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Abstract—Vertical Federated Learning (VFL) stands out as
a promising approach to safeguard privacy in collaborative
machine learning, allowing multiple entities to jointly train mod-
els on vertically partitioned datasets without revealing private
information. While recent years have seen substantial research on
privacy vulnerabilities and defense strategies for VFL, the focus
has primarily been on passive scenarios where attackers adhere to
the protocol. This perspective undermines the practical threats
since the attackers can deviate from the protocol to improve
their inference capabilities. To address this gap, our study
introduces two innovative data reconstruction attacks designed
to compromise data privacy in an active setting. Essentially,
both attacks modify the gradients computed during the training
phase of VFL to breach privacy. Our first attack uses an Active
Inversion Network exploiting a small portion of known data in
the training set to coerce the passive participants into training
an auto-encoder for the reconstruction of their private data. The
second attack, Active Generative Network, utilizes the knowledge
of the training data distribution to guide the system into training
a conditional generative network (C-GAN) for feature inferences.
Our experiments confirm the efficacy of both attacks in inferring
private features from real-world datasets.

Index Terms—Vertical Federated Learning, Data Privacy, Data
Reconstruction Attacks

I. INTRODUCTION

Vertical Federated Learning (VFL) is a form of Federated
Learning in which multiple entities collaborate to develop
machine learning models, utilizing distinct features from the
same data samples [1], [2]. The goal of VFL is to collabora-
tively develop learning models that maximize data utilization
without exposing raw sensitive data. The demand for VFL has
increased significantly in recent years, especially by organiza-
tions with limited and fragmented data seeking robust privacy
machine learning solutions [3], [4].

As the VFL protocol involves many parties and not all
can be fully trusted, preventing malicious participants from
stealing sensitive data is crucial. While previous research
has demonstrated that the data is better protected when the
distributed participants use their own dataset and refrain from
data sharing, the risks that adversarial participants could steal
sensitive information still remain. In particular, the VFL has
been shown to be vulnerable to label inference [5], [6], data

reconstruction [7], [8], and property inference attacks [8]
during both its training phase and inference phase. In response,
some ad-hoc defenses are proposed [9], [10]. Nevertheless,
both existing attack and defense strategies fail to fully capture
the privacy risks associated with VFL, as they inadequately
examine the practical capabilities of adversarial participants.
Specifically, all preceding works exclusively focus on the pas-
sive setting, wherein adversarial participants strictly adhere to
the system protocol (Table I). This consideration undermines
the practical privacy risks inherent in VFL. The reason is VFL
participants have the capability to deviate from the protocol,
becoming active adversaries, without being detected [11]–[13].

This paper presents the first examination of active privacy
attacks on VFL, i.e., active attacks executed by a malicious
active participant. Note that the term active participant refers
to the user in VFL who owns the labels, which is not the
active/passive property of the privacy attacks. We consider
the open problem: To what degree can an active participant
in VFL reconstruct the private training data of passive par-
ticipants when it can deviate from the protocol? In contrast
to previously studied passive privacy breaches in VFL, our
data reconstruction attacks tamper with the training gradients
transmitted back to the passive participants, i.e., other partici-
pants without the training labels. The goal of tampering is to
exploit the local models trained on those gradients to recover
the victims’ data. The main contributions of the paper are:

• We introduce an active data reconstruction attack called
Active Inversion Network (AIN). The method maliciously
modifies the training gradients with the aid of some
public training data. The goal is to force other participants
into training a decoder to reconstruct the private features
during inference.

• The second attack involves an Active Generative Network
(AGN), designed for the case when the adversary does
not know any private features. AGN operates under the
assumption that the adversary knows the distribution of
the training data. Its objective is to coerce all participants
into training a generative network that can recover the
private features.

• We conduct experiments on MNIST [14] and USCen-
sus [15] datasets to show that the proposed attacks can
leverage the active setting and significantly improve the
reconstructed data compared to passive attacks in VFL.
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Organization. The paper is structured as follows: Section II
provides the relevant background, introduces the notations em-
ployed in our paper, and reviews relevant literature. Section III
outlines our threat models in the active setting along with the
associated protocols. The details of our proposed AIN and
AGN data reconstruction attacks are presented in Section IV.
A comprehensive examination of our experiments is provided
in Section V. Finally, Section VI concludes the paper.

II. BACKGROUND, NOTATIONS AND RELATED WORKS

This section provides the background of FL, our technical
notations, and related works.

Federated Learning. The concept was first introduced by
Google [16] for a cross-device scenario where millions of
mobile devices collaboratively train a global machine learning
model with the aid of a centralized server. At the first itera-
tion, the central server randomly initializes the global model
parameters. In each following training iteration, a subset of
clients is chosen to join the training. Each selected participant
will then receive the global parameters from the server and
compute the model’s gradients using their local dataset. These
gradients are then aggregated to update the global model. The
training continues iteratively until the global model converges.

Vertical Federated Learning. Depending on how data is
partitioned among users, FL has two main forms: horizontal
or vertical. In the horizontal setting, all users optimize on the
same architecture and the same feature space while holding
different data samples. On the other hand, this work studies
the vertical setting in which participants possess disjoint sets
of features while sharing the same set of samples [2]. The
label set can be considered as a special feature and is owned
by a special participant called the active participant. Other
participants are referred to as passive participants.

The training process for VFL typically consists of two
steps: Entity Alignment and Privacy-preserving training. While
the Entity Alignment matches features from the same sam-
ples together for collaborative training, the Privacy-preserving
training updates the global model via gradient descent [17].
The training procedure will be described in more detail later
in Section III.

Data Reconstruction Attacks in VFL. The core of privacy
protection in VFL is the users’ private data. Various feature
and label inference attacks have been developed to breach
privacy in this context recently. These attacks typically con-
sider the scenarios where the active participant aims to recover
features of passive participants. The attacker mainly operates
under two settings: white-box, where the attacker possesses
knowledge of the passive participant’s model architecture
and parameters, and black-box, where such information is
unavailable. Model inversion (MI) and gradient inversion (GI)
are two primary white-box attacks. White-box MI methods [7],
[8], [18], typically search for features that make the model’s
predicted outputs resemble the observed outputs. The GI
attack, CAFE [9], seeks to identify features whose gradients
align with the public gradients. For the black-box setting,
the Binary Feature Inference attack (BFI) [10] is introduced

to recover private binary features when the local models of
passive participants consist of only one fully connected layer.
Black-box MI attacks [7], [18] involve the adversarial training
a shadow model f̂ i to mimic the local model fi. Subsequently,
the adversary replaces fi by f̂i and executes the privacy breach
as in the white-box settings. In scenarios where the adversary
is allowed to probe passive participants, previous research [7]
showed that a direct inversion model g′ can be used to recover
input features xn,k from intermediate activations zn,k. The
highlight of these techniques are reported in Table I.

TABLE I: Characteristics of Data Reconstruction Attacks on
Neural Networks in VFL. Aux. data, Bin. feat. and Data Dist.
abbreviates for the needs of knowledge on auxiliary data,
binary features and data distribution.

Attack Setting Type Aux. Req.
CAFE [9] White-box Passive –

White-Box MI [7], [8], [18] White-box Passive –
BFI [10] Black-box Passive Bin. feat.

Black-Box MI [7] Black-box Passive Aux. data
AIN (Ours) Black-box Active Aux. data
AGN (Ours) Black-box Active Data Dist.

III. ACTIVE THREAT MODELS

Previous research mainly focused on situations where the
attacker breaches privacy while still following the learning
protocol. It is commonly known as the honest-but-curious
or semi-honest threat model. Nevertheless, that consideration
fails to fully capture the potential vulnerability of VFL since
the participants can deviate from the protocol to achieve
stronger privacy attacks [11]–[13]. On the other hand, the
focus of this work is on the training of neural networks in VFL.
We investigate the concerns related to an active participant
that may modify the training gradients. We later show that,
by altering the gradients, the malicious active participant can
exploit other participants into training models that can effec-
tively infer the private features owned by those participants
and, therefore, enhance the attack’s capability compared to the
passive cases. Furthermore, this work considers the black-box
setting in which the attacker does not know the local models of
passive participants. We choose to study the black-box settings
to demonstrate better the gain that the active attackers have
over those in the passive settings.

Notations. We study the VFL scenario in which K+1 users
collaboratively train a neural network for the classification
task. We denote the training dataset by D = {(xn, yn)}Nn=1,
with n representing the sample index. This dataset is parti-
tioned and stored without sharing among K + 1 participants:
a sample xn ∈ D is be divided into [xn,0, · · · , xn,K+1], where
xn,k is the k-th partition of the n-th sample.

The model under consideration is a global neural network,
as depicted in Fig. 1a. Since only the active participant
possesses the label, it manages the aggregation of interme-
diate activations zn,k transmitted from passive participants
k, k ∈ {1, · · · ,K + 1}. We write the intermediate activations
as zn,k = fk(xn,k), where fk denotes the encoder of the
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(a) Normal VFL (b) Adversarial Decoder (c) Adversarial GAN

Figure 1: Illustrations of VFL in normal operation and under our proposed methods. The components controlled by the active
participant are highlighted in colors. Solid arrows represent the forwarding direction, while dashed arrows indicate the back-
propagation direction. In Adversarial GAN, green and red denote two distinct training phases of the attacker.

participant k. Additionally, by denoting the aggregation model
as g, the final output of the global neural network in a
forwarding computation is given by:

ŷn = g ([f0(xn,0), · · · , fK+1(xn,K+1)]) (1)

During normal VFL training iteration, the loss function on
the data D is computed:

L(Θ;D) =
1

N

N∑
n=1

l (Θ;xn, yn) + λ

K∑
k=0

γ(Θ) (2)

where Θ, l, γ and λ are the trainable parameters, the loss
function, the regularizer, and the controlling hyper-parameter
for the strength of the regularization, respectively. The active
participant then updates the weights and biases of its encoder
f0 and the aggregation model g, referred by Θ0 and Θg , using
the gradients ∇Θ0

L(Θ;D) and ∇Θg
L(Θ;D), respectively.

When the context is clear, we use ∇Θ0L and ∇ΘgL for
brevity. After that, the active participant transmits ∇Θk

L to
the passive participant k to allow the local update of Θk.

Active attacks’ settings. In an active attack, the active
participant computes and transmits the tampered gradients
to other participants to manipulate their models’ update. For
instance, our proposed methods exploit an auto-encoder recon-
struction loss LAE and a generative loss LGAN instead of the
normal loss to compute the gradients as illustrated in Fig. 1b
and 1c. It is noteworthy to point out that active adversaries
further have the capability to adjust the later layers of the
global models to enhance privacy inference. Since the passive
participants have no knowledge of the encoder f0 and the later
layers owned by the adversary, there is no trivial way for them
to detect if the gradients have been tampered with.

We examine two attacking scenarios. The first is when the
adversary knows some samples of the training data called the
auxiliary data DAUX ⊂ D. The assumption implies that the
attacker knows xn,k∀k in the auxiliary data, but only knows
xn,0 for xn in D \ DAUX. This scenario captures a situation
in which the adversary engages in a collaborative VFL model
training with local data owners who exclusively possess data
for some specific features. However, the active participant
may know those features for some samples used in the VFL

training. A practical example is when a central hospital (the
active participant) collaborates with a specialized healthcare
center (the passive participant). The model’s inputs consist
of patient records, including features that are only known by
the specialized healthcare center. The attack applies when the
central hospital knows those features for some records used
for the training.

The second setting investigate the scenarios that the adver-
sary only knows the training data distribution, i.e., |DAUX| = 0.
This threat model describes the situations when the active
participant owns a massive amount of data to cover the features
distribution [19] or when the data can easily be sampled by the
adversary. For example, it can depict the example mentioned
in the previous setting when the central hospital has a big
database of records with all features. As long as the training
data comes from the same distribution, the methods introduced
in this setting can be executed by that central hospital.

IV. ACTIVE DATA RECONSTRUCTION ATTACKS

We now discuss our black-box data reconstruction attacks.
Our methods leverage an under-exploited capability of the
active participants in VFL, which is its control over the gradi-
ents transmitted toward the passive participants. As outlined in
the threat models, each of our attacks operates with minimal
assumptions about the private training data. A fundamental
distinction in our active adversaries, as opposed to prior
passive approaches, lies in the engagement of the passive local
models. Unlike passive methods that take the local models as
fixed, our approach involves the exploitation on their gradients
to breach privacy.

A. Active Inversion Network

Our first attack consists of an Active Inversion Network
(AIN) that can recover the private features from the inter-
mediate activations. The model is denoted by the h function
in Fig. 1b. By tampering the returned gradients, the active
attacker forces the passive participants into the joint training
of the AIN. Particularly, the adversary uses a set of auxiliary
data that is known prior to the training and a reconstruction
loss, e.g., Mean-Squared-Error (MSE) loss, to calculate the
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tampered gradients and transmit them to the passive users.
When the passive users update their local parameters using
that gradients, their local models are actually trained for the
adversarial reconstruction task. Consequently, the intermediate
signals zn,k resulting from those models after the adversarial
training can be used to reconstruct the private input features.

Training of AIN. Upon receiving the intermediate acti-
vations z from passive participants during the training, the
AIN adversary executes three activities: filtering the data for
computing of the adversarial loss, updating its weights and
biases, and transmitting the tampered gradients to the passive
participants. These activities enforce the training loss of the
inverse network h to be the reconstruction MSE loss:

LAE(X̂,X) =
1

|X|

|X|∑
n=1

∥x̂n − xn∥2 (3)

where X and X̂ are the set of inputs that are in both the
auxiliary data and the training batch, and the output of h on
the intermediate activations, respectively. As such, the AIN
training can be described by the following optimizations:

Active user: arg min
Θ0,h

LAE(X̂,X) (4)

Passive user k: argmin
Θk

LAE(X̂,X) (5)

Data reconstruction. When the training of the AIN h
converges, the active participant can reconstruct any private
input data from its intermediate activations: xn ≈ h(zn).

B. Active Generative Network

Our second approach, consisting of an Active Generative
Network (AGN), is designed for cases when the adversary
does not have access to the auxiliary data. AGN is based on the
idea of Generative Adversarial Networks (GAN) [20] which
consists of a generator and a discriminator. The generator is
responsible for generating new data samples that mimic those
in the distribution while the discriminator tries to differentiate
between the real data and the fake samples, i.e., the samples
generated by the generator. As the output of the GAN’s
generator is typically originated from random noise, it is
not designed for reconstruction/inference tasks. To tackle this
issue, AGN exploits the information that the active participant
knows about the target sample, i.e., xn,0 and potentially yn to
encourage the generator to return xn instead of an arbitrary
data point from the true distribution. From this aspect, AGN
shares some similarities with the Conditional GAN [21], which
is a modified GAN to condition the data generation on side-
channel information.

Training of AGN. During one VFL training iteration, the
AGN adversary conducts 4 main activities. The first activity
generates the data batch to train the discriminator. As the true
distribution is known, the real data labeled as 1 is drawn from
that distribution while the fake data labeled as 0 is created
using the intermediate activations. Note that, to incorporate
the information that the adversary has on the sample, xn,0 is
additionally feed to the GAN generator. The second activity

involves updating the discriminator, following the conventional
GAN training protocol. Specifically, the discriminator under-
goes an update using the Binary Cross-Entropy (BCE) loss:

LBCE(Y, 1) =
1

|X|
∑
n

log(yn) (6)

LBCE(Y, 0) =
1

|X|
∑
n

log(1− yn) (7)

The third activity involves updating the generator. Unlike
the discriminator, which is trained to identify the generated
data using the loss LBCE(D(Xfake), 0), the generator is
encouraged to produce data from the true distribution using
the loss LBCE(D(Xfake), 1).

Similar to AIN, the final activity of AGN is the transmis-
sion of tampered gradients ∇zn,k

LBCE(D(Xfake), 1) to the
passive participants. The activity coerces other users into the
generator’s training.

Data reconstruction. During inference, the adversary uses
the generator and calculates the reconstructed signal as:

x̂n = G([zn,0, · · · , zn,K+1]), x̂n,0 = xn,0

where zn,0, · · · , zn,K+1 are the intermediate activation re-
ceived by the active participant. Since the generator is designed
to generate an x̂n that is similar to the training data and its
partition x̂n,0 matches that of the original sample xn, the
generator is able to recover x̂ ≈ x since it also helps defeat
the discriminator during GAN training. The intuition is that,
the more xn,0 are known, the higher the likelihood that x̂n

will resemble xn. We provide an experiment to demonstrate
this intuition in Section V (see Table II).

The advantage of AGN lies in its independence from any
private features used during training. Given the rapid increase
of real-world public data, the assumption that the active adver-
sary has access to or can easily sample data from the training
distribution is becoming more plausible. Consequently, the
AGN attack effectively emphasizes real-world privacy threats.

Figure 2: Examples of reconstructed data from the MNIST
dataset. Our methods are emphasized in bold text. The labels
1K and 2K denote the size of the auxiliary dataset.

V. EXPERIMENTS

This section provides experiments demonstrating the effec-
tiveness of our proposed methods in reconstructing private
real-world data and illustrates the potential privacy threat
that an active attack can achieve by deviating from the VFL
protocol.
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Figure 3: PSNR(dB) for the reconstructed data in the image dataset and the accuracy of the reconstructed features in the tabular
dataset. As AGN does not necessitate auxiliary data DAUX, its results are reported in a straight line for easy comparison.

TABLE II: The accuracy and PSNR of the AGN attack on the USCensus dataset with varying numbers of known features.

No. known features 50/68 46/68 38/68 30/68 22/68 14/68
Accuracy 99.73± 0.10 99.36± 0.06 99.28± 0.24 98.69± 0.40 97.65± 0.55 95.90± 0.34
PSNR(dB) 52.55± 3.05 44.18± 0.70 43.52± 2.51 38.20± 2.31 33.00± 1.93 27.98± 0.65

A. Experimental settings

Our evaluations are conducted on MNIST [14] and USCen-
sus [15] datasets. The MNIST dataset is widely used in vision
tasks, while USCensus consists of a one percent sample with
68 features from Public Use Microdata Samples records.

Simulations of the passive participants. In practical sce-
narios, the model’s architectures for the passive users are
selected according to the specific applications. In our exper-
iments, we opt for common neural network architectures tai-
lored to the respective datasets. Specifically, we employ Multi-
layer Perceptron/Fully-connected layers (MLP) for the tabular
dataset and Convolutional layers (Conv.) for the image dataset.
The hyper-parameters of the examined models are set based on
the typical tasks associated with the data: image classifications
for MNIST [22], and data clustering for USCensus.

Configurations of the attackers. As the components of
the active participant are controlled by the attacker, they have
the flexibility to choose architectures that enhance the recon-
struction of signals. For our AIN attack on the image dataset,
we explore two architectures: MLP AIN and Conv. AIN,
where the decoders employ Multi-layer Perceptron (MLP) and
Convolutional layers, respectively. For all other results, MLPs
are employed.

Benchmark. While no existing work specifically addresses
active data reconstruction attacks in VFL, black-box inference
attacks are also limited (Table I). Consequently, we benchmark
our method against the black-box MI method [7], referred
by benchmark in our reports. Our methods differ from the
benchmark in two key aspects. Firstly, our methods operate
during the training phase of VFL, while the benchmark is
conducted during the inference phase. Secondly, for the same
reason, the benchmark does not involve the choice of the
neural network’s architecture. The architecture used for the
benchmark follows the configuration outlined in the original
paper, which is MLP.

B. Experimental Results

General performance. The results of data reconstruction
attacks on MNIST are shown in Fig. 2. The first row displays
the target of inference taken from the test set, while the
subsequent rows showcase the reconstructed samples obtained
by different attacks. In our two-participant system, consisting
of one active and one passive participant, each participant
possesses half of the image samples. Specifically, the active
attacker in the experiments has the bottom half of the images
and its objective is to reconstruct the top hafts. Conse-
quently, the computed Peak Signal-to-Noise Ratios (PSNRs)
are reported solely for the top half. Nevertheless, the figures
presented depict the entire reconstructed images for a more
comprehensive and intuitive visualization.

The results of our attacks are referred to in bold text in
the figure. The results demonstrate that our adversaries can
reconstruct the input samples with high quality. Notably, with
an equivalent quantity of auxiliary data, our AIN attacks sur-
pass the benchmark by a significant margin. These examples
clearly illustrate the advantage of active adversaries over their
passive counterparts.

Impact of the size of auxiliary data. Fig. 3 reports
more comprehensive assessments of the methods when the
sizes of the auxiliary data vary. It can be observed from
the experimental results on MNIST that, by optimizing the
architecture of the later layers in VFL training, the attacker
can substantially enhance the attack.

In the case of tabular data from USCensus, the objective of
the attacks is to reconstruct 34 out of 68 private features in the
training samples. AGN consistently achieves approximately
99% accuracy in inference, whereas the AIN approach requires
approximately 3000 samples to achieve a similar PSNR. As
the passive counterparts for tabular data are not yet available,
the passive benchmark is not included. Nevertheless, the
results demonstrate that our active attacks exhibit competitive
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performance, not just in the context of image data but also in
the case of tabular data.

Impact of the number of known features in AGN.
Intuitively, the more features xn,0 that the adversary possesses,
the more straightforward for it to recover the remaining private
features. The intuition is illustrated in Table II presenting
the accuracy and PSNRs of our generative approach AGN in
the USCensus dataset. Notably, even when there are only 14
features in xn,0, our AGN attack can reconstruct the other 54
private features with an accuracy of nearly 96%. This result
suggests that merely limiting the number of features accessed
by active adversaries may not serve as an effective defense
against this kind of attack.

A significant observation is that even with only 14 known
features, our AGN attack can infer the remaining 54 features
with nearly 96% accuracy. This implies that simply restricting
the number of features known to the attacker might not be an
effective defense against active attacks.

VI. CONCLUSION

This paper examines the feasibility of inferring sensitive
private data used for the training of VFL. We have discovered
that the VFL active user can diverge from the protocol and
successfully recover the local data of passive users by tam-
pering with the training gradients. Specifically, we introduce
two data reconstruction attacks exploiting the information
about either a limited training dataset or the overall data
distribution, showcasing their strong inference capability in
practical situations. Our research emphasizes the necessity of
preserving data privacy throughout the VFL training process.
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