IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

833

Preserving Privacy and Security in

Federated

Truc Nguyen

Abstract— Federated learning is known to be vulnerable to
both security and privacy issues. Existing research has focused
either on preventing poisoning attacks from users or on con-
cealing the local model updates from the server, but not both.
However, integrating these two lines of research remains a
crucial challenge since they often conflict with one another with
respect to the threat model. In this work, we develop a principle
framework that offers both privacy guarantees for users and
detection against poisoning attacks from them. With a new
threat model that includes both an honest-but-curious server and
malicious users, we first propose a secure aggregation protocol
using homomorphic encryption for the server to combine local
model updates in a private manner. Then, a zero-knowledge proof
protocol is leveraged to shift the task of detecting attacks in the
local models from the server to the users. The key observation
here is that the server no longer needs access to the local
models for attack detection. Therefore, our framework enables
the central server to identify poisoned model updates without
violating the privacy guarantees of secure aggregation.

Index Terms— Federated learning, zero-knowledge proof,
homomorphic encryption, model poisoning.

I. INTRODUCTION

EDERATED learning is an engaging framework for

large-scale distributed training of deep learning models
with thousands to millions of users. In every round, a central
server distributes the current global model to a random subset
of users. Each of the users trains locally and submits a model
update to the server. Then, the server averages the updates
into a new global model. Federated learning has inspired many
applications in many domains, especially training image clas-
sifiers and next-word predictors on users’ smartphones [19].
To exploit a wide range of training data while maintaining
users’ privacy, federated learning by design has no visibility
into users’ local data and training.

Despite the great potential of federated learning in
large-scale distributed training with thousands to millions of
users, the current system is still vulnerable to certain privacy
and security risks. First, although the training data of each user

Manuscript received 1 April 2022; revised 13 October 2022 and 22 May
2023; accepted 3 July 2023; approved by IEEE/ACM TRANSACTIONS ON
NETWORKING Editor Y. Chen. Date of publication 25 August 2023; date of
current version 16 February 2024. This work was supported by the National
Science Foundation under Grant CNS-1935923 and Grant CNS-2140477.
(Corresponding author: My T. Thai.)

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611 USA (e-mail:
truc.nguyen @ufl.edu; mythai@cise.ufl.edu).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TNET.2023.3302016, provided by the authors.

Digital Object Identifier 10.1109/TNET.2023.3302016

Learning

and My T. Thai*, Fellow, IEEE

is not disclosed to the server, the model update is. This poses a
privacy threat, as it is suggested that a trained neural network’s
parameters enable a reconstruction and/or inference of the
original training data [1], [16], [29]. Second, federated learn-
ing is generally vulnerable to model poisoning attacks that
leverage the fact that federated learning enables adversarial
users to directly influence the global model, thereby allowing
considerably more powerful attacks [3]. Recent research on
federated learning focuses on either improving the privacy of
model updates [2], [8], [39] or preventing certain poisoning
attacks from malicious users [3], [37], [38], but not both.

To preserve user privacy, secure aggregation protocols have
been introduced into federated learning to devise a training
framework that protects the local model updates [2], [8], [39].
These protocols enable the server to privately combine the
local models in order to update the global model without
learning any information about each individual local model.
Specifically, the server can compute the sum of the parameters
of the local models while not having access to the local models
themselves. As a result, the local model updates are concealed
from the server, thereby preventing the server from exploiting
the updates of any user to infer their private training data.

On the other hand, previous studies also unveil a vul-
nerability of federated learning when it comes to certain
adversarial attacks from malicious users, especially poisoning
attacks [3], [37]. This vulnerability leverages the fact that
federated learning gives users the freedom to train their local
models. Specifically, any user can train in any way that
benefits the attack, such as arbitrarily modifying the weights
of their local models. To prevent such attacks, a conventional
approach is to have the central server run some defense
mechanisms to inspect each of the model updates, such as
using anomaly detection algorithms to filter out the poisoned
ones [3].

However, combining these two lines of research on privacy
and security is not trivial since they contradict one another.
In particular, by allowing the server to inspect local model
updates from users to filter out the attacked ones, it violates the
security model of secure aggregation. In fact, under a secure
aggregation setting, the server should not be able to learn
any information about individual model updates. Therefore,
with secure aggregation, the server cannot run any defense
mechanism directly on each model update to deduce whether it
is attack-free or not. For that reason, existing FL systems with
secure aggregation prevent the server from detecting poisoned
local models.

1558-2566 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

834

To tackle this issue, in this paper, we propose a framework
that integrates secure aggregation with defense mechanisms
against poisoning attacks from users. To circumvent the afore-
mentioned problem, we shift the task of running the defense
mechanism onto the users, and then each user is given the
ability to attest the execution of the defense mechanism with
respect to their model update. Simply speaking, the users are
the ones who run the defense mechanism, then they have to
prove to the server that the mechanism was executed correctly.
To achieve this, the framework leverages a zero-knowledge
proof (ZKP) protocol that the users can use to prove the
correctness of the execution of a defense mechanism. The
ZKP protocol must also make it difficult to generate a valid
proof if the defense mechanism was not run correctly, and the
proof must not reveal any information about the local model
update in order the retain the privacy guarantee of secure
aggregation. Via our ZKP protocol, the server can verify if
a defense mechanism was properly executed by the users.

To demonstrate the feasibility of the framework, we use
the backdoor attack as a use case in which we construct a
ZKP protocol for a specific backdoor defense mechanism [25].
Furthermore, we also propose a secure aggregation protocol in
federated learning to address the limitations of previous work.
Specifically, we show that our proposed aggregation protocol
is robust against malicious users in a way that it can still
maintain privacy and liveness despite the fact that some users
may not follow the protocol honestly. Our framework can then
combine both the ZKP and the secure aggregation protocols
to tackle the above-mentioned privacy and security risks in
federated learning.

A. Contributions

Our main contributions are as follows:

o« We establish a framework integrating both the secure
aggregation protocol and defense mechanisms against
poisoning attacks without violating any privacy
guarantees.

« We propose a new secure aggregation protocol using
homomorphic encryption for federated learning that can
tolerate malicious users and a semi-honest server while
maintaining both privacy and liveness.

o We construct a ZKP protocol for a backdoor defense to
demonstrate the feasibility of our framework.

« Finally, we analyze the computation and communication
cost of the framework and provide some benchmarks
regarding its performance.

B. Organization

The rest of the paper is structured as follows. Section II pro-
vides the system and security models. The main framework for
combining both the secure aggregation protocol and defense
mechanisms against poisoning attacks is shown in Section III.
Section IV presents our proposed secure aggregation protocol
for federated learning. Section V gives the ZKP protocol for a
backdoor defense mechanism. We evaluate the complexity and
benchmark our solution in Section VI. We discuss some related
work in Section VII and provide some concluding remarks in
Section VIII.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

II. SYSTEM AND SECURITY MODEL

Current systems proposed to address either the poisoning
attacks from users or the privacy of model updates are
designed using security models that conflict with each other.
In fact, when preserving the privacy of model updates, the
central server and the users are all considered as honest-but-
curious (or semi-honest). However, when defending against
poisoning attacks from users, the server is considered honest
while the users are malicious.

Due to that conflict, this section establishes a more general
security model combining the ones proposed in previous work
on the security and privacy of federated learning. From the
security model, we also define some design goals.

A. System Model

We define two entities in our protocol:

1) A set of n users U: Each user has a local training dataset,
computes a model update based on this dataset, and
collaborates with each other to securely aggregate the
model updates.

A single server S: Receives the aggregated model
updates from the users and computes a global model
that can later be downloaded by the users.

2)

We denote the model update of each user u € U as an
input vector z,, of dimension m. For simplicity, all values
in both z, and ZuEZ/I x, are assumed to be integers in the
range [0, N) for some known N. The protocol is correct if
S can learn =) ., x, for some subset of users U’ C
U. We assume a federated learning process that follows the
FedAvg framework [27] which uses a horizontal setting for
FL. We denote U/’ as a random subset of U/ (the server selects
a random subset of users for each training round).

In addition to securely computing z, each user u € U
computes a zero-knowledge proof m,, proving that x,, is a clean
model and not leaking any information about z,,. This proof
7, is then sent to and validated by the server S. The server
then verifies that {m, },cy is consistent with the obtained Z.

B. Security Model

1) Threat Model: We take into account a computationally
bounded adversary that can corrupt the server or a subset
of users in the following manners. The server is considered
honest-but-curious in a way that it behaves honestly according
to the training protocol of federated learning but also attempts
to learn as much as possible from the data received from the
users. The server can also collude with corrupted users in U/
to learn the inputs of the remaining users. Moreover, some
users try to inject unclean model updates to poison the global
model and they can also arbitrarily deviate from the protocol.

As regards the security of the key generation and dis-
tribution processes, there has been extensive research in
constructing multi-party computation (MPC) protocols where
a public key is computed collectively and every user computes
private keys [11], [13], [30]. Such a protocol can be used
in this architecture to securely generate necessary keys for
the users and the server. Hence, this paper does not focus

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

NGUYEN AND THAI: PRESERVING PRIVACY AND SECURITY IN FEDERATED LEARNING 835

User aggregation
Xy ¢
User ueu
Local model x
T C(xy)
ZKP of attack-free “ “

Secure framework for FL. Each user w € U trains a local model z,, that is used as an input to (1) User aggregation and (2) ZKP of attack-free

Fig. 1.

Central server S

Compute global model
Validate 1,

Obtain X from ¢

Check C(X) =[], C(xy)
Return X

model. The User aggregation component returns ¢ = Epk(zueu’ Z,) which is the encryption of the sum over the local models of honest users. The ZKP
of attack-free model component returns the proof 7, and the commitment C(z,) for each x,. The outputs of these two component are then used by the
central server as inputs to the Computing global model component. This component validates {7y },c1s, obtains the global model Z from ¢, checks if C(Z)

is consistent with {C (2w) }weu» and then returns Z.

on securing the key generation and distribution processes but
instead assumes that the keys are created securely and honest
users’ keys are not leaked to others.

2) Design Goals: Besides the security aspects, our design
also aims to address unique challenges in federated learning,
including operating on high-dimensional vectors and users
dropping out. With respect to the threat model, we summarize
the design goals as follows:

1) The server learns nothing except what can be inferred

from Zz.

2) Each user does not learn anything about the others’

inputs.

3) The server can verify that Z is the sum of clean models.

4) The protocol operates efficiently on high-dimensional

vectors

5) Robust to users dropping out.

6) Maintain undisrupted service (i.e., liveness) in case a

small subset of users deviate from the protocol.

III. SECURE FRAMEWORK FOR FEDERATED LEARNING

To address the new security model proposed in Section II,
we propose a framework to integrate secure aggregation with
defenses against poisoning attacks in a way that they can
maintain their respective security and privacy properties. Our
framework is designed to ensure the privacy of users’ local
model while preventing certain attacks from users. As shown
in Fig. 1, our framework consists of three components:
(1) users aggregation, (2) zero-knowledge proof of attack-
free model, and (3) computing global model. We discuss the
properties of each component as follows.

A. Users Aggregation

This component securely computes the sum of local models
from the users. First, each user v € U trains a local model
update x, and uses it as input to this component. Then,
the component outputs ¢ = Eui(d 0) Which is an
encryption over the sum of the model updates of all honest
users U’ CU. Epy(-) denotes a viable additive homomorphic
encryption scheme, and we require that it must have the
property of indistinguishability under chosen plaintext attack
(IND-CPA). The encryption function will be discussed in
detail in Section IV.

User aggregation
Inputs:

e Local model z, of each user u € U
o Public key pk

Output: ¢ = Epi(Y., e ©u) Where U’ C U is the set of
honest users
Properties:

o The encryption algorithm E(-) is additively homo-
morphic and IND-CPA secure.

e 1, isnotrevealed to other users U \{u} nor the server
S. More formally, there exists a PPT simulator that
can simulate each u € U such that it can generate
a view for the adversary that is computationally
indistinguishable from the adversary’s view when
interacting with honest users.

e Robust to users dropping out

Fig. 2. User aggregation component.

Furthermore, this aggregation must maintain the privacy
with respect to each local model z,, particularly, we should
be able to simulate the output of each user by a Probabilistic
Polynomial Time (PPT) simulator. We specify the security
properties of the Users aggregation component in Fig. 2.

B. Zero-Knowledge Proof of Attack-Free Model

This component generates a zero-knowledge proof proving
the local model is free from a certain poisoning attack.
In specific, we first assume the existence of a function that
verifies an attack-free model as follows:

C(x)

1 otherwise

R(z) = if x is attack-free

(1
where x is a local model, C(x) is the commitment of z. Next,
the component implements a zero-knowledge proof protocol
for the users to attest the correct execution of R(x) without
revealing x. Note that the ZKP itself is not a defense mecha-
nism, but it is a means to verify that the users have executed
the function R(-) on their side. Hence, the effectiveness of

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

836

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

Zero-knowledge proof of attack-free model
Inputs:

e Local model z,, of users u
« Function R(-) verifying an attack-free model

Outputs:

e Zero-knowledge proof m, verifying the correct exe-
cution of R(z,,)
e Commitment C(z,,)

Properties:

o The commitment scheme C(-) is additively homo-
morphic.

o Denote (P, V) as a pair of prover, verifier algorithm,
respectively. If R(z,,) = C(z,,) then Pr[(P,V)(x,,)
accept] =1

o If R(zy) 1 then Pr[(P,V)(z,) = accept] < e
where € denotes a soundness error.

o There exists a simulator that, given no access to the
prover, can produce a transcript that is computa-
tionally indistinguishable from the one between an
honest prover and an honest verifier.

Fig. 3. Zero-knowledge proof component.

this component in preventing poisoning attacks depends on the
performance of the defense R(-). A specific implementation
of this component for defending against backdoor attacks is
shown in Section V. The properties of this component are
shown in Fig. 3.

The prover algorithm P is run by the users, while the verifier
algorithm V' is run by the server S.

C. Computing Global Model

This component takes as input the output of the other two
components and produces the corresponding global model.
Hence, it serves to combine two previous components and it
is run solely by the server. Specifically, it needs to be able
to decrypt ¢ from the first component and to validate the
zero-knowledge proofs {7, },ey from the second component.
Then, it outputs the sum of the model updates from the honest
users. We define this component in Fig. 4.

From the third component, we can prove that this framework
preserves the privacy of users’ model updates given that all
the components satisfy their properties. Let Adv be a random
variable representing the joint views of all parties that are
corrupted by the adversary according to the threat model.
We show that it is possible to simulate the combined view of
any subset of honest-but-curious parties given only the inputs
of those parties and the global model z. This means that those
parties do not learn anything other than their own inputs and z.

Theorem 1: There exists a PPT simulator S such that for
Adv CUUS, the output of the simulator S is computationally
indistinguishable from the output of Adv

Proof: Refer to Appendix A. O

IV. SECURE AGGREGATION IN FEDERATED LEARNING
In this section, we describe a secure aggregation scheme that
realizes the User aggregation component of our framework.

Computing global model
Inputs:

e Zero-knowledge proof 7, for u € U
o Commitment C(z,,) for u € U

e cobtained from the User aggregation
e Secret key sk

Outputs: Global model Z = ;s 2, where U’ C U is the
set of honest users
Properties:

« Validate 7, and only keep valid proofs

e T=Dgy (E)

e C(%) = [luew C(xu) where J] denotes the homo-
morphic addition of the commitment scheme.

Fig. 4. Computing global model component.

Although some secure aggregation schemes have been pro-
posed for federated learning, they are not secure against
our threat model in Section II. Particularly, the aggregation
schemes in [2] and [39] assume no collusion between the
server and a subset of users. The work of Bonawitz et al. [8]
fails to reconstruct the global model if one malicious user
arbitrarily deviates from the secret sharing protocol. A detailed
discussion of these related work is provided in Section VII.

The main challenge here is that we want to provide robust-
ness in spite of malicious users, i.e., the protocol should be
able to tolerate users that do not behave according to the
protocol and produce correct results based on honest users.
Moreover, we need to minimize the users’ communication
overhead when applying this scheme.

A. Cryptographic Primitives
1) Damgard-Jurik and Paillier Cryptosystems [10], [31]:

Given pk = (n,g) where n is the public modulus and
g € Z.. is the base, the Damgard-Jurik encryption of
a message m € Zys is Ep(m) = g™r"™ mod n*t! for

some random 7 € Z; and a positive natural number s. The
Damgard-Jurik cryptosystem is additively homomorphic such
that £, (m1)-Epr(ma) = Epr (M1 +ms). This cryptosystem is
semantically secure (i.e., IND-CPA) based on the assumption
that computing n-th residue classes is believed to be compu-
tationally difficult. The Paillier’s scheme is a special case of
Damgard-Jurik with s = 1.

In the threshold variant of these cryptosystems [10], several
shares of the secret key are distributed to some decryption
parties, such that any subset of at least ¢ of them can per-
form decryption efficiently, while less than ¢ cannot decrypt
the ciphertext. Given a ciphertext, each party can obtain a
partial decryption. When ¢ partial decryptions are available,
the original plaintext can be obtained via a Share combining
algorithm.

2) Pedersen Commitment [32]: A general commitment
scheme includes an algorithm C' that takes as inputs a
secret message m and a random r, and outputs the commit-
ment commit to the message m, i.e., commit = C(m,r).

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

NGUYEN AND THAI: PRESERVING PRIVACY AND SECURITY IN FEDERATED LEARNING 837

A commitment scheme has two important properties:
(1) commit does not reveal anything about m (i.e., hiding),
and (2) it is infeasible to find (m’,r’) # (m,r) such
that C(m/,r") = C(m,r) (i.e., binding). Pedersen commit-
ment [32] is a realization of such scheme and it is also
additively homomorphic such that C(m,r) - C(m/,r") =
Cm+m/,r+1")

B. Secure Aggregation Protocol

Our secure aggregation scheme relies on additive homomor-
phic encryption schemes, that is &, (m1 + ma) = Epp(ma) -
Epk(mz). In this work, we use the Daamgard-Jurik public-
key cryptosystem [10] which is both IND-CPA secure and
additively homomorphic. The cryptosystem supports threshold
encryption and operates on the set Z .

We also assume that the communication channel between
each pair of users is secured with end-to-end encryption, such
that an external observer cannot eavesdrop the data being
transmitted between the users. The secure communication
channel between any pair of users can be mediated by the
server.

In the one-time setup phase, the secret shares {s,}ucu
of the private key sk are distributed among n users in U
via the threshold encryption scheme. The scheme requires
a subset Uy C U of at least ¢ users to perform decryption
with sk. This process of key distribution can be done via a
trusted dealer or via an MPC protocol. After that, each secure
aggregation process is divided into 2 phases: (1) Encryption
and (2) Decryption.

1) Encryption Phase: To securely compute the sum z =
> weu Tu> €ach user u € U first computes the encryption
cu = &pi(zy) and then send ¢, to the server. The server
then computes the product of all {c¢, },cy, denoting as ¢:

= s+1 _ 541
c= H ¢, modn’T = H Epk(xy,) mod n’
ueld ueld

= Epk; (qu mod ns+1> 2)

ueU

Additionally, per IND-CPA, knowing the ciphertext c,
implies nothing about the plaintext x,, for u € U. As each
user only sends out ¢, neither the server S nor other entities
U \ {u} with access to ¢, can infer any information about
x,. This satisfies the security properties that are specified in
Fig. 2.

2) Decryption Phase: Suppose that up to this phase, some
amount of less than N — ¢ users dropout, that means we still
have the subset U/, C U of at least ¢ users remaining to perform
decryption.

First, the server sends ¢ to all users in ;. Each user u € U;
computes ¢/, = 25+~ where A = t!, and then sends ¢/, back
to the server. The server then applies the Share combining
algorithm in [10] to compute Z = »_ ., 2, from {c} }ucy,-
As a result, the server can securely obtain z without knowing
each individual z,,.

3) User Drop-Outs: Furthermore, by design, it can be seen
from this protocol that we can tolerate up to N — ¢ users
dropping out and the server is still able to construct the global

model of all users. In other words, as long as there are at
least ¢ users remaining, it will not affect the outcome of the
protocol. Therefore, our protocol is robust to user drop-outs
up to N —¢.

4) Security Against Active Adversary: We analyze the secu-
rity in the active adversary model. First, the protocol is secure
in spite of collusion between the server and a subset of users
in a way that allows the server to decrypt some c,, to obtain the
corresponding z,,. By using the threshold encryption, as long
as there is at least one honest user in U;, the server will not be
able to learn z,, of any user. Hence, the protocol can tolerate
up to ¢ — 1 malicious users, with ¢ < |U|.

Second, in the encryption phase, if a user deviates from the
protocol, e.g., by computing c¢,, as a random string or using
a different key other than pk, the server will not be able to
decrypt ¢. To tolerate this behavior, the server can iteratively
drop each ¢, from ¢ until it obtains a decryptable value.

In the decryption phase, if a user ©* does not cooperate to
provide c/,., then the server will not have all the necessary
information to perform decryption. However, if we still have
at least ¢ honest users (not counting u*), we can eliminate u*
from U; and add another user to I/, hence, the server can still
perform decryption.

In summary, our secure aggregation protocol can tolerate
t — 1 malicious users and be robust against |U{| —¢ users drop-
ping out (where ¢ < |U]). Therefore, ¢ should be determined
by calibrating the trade-off between the usability (small ¢) and
security (large t).

C. Efficient Encryption of .,

We discuss two methods for reducing the ciphertext size
when encrypting x,. Since z, is a vector of dimension m,
naively encrypting every element of x,, using either the Paillier
or Damgard-Jurik cryptosystems will result in a huge cipher-
text with the expansion factor of 2log n (i.e., the ratio between
the size of ¢,, and of z,). Below, we present (1) a polynomial
packing method and (2) a hybrid encryption method that
includes a key encapsulation mechanism (KEM) and a data
encapsulation mechanism (DEM).

1) Polynomial Packing: We can reduce the expansion factor
by packing z, into polynomials as follows. Suppose z, =
((1) .(2) (m)

Ty Xy gy Ty), We transform this into:

ol =2 4@ 20 4 (392 4 pm) gm=Db (3

where b = [log N|. Hence, z!, becomes a mb-bit number.
Then, to encrypt z,, we simply run the Damgard-Jurik

encryption on z/,. Specifically, we obtain the ciphertext ¢, =

E(x!). This ¢, will have ([;™2]+1) log n bits. The expansion

logn
factor can be calculated as:

mb
221 4+ 1)logn
lim (Og"]) =1 @)
m—oo mb

Therefore, as m increases, i.e., larger models, the expansion
factor approaches 1, thereby implying minimal overhead. Note
that since we are packing into polynomials, the additive
homomorphic property of the ciphertexts is retained.

Additionally, if we use this polynomial packing scheme with
the Paillier encryption, it would result in an expansion factor

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

838

of 2 as Paillier requires the plaintext size to be smaller than
the key size. To keep the expansion factor of 1 when using
Paillier, we introduce a KEM-DEM scheme as follows.

2) Hybrid Encryption (KEM-DEM Technique): In [9], the
authors propose a KEM-DEM approach to compress the
ciphertext of Fully Homomorphic Encryption (FHE). With
FHE, they can use blockciphers to generate the keystreams.
However, since our work only deals with Partially HE (PHE)
like Paillier, we cannot use blockciphers, hence, we need to
propose a different approach to generate the keystream with
only PHE.

The general idea of our protocol is as follows. Suppose a
user wants to send E,(x) to the server (for simplicity, we use
the notation x instead of z,,). Instead of sending ¢ = E,x(z)
directly, the user chooses a secret random symmetric key k
that has the same size as an element in = and computes
¢ = (Epi(k), SER(z)) where SEy(z) = x — k, which means
subtracting k from every element in x. ¢’ is then sent to the
server. When the server receives ¢, it can obtain ¢ = E,;(z)
by computing E,i(k) x Epp(SEk(z)) = Epk(z) =c.

The correctness of this scheme holds because the server can
obtain F,(z) from the user. The security also holds because
the server does not know the key k& chosen by the user, hence,
it cannot know x. However, this scheme is not semantically
secure, i.e., IND-CPA secure, because by defining SEy(z) =
x—k, identical elements in x will result in the same ciphertext.

To resolve this, we use an IV (initialization vector) for the
encryption function. IV is a nonce which could be a random
number or a counter that is increased each time it is used.
Denote © = (x1,...,%m), @ as a bitwise XOR operation,
on the user’s side:

1) Choose the secret [-bit random key % and a nonce IV.
2) compute the keystream ks: For ¢ € [1,m], compute

ks; =k x (IV @ i) mod p where p is an [-bit number.
3) Compute SEy(x) = x—ks = (x1—ks1,...,Tm—kSm)
4) Send (IV, E,;(k), SEr(x)) to the server

On the server’s side, receiving (I'V, Epi(k), SEx(z)):

1) Compute the encrypted keystream FE,(ks): For i €
[1,m], compute E,; (k)P mod n? = Epx(k x (IV &
0)) = Epi(ks;)

2) Compute Epk(l‘) Epk(SEk({E)) . Epk(ks)
Epp(z1 — ks1 + ks1,...,Zm — kSm + kSm)

Epp(z1,...,Tm)

Lemma 1: By picking k uniformly at random, and p as an
[-bit prime number, the DEM component (i.e., SEj(z)) is
IND-CPA secure.

Proof: To show that the DEM component is IND-CPA
secure, it is sufficient prove that k x (IV @ i) mod p is
uniformly random with respect to k (Theorem 3.32 in [22]).
In fact, in Z;, by picking k uniformly at random, k x (IV @
i) mod p is uniformly distributed if and only if neither k
nor (IV @ i) shares prime factors with p. Hence, p should
be an [-bit prime number and k£ can be chosen randomly
from Zj. (]

Since the KEM component (i.e., E,x(k)) is IND-CPA
secure by default using Paillier, and the DEM component is

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

User Server

k E() E(k)

EQV@®1)

EQIV ®m)

E(ks) ; |

E(k)

‘ keystream ks ‘ ‘

l

» EC)

e)

Fig. 5. KEM-DEM for PHE. @ denotes a bitwise XOR operation.

also IND-CPA secure as previously shown in Lemma 1, we can
derive the following theorem:
Theorem 2: The KEM-DEM scheme is IND-CPA secure.
Figure 5 illustrates this scheme. The bandwidth expansion
factor of this scheme can be computed as:
mb+2logn+c

AT e

(&)
where c¢ is the size of the IV. Therefore, this scheme also
achieves the expansion factor close to 1 as m grows, however,
it incurs some computational overhead as compared to the
polynomial packing scheme.

Although both the KEM-DEM scheme and polynomial
packing have the same asymptotic expansion factor (e.g., 1),
each has its own advantages and disadvantages. The polyno-
mial packing is simple and works out-of-the-box if we use the
Damgard-Jurik cryptosystem. This is because Damgard-Jurik
allows the plaintext size to be greater than the key size.
However, it will not work with conventional cryptosystems
like Paillier as they require the plaintext size to be smaller
than the key size. The KEM-DEM scheme would work for
all cryptosystems but it is more complex and incurs more
computational overhead than the polynomial packing scheme.
Since our protocol is using the Damgard-Jurik cryptosystem,
Section VI only evaluates the polynomial packing scheme.

V. USE CASE: ZKP FOR BACKDOOR DEFENSES

This section describes an implementation that realizes the
Zero-knowledge proof component of our framework. Using
the backdoor attack as a use case, we provide a ZKP protocol
that can detect backdoor attacks from users. Before that,
we establish some background regarding multi-party protocol
(MPC) and ZKP.

A. Preliminaries

1) Multi-Party Computation (MPC) Protocol: In a generic
MPC protocol, we have n players Pi,...,P,, each player
P; holds a secret value x; and wants to compute y = f(z)
with © = (z1,...,z,) while keeping his input private. The
players jointly run an n-party MPC protocol IIy. The view
of the player P;, denoted by Viewp,(z), is defined as the
concatenation of the private input z; and all the messages
received by P; during the execution of IIy. Two views are
consistent if the messages reported in Viewp, () as incoming

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

NGUYEN AND THAI: PRESERVING PRIVACY AND SECURITY IN FEDERATED LEARNING 839

from P; are consistent with the outgoing message implied by
Viewp, (z) (i # j). Furthermore, the protocol I1 is defined as
perfectly correct if there are n functions Il¢q,...,1I;, such
that y = II; ;(Viewp,(x)) for all i € [n]. An MPC protocol
is designed to be t-private where 1 <t < n: the views of any
t-subset of the parties do not reveal anything more about the
private inputs of any other party.

2) Zero-Knowledge Proof (ZKP): Suppose that we have
a public function f, a secret input x and a public output
y. By using a ZKP protocol, a prover wants to prove that
it knows an z s.t. f(z) = vy, without revealing what z
is. A ZKP protocol must have three properties as follows:
(1) if the statement f(z) = y is correct, the probability that
an honest verifier accepting the proof from an honest prover
is 1 (i.e., completeness), (2) if the statement is incorrect, with
a probability less than some small soundness error, an honest
verify can accept the proof from a dishonest prover showing
that the statement is correct (i.e., soundness), and (3) during
the execution of the ZKP protocol, the verifier cannot learn
anything other than the fact that the statement is correct (i.e.,
zero-knowledge).

3) Backdoor Attacks and Defenses: Backdoor attacks aim to
make the target model to produce a specific attacker-chosen
output label whenever it encounters a known trigger in the
input. At the same time, the backdoored model behaves
similarly to a clean model on normal inputs. In the context
of federated learning, any user can replace the global model
with another so that (1) the new model maintains a similar
accuracy on the federated-learning task, and (2) the attacker
has control over how the model behaves on a backdoor task
specified by the attacker [3].

To defend against backdoor attacks, Liu et al. [25] propose
a pruning defense that can disable backdoors by removing
backdoor neurons that are dormant for normal inputs. The
defense mechanism works in the following manner: for each
iteration, the defender executes the backdoored DNN on
samples from the testing dataset, and stores the activation
of each neuron per test sample. The defender then computes
the neurons’ average activations over all samples. Next, the
defender prunes the neuron having the lowest average acti-
vation and obtains the accuracy of the resulted DNN on
the testing dataset. The defense process terminates when the
accuracy drops below a predetermined threshold.

When implementing this pruning defense, to prune a neuron,
we simply set the weights and biases associated to that neuron
to zero. In this way, we can retain the structure of the local
models x,,.

B. ZKP Protocol to Backdoor Detection

To inspect a local model for backdoors while keeping the
model private, we propose a non-interactive ZKP such that
each user v € U can prove that x, is clean without leaking
any information about x,,.

First, we devise an algorithm backdoor that checks for
backdoor in a given DNN model z as in Algorithm 1.

Theorem 3: backdoor(x) returns 1 = =z is a non-
backdoored model

Proof: Refer to Appendix B. (I

Algorithm 1 backdoor(xz) — Check for Backdoors in
a DNN Model
Input: DNN model x, validation dataset
Output: 1 if x is backdoored, 0 otherwise
1 Test x against the validation dataset, and record the
average activation of each neuron;
2 k < the neuron that has the minimum average
activation;
3 Prune k from z;
4 Test x against the validation dataset;
5 if accuracy drops by a threshold T then
6 | return 1
7 else
8 | return0

Given a model z, we define R(r,x) for some random r as
follows:

R(r,z) = {i(r,x)

where C(r, x) is the commitment of x

Based on [21], we construct the ZKP protocol as follows.
Each user u € U generates a zero-knowledge proof 7, proving
Xy is clean, i.e., R(ry, xy) = C(ry, Ty). To produce the proof,
each user u runs Algorithm 2 to obtain 7. Note that II; is a
3-party 2-private MPC protocol, which means a subset of any
2 views do not reveal anything about the input x,. Then, m,
and commit, = C(ry,x,) are sent to the server where they
will be validated as in Algorithm 3.

Finally, for the server to validate that the z obtained from
secure aggregation is the sum of the models that were validated
by the ZKP protocol, it collects {7, }ucys and verify that
[T.cy commit, = C (3,4 7w, T). This is derived from the
additive homomorphic property of the Pedersen commitment
scheme, where

H commit, = H C(ry,xy) =C (Z Tus Z $u>

ueU ueU ueU ueUd

=C (Z ruj) (7)

ueU

if backdoor(x) returns 1

otherwise

Theorem 4: The proposed zero-knowledge proof protocol
satisfies the completeness, zero-knowledge, and soundness

. . A . .
properties with soundness error % where A is a security
parameter.

Proof: Refer to Appendix C.]

VI. EVALUATION

In this section, we analyze the computation and communi-
cation cost of the proposed protocol on both the users and the
server. Then we implement a proof-of-concept and benchmark
the performance.

A. Performance Analysis

1) Users: For the communication cost, w.r.t the secure
aggregation, a user has to send out the encrypted model,

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

840

Algorithm 2 Generate Zero-Knowledge Proof

Input: x,, A € N, a perfectly correct and 2-private
MPC II; protocol among 3 players

Output: Proof 7,
1wy, — 0;
2 for k=1,...,A do
3 Samples 3 random vectors x1, 2, x3 such that
Ty = T1 + X2 + X35
4 Consider an 3-input function
f(x1,29,23) = R(r,x1 + x2 + x3) and emulate
the protocol 11y on inputs 1, 2, x3. Obtain the
views v; = Viewp, (x) for all i € [3];
5 Computes the commitments
commity,...,commits to each of the n
produced views vy, va, vs;
6 For j € {1,2}, computes
ej = H(j, {commit;}ic3));
7 Ty
mu U ({ej}jeq1,2)s {ve; Hieq 2y, {commit; }icps)
8 return 7,

Algorithm 3 Validate Zero-Knowledge Proof

Input: 7, commit,
Output: 1 if accept, O if reject
1 for p; € m, do
({esdieqry {ve, bieqray, {commititic) — pi:
if {commit;};c(3) is invalid then
| return 0
if e; # H(j, {commit;};c[3) for j € {1,2} then
| return 0
if Je € {e1, e} : Iy (Viewp, (x)) # commit,
then
8 | return 0
9 if ve, and v., are not consistent with each other
then
10 | return 0
return 1

N R WN

-
—

which cost O(m). Regarding the zero-knowledge proof, the
user needs to submit a proof of size O(mk\) where k is the
size of the commitments.

As regards the computation cost, the computation includes
packing the data vector into polynomials and perform encryp-
tion which take O(m + s) in total for the secure aggregation.
The zero-knowledge proof protocol requires A runs of O(L)
model inferences where L is the size of the validation dataset,
thus the total cost is O(A\L)

2) Server: In the secure aggregation scheme, since the
server receives data that are sent from all users, the communi-
cation complexity is O(m|U|). As regards the computation
cost, for the secure aggregation, the computation includes
aggregating the ciphertext from each user and perform decryp-
tion on the aggregated model, which takes O(m|U/|?) in total.
Validating the zero-knowledge proofs from all users requires
another O(|U|kX) computations.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

70007, 4096-bit key

2048-bit key
—e— 1024-bit key

= 6000

= 5000

= 4000

< 3000

5

& 2000
1000

100000 200000 300000 400000 500000
Data vector size

Fig. 6.
increases.

Wall-clock running time per user, as the size of the data vector

B. Proof-of-Concept and Benchmarking

We evaluate the overhead of our proposed framework based
on the running time and communication costs. To that extent,
we use the following metrics

o Wall-clock running time: the total time it takes from the
beginning to the end of the framework execution.

o Bandwidth consumption: the total amount of data
sent/received by each entity in the system

o Bandwidth expansion factor: the ratio between the
total bandwidth consumption when using the framework
divided by the total bandwidth consumption when not
using the framework.

1) Secure Aggregation: To measure the performance,
we implement a proof-of-concept in C++ and Python 3.
The Damgard-Jurik cryptosystem is used with 1024-, 2048-,
3072-, and 4096-bit keys. To handle big numbers efficiently,
we use the GNU Multiple Precision Arithmetic Library [18].
We assume that each element in), 2, can be stored with
3 bytes without overflow. This assumption conforms with the
experiments in [8]. All the experiments are conducted on a
single-threaded machine equipped with an Intel Core 17-8550U
CPU and 16GB of RAM running Ubuntu 20.04.

a) Key generation: We first discuss the overhead of
distributed key generation. Note that this process can be
included during the one-time setup phase of the FL system.
An implementation of this phase can be adopted from [13].
It is shown that with 128 users, the running time for key
generation per user is less than 50 seconds, and each user
consumes about 15MB of network bandwidth. Therefore, the
key generation phase imposes negligible overhead on the
system.

b) Users: Wall-clock running times for users is plotted
in Fig. 6. We measure the running time with key sizes of
1024, 2048, and 4096, respectively. As can be seen, under all
settings, the result conforms with the running time complexity
analysis. Also, note that the computation of each user is
independent of each other, hence, the number of users does
not affect the user’s running time. By polynomial packing the
data vector and optimizing the encryption process, the user
can encrypt the entire data vector within seconds.

Fig. 7a shows the bandwidth expansion factor of the model
encryption per user as we increase the data vector size. It can
be observed that the factor approaches 1 as the model size
increases, thereby conforming to the analysis of reducing the

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

NGUYEN AND THAI: PRESERVING PRIVACY AND SECURITY IN FEDERATED LEARNING 841

3000
—— 4096-bit key

3072-bit key

—— 2048-bit key
—— 1024-bit key
1500
\\ 2 1000
~
500
200000 400000 600000 8000001000000
Data vector size

—— 4096-bit key
1.0020 2500

1.0015 2000

1.0010

otal data (KB

1.0005

Bandwidth expansion factor

1.0000

200000 400000 600000 800000 1000000
Data vector size

(a) Total bandwidth expansion fac- (b) Total data transfer per user.

tor per user, as compared to send- The amount of transmitted data

ing the raw data vector to the at 1024-bit, 2048-bit, and 3072-bit

server. Different lines represent dif- keys are nearly identical to 4096-

ferent values of key sizes k bit key

Fig. 7. Bandwidth consumption per user.

—— m = 100000
4000 m = 200000
—— m = 300000
3000, —— M = 400000
—— m = 500000

—— 400 users.

300 users
—— 200 users
—— 100 users.

1000

800

600

400
200 /
0

200000 400000 600000 800000 1000000
Data vector size

2000

Running time (s)
Total data (MB)

/

"
o
S
3

5000 1200

o

100 200 300 400 500
Number of clients

(a) Wall-clock running time of the (b) Total bandwidth consumption

server at different data vector sizes, of the server at various numbers

as the number of users increases. of users, as the data vector size
increase.

Fig. 8. Running time and bandwidth consumption of the server. The key
size is fixed to 4096 bits.

ciphertext size. Moreover, the number of users also does not
affect the bandwidth consumption. This result implies that
our secure aggregation scheme induces minimal overhead as
compared to sending the raw data vector, and can scale to a
large number of users.

Fig. 7b illustrates the total data transfer of each user. The
total data increases linearly with the data vector size, which
follows the communication complexity O(m). Furthermore,
as shown in Fig. 7a, the amount of transmitted data is very
close to the raw data size under all key sizes, therefore, the
total data transfer is approximately the vector size multiplied
by 3 bytes.

c) Server: On the server’s side, Fig. 8a shows the running
time on the server as we increase the number of users. As can
be seen, with 100 users, the server only needs less than
6 minutes to perform decryption, and the result conforms
to the running time complexity of O(m|i/|?). Note that our
testing machine (Intel Core 17, 16GB RAM) has much less
computation power than state-of-the-art servers. Furthermore,
Fig. 8b gives the amount of data received by the server.
Since we already optimized the size of data sent by users,
the bandwidth consumption of the server is also optimized,
which follows the communication complexity O(m|U|).

2) Zero-Knowledge Proof: For the implementation of the
zero-knowledge backdoor detection, we train a neural network
to use as an input. We use the MNIST dataset and train a
3-layer DNN model in the Tensorflow framework using ReLU
activation at the hidden layers and softmax at the output layer.
The training batch size is 128. Then, we implement an MPC
protocol that is run between 3 emulated parties based on [35].
The model’s accuracy is 93.4% on the test set.

3.5
—— soundness error /
—=— validation time 3.0

0.30
—— soundness error / 0.30
0.25 —=— proving time 0.25

0.20

o

0.20

0.15 0.15

Soundness error
Soundness error

of
=)
)
1)
)

Proving time (minutes)

Validation time (minutes)

w

0.05 0.05

3 4 5 6 7 8 9 3 4 5 6 7 8 9

(a) User generating ZKP (b) Server validating ZKPs of 100

users

Fig. 9. Wall-clock running time of the zero-knowledge proof protocol on
both users and server, as \ increases.

a) Users: To benchmark the performance of the ZKP
protocol, we measure the proving and validation time against
the soundness error. As shown before, the soundness error is
%’\ where A is the security parameter. Fig. 9a illustrates the
proving time to generate a ZKP by each user. We can see that
as A increases, the soundness error decreases, nonetheless, the
proving time increases linearly. This is a trade-off since the
protocol runs slower if we need to obtain a better soundness
error. It only takes more than 5 minutes to achieve a soundness
error of 0.06, and roughly 7 minutes to achieve 0.03.

b) Server: Fig. 9b shows the validation time of the ZKP
protocol when the server validates the proofs of 100 users.
Similar to the proving time, there is a trade-off between the
running time and the soundness error. For a soundness error of
0.03, we need about 3.5 minutes to validate 100 users, which
is suitable for most FL use cases [7].

To ensure that the ZKP has minimal impact on the model
performance, we have also evaluated our framework using
CIFAR-10 [23] and Imagenette [20]. After training the models
on these datasets under our framework with FL, we attain an
accuracy of 86.6% and 92.5% on CIFAR-10 and Imagenette,
respectively. This shows that our framework imposes negligi-
ble trade-offs in terms of model accuracy.

VII. RELATED WORK
A. Secure Aggregation in FL

Leveraging secret sharing and random masking,
Bonawitz et al. [8] propose a secure aggregation protocol
and utilize it to aggregate local models from users. However,
the protocol relies on users honestly following the secret
sharing scheme. Consequently, although the privacy guarantee
for honest users still retains, a single malicious user can
arbitrarily deviate from the secret sharing protocol and make
the server fail to reconstruct the global model. Furthermore,
there is no mechanism to identify the attacker if such an
attack occurs.

In [2] and [39], the decryption key is distributed to the
users, and the server uses homomorphic encryption to blindly
aggregate the model updates. However, the authors assume
that there is no collusion between the server and users so that
the server cannot learn the decryption key. Hence, the system
does not work under our security model where users can be
malicious and collude with the server.

Additionally, there have been studies on how to use generic
secure MPC based on secret sharing to securely compute any

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

842

function among multiple parties [4], [12], [24]. However, with
these protocols, each party has to send a secret share of its
whole data vector to a subset of the other parties. In order
to make the protocols robust, the size of this subset of users
should be considerably large. Since each secret share has the
same size as the entire data vector’s, these approaches are not
practical in federated learning in which we need to deal with
high-dimensional vectors.

On the other hand, differential privacy (DP) is considered
as a prominent privacy tool with a formal guarantee on
the privacy leakage [14], [28]. However, DP only aims to
protect membership privacy and does not conceal the local
models from the server. Previous work has shown that the
users in FL are still susceptible to other privacy attacks,
such as data reconstruction, even when DP is used [6], [15].
Furthermore, DP comes with a trade-off that reduces the model
performance. It has been suggested that using DP makes it
impossible to train a good model for datasets like CIFAR-10
or ImageNet with reasonable accuracy [6], [34]. Our proposed
protocol fully hides the local models from the server, disabling
any attacks that rely on inspecting the local models, while
maintaining the performance of the models.

B. Zero-Knowledge Proof for Detecting Poisoned Models

Although there have been many studies on developing a
ZKP protocol based on MPC, they have not been widely
used in the machine learning context. The IKOS protocol
proposed by Ishai et al. [21] is the first work that leverages
secure multi-party computation protocols to devise a zero-
knowledge argument. Giacomelli et al. [17] later refine this
approach and construct ZKBoo, a zero-knowledge argument
system for Boolean circuits using collision-resistant hashes
that does not require a trusted setup. Our proposed ZKP
protocol is inspired by the IKOS protocol with repetitions
to reduce the soundness error to %A. We also demonstrate
how such protocol can be used in the context of machine
learning, especially for attesting non-poisoned models while
maintaining privacy guarantees.

Another line of research in ZKP focuses on zkSNARK
implementations [5] that have been used in practical appli-
cations such as ZCash [33]. However, these systems depend
on cryptographic assumptions that are not standard, and have
large overhead in terms of memory consumption and com-
putation cost, thereby limiting the statement sizes that they
can manage. Therefore, it remains a critical challenge whether
zkSNARK could be used in machine learning where the circuit
size would be sufficiently large.

C. Defense Mechanisms Against Poisoning Attacks

There have been multiple research studies on defending
against poisoning attacks. Liu et al. propose to remove
backdoors by pruning redundant neurons [25]. On the other
hand, Bagdasaryan et al. [3] devise several anomaly detection
methods to filter out attacks. More recently proposed defense
mechanisms [26], [36] detect backdoors by finding differences
between normal and infected label(s).

Our work leverages such a defense mechanism to con-
struct a ZKP protocol for FL in which the users can run

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 32, NO. 1, FEBRUARY 2024

the defense locally on their model updates, and attest its
output to the server, without revealing any information about
the local models. Different defense mechanisms may have
different constructions of the ZKP protocols, nevertheless, they
must all abide by the properties specified in our framework
(Section III). As shown in Section V, we construct a ZKP
protocol based on the defense proposed by Liu et al. [25].

VIII. CONCLUSION

In this paper, we have proposed a secure framework for
federated learning. Unlike existing research, we integrate both
secure aggregation and defense mechanisms against poisoning
attacks under the same threat model that maintains their
respective security and privacy guarantees. We have also
proposed a secure aggregation protocol that can maintain
liveness and privacy for model updates against malicious
users. Furthermore, we have designed a ZKP protocol for
users to attest non-backdoored models without revealing any
information about their models. Our framework combines
these two protocols and shows that the server can detect
backdoors while preserving the privacy of the model updates.
The privacy guarantees for the users’ models have been theo-
retically proven. Moreover, we have presented an analysis of
the computation and communication cost and provided some
benchmarks regarding its runtime and bandwidth consumption

REFERENCES

[1] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308-318.

L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai, “Privacy-
preserving deep learning via additively homomorphic encryption,” IEEE
Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1333-1345, May 2018.
E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How
to backdoor federated learning,” in Proc. Int. Conf. Artif. Intell. Statist.,
2020, pp. 2938-2948.

M. L. Ben-Or, S. Goldwasser, and A. Wigderson, “Complete-
ness theorems for non-cryptographic fault-tolerant distributed com-
putation,” in Providing Sound Foundations for Cryptography: On
the Work of Shafi Goldwasser and Silvio Micali. New York, NY,
USA: Association for Computing Machinery, 2019, pp. 351-371, doi:
10.1145/3335741.3335756.

N. Bitansky, A. Chiesa, Y. Ishai, O. Paneth, and R. Ostrovsky, “Succinct
non-interactive arguments via linear interactive proofs,” in Proc. Theory
Cryptography Conf. Cham, Switzerland: Springer, 2013, pp. 315-333.
F. Boenisch, A. Dziedzic, R. Schuster, A. S. Shamsabadi,
I. Shumailov, and N. Papernot, “When the curious abandon honesty:
Federated learning is not private,” in Proc. IEEE 8th Eur. Symp.
Secur. Privacy (EuroS&P), Delft, The Netherlands, 2023, pp. 175-199.
[Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
EuroSP57164.2023.00020

K. Bonawitz et al., “Towards federated learning at scale: System design,”
2019, arXiv:1902.01046.

K. Bonawitz et al., “Practical secure aggregation for privacy-preserving
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 1175-1191.

A. Canteaut et al., “Stream ciphers: A practical solution for efficient
homomorphic-ciphertext compression,” J. Cryptol., vol. 31, no. 3,
pp. 885-916, Jul. 2018.

I. Damgérd, M. Jurik, and J. B. Nielsen, “A generalization of Paillier’s
public-key system with applications to electronic voting,” Int. J. Inf.
Secur., vol. 9, no. 6, pp. 371-385, Dec. 2010.

I. Damgard and M. Koprowski, “Practical threshold RSA signatures
without a trusted dealer,” in Proc. Int. Conf. Theory Appl. Cryptograph.
Techn. Cham, Switzerland: Springer, 2001, pp. 152-165.

I. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty computa-
tion from somewhat homomorphic encryption,” in Proc. Annu. Cryptol.
Conf. Cham, Switzerland: Springer, 2012, pp. 643-662.

[2]

[3]

[4]

[5]

[7]
[8]

[9]

[10]

(1]

[12]

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

NGUYEN AND THAI: PRESERVING PRIVACY AND SECURITY IN FEDERATED LEARNING

[13]

[14]

[15]

[16]

(17]

(18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

S. Das, T. Yurek, Z. Xiang, A. Miller, L. Kokoris-Kogias, and L. Ren,
“Practical asynchronous distributed key generation,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2022, pp. 2518-2534.

C. Dwork and A. Roth, “The algorithmic foundations of differential pri-
vacy,” Found. Trends Theor. Comput. Sci., vol. 9, nos. 3—4, pp. 211-407,
2014.

L. H. Fowl, J. Geiping, W. Czaja, M. Goldblum, and T. Goldstein,
“Robbing the fed: Directly obtaining private data in federated learning
with modified models,” in Proc. Int. Conf. Learn. Represent., 2021,
pp. 1-25.

M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2015,
pp. 1322-1333.

I. Giacomelli, J. Madsen, and C. Orlandi, “ZKBOO: Faster zero-
knowledge for Boolean circuits,” in Proc. 25th Usenix Secur. Symp.
(Usenix Security), 2016, pp. 1069-1083.

T. Granlund. (2010). Gnu Multiple Precision Arithmetic Library.
[Online]. Available: http://gmplib.org/

A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604.

J. Howard. (2019). Imagenette. Accessed: 2020. [Online]. Available:
https://github.com/fastai/imagenette

Y. Ishai, E. Kushilevitz, R. Ostrovsky, and A. Sahai, “Zero-knowledge
from secure multiparty computation,” in Proc. 39th Annu. ACM Symp.
Theory Comput., Jun. 2007, pp. 21-30.

J. Katz and Y. Lindell, Introduction to Modern Cryptography. Boca
Raton, FL, USA: CRC Press, 2020.

A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” Univ. Toronto, Toronto, ON, Canada, Tech. Rep., 2009.
[Online]. Available: https://www.cs.utoronto.ca/~kriz/learning-features-
2009-TR.pdf

Y. Lindell, B. Pinkas, N. P. Smart, and A. Yanai, “Efficient constant
round multi-party computation combining BMR and SPDZ,” in Proc.
Annu. Cryptol. Conf. Cham, Switzerland: Springer, 2015, pp. 319-338.
K. Liu, B. Dolan-Gavitt, and S. Garg, “Fine-pruning: Defending against
backdooring attacks on deep neural networks,” in Proc. Int. Symp.
Res. Attacks, Intrusions, Defenses. Cham, Switzerland: Springer, 2018,
pp. 273-294.

Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “ABS:
Scanning neural networks for back-doors by artificial brain stimulation,”
in Proc. ACM SIGSAC Conf. Comput. Commun. Secur., Nov. 2019,
pp. 1265-1282.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273-1282.

T. Nguyen, P. Lai, H. Phan, and M. T. Thai, “XRAND: Differentially
private defense against explanation-guided attacks,” in Proc. AAAI Conf.
Artif. Intell., vol. 37, pp. 11873-11881, 2023.

T. Nguyen, P. Lai, K. Tran, N. Phan, and M. T. Thai,
“Active membership inference attack under local differential pri-
vacy in federated learning,” in Proc. 26th Int. Conf. Artif. Intell.
Statist., vol. 206. PMLR, 2023, pp. 5714-5730. [Online]. Available:
https://proceedings.mlr.press/v206/nguyen23e.html

T. Nishide and K. Sakurai, “Distributed Paillier cryptosystem without
trusted dealer,” in Proc. Int. Workshop Inf. Secur. Appl. Cham, Switzer-
land: Springer, 2010, pp. 44-60.

P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in Proc. Int. Conf. Theory Appl. Cryptograph. Techn.
Cham, Switzerland: Springer, 1999, pp. 223-238.

(32]

(33]

[34]

[35]

(36]

(37]

[38]

[39]

843

T. P. Pedersen, “Non-interactive and information-theoretic secure ver-
ifiable secret sharing,” in Proc. Annu. Int. Cryptol. Conf. Cham,
Switzerland: Springer, 1991, pp. 129-140.

E. B. Sasson et al., “Zerocash: Decentralized anonymous payments from
Bitcoin,” in Proc. IEEE Symp. Secur. Privacy, May 2014, pp. 459—474.
F. Tramer and D. Boneh, “Differentially private learning needs better
features (or much more data),” in Proc. Int. Conf. Learn. Represent.,
2021, pp. 1-14.

S. Wagh, D. Gupta, and N. Chandran, “SecureNN: 3-party secure
computation for neural network training,” Proc. Privacy Enhancing
Technol., vol. 2019, no. 3, pp. 26-49, Jul. 2019.

B. Wang et al., “Neural cleanse: Identifying and mitigating backdoor
attacks in neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP),
May 2019, pp. 707-723.

H. Wang et al., “Attack of the tails: Yes, you really can backdoor feder-
ated learning,” in Advances in Neural Information Processing Systems,
vol. 33, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, H. Lin,
Eds. Red Hook, NY, USA: Curran Associates, 2020, pp. 16070-16084.
C. Xie, K. Huang, P.-Y. Chen, and B. Li, “DBA: Distributed backdoor
attacks against federated learning,” in Proc. Int. Conf. Learn. Represent.,
2019, pp. 1-19.

C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “BatchCrypt:
Efficient homomorphic encryption for cross-silo federated learning,” in
Proc. USENIX Annu. Tech. Conf. (USENIX ATC), 2020, pp. 493-506.

Truc Nguyen received the B.Eng. degree in com-
puter engineering from the Ho Chi Minh City
University of Technology, Vietnam, in 2018, and
the Ph.D. degree in computer engineering from the
Department of Computer and Information Science
and Engineering, University of Florida, in 2023.
His current research interests include trustworthy
machine learning, cybersecurity, and blockchain.

My T. Thai (Fellow, IEEE) is currently a UF
Research Foundation Professor with the Computer
and Information Science and Engineering Depart-
ment, University of Florida. She is also the Associate
Director of the Nelms Institute for the Connected
World. She has engaged in many professional
activities. Her current research interests include
trustworthy machine learning, big data analysis,
cybersecurity, and optimization in network science
and engineering. Her research works have led to six
books and more than 250 articles, including several

best paper awards. The most recent ones are the 2023 AAAI Distinguished
Papers Award and the 2023 Web Science Test-of-Time Award. She is also
a recipient of the Department of Defense Young Investigator Award and the
National Science Foundation CAREER Award. She is the Founding Editor-
in-Chief of the IET Blockchain journal and the Editor-in-Chief of the Journal
of Combinatorial Optimization.

Authorized licensed use limited to: University of Florida. Downloaded on June 14,2024 at 16:43:10 UTC from IEEE Xplore. Restrictions apply.

