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Preserving Privacy and Security in
Federated Learning
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Abstract— Federated learning is known to be vulnerable to
both security and privacy issues. Existing research has focused
either on preventing poisoning attacks from users or on con-
cealing the local model updates from the server, but not both.
However, integrating these two lines of research remains a
crucial challenge since they often conflict with one another with
respect to the threat model. In this work, we develop a principle
framework that offers both privacy guarantees for users and
detection against poisoning attacks from them. With a new
threat model that includes both an honest-but-curious server and
malicious users, we first propose a secure aggregation protocol
using homomorphic encryption for the server to combine local
model updates in a private manner. Then, a zero-knowledge proof
protocol is leveraged to shift the task of detecting attacks in the
local models from the server to the users. The key observation
here is that the server no longer needs access to the local
models for attack detection. Therefore, our framework enables
the central server to identify poisoned model updates without
violating the privacy guarantees of secure aggregation.

Index Terms— Federated learning, zero-knowledge proof,
homomorphic encryption, model poisoning.

I. INTRODUCTION

F
EDERATED learning is an engaging framework for

large-scale distributed training of deep learning models

with thousands to millions of users. In every round, a central

server distributes the current global model to a random subset

of users. Each of the users trains locally and submits a model

update to the server. Then, the server averages the updates

into a new global model. Federated learning has inspired many

applications in many domains, especially training image clas-

sifiers and next-word predictors on users’ smartphones [19].

To exploit a wide range of training data while maintaining

users’ privacy, federated learning by design has no visibility

into users’ local data and training.

Despite the great potential of federated learning in

large-scale distributed training with thousands to millions of

users, the current system is still vulnerable to certain privacy

and security risks. First, although the training data of each user
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is not disclosed to the server, the model update is. This poses a

privacy threat, as it is suggested that a trained neural network’s

parameters enable a reconstruction and/or inference of the

original training data [1], [16], [29]. Second, federated learn-

ing is generally vulnerable to model poisoning attacks that

leverage the fact that federated learning enables adversarial

users to directly influence the global model, thereby allowing

considerably more powerful attacks [3]. Recent research on

federated learning focuses on either improving the privacy of

model updates [2], [8], [39] or preventing certain poisoning

attacks from malicious users [3], [37], [38], but not both.

To preserve user privacy, secure aggregation protocols have

been introduced into federated learning to devise a training

framework that protects the local model updates [2], [8], [39].

These protocols enable the server to privately combine the

local models in order to update the global model without

learning any information about each individual local model.

Specifically, the server can compute the sum of the parameters

of the local models while not having access to the local models

themselves. As a result, the local model updates are concealed

from the server, thereby preventing the server from exploiting

the updates of any user to infer their private training data.

On the other hand, previous studies also unveil a vul-

nerability of federated learning when it comes to certain

adversarial attacks from malicious users, especially poisoning

attacks [3], [37]. This vulnerability leverages the fact that

federated learning gives users the freedom to train their local

models. Specifically, any user can train in any way that

benefits the attack, such as arbitrarily modifying the weights

of their local models. To prevent such attacks, a conventional

approach is to have the central server run some defense

mechanisms to inspect each of the model updates, such as

using anomaly detection algorithms to filter out the poisoned

ones [3].

However, combining these two lines of research on privacy

and security is not trivial since they contradict one another.

In particular, by allowing the server to inspect local model

updates from users to filter out the attacked ones, it violates the

security model of secure aggregation. In fact, under a secure

aggregation setting, the server should not be able to learn

any information about individual model updates. Therefore,

with secure aggregation, the server cannot run any defense

mechanism directly on each model update to deduce whether it

is attack-free or not. For that reason, existing FL systems with

secure aggregation prevent the server from detecting poisoned

local models.
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To tackle this issue, in this paper, we propose a framework

that integrates secure aggregation with defense mechanisms

against poisoning attacks from users. To circumvent the afore-

mentioned problem, we shift the task of running the defense

mechanism onto the users, and then each user is given the

ability to attest the execution of the defense mechanism with

respect to their model update. Simply speaking, the users are

the ones who run the defense mechanism, then they have to

prove to the server that the mechanism was executed correctly.

To achieve this, the framework leverages a zero-knowledge

proof (ZKP) protocol that the users can use to prove the

correctness of the execution of a defense mechanism. The

ZKP protocol must also make it difficult to generate a valid

proof if the defense mechanism was not run correctly, and the

proof must not reveal any information about the local model

update in order the retain the privacy guarantee of secure

aggregation. Via our ZKP protocol, the server can verify if

a defense mechanism was properly executed by the users.

To demonstrate the feasibility of the framework, we use

the backdoor attack as a use case in which we construct a

ZKP protocol for a specific backdoor defense mechanism [25].

Furthermore, we also propose a secure aggregation protocol in

federated learning to address the limitations of previous work.

Specifically, we show that our proposed aggregation protocol

is robust against malicious users in a way that it can still

maintain privacy and liveness despite the fact that some users

may not follow the protocol honestly. Our framework can then

combine both the ZKP and the secure aggregation protocols

to tackle the above-mentioned privacy and security risks in

federated learning.

A. Contributions

Our main contributions are as follows:

• We establish a framework integrating both the secure

aggregation protocol and defense mechanisms against

poisoning attacks without violating any privacy

guarantees.

• We propose a new secure aggregation protocol using

homomorphic encryption for federated learning that can

tolerate malicious users and a semi-honest server while

maintaining both privacy and liveness.

• We construct a ZKP protocol for a backdoor defense to

demonstrate the feasibility of our framework.

• Finally, we analyze the computation and communication

cost of the framework and provide some benchmarks

regarding its performance.

B. Organization

The rest of the paper is structured as follows. Section II pro-

vides the system and security models. The main framework for

combining both the secure aggregation protocol and defense

mechanisms against poisoning attacks is shown in Section III.

Section IV presents our proposed secure aggregation protocol

for federated learning. Section V gives the ZKP protocol for a

backdoor defense mechanism. We evaluate the complexity and

benchmark our solution in Section VI. We discuss some related

work in Section VII and provide some concluding remarks in

Section VIII.

II. SYSTEM AND SECURITY MODEL

Current systems proposed to address either the poisoning

attacks from users or the privacy of model updates are

designed using security models that conflict with each other.

In fact, when preserving the privacy of model updates, the

central server and the users are all considered as honest-but-

curious (or semi-honest). However, when defending against

poisoning attacks from users, the server is considered honest

while the users are malicious.

Due to that conflict, this section establishes a more general

security model combining the ones proposed in previous work

on the security and privacy of federated learning. From the

security model, we also define some design goals.

A. System Model

We define two entities in our protocol:

1) A set of n users U : Each user has a local training dataset,

computes a model update based on this dataset, and

collaborates with each other to securely aggregate the

model updates.

2) A single server S: Receives the aggregated model

updates from the users and computes a global model

that can later be downloaded by the users.

We denote the model update of each user u ∈ U as an

input vector xu of dimension m. For simplicity, all values

in both xu and
∑

u∈U xu are assumed to be integers in the

range [0, N) for some known N . The protocol is correct if

S can learn x̄ =
∑

u∈U ′ xu for some subset of users U ′ ¦
U . We assume a federated learning process that follows the

FedAvg framework [27] which uses a horizontal setting for

FL. We denote U ′ as a random subset of U (the server selects

a random subset of users for each training round).

In addition to securely computing x̄, each user u ∈ U
computes a zero-knowledge proof πu proving that xu is a clean

model and not leaking any information about xu. This proof

πu is then sent to and validated by the server S. The server

then verifies that {πu}u∈U is consistent with the obtained x̄.

B. Security Model

1) Threat Model: We take into account a computationally

bounded adversary that can corrupt the server or a subset

of users in the following manners. The server is considered

honest-but-curious in a way that it behaves honestly according

to the training protocol of federated learning but also attempts

to learn as much as possible from the data received from the

users. The server can also collude with corrupted users in U
to learn the inputs of the remaining users. Moreover, some

users try to inject unclean model updates to poison the global

model and they can also arbitrarily deviate from the protocol.

As regards the security of the key generation and dis-

tribution processes, there has been extensive research in

constructing multi-party computation (MPC) protocols where

a public key is computed collectively and every user computes

private keys [11], [13], [30]. Such a protocol can be used

in this architecture to securely generate necessary keys for

the users and the server. Hence, this paper does not focus
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Fig. 1. Secure framework for FL. Each user u ∈ U trains a local model xu that is used as an input to (1) User aggregation and (2) ZKP of attack-free

model. The User aggregation component returns c̄ = Epk(
∑

u∈U′ xu) which is the encryption of the sum over the local models of honest users. The ZKP

of attack-free model component returns the proof πu and the commitment C(xu) for each xu. The outputs of these two component are then used by the
central server as inputs to the Computing global model component. This component validates {πu}u∈U , obtains the global model x̄ from c̄, checks if C(x̄)
is consistent with {C(xu)}u∈U , and then returns x̄.

on securing the key generation and distribution processes but

instead assumes that the keys are created securely and honest

users’ keys are not leaked to others.

2) Design Goals: Besides the security aspects, our design

also aims to address unique challenges in federated learning,

including operating on high-dimensional vectors and users

dropping out. With respect to the threat model, we summarize

the design goals as follows:

1) The server learns nothing except what can be inferred

from x̄.

2) Each user does not learn anything about the others’

inputs.

3) The server can verify that x̄ is the sum of clean models.

4) The protocol operates efficiently on high-dimensional

vectors

5) Robust to users dropping out.

6) Maintain undisrupted service (i.e., liveness) in case a

small subset of users deviate from the protocol.

III. SECURE FRAMEWORK FOR FEDERATED LEARNING

To address the new security model proposed in Section II,

we propose a framework to integrate secure aggregation with

defenses against poisoning attacks in a way that they can

maintain their respective security and privacy properties. Our

framework is designed to ensure the privacy of users’ local

model while preventing certain attacks from users. As shown

in Fig. 1, our framework consists of three components:

(1) users aggregation, (2) zero-knowledge proof of attack-

free model, and (3) computing global model. We discuss the

properties of each component as follows.

A. Users Aggregation

This component securely computes the sum of local models

from the users. First, each user u ∈ U trains a local model

update xu and uses it as input to this component. Then,

the component outputs c̄ = Epk(
∑

u∈U ′ xu) which is an

encryption over the sum of the model updates of all honest

users U ′ ¦ U . Epk(·) denotes a viable additive homomorphic

encryption scheme, and we require that it must have the

property of indistinguishability under chosen plaintext attack

(IND-CPA). The encryption function will be discussed in

detail in Section IV.

Fig. 2. User aggregation component.

Furthermore, this aggregation must maintain the privacy

with respect to each local model xu, particularly, we should

be able to simulate the output of each user by a Probabilistic

Polynomial Time (PPT) simulator. We specify the security

properties of the Users aggregation component in Fig. 2.

B. Zero-Knowledge Proof of Attack-Free Model

This component generates a zero-knowledge proof proving

the local model is free from a certain poisoning attack.

In specific, we first assume the existence of a function that

verifies an attack-free model as follows:

R(x) =

{

C(x) if x is attack-free

§ otherwise
(1)

where x is a local model, C(x) is the commitment of x. Next,

the component implements a zero-knowledge proof protocol

for the users to attest the correct execution of R(x) without

revealing x. Note that the ZKP itself is not a defense mecha-

nism, but it is a means to verify that the users have executed

the function R(·) on their side. Hence, the effectiveness of
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Fig. 3. Zero-knowledge proof component.

this component in preventing poisoning attacks depends on the

performance of the defense R(·). A specific implementation

of this component for defending against backdoor attacks is

shown in Section V. The properties of this component are

shown in Fig. 3.

The prover algorithm P is run by the users, while the verifier

algorithm V is run by the server S.

C. Computing Global Model

This component takes as input the output of the other two

components and produces the corresponding global model.

Hence, it serves to combine two previous components and it

is run solely by the server. Specifically, it needs to be able

to decrypt c̄ from the first component and to validate the

zero-knowledge proofs {πu}u∈U ′ from the second component.

Then, it outputs the sum of the model updates from the honest

users. We define this component in Fig. 4.

From the third component, we can prove that this framework

preserves the privacy of users’ model updates given that all

the components satisfy their properties. Let Adv be a random

variable representing the joint views of all parties that are

corrupted by the adversary according to the threat model.

We show that it is possible to simulate the combined view of

any subset of honest-but-curious parties given only the inputs

of those parties and the global model x̄. This means that those

parties do not learn anything other than their own inputs and x̄.

Theorem 1: There exists a PPT simulator S such that for

Adv ¦ U∪S, the output of the simulator S is computationally

indistinguishable from the output of Adv

Proof: Refer to Appendix A. □

IV. SECURE AGGREGATION IN FEDERATED LEARNING

In this section, we describe a secure aggregation scheme that

realizes the User aggregation component of our framework.

Fig. 4. Computing global model component.

Although some secure aggregation schemes have been pro-

posed for federated learning, they are not secure against

our threat model in Section II. Particularly, the aggregation

schemes in [2] and [39] assume no collusion between the

server and a subset of users. The work of Bonawitz et al. [8]

fails to reconstruct the global model if one malicious user

arbitrarily deviates from the secret sharing protocol. A detailed

discussion of these related work is provided in Section VII.

The main challenge here is that we want to provide robust-

ness in spite of malicious users, i.e., the protocol should be

able to tolerate users that do not behave according to the

protocol and produce correct results based on honest users.

Moreover, we need to minimize the users’ communication

overhead when applying this scheme.

A. Cryptographic Primitives

1) Damgard-Jurik and Paillier Cryptosystems [10], [31]:

Given pk = (n, g) where n is the public modulus and

g ∈ Z
∗
ns+1 is the base, the Damgard-Jurik encryption of

a message m ∈ Zns is Epk(m) = gmrns

mod ns+1 for

some random r ∈ Z
∗
n and a positive natural number s. The

Damgard-Jurik cryptosystem is additively homomorphic such

that Epk(m1)·Epk(m2) = Epk(m1+m2). This cryptosystem is

semantically secure (i.e., IND-CPA) based on the assumption

that computing n-th residue classes is believed to be compu-

tationally difficult. The Paillier’s scheme is a special case of

Damgard-Jurik with s = 1.

In the threshold variant of these cryptosystems [10], several

shares of the secret key are distributed to some decryption

parties, such that any subset of at least t of them can per-

form decryption efficiently, while less than t cannot decrypt

the ciphertext. Given a ciphertext, each party can obtain a

partial decryption. When t partial decryptions are available,

the original plaintext can be obtained via a Share combining

algorithm.

2) Pedersen Commitment [32]: A general commitment

scheme includes an algorithm C that takes as inputs a

secret message m and a random r, and outputs the commit-

ment commit to the message m, i.e., commit = C(m, r).
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A commitment scheme has two important properties:

(1) commit does not reveal anything about m (i.e., hiding),

and (2) it is infeasible to find (m′, r′) ̸= (m, r) such

that C(m′, r′) = C(m, r) (i.e., binding). Pedersen commit-

ment [32] is a realization of such scheme and it is also

additively homomorphic such that C(m, r) · C(m′, r′) =
C(m + m′, r + r′)

B. Secure Aggregation Protocol

Our secure aggregation scheme relies on additive homomor-

phic encryption schemes, that is Epk(m1 + m2) = Epk(m1) ·
Epk(m2). In this work, we use the Daamgard-Jurik public-

key cryptosystem [10] which is both IND-CPA secure and

additively homomorphic. The cryptosystem supports threshold

encryption and operates on the set Z
∗
n.

We also assume that the communication channel between

each pair of users is secured with end-to-end encryption, such

that an external observer cannot eavesdrop the data being

transmitted between the users. The secure communication

channel between any pair of users can be mediated by the

server.

In the one-time setup phase, the secret shares {su}u∈U

of the private key sk are distributed among n users in U
via the threshold encryption scheme. The scheme requires

a subset Ut ¢ U of at least t users to perform decryption

with sk. This process of key distribution can be done via a

trusted dealer or via an MPC protocol. After that, each secure

aggregation process is divided into 2 phases: (1) Encryption

and (2) Decryption.

1) Encryption Phase: To securely compute the sum x̄ =
∑

u∈U xu, each user u ∈ U first computes the encryption

cu = Epk(xu) and then send cu to the server. The server

then computes the product of all {cu}u∈U , denoting as c̄:

c̄ =
∏

u∈U

cu mod ns+1 =
∏

u∈U

Epk(xu) mod ns+1

= Epk

(

∑

u∈U

xu mod ns+1

)

(2)

Additionally, per IND-CPA, knowing the ciphertext cu

implies nothing about the plaintext xu for u ∈ U . As each

user only sends out cu, neither the server S nor other entities

U \ {u} with access to cu can infer any information about

xu. This satisfies the security properties that are specified in

Fig. 2.

2) Decryption Phase: Suppose that up to this phase, some

amount of less than N − t users dropout, that means we still

have the subset Ut ¢ U of at least t users remaining to perform

decryption.

First, the server sends c̄ to all users in Ut. Each user u ∈ Ut

computes c′u = c̄2su∆ where ∆ = t!, and then sends c′u back

to the server. The server then applies the Share combining

algorithm in [10] to compute x̄ =
∑

u∈U xu from {c′u}u∈Ut
.

As a result, the server can securely obtain x̄ without knowing

each individual xu.

3) User Drop-Outs: Furthermore, by design, it can be seen

from this protocol that we can tolerate up to N − t users

dropping out and the server is still able to construct the global

model of all users. In other words, as long as there are at

least t users remaining, it will not affect the outcome of the

protocol. Therefore, our protocol is robust to user drop-outs

up to N − t.

4) Security Against Active Adversary: We analyze the secu-

rity in the active adversary model. First, the protocol is secure

in spite of collusion between the server and a subset of users

in a way that allows the server to decrypt some cu to obtain the

corresponding xu. By using the threshold encryption, as long

as there is at least one honest user in Ut, the server will not be

able to learn xu of any user. Hence, the protocol can tolerate

up to t− 1 malicious users, with t < |U|.
Second, in the encryption phase, if a user deviates from the

protocol, e.g., by computing cu as a random string or using

a different key other than pk, the server will not be able to

decrypt c̄. To tolerate this behavior, the server can iteratively

drop each cu from c̄ until it obtains a decryptable value.

In the decryption phase, if a user u∗ does not cooperate to

provide c′u∗ , then the server will not have all the necessary

information to perform decryption. However, if we still have

at least t honest users (not counting u∗), we can eliminate u∗

from Ut and add another user to Ut, hence, the server can still

perform decryption.

In summary, our secure aggregation protocol can tolerate

t− 1 malicious users and be robust against |U|− t users drop-

ping out (where t < |U|). Therefore, t should be determined

by calibrating the trade-off between the usability (small t) and

security (large t).

C. Efficient Encryption of xu

We discuss two methods for reducing the ciphertext size

when encrypting xu. Since xu is a vector of dimension m,

naively encrypting every element of xu using either the Paillier

or Damgard-Jurik cryptosystems will result in a huge cipher-

text with the expansion factor of 2 log n (i.e., the ratio between

the size of cu and of xu). Below, we present (1) a polynomial

packing method and (2) a hybrid encryption method that

includes a key encapsulation mechanism (KEM) and a data

encapsulation mechanism (DEM).

1) Polynomial Packing: We can reduce the expansion factor

by packing xu into polynomials as follows. Suppose xu ≡

(x
(1)
u , x

(2)
u , . . . , x

(m)
u ), we transform this into:

x′
u = x(1)

u + x(2)
u · 2

b + x(3)
u · 2

2b . . . + x(m)
u · 2(m−1)b (3)

where b = +log N,. Hence, x′
u becomes a mb-bit number.

Then, to encrypt xu, we simply run the Damgard-Jurik

encryption on x′
u. Specifically, we obtain the ciphertext cu =

E(x′
u). This cu will have (+ mb

log n
,+1) log n bits. The expansion

factor can be calculated as:

lim
m→∞

(+ mb
log n
,+ 1) log n

mb
= 1 (4)

Therefore, as m increases, i.e., larger models, the expansion

factor approaches 1, thereby implying minimal overhead. Note

that since we are packing into polynomials, the additive

homomorphic property of the ciphertexts is retained.

Additionally, if we use this polynomial packing scheme with

the Paillier encryption, it would result in an expansion factor

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore.  Restrictions apply. 



838 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

of 2 as Paillier requires the plaintext size to be smaller than

the key size. To keep the expansion factor of 1 when using

Paillier, we introduce a KEM-DEM scheme as follows.

2) Hybrid Encryption (KEM-DEM Technique): In [9], the

authors propose a KEM-DEM approach to compress the

ciphertext of Fully Homomorphic Encryption (FHE). With

FHE, they can use blockciphers to generate the keystreams.

However, since our work only deals with Partially HE (PHE)

like Paillier, we cannot use blockciphers, hence, we need to

propose a different approach to generate the keystream with

only PHE.

The general idea of our protocol is as follows. Suppose a

user wants to send Epk(x) to the server (for simplicity, we use

the notation x instead of xu). Instead of sending c = Epk(x)
directly, the user chooses a secret random symmetric key k

that has the same size as an element in x and computes

c′ = (Epk(k), SEk(x)) where SEk(x) = x−k, which means

subtracting k from every element in x. c′ is then sent to the

server. When the server receives c′, it can obtain c = Epk(x)
by computing Epk(k)× Epk(SEk(x)) = Epk(x) = c.

The correctness of this scheme holds because the server can

obtain Epk(x) from the user. The security also holds because

the server does not know the key k chosen by the user, hence,

it cannot know x. However, this scheme is not semantically

secure, i.e., IND-CPA secure, because by defining SEk(x) =
x−k, identical elements in x will result in the same ciphertext.

To resolve this, we use an IV (initialization vector) for the

encryption function. IV is a nonce which could be a random

number or a counter that is increased each time it is used.

Denote x = (x1, . . . , xm), · as a bitwise XOR operation,

on the user’s side:

1) Choose the secret l-bit random key k and a nonce IV.

2) compute the keystream ks: For i ∈ [1, m], compute

ksi = k × (IV · i) mod p where p is an l-bit number.

3) Compute SEk(x) = x−ks = (x1−ks1, . . . , xm−ksm)
4) Send (IV, Epk(k), SEk(x)) to the server

On the server’s side, receiving (IV, Epk(k), SEk(x)):

1) Compute the encrypted keystream Epk(ks): For i ∈
[1, m], compute Epk(k)IV ·i mod n2 = Epk(k× (IV ·
i)) = Epk(ksi)

2) Compute Epk(x) = Epk(SEk(x)) · Epk(ks) =
Epk(x1 − ks1 + ks1, . . . , xm − ksm + ksm) =
Epk(x1, . . . , xm)

Lemma 1: By picking k uniformly at random, and p as an

l-bit prime number, the DEM component (i.e., SEk(x)) is

IND-CPA secure.

Proof: To show that the DEM component is IND-CPA

secure, it is sufficient prove that k × (IV · i) mod p is

uniformly random with respect to k (Theorem 3.32 in [22]).

In fact, in Z
∗
p, by picking k uniformly at random, k × (IV ·

i) mod p is uniformly distributed if and only if neither k

nor (IV · i) shares prime factors with p. Hence, p should

be an l-bit prime number and k can be chosen randomly

from Z
∗
p. □

Since the KEM component (i.e., Epk(k)) is IND-CPA

secure by default using Paillier, and the DEM component is

Fig. 5. KEM-DEM for PHE. ⊕ denotes a bitwise XOR operation.

also IND-CPA secure as previously shown in Lemma 1, we can

derive the following theorem:

Theorem 2: The KEM-DEM scheme is IND-CPA secure.

Figure 5 illustrates this scheme. The bandwidth expansion

factor of this scheme can be computed as:

lim
m→∞

mb + 2 log n + c

mb
= 1 (5)

where c is the size of the IV. Therefore, this scheme also

achieves the expansion factor close to 1 as m grows, however,

it incurs some computational overhead as compared to the

polynomial packing scheme.

Although both the KEM-DEM scheme and polynomial

packing have the same asymptotic expansion factor (e.g., 1),

each has its own advantages and disadvantages. The polyno-

mial packing is simple and works out-of-the-box if we use the

Damgard-Jurik cryptosystem. This is because Damgard-Jurik

allows the plaintext size to be greater than the key size.

However, it will not work with conventional cryptosystems

like Paillier as they require the plaintext size to be smaller

than the key size. The KEM-DEM scheme would work for

all cryptosystems but it is more complex and incurs more

computational overhead than the polynomial packing scheme.

Since our protocol is using the Damgard-Jurik cryptosystem,

Section VI only evaluates the polynomial packing scheme.

V. USE CASE: ZKP FOR BACKDOOR DEFENSES

This section describes an implementation that realizes the

Zero-knowledge proof component of our framework. Using

the backdoor attack as a use case, we provide a ZKP protocol

that can detect backdoor attacks from users. Before that,

we establish some background regarding multi-party protocol

(MPC) and ZKP.

A. Preliminaries

1) Multi-Party Computation (MPC) Protocol: In a generic

MPC protocol, we have n players P1, . . . , Pn, each player

Pi holds a secret value xi and wants to compute y = f(x)
with x = (x1, . . . , xn) while keeping his input private. The

players jointly run an n-party MPC protocol Πf . The view

of the player Pi, denoted by V iewPi
(x), is defined as the

concatenation of the private input xi and all the messages

received by Pi during the execution of Πf . Two views are

consistent if the messages reported in V iewPj
(x) as incoming
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from Pi are consistent with the outgoing message implied by

V iewPj
(x) (i ̸= j). Furthermore, the protocol Πf is defined as

perfectly correct if there are n functions Πf,1, . . . ,Πf,n such

that y = Πf,i(V iewPi
(x)) for all i ∈ [n]. An MPC protocol

is designed to be t-private where 1 f t < n: the views of any

t-subset of the parties do not reveal anything more about the

private inputs of any other party.
2) Zero-Knowledge Proof (ZKP): Suppose that we have

a public function f , a secret input x and a public output

y. By using a ZKP protocol, a prover wants to prove that

it knows an x s.t. f(x) = y, without revealing what x

is. A ZKP protocol must have three properties as follows:

(1) if the statement f(x) = y is correct, the probability that

an honest verifier accepting the proof from an honest prover

is 1 (i.e., completeness), (2) if the statement is incorrect, with

a probability less than some small soundness error, an honest

verify can accept the proof from a dishonest prover showing

that the statement is correct (i.e., soundness), and (3) during

the execution of the ZKP protocol, the verifier cannot learn

anything other than the fact that the statement is correct (i.e.,

zero-knowledge).
3) Backdoor Attacks and Defenses: Backdoor attacks aim to

make the target model to produce a specific attacker-chosen

output label whenever it encounters a known trigger in the

input. At the same time, the backdoored model behaves

similarly to a clean model on normal inputs. In the context

of federated learning, any user can replace the global model

with another so that (1) the new model maintains a similar

accuracy on the federated-learning task, and (2) the attacker

has control over how the model behaves on a backdoor task

specified by the attacker [3].

To defend against backdoor attacks, Liu et al. [25] propose

a pruning defense that can disable backdoors by removing

backdoor neurons that are dormant for normal inputs. The

defense mechanism works in the following manner: for each

iteration, the defender executes the backdoored DNN on

samples from the testing dataset, and stores the activation

of each neuron per test sample. The defender then computes

the neurons’ average activations over all samples. Next, the

defender prunes the neuron having the lowest average acti-

vation and obtains the accuracy of the resulted DNN on

the testing dataset. The defense process terminates when the

accuracy drops below a predetermined threshold.

When implementing this pruning defense, to prune a neuron,

we simply set the weights and biases associated to that neuron

to zero. In this way, we can retain the structure of the local

models xu.

B. ZKP Protocol to Backdoor Detection

To inspect a local model for backdoors while keeping the

model private, we propose a non-interactive ZKP such that

each user u ∈ U can prove that xu is clean without leaking

any information about xu.

First, we devise an algorithm backdoor that checks for

backdoor in a given DNN model x as in Algorithm 1.

Theorem 3: backdoor(x) returns 1 ⇒ x is a non-

backdoored model

Proof: Refer to Appendix B. □

Algorithm 1 backdoor(x) – Check for Backdoors in

a DNN Model

Input: DNN model x, validation dataset

Output: 1 if x is backdoored, 0 otherwise

1 Test x against the validation dataset, and record the

average activation of each neuron;

2 k ← the neuron that has the minimum average

activation;

3 Prune k from x;

4 Test x against the validation dataset;

5 if accuracy drops by a threshold τ then

6 return 1

7 else

8 return 0

Given a model x, we define R(r, x) for some random r as

follows:

R(r, x) =

{

C(r, x) if backdoor(x) returns 1

§ otherwise
(6)

where C(r, x) is the commitment of x

Based on [21], we construct the ZKP protocol as follows.

Each user u ∈ U generates a zero-knowledge proof πu proving

xu is clean, i.e., R(ru, xu) = C(ru, xu). To produce the proof,

each user u runs Algorithm 2 to obtain πu. Note that Πf is a

3-party 2-private MPC protocol, which means a subset of any

2 views do not reveal anything about the input xu. Then, πu

and commitu = C(ru, xu) are sent to the server where they

will be validated as in Algorithm 3.

Finally, for the server to validate that the x̄ obtained from

secure aggregation is the sum of the models that were validated

by the ZKP protocol, it collects {ru}u∈U and verify that
∏

u∈U commitu = C
(
∑

u∈U ru, x̄
)

. This is derived from the

additive homomorphic property of the Pedersen commitment

scheme, where

∏

u∈U

commitu =
∏

u∈U

C(ru, xu) = C

(

∑

u∈U

ru,
∑

u∈U

xu

)

= C

(

∑

u∈U

ru, x̄

)

(7)

Theorem 4: The proposed zero-knowledge proof protocol

satisfies the completeness, zero-knowledge, and soundness

properties with soundness error 2
3

λ
where λ is a security

parameter.

Proof: Refer to Appendix C. □

VI. EVALUATION

In this section, we analyze the computation and communi-

cation cost of the proposed protocol on both the users and the

server. Then we implement a proof-of-concept and benchmark

the performance.

A. Performance Analysis

1) Users: For the communication cost, w.r.t the secure

aggregation, a user has to send out the encrypted model,

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore.  Restrictions apply. 



840 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Algorithm 2 Generate Zero-Knowledge Proof

Input: xu, λ ∈ N, a perfectly correct and 2-private

MPC Πf protocol among 3 players

Output: Proof πu

1 πu ← ∅;
2 for k = 1, . . . , λ do

3 Samples 3 random vectors x1, x2, x3 such that

xu = x1 + x2 + x3;

4 Consider an 3-input function

f(x1, x2, x3) = R(r, x1 + x2 + x3) and emulate

the protocol Πf on inputs x1, x2, x3. Obtain the

views vi = V iewPi
(x) for all i ∈ [3];

5 Computes the commitments

commit1, . . . , commit3 to each of the n

produced views v1, v2, v3;

6 For j ∈ {1, 2}, computes

ej = H(j, {commiti}i∈[3]);
7 πu ←

πu ∪
(

{ej}j∈{1,2}, {vej
}j∈{1,2}, {commiti}i∈[3]

)

8 return πu

Algorithm 3 Validate Zero-Knowledge Proof

Input: πu, commitu
Output: 1 if accept, 0 if reject

1 for pk ∈ πu do

2

(

{ej}j∈{1,2}, {vej
}j∈{1,2}, {commiti}i∈[3]

)

← pk;

3 if {commiti}i∈[3] is invalid then

4 return 0

5 if ej ̸= H(j, {commiti}i∈[3]) for j ∈ {1, 2} then

6 return 0

7 if ∃e ∈ {e1, e2} : Πf,e(V iewPe
(x)) ̸= commitu

then

8 return 0

9 if ve1
and ve2

are not consistent with each other

then

10 return 0

11 return 1

which cost O(m). Regarding the zero-knowledge proof, the

user needs to submit a proof of size O(mkλ) where k is the

size of the commitments.

As regards the computation cost, the computation includes

packing the data vector into polynomials and perform encryp-

tion which take O(m + s) in total for the secure aggregation.

The zero-knowledge proof protocol requires λ runs of O(L)
model inferences where L is the size of the validation dataset,

thus the total cost is O(λL)
2) Server: In the secure aggregation scheme, since the

server receives data that are sent from all users, the communi-

cation complexity is O(m|U|). As regards the computation

cost, for the secure aggregation, the computation includes

aggregating the ciphertext from each user and perform decryp-

tion on the aggregated model, which takes O(m|U|2) in total.

Validating the zero-knowledge proofs from all users requires

another O(|U|kλ) computations.

Fig. 6. Wall-clock running time per user, as the size of the data vector
increases.

B. Proof-of-Concept and Benchmarking

We evaluate the overhead of our proposed framework based

on the running time and communication costs. To that extent,

we use the following metrics

• Wall-clock running time: the total time it takes from the

beginning to the end of the framework execution.

• Bandwidth consumption: the total amount of data

sent/received by each entity in the system

• Bandwidth expansion factor: the ratio between the

total bandwidth consumption when using the framework

divided by the total bandwidth consumption when not

using the framework.

1) Secure Aggregation: To measure the performance,

we implement a proof-of-concept in C++ and Python 3.

The Damgard-Jurik cryptosystem is used with 1024-, 2048-,

3072-, and 4096-bit keys. To handle big numbers efficiently,

we use the GNU Multiple Precision Arithmetic Library [18].

We assume that each element in
∑

u∈U xu can be stored with

3 bytes without overflow. This assumption conforms with the

experiments in [8]. All the experiments are conducted on a

single-threaded machine equipped with an Intel Core i7-8550U

CPU and 16GB of RAM running Ubuntu 20.04.

a) Key generation: We first discuss the overhead of

distributed key generation. Note that this process can be

included during the one-time setup phase of the FL system.

An implementation of this phase can be adopted from [13].

It is shown that with 128 users, the running time for key

generation per user is less than 50 seconds, and each user

consumes about 15MB of network bandwidth. Therefore, the

key generation phase imposes negligible overhead on the

system.

b) Users: Wall-clock running times for users is plotted

in Fig. 6. We measure the running time with key sizes of

1024, 2048, and 4096, respectively. As can be seen, under all

settings, the result conforms with the running time complexity

analysis. Also, note that the computation of each user is

independent of each other, hence, the number of users does

not affect the user’s running time. By polynomial packing the

data vector and optimizing the encryption process, the user

can encrypt the entire data vector within seconds.

Fig. 7a shows the bandwidth expansion factor of the model

encryption per user as we increase the data vector size. It can

be observed that the factor approaches 1 as the model size

increases, thereby conforming to the analysis of reducing the
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Fig. 7. Bandwidth consumption per user.

Fig. 8. Running time and bandwidth consumption of the server. The key
size is fixed to 4096 bits.

ciphertext size. Moreover, the number of users also does not

affect the bandwidth consumption. This result implies that

our secure aggregation scheme induces minimal overhead as

compared to sending the raw data vector, and can scale to a

large number of users.

Fig. 7b illustrates the total data transfer of each user. The

total data increases linearly with the data vector size, which

follows the communication complexity O(m). Furthermore,

as shown in Fig. 7a, the amount of transmitted data is very

close to the raw data size under all key sizes, therefore, the

total data transfer is approximately the vector size multiplied

by 3 bytes.

c) Server: On the server’s side, Fig. 8a shows the running

time on the server as we increase the number of users. As can

be seen, with 100 users, the server only needs less than

6 minutes to perform decryption, and the result conforms

to the running time complexity of O(m|U|2). Note that our

testing machine (Intel Core i7, 16GB RAM) has much less

computation power than state-of-the-art servers. Furthermore,

Fig. 8b gives the amount of data received by the server.

Since we already optimized the size of data sent by users,

the bandwidth consumption of the server is also optimized,

which follows the communication complexity O(m|U|).
2) Zero-Knowledge Proof: For the implementation of the

zero-knowledge backdoor detection, we train a neural network

to use as an input. We use the MNIST dataset and train a

3-layer DNN model in the Tensorflow framework using ReLU

activation at the hidden layers and softmax at the output layer.

The training batch size is 128. Then, we implement an MPC

protocol that is run between 3 emulated parties based on [35].

The model’s accuracy is 93.4% on the test set.

Fig. 9. Wall-clock running time of the zero-knowledge proof protocol on
both users and server, as λ increases.

a) Users: To benchmark the performance of the ZKP

protocol, we measure the proving and validation time against

the soundness error. As shown before, the soundness error is
2
3

λ
where λ is the security parameter. Fig. 9a illustrates the

proving time to generate a ZKP by each user. We can see that

as λ increases, the soundness error decreases, nonetheless, the

proving time increases linearly. This is a trade-off since the

protocol runs slower if we need to obtain a better soundness

error. It only takes more than 5 minutes to achieve a soundness

error of 0.06, and roughly 7 minutes to achieve 0.03.

b) Server: Fig. 9b shows the validation time of the ZKP

protocol when the server validates the proofs of 100 users.

Similar to the proving time, there is a trade-off between the

running time and the soundness error. For a soundness error of

0.03, we need about 3.5 minutes to validate 100 users, which

is suitable for most FL use cases [7].

To ensure that the ZKP has minimal impact on the model

performance, we have also evaluated our framework using

CIFAR-10 [23] and Imagenette [20]. After training the models

on these datasets under our framework with FL, we attain an

accuracy of 86.6% and 92.5% on CIFAR-10 and Imagenette,

respectively. This shows that our framework imposes negligi-

ble trade-offs in terms of model accuracy.

VII. RELATED WORK

A. Secure Aggregation in FL

Leveraging secret sharing and random masking,

Bonawitz et al. [8] propose a secure aggregation protocol

and utilize it to aggregate local models from users. However,

the protocol relies on users honestly following the secret

sharing scheme. Consequently, although the privacy guarantee

for honest users still retains, a single malicious user can

arbitrarily deviate from the secret sharing protocol and make

the server fail to reconstruct the global model. Furthermore,

there is no mechanism to identify the attacker if such an

attack occurs.

In [2] and [39], the decryption key is distributed to the

users, and the server uses homomorphic encryption to blindly

aggregate the model updates. However, the authors assume

that there is no collusion between the server and users so that

the server cannot learn the decryption key. Hence, the system

does not work under our security model where users can be

malicious and collude with the server.

Additionally, there have been studies on how to use generic

secure MPC based on secret sharing to securely compute any
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function among multiple parties [4], [12], [24]. However, with

these protocols, each party has to send a secret share of its

whole data vector to a subset of the other parties. In order

to make the protocols robust, the size of this subset of users

should be considerably large. Since each secret share has the

same size as the entire data vector’s, these approaches are not

practical in federated learning in which we need to deal with

high-dimensional vectors.

On the other hand, differential privacy (DP) is considered

as a prominent privacy tool with a formal guarantee on

the privacy leakage [14], [28]. However, DP only aims to

protect membership privacy and does not conceal the local

models from the server. Previous work has shown that the

users in FL are still susceptible to other privacy attacks,

such as data reconstruction, even when DP is used [6], [15].

Furthermore, DP comes with a trade-off that reduces the model

performance. It has been suggested that using DP makes it

impossible to train a good model for datasets like CIFAR-10

or ImageNet with reasonable accuracy [6], [34]. Our proposed

protocol fully hides the local models from the server, disabling

any attacks that rely on inspecting the local models, while

maintaining the performance of the models.

B. Zero-Knowledge Proof for Detecting Poisoned Models

Although there have been many studies on developing a

ZKP protocol based on MPC, they have not been widely

used in the machine learning context. The IKOS protocol

proposed by Ishai et al. [21] is the first work that leverages

secure multi-party computation protocols to devise a zero-

knowledge argument. Giacomelli et al. [17] later refine this

approach and construct ZKBoo, a zero-knowledge argument

system for Boolean circuits using collision-resistant hashes

that does not require a trusted setup. Our proposed ZKP

protocol is inspired by the IKOS protocol with repetitions

to reduce the soundness error to 2
3

λ
. We also demonstrate

how such protocol can be used in the context of machine

learning, especially for attesting non-poisoned models while

maintaining privacy guarantees.

Another line of research in ZKP focuses on zkSNARK

implementations [5] that have been used in practical appli-

cations such as ZCash [33]. However, these systems depend

on cryptographic assumptions that are not standard, and have

large overhead in terms of memory consumption and com-

putation cost, thereby limiting the statement sizes that they

can manage. Therefore, it remains a critical challenge whether

zkSNARK could be used in machine learning where the circuit

size would be sufficiently large.

C. Defense Mechanisms Against Poisoning Attacks

There have been multiple research studies on defending

against poisoning attacks. Liu et al. propose to remove

backdoors by pruning redundant neurons [25]. On the other

hand, Bagdasaryan et al. [3] devise several anomaly detection

methods to filter out attacks. More recently proposed defense

mechanisms [26], [36] detect backdoors by finding differences

between normal and infected label(s).

Our work leverages such a defense mechanism to con-

struct a ZKP protocol for FL in which the users can run

the defense locally on their model updates, and attest its

output to the server, without revealing any information about

the local models. Different defense mechanisms may have

different constructions of the ZKP protocols, nevertheless, they

must all abide by the properties specified in our framework

(Section III). As shown in Section V, we construct a ZKP

protocol based on the defense proposed by Liu et al. [25].

VIII. CONCLUSION

In this paper, we have proposed a secure framework for

federated learning. Unlike existing research, we integrate both

secure aggregation and defense mechanisms against poisoning

attacks under the same threat model that maintains their

respective security and privacy guarantees. We have also

proposed a secure aggregation protocol that can maintain

liveness and privacy for model updates against malicious

users. Furthermore, we have designed a ZKP protocol for

users to attest non-backdoored models without revealing any

information about their models. Our framework combines

these two protocols and shows that the server can detect

backdoors while preserving the privacy of the model updates.

The privacy guarantees for the users’ models have been theo-

retically proven. Moreover, we have presented an analysis of

the computation and communication cost and provided some

benchmarks regarding its runtime and bandwidth consumption
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