𝑔
)

; 𝑘(𝑡) = 1 − 𝑘1
(

1 − 𝑒−𝑡∕𝜏𝑘
)

(3)

here 𝑔1 = 1 −
(

𝐺∞∕𝐺0
)

and 𝑘1 = 1 −
(

𝐾∞∕𝐾0
)

, 𝐺∞ and 𝐾∞ are the long-term (relaxed) moduli, and 𝜏𝑔 and 𝜏𝑘 the corresponding
relaxation time-scales. A rheological representation of these relaxation functions is a standard linear solid comprising a linear spring
in parallel with a Maxwell element. The material is linear in the sense that 𝑔(𝑡) and 𝑘(𝑡) are not functions of strain (cf. ABAQUS®
ser’s Manual, Version 6.14). Substituting Eq. (3) in Eq. (2), we obtain:

𝝉D(𝑡) = 𝝉D0 (𝑡) − dev
[

𝑔1
𝜏𝑔 ∫

𝑡

0
𝐅̄−1
𝑡 (𝑡 − 𝑠) ⋅ 𝝉D0 (𝑡 − 𝑠) ⋅ 𝐅̄

−𝖳
𝑡 (𝑡 − 𝑠)d𝑠

]

(4a)

𝝉H(𝑡) = 𝝉H0 (𝑡) −
𝑘1
𝜏𝑘 ∫

𝑡

0
𝝉H0 (𝑡 − 𝑠)d𝑠 (4b)

Fig. S2 in Supplementary Material illustrates the role of finite deformation in the response of a linear visco-elastic material.
In what follows, we define the following ratios: 𝐺̂ = 𝐺0∕𝐺∞, 𝐾̂ = 𝐾0∕𝐾∞ (the relaxation modulus ratios), and 𝜏 = 𝜏𝑔∕𝜏𝑘

(timescale contrast). We choose 100 ≲ 𝐺̂ ≲ 102 (𝐺̂ ∈ {1.5, 3.5, 11.5, 31.5, and 85.5}) where 𝐺̂ = 85.5 is representative of polyurethane
with 𝐺∞ = 5.607 MPa, 𝐺0 = 477.6 MPa (Kocharyan and Karanjgaokar, 2020). Further, we assume 𝐾̂ = 𝐺̂, which is reasonable
for several polymeric materials (Leaderman, 1958; Theocaris, 1965; Yee and Takemori, 1982; Shireen et al., 2023). Here, 𝐾0 is
omputed via Hooke’s law by taking instantaneous Poisson’s ratio, 𝜈0 = 0.4 (Karpiesiuk, 2020). Thus, for 𝐾̂ = 85.5, 𝐾∞ = 26.162 MPa,
0 = 2226.83 MPa. In terms of Eq. (3), 𝐺̂ = 𝐾̂ = 85.5 translates to 𝑔1 = 𝑘1 = 0.988. For simplicity, we take a fixed value of 𝜏𝑔 = 0.55
and vary 𝜏𝑘 to obtain 0 ≤ 𝜏 ≤ 10 (𝜏 ∈ {0, 0.5, 1, 2, and 10}). As 𝜏 describes the relative strength of shear relaxation mechanisms
o the bulk relaxation mechanisms, we refer to materials with 𝜏 < 1 as shear relaxing materials as the shear relaxation is faster than
he bulk relaxation despite 𝐾̂ = 𝐺̂. By extension, materials with 𝜏 > 1 are referred to as bulk relaxing materials and those with 𝜏 = 1
s equi-relaxing materials. The 𝜏 range is relevant to engineered polymers. For instance, linear polymers such as polycarbonate and
olystyerene show 𝜏 ≫ 1 whereas cross-linked polymers show 𝜏 ≲ 1 (Grassia et al., 2010). Fig. A.1 in Appendix A show shear
Fig. A.1(a)) and bulk (Fig. A.1(b)) relaxation moduli for two illustrative values of 𝐺̂.

. Results and discussion

In this section, we describe the interaction between the loading time-scale (𝑡L = 1∕ ̇̄𝜖) and the material time-scale (𝜏), and the
ole of the relaxation modulus ratios (𝐺̂(= 𝐾̂)) in this interaction. Our focus is on understanding the force–displacement and the
orosity evolution characteristics.

.1. Force–displacement responses

We define the normalized force (𝜎̄(𝑡)) and the normalized displacement (𝛥(𝑡)) at time 𝑡:

𝜎̄(𝑡) =
1 − (𝜈(𝑡))2

𝐸0

[

𝐹 (𝑡)
𝐴0

]

; 𝛥(𝑡) =
𝛥(𝑡)
𝐿0
𝑦

(5)

where 𝐹 (𝑡) is the total macroscopic force in the loading direction acting on the initial unit cell area 𝐴0, 𝐸0 the instantaneous Young’s
modulus, 𝜈(𝑡) the time-dependent Poisson’s ratio (see Eq. (A.1), Fig. A.1(c)) and 𝛥(𝑡) = 𝑣0𝑡 the applied displacement. Fig. 3 shows
that the 𝜎̄ − 𝛥 responses are rate-dependent and nonlinear for the range of 𝜏 ratios. At a given strain rate, as the role of the bulk
relaxation time-scale becomes important (i.e., with increasing 𝜏) the response becomes more compliant. The increased compliance
with increasing 𝜏 is seen at all three strain rates. At a given 𝜏, the response becomes stiffer with increasing strain rate ( ̇̄𝜖). While
Fig. 3 is shown for 𝐺̂ = 85.5, the same features are observed for other relaxation modulus ratios (𝐺̂), cf. Fig. B.1 in Appendix B.
In addition, Fig. B.1 shows that with increasing 𝐺̂ the normalized force (for a fixed 𝜏 and ̇̄𝜖) is lower, which is expected given the
stronger stress relaxation.

2 𝐀−1 is the inverse of tensor 𝐀 and 𝐀−𝖳 is the transpose of 𝐀−1.
4
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Fig. 3. Normalized force-normalized displacement (𝜎̄ − 𝛥) responses for 𝐺̂ = 85.5 for different 𝜏 − ̇̄𝜖 combinations. ̇̄𝜖 = 0.03 s−1 ( ), ̇̄𝜖 = 0.3 s−1 ( ) and
̇̄𝜖 = 1 s−1 ( ).

It is pertinent to ask: Why does the 𝜎̄ − 𝛥 response become more compliant with increasing 𝜏? For a shear relaxing material
(𝜏 ≪ 1) the particles effectively behave as if they are less compressible as evidenced from the Poisson’s ratio (Fig. A.1(c)), which
may tend toward the incompressibility limit. As a result, the overall force required by the granular system to accommodate an
applied deformation (𝛥) is dictated by the hydrostatic stress as the deviatoric stresses relax. This effect, although present in the case
f a single particle, is compounded in a granular system due to the confinement from neighboring particles. In comparison, a bulk
elaxing material (𝜏 ≫ 1) experiences much faster relaxation of the hydrostatic stresses and the deviatoric stresses also relax (given
he fixed value of the shear relaxation time-scale, 𝜏𝑔). As a result, the larger the 𝜏 the lower the overall force.
In both scenarios, the strong stiffening effect occurs when the porosity is sufficiently low, which occurs earlier in the case of a

hear relaxing granular lattice compared to a bulk relaxing granular lattice. The effect of relaxation parameters in porosity evolution
s discussed in Section 3.2.
We find that the normalized force–displacement responses are best described by the following relation:

𝜎̄ =

{

𝑆0𝛥
𝛽0 , if 𝛥 ≤ 𝛥th

𝑆1𝛥
𝛽1 , if 𝛥 > 𝛥th

(6)

here 𝛥th is a threshold normalized displacement delineating two regimes described by the scaling exponents 𝛽0 or 𝛽1. These regimes
re discovered by considering the ratio  = visc∕elastic in our analysis, which indicates the relative contributions of the viscous
issipation (visc) and stored strain energy (elastic).3
Fig. 4 illustrates how  evolves with 𝛥 for 𝐺̂ = 85.5. At ̇̄𝜖 = 0.03 s−1 (solid lines in Fig. 4), all curves exhibit a non-monotonic

rend with  reaching a peak value (peak > 1). It indicates that the viscous dissipation effect dominates during the initial part of
he loading process while there is an increasing role of elasticity beyond the peak.
With increasing strain rate, the evolution of  ratio with 𝜏 is more complicated. At the high strain rate of ̇̄𝜖 = 1.0 s−1 (dotted

lines in Fig. 4), elastic effects dominate ( ≪ 1) in all cases, except for 𝜏 = 10 where it marginally exceeds one. The dominant elastic
ontribution is not entirely unexpected as time scales for the shear and bulk dissipative processes may be too large to contribute
ignificantly. At the intermediate strain rate ( ̇̄𝜖 = 0.3 s−1, dashed lines in Fig. 4), the trends are mixed. Here, the viscous effect
ends to be dominant in equi- and bulk-relaxing materials (𝜏 ≳ 1) with secondary contribution from elasticity. In comparison, elastic
ontributions dominate for shear-relaxing cases (𝜏 < 1). Although not shown here, we find that at ̇̄𝜖 = 0.3 s−1 these trends are
bserved only for 𝐺̂ ≳ 11, i.e., for materials with sufficiently large contrast between the instantaneous and long-term moduli.
From these characteristics, we identify 𝛥th as the threshold displacement corresponding to peak . We refer to the 𝛽0 regime

𝛥 ≤ 𝛥th) as the dissipation-governed regime and the 𝛽1 regime (𝛥 > 𝛥th) as the elasticity-governed regime.
Fig. 5 summarizes the dependence of the two-regime behavior over the range of material parameters in terms of 𝛥th. The trends

ignify that for a given relaxation time-scale ratio (𝜏) increasing the relaxation modulus ratio (i.e., 𝐺̂) delays the transition from a
issipation-governed behavior to an elasticity-governed behavior. The relaxation time-scale ratio (𝜏) starts playing a role at relatively
odest levels of 𝐺̂ (≳ 3.5). For 𝜏 > 0, the threshold displacement decreases with increasing 𝜏. This can be interpreted as follows.
iven that 𝜏 is varied by varying 𝜏𝑘 while keeping 𝜏𝑔 is fixed, this dependence (at a given ̇̄𝜖 and 𝐺̂) is essentially a consequence of

3 In ABAQUS/STANDARD®, these are respectively the output variables ALLCD and ALLSE.
5
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Fig. 4. Evolution of the ratio  for different 𝜏 − ̇̄𝜖 combinations (for 𝐺̂ = 85.5), where ̇̄𝜖 = 0.03 s−1 ( ), ̇̄𝜖 = 0.3 s−1 ( ) and ̇̄𝜖 = 1 s−1 ( ). Similar
trends are observed for other 𝐺̂ ratios.

Fig. 5. Dependence of 𝛥th (Eq. (6)) on relaxation parameters for ̇̄𝜖 = 0.03 s−1.

the interaction between the loading time-scale (𝑡L = 1∕ ̇̄𝜖) and the bulk relaxation time-scale (𝜏𝑘). Thus, for a material with a given
relaxation modulus ratio, a shorter bulk relaxation time-scale tends to hasten the transition from the 𝛽0-regime to the 𝛽1-regime. On
the other hand, when 𝜏𝑘 ≈ ∞ (i.e., 𝜏 = 0) the 𝛽0 → 𝛽1 transition is solely driven by the shear relaxation time-scale. From the figure,
we see that the 𝜏 = 0 case follows the same dependence on 𝐺̂ as for the equi-relaxing material (𝜏 = 1) except at 𝐺̂ = 85.5 where the
value tends to saturate at the level corresponding to 𝐺̂ = 31.5. While the reason behind this trend is not yet clear, it suggests that
above a certain value the relaxation modulus ratio may not be significant in the transition for 𝜏 = 0.

At ̇̄𝜖 = 0.3 s−1 (not shown in Fig. 5 for brevity), 𝛥th is observed only for 𝜏 = 10 at 𝐺̂ = 31.5 and 85.5. Moreover it is constant
(𝛥th ∼ 0.45) for both materials. For ̇̄𝜖 = 1 s−1, 𝛥th does not exist and the responses are entirely described by the elasticity governed
regime (i.e., 𝛽1). With these characteristics, Fig. 6 collates the dependencies of 𝑆0, 𝑆1, 𝛽0 and 𝛽1 on the material parameters. We
use the FMINCON function in MATLAB® to obtain optimal values of these parameters; the 𝑅2 values in the optimization of these
parameters are ∼0.97. For brevity, we show the trends only for ̇̄𝜖 = 0.03 s−1 and later we briefly comment on their counterparts at
higher strain rates. Figs. 6(a) and 6(b) respectively show the dependence of 𝑆0 and 𝛽0 on the relaxation parameter ratios. It reveals
hat the normalized force–displacement relation in the dissipation-governed regime is relatively insensitive to 𝐺̂ (save for 𝜏 = 10)
nd is primarily dictated by the relaxation time-scales. Their decrease with increasing 𝜏 indicates that, in the dissipation-governed
6

egime, as the bulk relaxation time-scale (𝜏𝑘) becomes important relative to the shear relaxation time scale (𝜏𝑔) the system requires
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Fig. 6. Dependence of (a) 𝑆0, (b) 𝛽0, (c) 𝑆1 and (d) 𝛽1 in Eq. (6) on relaxation parameters at ̇̄𝜖 = 0.03 s−1. Similar qualitative trends are seen at ̇̄𝜖 = 0.3 s−1 and
̇̄𝜖 = 1 s−1.

lower normalized force (𝜎̄) to sustain a given level of compaction (i.e., 𝛥 ≤ 𝛥th). Note that this 𝜎̄ is nearly independent of the
elaxation modulus ratio.
On the other hand, in the elasticity-governed regime (Figs. 6(c) and 6(d)) the force–displacement relation is affected by both, 𝐺̂

nd 𝜏. When some amount of bulk relaxation is active (𝜏 > 0), the general trend is that both 𝑆1 and 𝛽1 decrease with increasing 𝐺̂.
iven that 𝛽1 > 1, how much force is required to achieve a desired level of compaction (𝛥 > 𝛥th) will depend on the net effect of
1 and 𝛽1 although the general trend appears to be that larger the 𝜏 (for a given 𝐺̂) lower the normalized force.
Combining these effects from the two regimes, it can be said that the normalized peak force (𝜎̄peak) required to achieve complete

ompaction (i.e., zero porosity) decreases as the bulk relaxation time-scale becomes more and more important relative to the shear
elaxation time-scale. For the purely shear relaxing case (𝜏 = 0), the increasing value of 𝛽1 with 𝐺̂ ascertains the increasingly softer
orce–displacement relation with increasing relaxation modulus ratio.
At the other end, for ̇̄𝜖 = 1 s−1 only 𝑆1 and 𝛽1 are relevant; see Fig. B.2 in Appendix B. The trends for 𝑆1 (Fig. B.2(a)) are

ualitatively largely similar to their counterparts at ̇̄𝜖 = 0.03 s−1. On the other hand, 𝛽1 (cf. Fig. B.2(b)) is independent of 𝐺̂ for
̂ = 0 unlike at ̇̄𝜖 = 0.03 s−1. For 𝜏 > 0, 𝛽 decreases with increasing 𝐺̂ and it decreases faster with increasing 𝜏.
7
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Fig. 7. Rate-dependent porosity evolution from finite element simulations for 𝐺̂ = 85.5. ̇̄𝜖 = 0.03 s−1 ( ), ̇̄𝜖 = 0.3 s−1 ( ), and ̇̄𝜖 = 1.0 s−1 ( ).

While the scaling exponents indicate a departure from the Hertzian solution (𝛽Hertz ≈ 1) for a linearly elastic, cylinder–
ylinder contact (Nakhatakyan, 2011; Barber, 2018), the power-law dependence (Eq. (6)) is in concert with three-dimensional
xperiments (e.g., Brodu et al., 2015). Another discriminating feature is the presence of two regimes: one governed by viscous
issipation (𝛽0) and the other elasticity dominant (𝛽1). Admittedly, the two regimes cannot be fully isolated as both effects will
e present throughout the deformation process. Notwithstanding, some of the salient trends are noteworthy. For relatively elastic
aterials (𝐺̂ ≲ 3), we find 1.75 ≲ 𝛽1 ≲ 2.4 over the range of relaxation time-scale ratios. Its weak dependence on the applied
train rate emphasizes a dominantly elastic response of these materials beyond the threshold displacement (𝛥th). For increasingly
iscoelastic cases (𝐺̂ ≳ 3.5) the range of 𝛽1 with respect to 𝜏 is much larger and it increases with increasing 𝐺̂ (cf. Figs. 6(b) and
B.2(b)), which underscores role of viscous effects beyond 𝛥th.

3.2. Porosity evolution

As the granular assembly is compressed, the interstitial spaces get compacted causing the overall porosity (𝜙) to evolve with
time (𝑡). The porosity is defined as (cf. Fig. 2),

𝜙(𝑡) = 1 −
𝐴𝑝(𝑡)
𝐴𝑐(𝑡)

(7)

where 𝐴𝑐 (𝑡) = 𝐿𝑥(𝑡)𝐿𝑦(𝑡) is the current area of the cell and 𝐴𝑝(𝑡) is the current total area of all the particles in the unit cell,
.e. 𝐴𝑝(𝑡) =

∑𝑁𝑝
𝑖=1

∑𝑁
𝑗=1 𝑎

𝑖
𝑗 (𝑡) where 𝑎

𝑖
𝑗 (𝑡) is the current area of the 𝑗th finite element in particle 𝑖, 𝑁 the total number of finite elements

n the particle, and 𝑁𝑝 the total number of particles in the unit cell.
Fig. 7 reveals the viscoelastic effect on the porosity evolution for 𝐺̂ = 85.5. For clarity the results are separated according to

the 𝜏 regimes. For a fixed ̇̄𝜖 (say ̇̄𝜖 = 0.03 s−1, solid lines), the porosity decreases more slowly with increasing 𝜏 values, i.e., as
the bulk relaxation time-scale becomes increasingly relevant. To that end, note that in a granular system the applied deformation
(𝛥) is accommodated by two processes — (i) particle deformation and (ii) compaction, i.e., porosity reduction. It suggests that the
macroscopic deformation in granular systems with faster bulk relaxation is preferentially accommodated via volume change of the
particles compared to porosity reduction. Indeed, referring to Fig. A.1(c), it can be seen that bulk relaxing materials (𝜏 > 1) exhibit
temporary increase in the compressibility (decrease in the material Poisson’s ratio) with time. In comparison, shear relaxing
aterials (𝜏 < 1) the applied deformation is preferentially accommodated via porosity reduction as the material resists volume
hange, indicated by an increase in the Poisson’s ratio with time.
This characteristic dependence of the porosity evolution on 𝜏 can explain the stiffening effect seen in the force–displacement

esponses (cf. Figs. 3 and 9(a)). Stiffening occurs when the normalized porosity reaches a certain threshold, which is found to be
0.2. In a shear relaxing granular lattice, this threshold value is reached sooner because porosity evolution is the preferred process
f compaction. By contrast, the threshold is reached later in a bulk relaxing lattice as compaction is accommodated preferentially
y particle volume change.
With increasing ̇̄𝜖, a shear relaxing material with a particular 𝜏 < 1 exhibits a slower decrease in porosity (Fig. 7(a)). By contrast,

or a bulk relaxing material (𝜏 > 1) the porosity reduction is faster with increasing ̇̄𝜖, cf. Fig. 7(b). This may be again understood
n terms of the compressibility effects that arise due to the interaction between the shear and bulk relaxation time-scales as well as

̄ ̇
8

he relaxation moduli, cf. Fig. A.1(c). Consider a particular level of applied deformation, 𝛥 = 𝜖 × 𝑡. In a bulk relaxing material, the
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decrease in Poisson’s ratio with increasing loading rate is smaller. Thus, the particles are less compressible at a higher rate than at
a lower rate for the same 𝛥. As a result, the applied deformation (𝛥) must now be accommodated by enhanced porosity reduction.
xtending this argument to a shear relaxing material, a higher loading rate causes a smaller increase in the Poisson’s ratio for a
iven 𝛥, which implies a higher compressibility of the particles at a higher strain rate relative to a lower strain rate. As a result, the
pplied deformation at a higher rate can now be accommodated by enhanced particle compression thereby causing lesser porosity
ecrease.
These qualitative characteristics persist for other 𝐺̂ − ̇̄𝜖 combinations as shown in Fig. B.3 of Appendix B. Combining the results

in Fig. 7 with those in Fig. B.3, we see that for a fixed ̇̄𝜖, higher 𝐺̂ leads to a faster decrease in porosity for 𝜏 < 1. In comparison,
for 𝜏 > 1, higher 𝐺̂ results in a slower decrease in porosity. For 𝜏 = 1, the trends are independent of ̇̄𝜖 and 𝐺̂.

4. An analytical model for porosity evolution

In discrete granular mechanics, the macroscopic force is related to the average number of contacts per particle (⟨𝑍⟩), which is
empirically related to the porosity (or the packing fraction) (O’hern et al., 2003; Brodu et al., 2015; Vu et al., 2019; Cantor et al.,
2020). Hence, it is useful to obtain a relationship between the porosity and applied deformation. Here, we present an analytical
model to describe the porosity evolution that is related to macroscopic deformation. The nonlinear and rate-dependent porosity
evolution described in Section 3.2 is a result of intricate interaction between the material parameters, contact mechanics, and the
rate of loading. We define the total areal strain of particles 𝜖𝑝(𝑡) and the nominal cell areal strain 𝜖𝑐 (𝑡) as:

𝜖𝑝(𝑡) =
𝐴𝑝(𝑡)

𝐴0
𝑝

− 1 ; 𝜖𝑐 (𝑡) =
𝐴𝑐 (𝑡)
𝐴0
𝑐

− 1 (8)

where 𝐴0
𝑝 = 𝐴𝑝(𝑡 = 0) and 𝐴0

𝑐 = 𝐴𝑐 (𝑡 = 0) = 𝐿0
𝑥𝐿

0
𝑦. In the present work, 𝐿0

𝑥 = 𝐿0
𝑦 = 𝑑0. With 𝐿𝑥(𝑡) = 𝐿0

𝑥, 𝜖𝑐 ≡ 𝛥. Noting that at 𝑡 = 0
the initial porosity 𝜙0 = 1 − 𝐴0

𝑝∕𝐴
0
𝑐 , we obtain the current porosity from Eq. (7) and Eq. (8) as:

𝜙(𝑡) = 1 −
(1 − 𝜙0)(1 + 𝜖𝑝(𝑡))

(1 + 𝜖𝑐 (𝑡))
(9)

where 𝜖𝑝(𝑡) ≤ 0 and 𝜖𝑐 (𝑡) ≤ 0 (i.e., compressive). Our finite element calculations (e.g., Fig. B.4) indicate that, over the range of 𝐺̂ the
evolution of 𝜖𝑝 is nonlinear with respect to 𝜖𝑐 and monotonic with respect to ̇̄𝜖 and 𝜏. Based on this, we approximate 𝜖𝑝 = 𝛼(𝜖𝑐)𝑛,
where 𝛼 and 𝑛 are fitting parameters. Thus, at time 𝑡, Eq. (9) becomes:

𝜙 = 1 −
(1 − 𝜙0)[1 + 𝛼(𝜖𝑐 )𝑛]

1 + 𝜖𝑐
(10)

which describes the porosity evolution in terms of the known parameters 𝜖𝑐(𝑡) and 𝜙0 with two fitting parameters, 𝛼 and 𝑛 that
account for inter-particle contact interaction and depend on the relaxation parameters as well as the loading rate. Fig. 8 shows
the values of 𝛼 and 𝑛 calibrated to the finite element results using the FMINCON function in MATLAB® with an 𝑅2 ∼ 0.99. A full
comparison of the results from the analytical model with the finite element calculations over the range of 𝐺̂ and 𝜏 are collated in
Fig. B.3 in Appendix B. At a given strain rate, the trends of 𝛼 and 𝑛 with respect to 𝐺̂ (for a given 𝜏) are qualitatively the same.

When the viscous effect is governed by shear relaxation (𝜏 < 1), 𝛼 (Figs. 8(a), 8(b), and 8(c)) and 𝑛 (Figs. 8(d), 8(e), and 8(f))
ncrease with increasing relaxation modulus ratio (𝐺̂). On the other hand, as bulk relaxation process becomes important (𝜏 > 1) this
ehavior transitions to both, 𝛼 and 𝑛 decreasing with increasing 𝐺̂. There is a clear demarcation at 𝜏 = 1 where both, 𝛼 and 𝑛 are
ndependent of 𝐺̂. Referring to Eq. (10), the trends of 𝛼 and 𝑛 indicate that for a given relaxation modulus ratio (𝐺̂) and strain rate
̇̄𝜖) the deformation needed to achieve a desired level of compaction should increase as bulk relaxation time-scale starts playing a
ole i.e., with increasing 𝜏.

. Further discussion

The finite element simulations performed here assume a linear viscoelastic constitutive behavior of the particles while considering
inite strain effects. A more refined analysis may account for nonlinear viscoelastic rheology, although there is experimental evidence
hat some polymers may follow a linear viscoelastic behavior at large deformations (e.g., Chen et al., 2020; Commins and Siviour,
023). Such complications are not considered here with the goal of expressing the basic mechanics in terms of constituent properties.
ith this caveat, we present an extended discussion of the results from the present calculations.

.1. The relevance of packing

The salient mechanical characteristics described in the preceding sections highlight the role of constituent material properties
n the macroscopic behavior of granular lattices. The role of the granular motif is embedded in these behaviors but the role of
ulti-particle interaction is not explicitly addressed. Essentially, the questions are: (i) How does granular lattice differ from the
esponse of a single particle? and (ii) What role does lattice arrangement play in the macroscopic behavior? While a full set of
9

alculations is beyond the scope of this work, we present some basic comparisons that offer some insights in to these questions.
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Fig. 8. Dependence of parameters 𝛼 and 𝑛 on 𝐺̂ for different 𝜏 (colors) values at (a, d) ̇̄𝜖 = 0.03 s−1, (b, e) ̇̄𝜖 = 0.3 s−1, and (c, f) ̇̄𝜖 = 1 s−1.

5.1.1. Granular lattice versus single particle
The role of granular packing is illustrated in Fig. 9 by comparing the behaviors of the square granular lattice and single particle

under compression. Results are shown for two cases of 𝜏 ratios keeping the relaxation modulus ratio the same (𝐺̂ = 85.5). In Fig. 9(a),
two aspects become clear. First, for a shear relaxing material (e.g., 𝜏 = 0) the confinement effect in the granular packing produces
a force–displacement response that is significantly stiffer than the single particle made of same material. That is not the case for
a bulk relaxing material (e.g., 𝜏 = 2) which shows a negligible confinement effect. Second, the confinement effect significantly
amplifies the difference in the responses of shear relaxing and bulk relaxing lattices (solid lines in Fig. 9(a)), which in the case of
single particle cases is negligible (dashed lines in Fig. 9(a)).

The energy ratio () in Fig. 9(b) reveals that the elastic effects tend to become important in both shear and bulk granular lattices
at relatively moderate deformation levels. In comparison, the response of single particles is dominated by viscous effects up to much
larger deformation levels. Further, the  ratio for a single particle does not exhibit the non-monotonic behavior seen in the granular
assemblies suggesting that their force–displacement responses can be described by a single power law.

In sum, the characteristics described in the preceding sections are peculiar to granular packings.

5.1.2. Type of packing
To discern the role of lattice architecture, a limited set of calculations (for 𝐺̂ = 85.5 and 𝜏 ∈ {0, 1, 2}) are performed for

hexagonally-packed granular lattices. As illustrated in Fig. 10, a hexagonal granular lattices exhibit qualitatively similar responses as
square granular lattice; quantitatively, for a given set of material parameters the hexagonal arrangement exhibits a stiffer mechanical
behavior and faster porosity evolution relative to a square packing. With respect to 𝜏, the normalized force and porosity trends are
consistent with those in the square granular lattice. As such, we expect the main observations made pertaining to square granular
lattices to remain valid.

5.2. Force versus packing fraction

In Sections 4 and 3.1, the trends for the force exponents (𝛽0 and 𝛽1) and the porosity exponent (𝑛) show somewhat similar
dependencies on the material parameters. This motivates insights into force-packing fraction (𝜎̄ − 𝜓) relations, which are often
10
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Fig. 9. Comparison of (a) macroscopic force–displacement relations and (b) corresponding evolution of the ratio () for single particle (dashed) and square
ranular lattice (solid). Results are illustrated for 𝐺̂ = 85.5 at ̇̄𝜖 = 0.03 s−1.

Fig. 10. Illustrative behaviors of hexagonal ( ) and square ( ) granular lattices for 𝐺̂ = 85.5 at ̇̄𝜖 = 0.03 s−1. Panel (a) normalized force–displacement
|𝜎̄| − 𝛥) and (b) normalized porosity–displacement (𝜙∕𝜙0 − 𝛥). Inset in Panel (a) shows the evolution of the energy ratio (). Inset in Panel (b) shows the
exagonal unit cell.

f interest in granular physics (e.g., Cantor et al., 2020). For instance, recent rate-independent DEM simulations of compressible
eo-Hookean assemblies (Vu et al., 2021) reveal that while the force–displacement responses are sensitive to Poisson’s ratio (𝜈), the
ormalized force-packing fraction (𝜎̄ − 𝜓) relation is insensitive to it over a wide range of 𝜈. Fig. 11 illustrates the 𝜎̄ − 𝜓 relation
or ̇̄𝜖 = 0.03 s−1 where 𝜓 = (1 − 𝜙). For comparison, trends from the model (combining Eq. (6) and Eq. (10)) are included and
hey corroborate with the finite element results (symbols). The qualitative trends are consistent with recent two-dimensional DEM
imulations (Cantor et al., 2020; Vu et al., 2021) showing an initial soft response culminating into a rapid stiffening as 𝜓 → 1. Recall
hat for a given relaxation modulus ratio (𝐺̂), the Poisson’s ratio (𝜈) depends on 𝜏, cf. Eq. (A.1). Thus, any dependence on 𝜏 can
e effectively seen as a dependence on 𝜈. As seen from Fig. 11, the value of the relaxation modulus ratio (𝐺̂) dictates whether the
̄ −𝜓 relation is sensitive to 𝜈. For 𝐺̂ ≲ 11.5 (illustrated in Fig. 11(a)), the responses are insensitive to 𝜏 similar to Vu et al. (2021).
y contrast, for 𝐺̂ ≳ 21.5 (Fig. 11(b)) the responses effectively depend on 𝜈 via 𝜏.
Recall that 𝜎̄ − 𝛥 (Fig. 3) and 𝜙− 𝛥 (Fig. 7) responses begin to show a dependence on 𝜏 at relatively modest levels of 𝐺̂. Against

hat backdrop, it is interesting that the 𝜎̄ − 𝜓 responses show no or mild sensitivity to 𝜏. It thus appears that while the constituent
11
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Fig. 11. Finite element (symbols) and model (lines) results of normalized force versus packing fraction (𝜎̄-𝜓) at ̇̄𝜖 = 0.03 s−1 for (a) 𝐺̂ = 1.5 (circles), 𝐺̂ = 3.5
(triangles), (b) 𝐺̂ = 85.5. 𝜏 = 0 (blue), 𝜏 = 0.5 (red), 𝜏 = 1 (green), 𝜏 = 2 (cyan), 𝜏 = 10 (magenta).

arameters (𝐺̂ and 𝜏) may strongly influence the macroscopic force and porosity evolution individually, their net effect viewed as
orce-packing fraction relation may be much tempered or even negligible. It is possible that for higher 𝐺̂ ratios the effect of 𝜏 may
e more discernible. Notwithstanding, when the response does depends on 𝜈 (e.g., Fig. 11(b)) it is the stiffest for the shear-relaxing
material (𝜏 = 0) and weakens as the bulk relaxation time-scale becomes important (𝜏 > 0) to the extent that for 𝜏 ≳ 1 they are
nearly identical.

We note in passing that for 2D incompressible neo-Hookean particle assemblies, Vu et al. (2019) found the packing fraction
o be nearly linearly proportional to the applied compressive strain. By way of comparison, Eq. (7) and Fig. B.4 indicate a non-
linear relation over the range of material and loading parameters examined but particularly in the incompressibility limit, which
corresponds to 𝜏 = 0 where 𝜈(𝑡) → 0.5 as a function of 𝑡, cf. Eq. (A.1) and Fig. A.1(c).

5.3. Critical values

Eq. (10) offers a way to predict critical quantities corresponding to complete compaction, which yields:

𝜖cr𝑐 + 𝜙0 − 𝛼(1 − 𝜙0)(𝜖cr𝑐 )
𝑛 = 0 (11)

where 𝜖cr𝑐 is the critical strain at 𝜙 = 0. Eq. (11) is solved numerically for 𝜖cr𝑐 in MATLAB®. From that, we calculate the critical time
corresponding to 𝜙 = 0 as 𝑡cr = 𝜖cr𝑐 𝜆0∕𝑣0 where 𝜆0 is the average distance between the particle centers, which in the present case is
𝑑0. Fig. 12(a) shows a good comparison between the critical time from the simulations (𝑡cr𝑆 ) and 𝑡

cr
𝐴 based on Eq. (11). As indicated

n Section 4, for a given 𝐺̂ and ̇̄𝜖, increasing 𝜏 increases the time required to achieve full packing. As illustrated in Fig. 12(b), for
̇̄𝜖 = 0.03 s−1 the magnitudes of the peak normalized force (|𝜎̄𝑝𝑒𝑎𝑘|) corresponding to 𝑡cr also compare well. Note that in Fig. 12(b),
or a given 𝐺̂ the peak normalized force decreases with increasing 𝜏, albeit mildly consistent with the discussion with reference to
ig. 6.

.4. Recovery

Finally, we discuss porosity recovery upon unloading. For brevity, we focus on the results for ̇̄𝜖 = 0.03 s−1. Fig. 13 shows the
trends for materials with 𝐺̂ ∈ {1.5, 85.5} and 𝜏 ∈ {0, 1, 10}. For 𝐺̂ = 1.5, the recovery curve closely follows the compaction curve for
̂ = 0 (Fig. 13(a)) but the two deviate measurably for 𝜏 = 1 (Fig. 13(b)) and 𝜏 = 10 (Fig. 13(c)). This underscores the importance of
the bulk relaxation process, which is controlled by 𝜏 (given that 𝐾̂ = 𝐺̂). When bulk relaxation is slow the shear-driven viscoelasticity
is not of primary consequence insofar as the recovery is concerned. In contrast, when the bulk relaxation is equal to or faster than
the shear relaxation, the recovery process is affected.

Notice that in all three cases at 𝐺̂ = 1.5 a substantial recovery (∼60–80%) is elastic (red portion). Interestingly, upon transition
from elastic recovery (marked by ×) the viscoelastic recovery (green portion) process for 𝜏 = 10 shows a slow-then-fast behavior
12

(note the stagnation) whereas 𝜏 = 1 shows a fast-then-slow behavior.
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Fig. 12. Comparison between the finite element and model predictions for (a) critical time at 𝜙 = 0 (𝜏 = 0 (blue), 𝜏 = 0.5 (red), 𝜏 = 1 (green), 𝜏 = 2 (cyan),
𝜏 = 10 (magenta)), and (b) peak normalized stress (at 𝜙 = 0) for ̇̄𝜖 = 0.03 s−1; open symbols are finite element results and filled symbols are model results; for
̂ = 3.5(∗), model results are shown by black ∗.

Fig. 13. Effect of 𝜏 on the porosity evolution under loading (blue) and unloading (red, green) for (a–c) 𝐺̂ = 1.5 and (d–f) 𝐺̂ = 85.5. In the unloading parts,
he red portion indicates instantaneous elastic rebound and the green portion corresponds to the viscoelastic recovery. The transition from elastic to viscoelastic
ecovery is marked by ×. Insets in each subfigure show deformed shapes during recovery at particular 𝛥.
13
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Fig. 14. Stress triaxiality distributions for the cases shown in Fig. 13. In panels (a–f), only half unit cells are shown for clarity. In each panel, the left half
shows the loaded state (↓) at 𝜙∕𝜙0 ∼ 0.01 and the right half shows the recovery state (↑) at e-ve transition (× in Fig. 13). Positive values indicate tension.

As expected, for 𝐺̂ = 85.5 the recovery process is dominated by viscoelasticity. Yet, the effect of 𝜏 on the recovery is seen, cf.
igs. 13(d)–13(f). The recovery curve is faster for 𝜏 = 0 compared to its counterparts for 𝜏 = 1 and 10. Notably, for 𝜏 = 0 there is no
change in the porosity during the elastic unloading and the entire recovery is viscoelastic. While the elastic recovery of the porosity is
negligible for 𝜏 = 1 and 10, the elastic strains are also negligible in the latter two cases compared to 𝜏 = 0. Moreover, the viscoelastic
recovery at 𝜏 = 10 shows a rather peculiar sigmoidal-type behavior denoting a fast–slow–fast characteristic, which is not seen for
̂ = 1. The insets in each sub-figure depict the deformed shapes of the particles that dictate the porosity recovery. With increasing
̂ the pore shape becomes increasingly anisotropic during recovery. This is most clearly seen for 𝐺̂ = 85.5 (Figs. 13(d)–13(f)) where
the viscoelastic recovery process renders a symmetry-breaking pore shape evolution with increasing 𝜏. For instance at 𝜙∕𝜙0 ∼ 0.5,
igs. 13(d)–13(f) reveal that the pore shape is more or less isotropic at 𝜏 = 0 unlike a highly flattened pore shape at 𝜏 = 10.
With the stress relaxation that depends on both 𝐺̂(= 𝐾̂) and 𝜏, it is interesting to analyze how these material parameters influence

he stress distributions within the unit cell. In the present context, we consider the stress triaxiality ratio as a scalar measure to
nderstand the role of material parameters in stress relaxation:  (𝒙, 𝑡) = 𝑝(𝒙)∕𝜎eq(𝒙) where 𝑝(𝒙) is the hydrostatic stress and 𝜎eq is
he von Mises equivalent stress at point 𝒙. Fig. 14 shows the distributions of  (𝒙) for the cases shown in Fig. 13. In each sub-figure,
he left half shows the state in the loading phase at 𝜙∕𝜙0 = 0.01 (close to full void closure) while the right half shows the state in the
nloading phase corresponding to the transition from elastic to viscoelastic (e-ve transition) recovery process (× in Fig. 13). In the
oading phase (left portions of each sub-figure) all cases exhibit compressive (negative) triaxiality ratios in the particle bulk, which
s expected. Tensile (positive) triaxiality is seen at the particle surfaces that are not yet in contact but it rapidly drops and becomes
ompressive as contact occurs. For 𝜏 = 0, very high compressive values (| | ∼ 10) occur for 𝐺̂ = 85.5 (Fig. 14(d)) because 𝜎eq relaxes
uch more compared to 𝜎h. In comparison, for 𝐺̂ = 1.5 with 𝜏 = 0 shows compressive triaxiality levels that are nearly an order
f magnitude smaller (Fig. 14(a)). For 𝐺̂ = 1.5, the compressive triaxiality values are similar for the three 𝜏 values. In comparison,
or 𝐺̂ = 85.5, the peak compressive triaxiality magnitudes strongly depend on 𝜏 with 𝜏 = 10 showing the lowest values, which is
xpected because the hydrostatic stress relaxes much faster than the deviatoric stress. Another interesting feature is the heterogeneity
f  at contact surfaces, which is preferentially seen along the 𝑦-direction contact for 𝐺̂ = 1.5. Similar heterogeneity is also seen
long 𝑥-direction for 𝜏 = 0, 𝐺̂ = 85.5. Although not considered in this work, such heterogeneity in the contact stresses may have
mplications in inter-particle interactions and interfacial instabilities. An interesting aspect in the unloading phase is the prevalence
f hydrostatic tensile stress at the e-ve transition in the particles for 𝜏 ≳ 1. In materials with 𝜏 = 1, high levels of tensile hydrostatic
tresses exists in the inner core of the particles while the interfaces experience a compressive hydrostatic stress. Interestingly, for
14
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Fig. 15. Evolution of normalized hydrostatic stress (𝑝̄(𝑡)∕𝐺(𝑡)) under loading (blue) and unloading (red, green) for specific cases of positive triaxiality in Fig. 14.
In the unloading parts, the red portion indicates instantaneous elastic rebound and the green portion corresponds to the viscoelastic recovery. The transition
from loading to unloading is marked by # and elastic to viscoelastic recovery by ×.

̂ = 1.5 and 𝜏 = 10, the triaxiality is negative while at the same 𝜏, it is positive for 𝐺̂ = 85.5. Such high triaxiality levels could cause
cavitation within the particles that can lead to damage and ultimate failure.

Fig. 15 shows the volume-averaged hydrostatic stress (𝑝̄) normalized by the current shear relaxation modulus (𝐺) for the three
cases in Fig. 14 that show evidence of tensile triaxiality in the unloading phase. While the average tensile pressure is small for
̂ = 0 (Fig. 15(a)) and 𝜏 = 1 (Fig. 15(b)), for 𝜏 = 10 (Fig. 15(c)) the value reaches remarkably high levels, albeit for a short
period of deformation.4 In Fig. 15(c), 𝑝̄∕𝐺 rapidly changes from ∼ − 13 to ∼ + 7.5 between the start of unloading (marked by #)
and the start of e-ve transition (marked by ×). As viscoelastic recovery process kicks in, 𝑝̄∕𝐺 again rapidly drops to a negative
value before gradually reaching zero. We note that in incompressible hyperelastic solids, cavitation is predicted at a theoretical
critical value (𝑝̄∕𝐺)cr = 2.5 (Gent and Lindley, 1959; Ball, 1982). In compressible neo-Hookean solids, the critical value can be much
maller (Lopez-Pamies, 2009; Cohen and Durban, 2010; Zheng and Cai, 2020). The implications of such short-lived but high tensile
ressure transient in viscoelastic assemblies are beyond the scope of this paper, but may perhaps be relevant in many situations (e.g.,
ohen, 1960; Oberth and Bruenner, 1965; Eom et al., 2001; Huebsch et al., 2015; Lefèvre et al., 2015; Lin et al., 2017; Guo et al.,
2020; Barney et al., 2020; Tang et al., 2022).

6. Summary

We perform extensive finite element based DEM simulations of granular lattices modeled using equi-sized cylindrical particles
under uniaxial compression. The square lattice architecture is simple but captures essential mechanical features exhibited by
nominally mono-disperse granular packings. This simplicity of the model enables studying the role of constituent parameters in
their rate-dependent macroscopic behaviors. The salient outcomes peculiar to these granular lattices are as follows:

1. The force–displacement behavior exhibits two regimes — one governed by viscous dissipation and the other by elastic energy,
which arise from the granular confinement effect. There exists a critical deformation state at which the response transitions
from being governed by viscous dissipation to that governed by stored elastic energy.

2. If the loading time-scale (𝑡𝑙 = 1∕ ̇̄𝜖) is much longer than the shear (𝜏𝑔) and bulk (𝜏𝑘) relaxation time-scales, both regimes exist.
For much shorter loading time-scales only the elasticity governed regime prevails. In both scenarios, the relaxation modulus
ratio (i.e., 𝐺̂) has a negligible effect. By contrast, 𝐺̂ plays a role when the loading and relaxation time-scales are comparable.
For a given relaxation time-scale ratio (𝜏), there is a critical 𝐺̂ above which both regimes may exist.

3. For a fixed loading rate, the normalized peak force (corresponding to complete compaction) increases as the shear relaxation
time-scale becomes more important relative to the bulk relaxation time-scale, and the effect is amplified with increasing 𝐺̂.

4. The corresponding porosity evolution is also rate-dependent. For a fixed loading rate and relaxation time-scale ratio, a higher
𝐺̂ leads to faster porosity reduction in shear relaxing materials. The trends are reversed in bulk relaxing materials. For a fixed
loading rate and 𝐺̂, the porosity reduction rate increases with decreasing relaxation time-scale ratio.

4 For the same material parameters, the loading–unloading response of a single particle does not exhibit this behavior.
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Fig. A.1. Evolution of (a) normalized shear relaxation modulus (𝐺(𝑡)∕𝐺0), (b) Normalized relaxation modulus (𝐾(𝑡)∕𝐾0), and (c) Poisson’s ratio (𝜈). Dashed lines:
𝐺̂ = 𝐾̂ = 3.5; solid lines: 𝐺̂ = 𝐾̂ = 85.5.

5. For a given 𝐺̂, although the porosity and force characteristics show a dependence on the relaxation time-scale ratio, the
apparent effect in terms of the normalized force-packing fraction relation may be much tempered. Analytical expressions
describing their evolution with deformation indicate that their exponents exhibit strong but similar dependencies on
the viscoelastic parameters. By consequence, the viscoelastic parameters show a relatively mild effect in the normalized
force-packing fraction relation.

6. Viscoelastic effects influence porosity recovery during unloading. For certain combinations of relaxation parameters, the pore
shape during recovery may become temporarily anisotropic, which affects the rate of recovery. In such scenarios, high tensile
pressures may prevail during the transition from elastic to viscoelastic recovery processes.
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Fig. B.1. Rate-dependent normalized force–displacement (𝜎̄ − 𝛥) responses from finite element calculations (symbols) and model (Eq. (6), lines).
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𝜏

Fig. B.2. Dependence of (a) 𝑆1 and (b) 𝛽1 in Eq. (6) on relaxation parameters at ̇̄𝜖 = 1 s−1.

Appendix A. Evolution of relaxation parameters with respect to time

Fig. A.1 illustrates the evolution of the relaxation moduli (Figs. A.1(a) and A.1(b)) as a function of the normalized time. Given
that 𝜏𝑔 = constant, the shear relaxation spectra (for a given 𝐺̂) are identical for all 𝜏 ratios. On the other hand, the bulk relaxation
spectra (for a given 𝐾̂) depend on 𝜏. Although we set 𝐾̂ = 𝐺̂, the actual relaxation moduli values at a given time 𝑡 depend on 𝜏 and
̇̄𝜖. Thus, at a given ̇̄𝜖, a material with 𝜏 < 1 will show higher shear relaxation than the bulk relaxation and vice-versa for a material
with 𝜏 > 1. The resulting Poisson’s ratio, 𝜈(𝑡) can be obtained analytically as (Fig. A.1(c)):

𝜈(𝑠) =
𝐾̂𝑠𝜏𝑔[3𝐺̂𝐾0(1 + 𝑠𝜏𝑔) − 2𝐺0(1 + 𝐺̂𝑠𝜏𝑔)] + 𝜏[3𝐺̂𝐾0(1 + 𝑠𝜏𝑔) − 2𝐾̂(𝐺0 + 𝐺̂𝐺0𝑠𝜏𝑔)]

2𝑠[𝐾̂𝑠𝜏𝑔[𝐺0 + 3𝐺̂𝐾0 + 𝐺̂(𝐺0 + 3𝐾0)𝑠𝜏𝑔] + 𝜏[3𝐺̂𝐾0(1 + 𝑠𝜏𝑔) + 𝐾̂(𝐺0 + 𝐺̂𝐺0𝑠𝜏𝑔)]]
(A.1)

where 𝑠 is the Laplace variable. Fig. A.1(c) shows that 𝜈 increases from its instantaneous value toward incompressibility limit for
̂ → 0; for 𝜏 > 1, it decreases initially and then increases to reach instantaneous value at sufficiently long time-scales. The amount of
decrease depends on 𝐺̂ and 𝐾̂. These trends corroborate with experimental reports on Poisson’s ratio measurements (Grassia et al.,
2010).

Appendix B. Rate-dependent responses for different relaxation parameters

Fig. B.1 shows the normalized force (𝜎̄) versus normalized displacement 𝛥 responses at three ̇̄𝜖 values. For clarity, the results are
shown for 𝐺̂ ∈ {1.5, 3.5, 21.5, 85.5}. Note that the responses terminate at 𝜙∕𝜙0 = 0. As seen here, at a given ̇̄𝜖 the stiffest response for
a particular 𝐺̂ occurs for 𝜏 = 0 and the softest response occurs for 𝜏 = 10.

Further, the stiffest (corresponding to 𝐺̂ = 1.5) and softest (corresponding to 𝐺̂ = 85.5) responses increasingly diverge from each
other with increasing 𝜏. While these trends are most clearly seen for ̇̄𝜖 = 0.03 s−1, they persist for the other two rates albeit to a
lesser extent. Moreover, with increasing ̇̄𝜖 the responses for 𝜏 ≲ 1 tend to become independent of 𝐺̂, they remain distinct for 𝜏 > 1.
As seen from the figure, the model (Eq. (6)) captures these trends very well with the fitted optimal parameters in Fig. 6.

Fig. B.3 collates the rate-dependent porosity evolution for the ranges of material relaxation modulus ratios (𝐺̂) and relaxation
time-scale ratios (𝜏). The symbols are finite element results and the lines are analytical results of Eq. (10).

The relation 𝜖𝑝 = 𝛼(𝜖𝑐 )𝑛 prescribed to arrive at Eq. (10) is obtained from the finite element results as illustrated in Fig. B.4
for 𝐺̂ = 85.5; for other 𝐺̂ ratios the trends are qualitatively similar. In Fig. B.4, for both the regimes of 𝜏 the 𝜖𝑝-𝜖𝑐 relationship
is nonlinear for all three ̇̄𝜖 values. Beyond the critical cell strain 𝜖𝑐 = 𝜖cr𝑐 , which corresponds to 𝜙 = 0 the relationship becomes

̇ ̂
18

independent of 𝜖 and 𝜏. Similar trends are observed for other 𝐺 ratios.
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Fig. B.3. Rate-dependent porosity evolution for different 𝐺̂ − 𝜏 combinations. Finite element (symbols) and model (Eq. (10), lines).
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(

Fig. B.4. Finite element results showing 𝜖𝑝-𝜖𝑐 evolution for 𝐺̂ = 85.5 and different 𝜏 − ̇̄𝜖 combinations. ̇̄𝜖 = 0.03 s−1 ( ), ̇̄𝜖 = 0.3 s−1 ( ) and ̇̄𝜖 = 1 s−1

).

Appendix C. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jmps.2024.105574.
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