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Abstract

We initiate a systematic study of generic stability independence and introduce the class of treeless theories in which
this notion of independence is particularly well behaved. We show that the class of treeless theories contains both
binary theories and stable theories and give several applications of the theory of independence for treeless theories.
As a corollary, we show that every binary NSOP3 theory is simple.
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We introduce the class of treeless theories. These theories are defined in terms of a certain kind of
indiscernible collapse which informally corresponds to the inability of the theory to code trees. This
approach carves out a natural model-theoretic setting that contains both the stable theories and the
binary theories. We build on the study of generically stable partial types begun in [Sim20] to develop
a theory of independence, called GS-independence, which allows us to establish the rudiments of a
structure theory for this class. Although the genesis of this approach comes from theories without the
independence property, we show that treelessness has strong consequences for the largely orthogonal
setting of theories in the SOP,, hierarchy.

We begin, in Section |, with a study of generically stable global partial types, as defined in [Sim20].
We show that, in an arbitrary theory, every complete type over a set of parameters A extends to a
unique maximal global partial type which is generically stable over A. This is then used to define
GS-independence: a is said to be GS-independent from b over A if b satisfies 7|44, Where 7 is the
maximal global partial type which is generically stable over A and extends tp(b/A). In Section 2,
we study the properties of this independence relation in general and find that it satisfies many of the
basic properties of independence relations.
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In order to define treeless theories, we introduce in Section 3, a new kind of indiscernible tree, which
we call a treetop indiscernible. The index structure in a treetop indiscernible is, in essence, the same
as that of a strongly indiscernible tree, together with a predicate identifying the leaves of the tree. We
show that finite trees (in a language with symbols for the tree partial order, the lexicographic order
and the binary meet function) together with a predicate for the leaves form a Ramsey class and hence
structures with this age give rise to a sensible notion of generalized indiscernible. In the tree w=*, the
set w® of leaves carries the structure of a dense linear order (under <;.) but also carries considerably
more structure induced by the tree structure. The treeless theories are defined in Section 3 to be those
theories in which, in any treetop indiscernible, this additional structure on the leaves is irrelevant, that
is, the sequence of tuples indexed by the leaves ordered lexicographically is an indiscernible sequence.
In Section 4, we connect treelessness to the above-mentioned work on GS-independence, showing that,
in treeless theories, GS-independence is symmetric and satisfies base monotonicity.

In Section 5, we prove that all stable theories are treeless and then in the remaining sections, we explore
the consequences treelessness has for the SOP,, hierarchy. In Section 6, we prove that NSOP; treeless
theories are simple. We obtain this result as a rapid consequence of the fact that GS-independence and
Kim-independence coincide over models in NSOP; theories, but we also give an alternative argument
for the corollary that binary NSOP; theories are simple, using only tools from the theory of Kim-
independence, which may be of independent interest. In Section 7, we show that every treeless NSOP;
theory with indiscernible triviality is NSOP,. These hypotheses are met by any binary NSOP; theory
and therefore, modulo Mutchnik’s recent result [Mut22] that NSOP; = NSOP,, our results establish that
every binary NSOP;3 theory is simple. This means, for example, that the known classification for simple
binary homogeneous structures due to [Kop18] applies directly to the a priori much broader class of
homogeneous binary NSOP;3 structures.

1. Generically stable partial types

In the following two subsections, we recall definitions and basic properties of generically stable partial
types from [Sim20]. The main result of the section is Corollary 1.9, which entails that every complete
type over a set A has a unique maximal extension to a global partial type which is generically stable
over A. This will serve as the basis of a notion of independence introduced in Section 2.

1.1. ind-definable partial types

We will work in a monster model M of a fixed complete theory 7. A partial type m(x) (over M)
is a consistent set of formulas with parameters in M closed under finite conjunctions and logical
consequences, that is:

o ¢(x),¥(x) emr = ¢(x) AY(x) € m;
o ¢p(x) en AME ¢(x) > ¥ (x) = Y(x) €.

Given a set A of parameters, |4 or 7|A denotes the partial type obtained by taking the subset of x
composed of formulas with parameters in A. Note that, because we require 7 to be closed under logical
consequence, if a £ 7|4, then 7 U tp(a/A) is consistent.

A partial type r is A-invariant if it is invariant under automorphisms of M fixing A pointwise.

Definition 1.1. We say that a partial type 7 is ind-definable over A if for every ¢(x;y), the set
{b : ¢(x;b) € n} is ind-definable over A (i.e., is a union of A-definable sets).

As noted in [Sim20, Section 2], one can represent an A-ind-definable partial type as a collection of
pairs

(¢i(x:y),doi(y)),
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where ¢;(x;y) € L, dp;(y) € L(A) such that n(x) is equal to J;{¢:i(x;b) : b € dp;(M)} (the
same formula ¢(x; y) can appear infinitely often as ¢; (x;y)). And, conversely, given a family of pairs
(¢i(x;y),deo;(y)), if the partial type m(x) generated by |J;{#:(x; D) : b € dp;(M)} is consistent, then
it is ind-definable. Observe that the partial types (¢(x; y), d¢(y)) and (d¢(y) — ¢(x;y);y = y) are the
same.

Fact 1.2 [Sim20, Lemma 2.2]. Let 7r(x) be a partial A-invariant type. Then 7 is ind-definable over A if
and only if the set X = {(a,b) : b € M®“,a E n|Ab} is type-definable over A.

Let 7(x) and n7(y) be two A-invariant partial types, where r is ind-definable over A. Then there is an
A-invariant partial type (7 ® 7)(x, ¥) such that (a, b) £ 7 ®n if and only if b £ n and a £ 7|Mb. Indeed,
(r ® n)(x,y) is generated by n(y) along with pairs (d¢(y,z) — ¢(x;y,2),z = z) (with ¢ € L and
d¢ € L(A)), where the partial type (¢(x; v, z), dé(y, z)) is equal to r(x). If in addition 7, is ind-definable
over A, then so is 7 ® 7. As usual, we define inductively 7! (xg) = 7(xo) and

7D (xg, .y x0) = () @ 7 (X0, -+ Xn).
Also, set

ﬂ(‘“)(xo,xl, L) = U P (X05 -+ o s Xpo1)-

n<w

All those types are ind-definable over A.

Instead of a partial type &, one could also consider the dual ideal I, of m defined as the ideal of
formulas ¢(x) such that —¢(x) € n. Then an I,-wide type (namely a type not containing a formula
in I ) is precisely a type over some A containing 7|A.

1.2. Generic stability

Definition 1.3. Let 7(x) be a partial type. We say that r is generically stable over A if r is ind-definable
over A and the following holds:

(GS) if (ax : k < w) is such that ag E m|Aa<x and ¢(x; b) € x, then for all but finitely many values
of k, we have k ¢(ag; D).

If  is a global partial type generated by 7o and ind-definable over A, to show that 7 is generically
stable, it suffices to check that x satisfies the condition (GS) for the formulas in 7.

Definition 1.4. We say that a partial type 7 (x) over M is finitely satisfiable in A if any formula in it has
arealization in A (recall that we assume 7 to be closed under conjunctions).

The following facts record some basic properties of generically stable partial types:

Fact 1.5 [Sim20, Lemma 2.4]. Let 7 be a partial type ind-definable over A. Let a £ 7|A and b such that
tp(b/Aa) is finitely satisfiable in A. Then a k 7|Ab.

Fact 1.6 [Sim20, Proposition 2.6]. Let 7 be a partial type generically stable over A. Then:

(FS) = is finitely satisfiable in every model containing A;

(NF) let ¢(x; b) € m, and take a k «|A such that E —¢(a; b). Then both tp(b/Aa) and tp(a/Ab) fork
over A.

Fact 1.7 [Sim20, Lemma 2.9]. Let (x) be generically stable over A, and let mo(x) C 7(x) be a partial
ind-definable type, ind-definable over some Ay C A (i.e., the parameters in the ind-definitions of 7 come
from Ag). Then there is 7. (x) C 7(x) containing 7p(x) which is generically stable and ind-defined over
some A, C A of size < |Ag| + |T|.

The following lemma is new but is a strengthening of [Sim20, Lemma 2.11]:
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Lemma 1.8. Let 7(x), A(x) be two partial types ind-definable over A. Assume that A is generically
stable over A and that n(x)|a U A(x)|a is consistent. Then m(x) U A(x) is generically stable over A.

Proof. We show by induction on n < w that there is @ = (a; : i < n) such that @ £ 7("”) (x)|4 and
a* & A" (x)|a, where @* = (an_1,dn-2, . ..,ao). For n = 1, this is the hypothesis. Assume we know
it for n, witnessed by @ = (a; : i < n). Since m(x)|4 U A(x)|4 is consistent so is m(x)[4 U A(x). Let
b = (b; : i < k) be along Morley sequence in that partial type. Since we assume our partial types are
closed under logical consequence, the fact that @ £ 7" |, implies that 7(") U tp(@/A) is consistent.
Thus, composing by an automorphism over A, we may assume that g £ 7" | ;- BY generic stability of
A, there is i < & such that b; E A|ag. It follows that (b;)"a £ 7"*D| 4 and that @*~ (b;) £ A7*V|4. This
finishes the induction.

This being done, we can construct, by Fact 1.2 and compactness, a sequence d = (d; : i < w) which
is a Morley sequence of m over A such that the sequence in the reverse order is a Morley sequence of A
over A. We can further assume that d £ 7(“)|y;. The set of formulas over M that are true on almost all
elements of d contains A(x), and therefore (x) U A(x) is consistent.

Finally, we conclude that m(x) U A(x) is generically stable over A. Let u(x) be the partial type
generated by m(x) U A(x). It is clear that u(x) is ind-definable over A using Fact 1.2 and the fact that
{(a,b) : b € M®,a ¥ pu(x)| ;5} is equal to the intersection {(a,b) : b € M®,a k n(x)| z} N {(a, D) :
beM®,ak A(x)] 45} If @(x; b) € u(x), then there are yo(x; c) € m(x) and ¥ (x; d) € A(x) such that
Yo(x;¢) Ay (x;d) F @(x; b). Taking I = (a; : i < w) £ u(“)|4, since I is Morley over A in both 7 and
A, we know that both {i :k ¥(a;;c)} and {i :F ¢ (a;;d)} are cofinite so {i :k ¢(a;;b)} is cofinite as
well. This shows y is generically stable over A. O

Corollary 1.9. Let p(x) € S(A). There is a unique maximal global partial type r,, generically stable
over A consistent with p — that is, if & is a global generically stable partial type consistent with p, then
7w C mp. It follows, in particular, that ), extends p.

Proof. By Lemma 1.8, if 7(x) and A(x) are two generically stable partial types consistent with p, ind-
definable over A, then 77(x) U A(x) is consistent and even generically stable over A. Hence, we can define
7p(x) as the union of all generically stable partial types consistent with p and ind-definable over A.
Then 7, (x) is consistent and is the maximal A-invariant generically stable partial type consistent with
p- As pitself is generically stable over A, it follows that 7, extends p. O

Lemma 1.10. Suppose p(x) is a complete type over A and E(x,y) is an equivalence relation which is
\/-definable over A and has unboundedly many classes represented by realizations of p. If 1 2 p is the
maximal generically stable partial type over A extending p, then m + —E(x, c¢) for all ¢ € M.

Proof. Let mp(x) be the global partial type defined by closing the set of formulas

S=pkx)U U{—'E(x;c) 1 c € M}

under conjunction and logical consequence. Then g is a consistent partial type by our assumption
that E(x,y) is \/-definable and has unboundedly many classes among realizations of p. We have 7
is ind-definable over A since, writing E(x,y) = \ ¢;(x,y), we can ind-define 7y (on the generating
formulas) via the schema (¢(x),y = ¥)p(x)ep and (=i (x,y), y = y);. If (a; : i < w) is a sequence with
a; k molaa.,;, then we have —E(a;, a;) for all i # j. Therefore, if ¢ € M, then ¢ can be E-equivalent
to at most one a;. Therefore, if x(x,c) € S, then we have £ y(a;, c) for all but at most one j. Since S
generates 7, this shows 7 is a generically stable partial type over A and is therefore contained in the
maximal one extending p by Corollary 1.9. O

The following proposition is essentially [Sim20, Remark 6.13]:

Proposition 1.11. Let n(x,y) be generically stable over A. Then the partial type n(x) = (Iy)n(x,y)
(which is also the restriction of & to the x variable) is generically stable over A.

Proof. Note that for any set B 2 A, n|B = (3y) (7 (x, y)|p).
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Since n(x,y) is A-invariant, n(x) is also A-invariant. We first show that 5 is ind-definable using
Fact 1.2. Fix a variable Z, and let X (x, y, Z) be the set of triples {(a, b,¢) : (a, b) £ n|Ac}. For any
tuples a and ¢, we have a £ n|Ac if and only if there is b such that (a, b, ¢) € X. As X is type-definable by
Fact 1.2, this whole condition is type-definable. By one more application of Fact 1.2, n is ind-definable.

We next show (GS). Assume for a contradiction that for some ¢(x;c) € 5, the set (®) (x; : k <
w) U {=¢(xg;c) : k < w} is consistent. Let (ay)r< realize it. Note that if we replace (ay : k < w) by
a sequence (a; : k < w) which has the same type over A, then we can find ¢’ =4 ¢ such that ~¢(a}; ¢”)
holds for all k. By invariance of i, we have ¢(x; ¢’) € 1,50 (@} : k < w) also witnesses a failure of (GS).

Choose bg such that (ag, bg) | 7|4, which is possible since ag F n|A. We build by induction on k
tuples (bg : k < w) suchthattp(ag, bx/A) = tp(ag, bo/A) and (ag, by) E n|Aa<rb<y. Assume we have
found by. As ag+1 E n|Aa <k, there is an automorphism o fixing Aa < such that o-(ax+1) F n|Aa<ib<k.
By the remark above, we may replace the sequence a-; by o (asy) since this does not alter the type
of the full sequence (a;);<.,- Hence, we may assume that actually a1 E 7|Aa < b <k and then we find
by as required.

We now have a sequence (aiby : k < w) such that (ax, bx)k<w £ 7 (xx : k < w) and ¢ such
that ¢(x; c) € 7 and —¢(ay; c) holds for all k. Since the condition (ay, bi)k<w £ 7' (xx 1 k < w)|a
is type definable by Fact 1.2, we can apply Ramsey and compactness and assume that the sequence
(axby : k < w) is indiscernible over Ac. Using (GS) for the type m, we conclude that for every k,
(ak, by) E m|Ac. But by the definition of 5, this means that a; £ n|Ac. Contradiction. O

The following corollary is [Sim20, Proposition 2.13]. It follows immediately from Lemma 1.8 and
Proposition 1.11.

Corollary 1.12. Let a(y) be a partial type, generically stable over A. Fix some a,b € M, b £ a(y)|a,
and let p(x,y) C tp(a, b/ A). Then the partial type n(x) := (Iy)(a(y) A p(x,y)) is generically stable
over A.

2. GS-independence

We write a \Lis b if for every partial type (x) generically stable over A, if b E 7|4, then b E 7|4,. Note
that this is equivalent to saying that b £ m.|4,, Where 7, is the maximal A-invariant generically stable
partial type extending tp(b/A). If p is a partial type, we say that pGS-forks over A if there is some B
such that there is no a £ p with a \Lis B.

Lemma 2.1. Ifa \Lg borb i/g a, then a \LSS b.
Proof. Immediate by Fact 1.6. )
Theorem 2.2. The relation \J_/GS satisfies:

1. (invariance) If A \Lgs B and o € Aut(M), then o (A) \L(C;S(C) o(B).

2. (normality) If A JJSS B, then AC Lgs BC.

3. (monotonicity) IfA | S5 B, A" C A, B' C B, then A’ | 95 B'.

4. (left and right existence) For all A and B, A J/gs Band A J,is B.

5. (right and left extension) If A J/gs B and B’ 2 B, then there is A’ =pc A such that A’ Lgs B
Similarly, if A’ 2 A, then there is B’ =ac B such that A’ \Lgs B’

6. (finite character) We have A i/gs B if and only if for all finite Ao C A and By C B, we have
Ao L& Bo.

7. (left transitivity) IfC S B C A, B | S Dand A | §° D, then A | &° D.

8. (local character on a club) For every finite tuple a and for every set of parameters B, there is a club
C < [B1=T) such that a \Lgs Banda \J_/gs B forall C € C.
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9. (antireflexivity) We have a \Lgs a if and only if a € acl(C).
10. (algebraicity)’ If a is b, then a JJE;S acl(b) and acl(a) \Lis b.

Proof. Invariance is clear from the definition. The implication from A \Lgs Bto AC \Lgs B is also clear

from the definition, and the statement of normality follows from this by extension. Monotonicity follows

from the fact that adding dummy variables to a generically stable partial type preserves generic stability.
Existence (on both sides) follows directly from Lemma 2.1 since clearly A \L{\ Band B \Lé A.

To prove right extension, assume that A \Lgs B and let B = BU B”. Let n(x"x"’) be the unique
maximal global partial type consistent with tp(BB’”’/C) which is generically stable over C. We first
show that tp(B/CA) U m|ca is consistent. By Proposition 1.11, the partial type (3x”)x(x"x”’) is
generically stable over C. It is therefore consistent with tp(B/CA), and the result follows. To conclude,
let B, = (B.,B) £ tp(B/CA) U m|ca. By an automorphism over CA, we may assume B, = B.

Then A igs BB!’ by Corollary 1.9 and BB =¢ BB”. Pick A’ such that A’BB” =¢ ABB?. Then, in

particular, we have A’ =cp A and, by invariance, A’ J/gs BB’ as desired.

Left extension follows by definition: If B £ 7| 4¢ for 7 generically stable over C, then r|c 4-Utp(B/AC)
is consistent, so let B’ realize it.

Finite character on the left follows from the definition. To see finite character on the right, assume
that we have A lgs B. Then there is a generically stable partial type 7 (x) extending tp(B/C) and a
formula ¢(x) € m|sc such that B £ —=¢. The formula ¢ only involves a finite subset By C B. Write
B = By U B’ and correspondingly split the variable x = x¢"x’. By Proposition 1.11, the partial type
7o (xo) := (Ix")m(xp"x’) is generically stable over C. Then the formula ¢(x) is a consequence of 7y and
we see that By does not satisfy mp|sc. Hence, A \Lgs By.

Next, we consider left transitivity. We will assume a \I/gi d and b L(C}S d.Let m 2 tp(d/C) denote
the maximal global partial type that is generically stable over C, and let # 2 tp(d/Cb) denote the
maximal global partial type that is generically stable over Ch. We want to show d £ 7|cap SO pick
¢(x;a,b) € m, and we will show that £ ¢(d;a, b). By our assumption that b Lgs d, we know that
tp(d/Cb) U r is consistent. Since tp(d/Cb) is a complete type and x is generically stable over C, we
clearly have that tp(d/Cb) U x is generically stable over Cb (one can also see this using Lemma 1.8),

hence contained in 7. Thus, ¢(x; a, b) € 7 and the fact that a \L(C}Sb d entails that £ ¢(d; a, b) as desired.

We now prove local character on a club. By Lemma 2.1, if B \LJCC a, then a \Lgs B and B Lgs a.In
particular, this happens if tp(B/aC) is finitely satisfiable in C. Therefore, it suffices to show that the set
C defined by

C={C C B:|C| < |T|and tp(B/aC) is finitely satisfiable in C}

is a club of [B] =", The set C is clearly closed under unions of chains of length < |T|, so we show it is
unbounded. Pick any X € [B] =" Inductively, we will build a sequence of sets (C;);<,, such that, for
all i < w, we have the following:
o XCC(C;CcC(Ciy CB.
o |C;] 1T
o If ¢(x;y) € L(C;) and there is some b € B with £ ¢(b;a), then there is some b’ € C;;1 with
E@(b;a).
There is no problem in carrying out the induction: We begin with Cy = X, and since |C;| < |T|, there
are only |T'| many formulas ¢(x; a) realized by some tuple in B and we form C;;; by adding to C; one
tuple from B for each such formula. Then we put C = |J; C;. By construction, tp(B/Ca) is finitely
satisfiable in C and hence X € C € C.
For antireflexivity, note that the partial type generated by {x # b : b € M} is a generically stable
partial type, consistent with tp(a/C) if a ¢ acl(C). Therefore, a \Lgs a implies that a € acl(C). For the

1See also Corollary 4.10 to complete the picture.

https://doi.org/10.1017/fms.2024.35 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.35

Forum of Mathematics, Sigma 7

other direction, suppose a € acl(C) and let A be the finite set of realizations of tp(a/C). By extension,
there is A’ =¢ A such that A’ \Lgs A, but, as a set, we must have A = A’ so a \Lgs a follows by
monotonicity.

Algebraicity: Suppose that a J/fs b. The fact that a | , acl(b) follows by right extension and

invariance. Similarly, acl(a) \Lis b follows from left extension and invariance. O

Remark 2.3. The form of local character in (5) was first isolated for Kim-independence in NSOP;
theories in [KRS19]. It, of course, implies the usual formulation of local character but is a more suitable
analogue of the local character of non-forking independence in simple theories for contexts without base
monotonicity. Additionally, the proof of local character plus Fact 1.6 imply local character on the left
since finite satisfiability implies non-forking. That is, the proof establishes that, for every finite tuple a
and set B, there is a club C C [B]=I"! such that B \Lgs aforall C € C.

Consider the following property:
(P) If 7 (x) is generically stable, then so is 7(“) (xq, x1, . . .).
Proposition 2.4. Assume that (P) holds, then LGS satisfies symmetry: For any A, a, b, we have

GS GS
al b < b]a.
A A
Proof. Assume that a \Lis b, but b Lis a. Let n(x) be generically stable over A, consistent with
tp(a/A), but not tp(a/Ab). Let ¢(x,y) € tp(a,b/A) be such that —¢(x,b) € n|Ab. Let n < w be

maximal such that there is (ay, ..., a,) £ 7|4 with Ni<n ¢(a;, b). (Note that such an n exists by
generic stability and ind-definability.) Consider the partial type

na(y) = tp(b/A) A B(x1,...,x) £ ™) N $(xi, ).

i<n

This type is generically stable by property (P) and Corollary 1.12, and it is consistent with tp(b/A) by

definition. As a \Lgs b, it is consistent with tp(b/Aa). But this means that we can find ay,...,a, E
7|40 with Ni<n ¢(ai, b). But then (ag := a,ay,...,a,) E |4 and A;, ¢(a;, b) holds. This
contradicts the maximality of n. O

Remark 2.5. In [Sim20, Example 2.12], there is an example which shows that property P does not hold
in general for generically stable partial types.

Question 2.6. Is \LGS symmetric in general? Does it always satisfy transitivty on the right?

3. Treeless theories

In this section, we define the treeless theories. We begin by showing that treefop indiscernibles, defined
in the first subsection, have the modeling property. Then we define treelessness in terms of a form of
indiscernible collapse from the structure on the leaves of the treetop indiscernible to an indiscernible
sequence.

3.1. Generalized indiscernibles and Ramsey classes

In this subsection, we will define generalized indiscernibles and introduce a new kind of indiscernible
tree, which allow us later on to define the treeless theories.
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Definition 3.1. Suppose [ is an L’-structure, where L’ is some language.

1. We say (a; : i € I) is a set of I-indexed indiscernibles if whenever
(505 -« -»Sn-1), (to, - - ., ty—1) are tuples from I with

qftp;(so, . .., Sn—1) = qftp, (o, - - .. ta=1),

then we have

tp(asy, - - -»as, ) =tplaz,...,as, ).

2. We define the (generalized) EM-type of (a;)icy, written EMy, (a; : i € I), to be the partial type
I'(x; : @ € I) such that ¢(xjy,...,x;,,) € I' if and only if £ ¢(ajy,...,aj, ) for all tuples
(Jos - - - » Jn—1) from I with (jo, ..., ju—1) E qftp;, (o, ..., in—1). If (b; i € I) E EMp/(a; : i € I),
we say (b; : i € I) is locally based on (a; : i € I).

3. We say that /-indexed indiscernibles have the modeling property if, given any (a; : i € I) from M,
there is an I-indexed indiscernible (b;: i € I) in M locally based on (a; : i € I).

Remark 3.2. When /-indexed indiscernibles have the modeling property and J is an L’-structure with
Age(I) = Age(J), we additionally have that, given (a;);cs, there is a J-indexed indiscernible (b;);cys
locally based on (a;);e;. This follows easily by compactness, and we will often use the modeling
property in this form.

For the remainder of the paper, except for the familiar case of indiscernible sequences, we will only
ever consider /-indexed indiscernibles in the case where [ is a tree, though there are important differences
between the notions of indiscernibility one obtains based on different choices of language for the tree I.
The language Ly is the language consisting of two binary relations < and <;,., and a binary function A.
The tree w <%, for example, may be naturally viewed as an Ly-structure, where < is interpreted the tree
partial order, <., as the lexicographic order and A as the binary meet function. If / is an Ly-structure
with Age(]) = Age(w=<*), then we refer to I-indexed indiscernibles as strongly indiscernible trees.

If @ is an ordinal, we define a language L, , which consists of Ly, together with unary predicates
Ppg for every 8 < a. The tree w=® can be viewed as an L ,-structure by giving the symbols of Ly their
natural interpretation and interpreting each predicate Pg as P, that is, as the set of nodes at level 8 in
the tree. If (a;);er is an I-indexed indiscernible for some L;_,-structure I with Age(l) = Age(w=%) for
some «, then we refer to (a;);¢; as an s-indiscernible tree.

Fact 3.3 [KKS14, Theorem 4.3] [TT12, Theorem 16]. Let denote I, be the L, ,,-structure (w=<¢, <,
<lexs Ny (Pa)a<w) With all symbols being given their intended interpretations and each P, naming the
elements of the tree at level «, and let Iy denote its reduct to Ly = {<, <jex, A}. Then both Iy-indexed
indiscernibles (strongly indiscernible trees) and Is-indexed indiscernibles (s-indiscernible trees) have
the modeling property.

Remark 3.4. Trees of height greater than w may also be considered as s-indiscernible trees, though
this requires adding additional predicates to the language on the index model: We say, for example,
that (a;),e,<# is an s-indiscernible tree if it is an w<P-indexed indiscernible where w<F is considered
as a structure in the language L, g which contains predicates (P, )q<p for all 8 levels of the tree. As
the language on the index model of an s-indiscernible tree is typically clear from context, we will not
specify it explicitly.

We will use the phrase Fraissé class to denote a uniformly locally finite class of finite structures
satisfying the hereditary property, the joint embedding property and the amalgamation property. Given
any L-structures A, B, we write Emby (A, B) to denote the set of embeddings from A to B. We omit the
L subscript when it is understood from context.
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Recall that a Fraissé class K has the Ramsey property if, given any A C B and r € w, there is some
C € K such that, if y : Emb(A,C) — r, there is some @ € Emb(B, C) such that x|qoEmb(4,B) 1S
constant, where

aoEmb(A,B)={aoB:BcEmb(A,B)}.

A Fraissé class satisfying the Ramsey property is called a Ramsey class.
There is a tight connection between Ramsey classes and generalized indiscernibles with the modeling
property, established by the following theorem of Scow:

Fact 3.5 [Scol2, Theorem 3.12]. Suppose [ is an infinite, locally finite structure expanding a linear
order in the language L’, such that quantifier-free types are isolated by quantifier-free formulas. Then
I-indexed indiscernibles have the modeling property if and only if Age(/) is a Ramsey class.

The language Lo p = {<, A, <jex, P}, where P is a unary predicate. The class Ko p consists of all
finite A-trees A in which every element of P4 is a leaf — that is, each A € Koy, p satisfies the axiom

(Yn € P)(¥v)[-(n 2 v)].

Note that if =% is viewed as an Lg_p structure in which A, < and <, receives their natural interpre-
tations and P is interpreted as w®, then Age(w=*) = Ko p.

Definition 3.6. We define a treetop indiscernible to be any I-indexed indiscernible where / is an
Ly, p-structure with Age(I) = Ko p.

We aim to show that treetop indiscernibles have the modeling property or, equivalently, that Ko p is
a Ramsey class. In the arguments below, it will be useful to introduce the following notation: If 7 is an
Lo, p-structure with Age(/) = Ko_p, we will write I, for P(I), and we will write I_ for I \ P(I). In other
words, I, names the leaves of the tree / and /_ names the nonleaves.

Recall that the tree w=“ may be viewed as an index model for s-indiscernible trees, in which case this
tree is viewed as a structure in the language Ls 11 = {A, <, <jex, (Pa)a<w}, Where P, is interpreted
as the ath level of the tree. We may regard the Lg_p-structure on w=% as a reduct of its Ly, 41 -structure,
identifying P with P,.

Lemma 3.7. Suppose 7,V are A-closed tuples from w=%, and we write
n=_1,)
v=(v_,vy)

such that _,v_ are tuples from v~ and 7,V are from w®. Then if _ = v_ and qftp; ,(77) =

qftp Lo.p (v), then we have qftp Lo.on (m) = qftp Ly ost 7).

Proof. Since 7 and v are A-closed and gftp;, . (7) = gftp;, , (V), it is enough to show that the map
7 — v preserves every predicate of the form P; for i < w. But this mapping takes _ to V_ so preserves
P; for every i < w. The mapping also takes 77, to v, so preserves P,, as well. m}

We will argue that Age; (w=%) is a Ramsey class. In order to do this, it suffices, by Fact 3.5, to
show the following:

Lemma 3.8. Given any (ay)yews<w, there is some (by) e ,<w Which is treetop indiscernible and locally
based on (ay)yewse.

Proof. Let (a;7),7€wsw be an s-indiscernible tree locally based on (a;);eqpsw.
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Claim 3.9. It suffices to find (b;);)e,=e Which is treetop indiscernible and locally based on (a},); e w=e -

Proof of claim. Suppose (by;);eq =« is treetop indiscernible and locally based on (a},) s« Suppose
further that 7 is a tuple from w=“ and & ¢(b3). By the local basedness of (b)), cn<w as a treetop
indiscernible, there is ¥ in 0= with aftpy, . (M) = qftpy, . (v) and k ¢(al). Then as (a},)ycw=w is

<w

locally based on (a;);cw=<e as an s-indiscernible tree, there is E in w=* such that qftp; »v) =

qftpy ., (€) and E (,o(ag). It follows then that gftp;, , (m = aftpy, , (€). This shows (by)yewse is
locally based on (ay);eq <. O

So now let EM, . ((a},)ew=«) denote the partial type in the variables (x;);cn=w consisting of the
following set of formulas:

{e(x7) : M E p(ay) forall v E qftp, , (7)}.

Let I' denote the partial type consisting of EMy,, ,, ((@},);cw=«), and the collection of formulas asserting
that (x;;); e =« is treetop indiscernible. By Claim 3.9, it suffices to show I' is consistent. A finite subset
of I' will be contained in

EMLO,p((agy)nEwS‘“NXg U {tpA (XT],-) = tpA (XV,-) RS k}

for some finite A, a finite tuple & from w=% and A-closed tuples n;,vi with v; k gftpy, . (77;) for all

i < k. Let C be a finite Ly p-substructure of w=% containing E and 77;,v; for all i < k and so C_ is the
Lo-substructure of w< consisting of the elements of C \ P(C).

For eachi < k, let ¢; = gftp; , (77;) and define a coloring ¢; : gi(w=?) — SlA(ﬁ"')(Q) by
ci({) =tp, (Cl/z)

for all £ € g;(w=®). Note that, since A is finite, we know SIA(T]") (@) is finite.
Let, for each i < k, 77_ ; be the subtuple of 77; consisting of those elements not in w* and likewise for

v Let g-; = qftpy, (77_ ;) = qftp,, (v-.;). Then we define a coloring c_; : g ;(w=“) — SlA(ﬁ")((D)
by setting, for each g € g_ ;(w=*),

c—i(7) = ci({) =tpa (‘1%)

for any ¢ € ¢;(w=“) with _ = i. By Lemma 3.7 and the s-indiscernibility of (a})newse, c—;i is well-
defined. As Age;, (w=“) is a Ramsey class, by Fact 3.3, there is some C’ = C_, an Lo-substructure of
w<%, such that c_,,v|q7,i(a) is constant for all i < k. Choose any C’ 2 C’, with C’ a substructure of
w=* and C’ isomorphic to C as an L, p-structure. Then, unravelling definitions, we have that Cilg: ()

is constant for all i < k. Letting ‘;_-“I, 7; and v; denote the corresponding tuples in C’, we have that a:?,

(a'ﬁ_)Kk and (aZ, )i<x realize the desired finite subset of I'. This concludes the proof. O

Corollary 3.10. Ko p is a Ramsey class.

Proof. Immediate by Lemma 3.8 and Fact 3.5. O

As Ko, p is a Ramsey class, it is, in particular, a Fraissé class, by [Bod15, Theorem 2.13]. We denote
the Fraissé limit of Ko p by 7. This structure will play an important role in the definition of treeless
theories in the subsection below.
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3.2. Treeless theories

Given an L p-structure I with Age(I) = Age(w=®) andn € I,1et C(n) = {v € P(I) : n 4 v}, that is,
the leaves of I that are in the cone above 7.

Definition 3.11. Say that T is treeless if whenever (a,;), <7 is treetop indiscernible and ¢ € T, then
(an)yec(#) is an indiscernible sequence over a¢ (i.e., is order-indiscernible over as with respect
t0 <jex)-

Proposition 3.12. The following are equivalent:

1. T is treeless.

2. If S is any Lo p-structure with Age(S¢) = Ko p forall é € S_, where S = {n € § : £ dn}, and
(ay : € S) is treetop indiscernible, then for any n € S, (ay : 1 € C(n)) is order indiscernible
over a,.

3. If (ay, : n € w=?) is treetop indiscernible, then (a,, : n € w®) is order indiscernible over ay.

Proof. The implication (2) = (1) is trivial and (1) = (3) is easy, using that Age(w=?) =
Age(T),soweshow (3) = (2). Assume (3), and suppose S is an Ly _p-structure with Age(S) = Ko p,
(ay : n € S)isatreetop indiscernible and ¢ € S_. We must show (a,, : n € C(¢)) is order-indiscernible
over a¢. By assumption, S¢ satisfies Age(Sz) 2 Age(w=*). Consequently, for each finite tuple 77 from
w=*, there is some v in S¢ such that qftp Lo.p () = qftpy, . (v). We define the type p7;(x7) to be tp(ay)
for some (equivalently, all) such v. Then, by compactness, I'(x,, : 7 € w=“) = 5 p7 is consistent,
where 77 ranges over all finite tuples of w=“. Moreover, letting (b, : n € w=*) be a realization, we have
that (b,, : 7 € w=*) is treetop indiscernible. By assumption, then, (b,, : n € w®) is order indiscernible
over by. By construction, this entails that (a,, : 7 € C(£)) is order indiscernible over a . As the case of
¢ € S, is trivial, this completes the proof. O

If T is NIP, the definition of treeless can be weakened to omit the condition that the leaves are order
indiscernible over the root:

Proposition 3.13. Assume T is NIP. Suppose that for all treetop indiscernibles (ay); e w<w, the sequence
(an)newe is an indiscernible sequence. Then T is treeless.

Proof. Suppose (ay)yewse is treetop indiscernible. We must show that (a;),ece« is indiscernible
over ag. By compactness, we may stretch the given treetop indiscernible to (a;); e With k = |T|*.
Since T is NIP, by [Siml5, Proposition 2.8], there is an end segment J C «“ such that (a;),es
is ag-indiscernible. By treetop indiscernibility, it follows that (a,),ccw is ag-indiscernible as well.
Therefore, T is treeless. O

Question 3.14. Is Proposition 3.13 true without the assumption that 7 is NIP? Note that weakened
notion of treeless, in which the leaves indexed by w® in a treetop indiscernible (a;);eq <« are only
required to be an indiscernible sequence (not necessarily indiscernible over ag) suffices for many of the
observations.

The following related question was suggested to us by Artem Chernikov:

Question 3.15. To check treelessness, does it suffice to consider triples of leaves? More precisely, if
whenever (a,);c7 is a treetop indiscernible and, for all 179 <jex 71 <iex 72 and Vo <jex V1 <iex V2
from 7, we have (ay,, ay,,ay,) =q, (ay,, ay,,a,,), does it follow that T is treeless?

Example 3.16. Any structure homogeneous in a binary language. Any theory of a pure linear order is
(distal and) treeless since it eliminates quantifiers in a binary language [Sim 15, Lemma A.1].

Example 3.17. The theory of any nontrivial ordered abelian group is not treeless. To see this, let G be
any nontrivial ordered abelian group. We may assume G is Np-saturated, and hence we can fix some
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g > 0 in G which is n-divisible for all n (take g to be in the intersection of n - G for all n < w). Fix
2 < n,m < w. Then for each n € n="™, as g is k-divisible for all k, we can define

anzzn(f)geG.

£ n
i<m

Consider some 179 <jex 71 <iex M2 <lex 13 in 0™ with

(mo Am1) > m1 A (70 Am2)

and

(2 Am3) > (170 A 12)

(and thus (70 A 1m2) = (70 An3) = (m Am2) = (1 An3)). Then we have
am - a;m < a;n - am

and
a7]2 - ano > an} - am.

Hence, by compactness and Corollary 3.10, we can find a treetop indiscernible (b;;), ¢q,<~ in a model
of Th(G) satisfying the same pair of inequalities, which shows that (b,,); e« is not an indiscernible
sequence, hence Th(G) is not treeless.

Remark 3.18. Even if T is treeless, it may be the case that (ay);)e = is s-indiscernible and (a;)pecw«
is not an indiscernible sequence (this (a;);ecq<w Will be necessarily not treetop indiscernible). For
example, let T be the model companion of the theory in the language L = {R, : n < w} that says
that the binary relation R, is a graph for each n. So in T, each R, defines a random graph and these
graphs interact totally independently. We may choose vertices (a,); en=<e so that, for leaves i, v € w®,
E R,(ay,a,) holds if and only if the length of n A v is n. This is preserved when passing to an
s-indiscernible tree locally based on the (a;);cw=<w, S0 we can assume (a,),eqn=<e is s-indiscernible.
Clearly, (a;);;cw« is not an indiscernible sequence. However, T eliminates quantifiers and the language
L is binary, so T is treeless.

Proposition 3.19. Suppose the theory T’ is interpretable in the treeless theory T. Then T’ is treeless.

Proof. Suppose T’ is interpretable in T and E is a T-definable equivalence relation such that if M £ T,
then M"/E is the domain of a model of T’ whose relations are definable in 7. Let M’ = M"/E
and let 7 : M" — M’ denote the interpretation map. Suppose (ay),eqns<e is a treetop indiscernible
in M’. Then for each n € w=*, we can choose some d,, € n‘l(a,]). We can then take (by)yecns<e
which is treetop indiscernible and locally based on (), ew<w in M. As T is treeless, (b;)pecee is an
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indiscernible sequence over bg. In particular, (7(b,)),cw« is an indiscernible sequence over m(byg).
But since (a,7),7€a,sw was taken to be treetop indiscernible in M’, we have, by local basedness, that
(an)yewse = (1(by))pewsw,hence (ay,)yewe is an indiscernible sequence over agy, which shows 7" is
treeless. O

Recall the following:
Definition 3.20. Suppose & > 1. We say that a formula ¢(x; yog, ..., yx—1) has the k-independence

property (k-IP) if there is some array (a;,j : i < k, j < w) such that, for all X C w*, there is some by
such that

E@(bx,a0,j,, a1, ak-1,jy) <= (Jo,...,jk-1) € X.

We say that a theory T has the k-independence property if some formula does modulo 7. A theory
without k-IP is called k-dependent.

Note that if a theory is k-dependent, then it is k’-dependent for all ¥’ > k. The independence property
is the same as 1-IP. The k-dependence hierarchy was introduced by Shelah in [She(07]. See also [CPT19]
for further details on these classes of theories.

Proposition 3.21. If T is treeless, then T is 2-dependent. In particular, T is k-dependent for all k > 2.

Proof. We prove the contrapositive. Suppose 7T has 2-IP witnessed by the formula ¢(x;y, z). Then, by
compactness, there is a sequence (b, ¢, : 7 € w®) such that, for all X C w® X w®, there is some ax
such that

Eolax;by,cy) = (1,v) € X.
Now, for each 7 € w®, let
Xy ={(r,8) e w? XW” 11 <tex Vv <tex Eandn Av a4 v A€}
Choose, for each 7 € w® some a;; such that
FEo(ay; by, ce) & (v,§) €X,.

Choose a sequence of same-length tuples (d;),co<w arbitrarily and set d, = (a,,by,,c,) for
each n € w®. Let (d%)ne‘usw be a treetop indiscernible locally based on (dj);eqns<w, and write
dy, = (ay, b}, c},) for each n € w®. Note that we still have

F@ay, b, cy) & N <iex vV <iex fandn A€ Qv AE.

Choosing 1o <jex M1 <iex M2 <lex M3 in W® with ng A ny > 11 Anz and o A 2 < 172 A 173, we have

4 4 ’ 4 ’ ’ 7 . . . .
E —up(am), by, cy,) and E @(aj, . by, , 6773)’ 80 (d},)yewe is not order-indiscernible. O

4. Symmetry and base monotonicity in treeless theories

In this section, we will prove that GS-independence enjoys symmetry and base monotonicity in treeless
theories. To do that, we start by introducing a generalization of the product operation discussed below
Fact 1.2.

4.1. A generalization of the product operator

Definition 4.1. Let 7(x) is a global partial type which is ind-definable over Ac where c is a y-tuple.
For any b =4 c, let m(x, b) be the type we get after applying an automorphism fixing A mapping ¢
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to b. In other words, if 7 (x) is defined by the collection of pairs (¢; (x; z), d¢;(z,¢)), where ¢; € L and
d¢ € L(A) then ¢(x, b) is defined by (¢;(x; z), dp;(z, D)).

Remark 4.2. We note that 7 (x, b) is not obtained by simply replacing instances of ¢ in & with b.
Consider, for example, the theory 7 of an equivalence relation with infinitely many classes, all of which
are infinite. Let A = () and ¢ any element, and consider 7 (x) the global non-forking extension over ¢ of
the type axiomatized by {E (x, c¢)}. As T is stable, m(x) is generically stable over c. Let d # ¢ be some
element in the same class as ¢, and let b be an element in a different class. Then E (x, d) AE (x, ¢) € m(x).
Simply replacing ¢ with b would produce E(x,d) A E(x,b) which is inconsistent. In this situation,
n(x, b) is the global non-forking extension of the type over b axiomatized by E (x, b).

Lemma 4.3. Suppose n(x) is a global partial type which is ind-definable over Ac where c is a y-tuple
and that A(y) 2 tp(c/A) is an A-ind-definable global partial type. Then there is a unique ind-definable
over A partial type (= ) (x,y) such that for any B 2 A, (a,b) E (= A)(x,y)|p ifand only if b £ A|p
and a £ n(x,b)|gp.

It follows that if 7(x) is ind-definable over A, then m <~ 1 =71 ® A.

Proof. Let ¢(x,y,z) be a formula in L (without parameters). Let S g be the collection of formulas
Y (y,z) € L(A) such that for all d, ¢(x, ¢, d) € mif and only if (¢, d) holds for some € S4. Note that
(*)forany b =4 c, Sg(x’b) = §7, so we can discard the r in the notation and write S. Let (7> 1) (x, )
be the closure under finite conjunctions and logical consequences of A(y) U {¢/(y,d) — ¢(x,y,d) :
d(x,y,2) € L,y(y,z) € Sy}. Note that m > A is ind-definable over A as A(y) is and the second part is
ind-definable by the defining scheme (Y (y;z) — ¢(x,y;2);z = z), where ¢ € Sy. It clearly satisfies
the requirement by (*) above.

Uniqueness follows by the fact a global partial type is determined by the realizations of its restrictions
to small sets. In the case when x is ind-definable over A, note that 7 (x, b) =  for any b =4 c, so that
uniqueness implies that 7 <1 =7 ® A. O

Remark 4.4. In the context of Remark 4.2, letting A(y) = tp(c), (m = A)(x,y) is axiomatized by
{E(x, )}

Proposition 4.5. Let T be any theory. Let b € acl(A) and n(x) be generically stable over Ab, and let
A(y) = tp(b/A). Then (m = A)(x,y) is generically stable over A.

Proof. m > A is ind-definable over A by Lemma 4.3.

We show that A is generically stable over A. Let (a;, b; : i < w) be aMorley sequence in 7> over A.
Assume for a contradiction that there is d and a formula ¢(x, y;z) € L(A) so that =¢(x,y;d) € m = A
and A;.,, #(a;, b;; d) holds. We may assume that (a;, b; : i < w) is Ad-indiscernible.

As b € acl(A) and (b; : i < w) is A-indiscernible in the type of b over A, there is some b’ such
that b; = b’ for all i < w. Thus, we have that b" £ 4|4 (trivially) and a; £ 7(x, b")|aq_,r foralli < w.
Additionally, (a; : i < w) is indiscernible over Adb’ so by generic stability a; £ 7(x,b")|aa_;bd>
contradiction. O

The following proposition is a strengthening of Proposition 4.5 to any generically stable type 4
provided T is treeless.

Proposition 4.6. Assume that T is treeless. Let n(x) be generically stable over Ac, and let A(y) 2
tp(c/A) be generically stable over A. Then (1 =< A)(x, y) is generically stable over A.

Proof. The type 7 = A is ind-definable over A by Lemma 4.3.

We show that 71 is generically stable over A. Let (a;, b; : i < w) be aMorley sequence in 7> over A.
Assume for a contradiction that there is d and a formula ¢(x, y;z) € L(A) so that =¢(x,y;d) € m < A
and A;.,, ¢(a;, b;;d) holds. We may assume that (a;, b; : i < w) is Ad-indiscernible. By generic
stability of 4, it follows that (b; : i < w) is a Morley sequence of A over Ad.
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We extend this sequence to a tree (¢, : 7 € w=®) so that:

o Forn e w<®,
cp=(an by)=(ay,; i <w)by),

where (a,,; : i < w) is a Morley sequence in 7 (x; b;,) over Ab,,.
o For every 1 € w®, the sequence (ay|;, (i), by)i : | < w) has the same type as (a;, b; : i < w) over A.

To build the tree, we start by taking a Morley sequence (a; : i < w) in 7(x; bo)|ap, with a|) = ao, and

then we set cg = ((a; : i < w), bo). Assume we have constructed (cy),, ¢ <+ such that, for all n € wk,

(anlipey,byli 1i < k) =4 (a;b; 1 i < k).
Fix n € wk. Then we choose a’ and b’ so that
(a,”,‘,n(,*),b,”i i< k)a'b =4 (aib; i < k)agby.

Since ax £ w(x; bi)|aa by » We know a’ satisfies 7 (x; b”) restricted to A(ay i,y by - i < k)b" and
therefore

”(X; b,) U tp(a,/A(alﬂi,I](i), b77|i RS k)b,)

is consistent. We then choose @’ = (a; : i < w) to be a Morley sequence over A(a i, (i), byji 1 i < k)b’
in this type with a(’) = a’ and define ¢, = (a,,b,) by setting a,, = a’ and b,, = b’. This defines
(cypine w<**1) and thus, by induction, all of (cn)pew=<w.

For each branch € w®, we can find d;; such that dy;(ayn,5(n)> Pyin)n<w =4 d(@n, bp)n<e and
hence such that A\, -, ¢(ayn,n(n)> byini dy) holds. Define a tree (e, : 7 € w=®) by setting e, = b,,
forn € w=“ and e;; = d;; forn € wW?”. Let (¢;, : 1 € W) = (b), : n € W=¥)7(d;, : 1 € W) be
treetop indiscernible over A, locally based on (e, : n € w=®). By compactness, we can stretch our
treetop indiscernible to (e;, : 17 € k=@) for k = (|T| + |A|)*. By treelessness, then, (dj, :m € k) is
order-indiscernible over Aby.

By induction on n, we will build a path 7. |(n + 1) € ¥"*! and sequences @, = (a,,; : i < ) for each
n < w such that

o Foralli < n, g realizes 7(*) (x; bgb) over Ab{b.
o (@i n, (i) : i < n) realizes D (x; by) over Aby.
o Foralln € C(n:|n), F ¢(an,y,(n), by: dy,), where we recall that C(v) = {n € «“ : v < n}.

As (e}, 1 7 € k=) is locally based on (e, : 7 € w=*), we know
@F)| 7 @Ebplany A [\ N\ b bl dy)
i<k neC((i))
since this follows from
@)@ blan, A N\ N b byidy)),
i<wneC(v™(i))

and this was witnessed by (a,; : i < w). Therefore, we canletag = (ao,; : i < k) be a Morley sequence
in w(x; by) such that £ A\; ., \yec @y ¢(a0.i, by, dy). We set,.(0) = 0.
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Assume we have constructed 7. |k for k > 0. Since (d;7 : € k) is an indiscernible sequence over
Ab@,, we know

((d}))necy 1< &) Zap, ((d}))pec (i~ 11 < K).

Choose ay such that

ao((dy)pec iy 11 < k) Zapy ax{(dy)pec (i~ 11 < K).

Then ay is a Morley sequence in 7 (x; b)) over Abj and we have

F ¢(ak.i, by, dy)

for all n € «“ with n.|k < n and (k) = i, by the choice of a; and the properties of ay. By generic
stability and the choice of «, there is some i, < « such that

ak,i, F m(x; bm)lA(ai,q*(i))i<k .

Then we set 0. (k) = i..

We have constructed a path 77, € x so that (@, (n) Jn<w realizes 7@ (x, b{) over Abj. Extracting,
we may assume that this sequence is indiscernible over Abjd;, . Now, bj £ A|aq;, and since m(x, by)
is generically stable over Abg, also (an, . (n) : 1 < w) is a Morley sequence of (x, by) over Abjd;, .
Hence, (a0, . (0), by) F 7 > A|aq, . Contradiction. O

4.2. Symmetry and base monotonicity in treeless theories

Corollary 4.7. Assume T is treeless. Then property (P) holds. More generally, if n(x) and A(y) are
generically stable over A, then so is (r @ 1)(x, y).

Proof. Pick any ¢ £ A|s, and let I’ = A2 U tp(c/A). Then by the ‘it follows’ part of Lemma 4.3,
nxA"=n®A". Thus, (1 ® A’) is generically stable by Proposition 4.6.

Suppose, towards contradiction, that (7 ® 1) is not generically stable over A. Then there is a sequence
I = (ainb; ;i <w)e (18 2) @], and some ¢(x,y;d) € (7 ® 1) such that A;_,, —¢(a;, bi;d).
After extracting, we may assume that / is Ad-indiscernible. Then for 1’ = A U tp(by/A), we have
Te(r®@A) @), and ¢(x,y;d) € 1 ® ', contradicting the generic stability of (7 ® A’). O

Corollary 4.8. If T is treeless, then \LGS satisfies symmetry and base monotonicity.

Proof. Symmetry follows by Corollary 4.7 and Proposition 2.4. To see base monotonicity, assume
a \Lis bc. We want to show a \Lis b. If not, then b ¥ 7(x)|aqc, Where (x) is the maximal global type
extending tp(b/Ac) which is generically stable over Ac. Let A(y) = tp(c/A). Since A(y) is generically
stable over A and n(x) is generically stable over Ac, Proposition 4.6 implies that (7 = A)(x,y) is
generically stable over A. Since (b,¢) E 7 < A4, if and only if ¢ £ A|a, and b £ 71(x, ¢) = 71(X)|Aac>
we know that (b, c) ¥ m < A|a,. However, m < A is consistent with tp(bc/A), so this contradicts our
assumption that a \J_/GS bc. m]

Corollary 4.9. If T is treeless, then T is rosy.

Proof. By [AdI09, Remark 5.5], a theory is rosy if and only if there is a strict independence relation:
that is an Aut(M)-invariant ternary relation on small subsets of M satisfying the properties listed in
Theorem 2.2, plus symmetry, base monotonicity and full existence. Full existence is easily seen to be
a consequence of extension and existence so follows from Theorem 2.2 as well. Symmetry and base
monotonicity follow from treelessness by Corollary 4.8. O

We end this section with the following general statement.
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Corollary 4.10. For any theory T, a \Lgs b if and only if a Lijm) b.

Proof. First, assume a J/is b. By algebraicity and normality (see Theorem 2.2), a iis acl(Ab). Now,
continue as in the proof of Corollary 4.8, using Proposition 4.5 instead of Proposition 4.6 to get

GS - GS -
a Laica acl(Ab). Finally, a | A b follows from monotonicity.

For the other direction, assume a vgj( A b. Since acl(A) J/is b by algebraicity and left existence,
we may apply left transitivity and monotonicity to geta | A b O

5. Stable theories are treeless

In this section, we will prove that stable theories are treeless. This will involve an analysis of various
indiscernible sequences living inside of treetop indiscernibles. We will work with treetop indiscernibles
indexed by 7 and make use of the homogeneity of this structure.

Lemma 5.1. Assume T is stable. Suppose (a,;), eT is treetop indiscernible. Given any 1y <jex . .. <fex
N € T- for n > 1, there are vy <jex ... <jex Vn—1 Satisfying the following:

L (vo, .. vn-1) B dftpr, Moy« - s 7n=1/{0}).
2., L (/\j<n Vj) and 0y, <iex (/\j<n Vj)'

3. (ayys---sap,) = (Ayy, ... 04y, ,ay,).

Proof. Suppose 1o <iex --- <lex Mn is an arbitrary sequence from 7_. Let & = A<, n;, and let £,
be any element of 7_ such that &, < . < 1, and such that ¢, is either strictly above or incomparable
with each other element in the (finite) Lo p-substructure of 7~ generated by {1, . . ., 77, }. Choose some

N« € T1 such that 7, <jex 1. and 0, A 0. = .
Now, we choose a sequence of pairs of nodes (&;, {;);cz satisfying the following:

1. Foralli < j,
§i Q4L AN,

2. Fori <0,¢; <. and, fori >0, {, <&;.
For each i € Z, pick (n;.0, ..., ni.n—1) such that we have

(16,05 -+ > Mion=1, & §i 1) E Aftpr , (Mos - - o, Mnt, €y s M)

Note that, by the choice of ¢; and &;, in fact, the sequence (77;);ez is a quantifier-free indiscernible
sequence, where 7; = (1.0, - - - » i .n—1). Moreover, we have

(i, 1n) & qftpr, . (M0, - - - 71n)
foralli < 0, and
(M;5mn) F qftpL[,’p (0> 1)

foralli > 0.
To conclude the proof, it suffices to show that (ay,,...,ay,,) = (ayy,s...»an,_»an,). Suppose
this is not true. Then there is some formula ¢ such that

= ‘P(ano’ cees aﬂn) A _"p(aﬂo,o’ s ’aUO,n—l’aUn)'
Then, by indiscernibility, we have
{ean,gs-vtn %) i <0y U{=@(an .. 0y, »X) i 20}

is consistent, so ¢ witnesses the order property in 7, contradicting stability. O
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Recall that 7o, . . ., 17,1 are a fan in a tree if there is a node v such thatn; An; = viforalli # j.

Lemma 5.2. Assume T is stable. Suppose (ay,)yeT is treetop indiscernible, n > 1 and 1o <jex . .. <jex
nn are from T_. Then if 1, . . ., n, together form a fan with common meet (. andng L (., then there are
Vi, ..., Vy satisfying the following:

1. (vl,...,vn)I:qftpLO’P(m,...,nn).
2. /\lsjsrz Vi <iex NM0-
3. 10, V1, ..., Vs form a fan.

4. (AyyQypys e oslyy) = (Aygs Qyys oo Ayy).

Proof. Let&, = N\ j<,mj- As &« = N1 <j<n 11, our assumption entails £, < £,. Choose any 1. € T with
v <, and 1y, <jex N+ Choose (&;, ¢;)iez such that

1. é:o Zf* and §0 = {*, and
2. foralli < j, & < <& < <An..

From here, we follow the proof of Lemma 5.1. We pick, for each i € Z, some (7; 1, . .., 7;.,) such that
(Mi1s - Mins €0 Gioms) B Aftpry (M1, s Eas $s 115)
Then (77,);ez is a quantifier-free indiscernible sequence, where i; = (;.1, . . ., i ), With
(10, 7;) E aftpy, . (1o, - .. 7n)

for alli > 0, and

(770’ ﬁz) F qftpLovp (TIO’ ﬁ—l)’

foralli < 0.

Then we define vy, ..., v, by setting v; =n_y j for 1 < j < n. Conditions (1) and (2) of the lemma
are clearly satisfied. Note that vy, .. ., v,, form a fan with common meet {_;. Given any j with 1 < j < n,
we also have v; A . = {1 and since {1 < &y < 1., we have v; A &y = {1 and hence v; Ao = {_1.
This shows that 79, vy, . . ., v, form a fan, so Condition (3) is satisfied as well.

Finally, we check Condition (4). Suppose this fails. Then there is some formula ¢ such that
E@(@py @ryys-vslpy) AN@(Qyy gy vyl
Then, by indiscernibility, we have
{e(xsan, s .. ap,) 120 U{~p(x;5ay,,....,a,,) i <0}
is consistent, so ¢ witnesses the order property in 7, contradicting stability. O

Theorem 5.3. Suppose T is stable and (a,)),eT is a treetop indiscernible. Then (ay)yeT, is an indis-
cernible sequence (ordered by <j.x).

Proof. Note that if 79 <jex ... <jex Tn and vo <jex ... <iex Vn are fans from w®, then

qftp,, . (M) = aftp, . ().

Therefore, in order to prove the theorem, it suffices to prove that if 79 <jex ... <iex 1n i @ sequence
from w® and vy <jex ... <tex Vn is a fan in w®, then

(angs .- -sany,) = (ayy,...,ay,).

We will prove this by induction on n. The n = 0, 1 cases are trivial.
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Suppose now we are given 19 <jex - -. <fex Nn+1 from 7. By Lemma 5.1, we find vq, ..., v, € T;
such that
L. (vo,....,va) Edftpy, (10, . ... 70).
2. Mn+1 L (/\an Vj) and M+l <lex (/\jgn Vj)'
3' (aUO’ R aﬂn’annﬂ) = (aVO’ cre aVn’ a77n+l)‘

Let 7. = Must A Nj<p vy, andset T" = {& € T : e < &, Mpa1 <iex €} Then vo, ..., v, € T’ and
(ay)ne is a treetop indiscernible over a,,,,, . By induction, there is a fan ) <jex ... <jex 7, such that

(avo, cees av,l) Ea,,m] (an(’), cees an;,)'
Then, by Lemma 5.2 applied to the tuple (a,lml,a%, ...,ay ), there are, in T, ’7(,)’ <lex .- <lex
M, <lex Mn+1 such thatny, ..., 7, and 7,41 form a fan and
(“n()’ oy, dy,,,) = (an{)’v-“’anliv“nml)~
This yields
(aﬂo* cec ann’ a77n+]) = (aﬂ(/)” R a’];{’ annﬂ)’
as desired. ]

Corollary 5.4. If T is stable, then T is treeless.

Proof. This follows from Theorem 5.3 and Proposition 3.13 since stable theories are NIP. O

6. From NSOP; to simple

We will show in this section that treeless NSOP; theories are simple. We will show this, first, by
analyzing \LGS in NSOP; theories, showing that it always agrees with Kim-independence in NSOP;
theories with existence, and over models in all NSOP; theories. We also give a rapid alternative proof in
the special case of binary NSOP| theories, using the ‘lifting lemma’ machinery from [KR21, Section 6].

6.1. Treeless NSOP, theories
Definition 6.1.

1. We say ¢(x;y) has the tree property if there is some k < w and a collection of tuples (a,);ew<w
satisfying the following:
(a) Forally € w®, {p(x;a,);) : i < w} is consistent.
(b) Foralln € w=“, {¢(x;a,~¢y) 1 i < w} is k-inconsistent.
We say T is simple if no formula has the tree property modulo 7.
2. We say ¢(x;y) has SOP; if there is a collection of tuples (a,),c2<« satisfying the following:
(a) Forallny € 2%, {p(x;a,);) : i < w} is consistent.
(b) Forallpn Lve2=“ifn (nAv) ~(0)and v = (n Av) —~ (1), then {¢(x;ay,), p(x;a,)} is
inconsistent.
We say T is NSOP; if no formula has SOP; modulo 7.

It is shown in [KR17] that, in any NSOP; theory, there is an independence relation \LK called
Kim-independence, defined over models, that generalizes the familiar non-forking independence in
simple theories and has many nice properties. Moreover, in simple theories, over models \LK and \Lf

agree [KR 17, Proposition 8.4], where \Lf denotes non-forking independence. In fact, following the
approach of [DKR22] for defining Kim-independence over arbitrary sets, it follows as an immediate
consequence of Kim’s Lemma that J/f and \LK agree over arbitrary sets in simple theories.
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Definition 6.2. Suppose M k£ T. By an LK -Morley sequence over M, we mean an M-indiscernible
sequence I = {(a; : i < w) such that a; \J«1I\{/1 ac;foralli < w.

Fact 6.3. Suppose T is an NSOP; theory. We have the following:

1. Symmetry: if M £ T, a J_/II; b if and only if b \J-/zl\fz a. [KR17, Theorem 5.16]

2. Tissimpleifand only if J/K satisfies base monotonicity —thatis, whenever M < N e T, ifa | ]’\; Nb,
thena | X b. [KR17, Proposition 8.8]

3. Witnessing: If M £ T and I = {a; : i < w) is an \LK—Morley sequence over M with ag = a, then
b \L]IEI a if and only if there is I’ =y, I such that I” is M b-indiscernible. [KR21, Theorem 5.1]

4. Liftinglemma:If M < N e Tanda v]\K/I N, then there is an N-indiscernible sequence I = (a; : i < w)
with ag = a that is both \LK -Morley over M and \LK -Morley over N. [KR21, Proposition 3.3]

Note that the following proposition does not require treelessness:

Proposition 6.4. [f T is simple, then J_/GS coincides with the usual non-forking independence. If T is

NSOP| and M is a model, then \l/(l\}/[s coincides with Kim-independence over M. In particular, symmetry
holds in these cases.

Proof. We argue in the NSOP| case; the proof in the simple case is the same, except that we can drop the
assumption that M is a model (in that case Kim-independence is just the usual forking-independence).
Let M be a model, and consider a tuple b. Let p = tp(b/M). Consider the partial type

w(x) = p(x) U{=¢(x;c) : c € M, ¢(x;¢) U p(x) Kim-divides over M}.

This partial type is M-invariant. To see that it is ind-definable over M, by Fact 1.2, we have to argue that
the set

X={(a,b):beM®, ak 7yt

is type-definable over M. Fix I = (a;)i<., any coheir sequence over M in p. Let q(xo,x1,...) =
tp((ai)i<w/M). Notice that, if (a,b) € X, then, since a =p ao, there is I = (a})i<w With I’ =p 1
and aj = a. By symmetry and the definition of x, Evlﬂf] a and hence there is I”’ =y, I’ which is

M b-indiscernible. This shows that if (a, b) € X, then thereis I’ £ ¢ which starts with a and whichis M b
indiscernible. On the other hand, if there is some JEq thich starts with a and which_is M b-indiscernible,
then by symmetry and Kim’s lemma, a \L]\Kl b so (a, b) € X. This shows that (a, b) € X if and only if

() |xEgAxg=aAnXis MZ-indiscernible],

which shows X is type-definable over M.

Additionally, 7 is generically stable: If (a; : i < w) is a sequence with a; £ 7|p4_, forall i < w,
then we have a; J_,fl a<;i. Suppose —p(x; b) € m, so ¢(x; b) Kim-divides over M and we must show that
E —p(ay; b) for all but finitely many i. If not, then, after throwing away a co-infinite set, we may assume
F ¢(a;; b) foralli < w. However, by symmetry, ¢(ao; y) Utp, (b/M) Kim-divides over M and, thus, by
[KR21, Remark 5.3], {¢(a;;y) : i < w} Utp,(b/M) is k-inconsistent for some , a contradiction. This
establishes that r is generically stable, so a \I/(A;S b implies a \I/IA; b (by symmetry and the definition
of ).

For the converse, assume that a \Lf/[ b and for a contradiction that a L(A}/[S b.Setp(x,y) =tp(a,b/M).
Let 7(y) be generically stable over M, consistent with tp(b/M) but not with tp(b/Ma). Fix some
Y (y;a) € tp(b/Ma) such that —(y;a) € n. Take (b; : i < w) a LGS—Morley sequence in tp(b/M).
Then by the first part of the proof, it is a \IJK -Morley sequence. As a \Lﬁ b, \ p(x, b;) is consistent. Let
a’ be arealization. We have a’ = {¢/(b;;x) : i < w} and, since a’ =p; a, we have, by the M-invariance
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of &, that = (y;a’) € m as well. However, by the generic stability of &, we know that {i :|= ¥(b;;a’)}
is finite, a contradiction. m|

Theorem 6.5. Suppose T is a treeless NSOP1 theory. Then T is simple.

Proof. As T is NSOP;, we have, by Proposition 6.4, that J_/K = \LGS over models. By Corollary 4.8,
the treelessness of T implies iGS satisfies base monotonicity. O

Question 6.6. If 7 is NSOPy, is J/GS symmetric over an extension base or even over an arbitrary base
(see also Question 2.6)?

6.2. A quick alternate proof for binary NSOP, theories

In this subsection, we give a short alternative proof that binary NSOP; theories are simple. This,
of course, follows from Theorem 6.5 but admits a direct proof using established facts about Kim-
independence. The proof is short and different enough that we thought it worthwhile to include.

Lemma 6.7. Suppose T is binary, C is a set of parameters and I = {a; : i < w) and J = {(b; : i < w)
are C-indiscernible sequences with ay = bg and I = J. Then I =¢ J.

Proof. We may write a; = (a;,-..,aim-1) and likewise for b;, for all i < w. If ¢ € C, then, since /
and J are C-indiscernible sequences starting with ag = by, we have

ajjc = ag jc = by jc = bj je,

foralli < wand j < m. Since I = J, it follows that any pair of elements selected from /C will have the
same type as the corresponding pair from JC, and thus, by binarity, /C = JC. This shows I =¢ J. O

Theorem 6.8. Suppose T is binary and NSOP|. Then T is simple.

Proof. By Fact 6.3(2), it suffices to show that \|/K satisfies base monotonicity. So fix M < N £ T,
and assume a \J-«zl\i Nb. We must show a J_/g b. By symmetry (Fact 6.3(1)), we have bN \Lfd a and it
suffices to establish b \LIA{, a.

Asa J_,f/[ N, there is a sequence I = (a; : i < w) with ag = a which is simultaneously LK -Morley

over M and over N, by Fact 6.3(4). Because bN \Lf/l a, there is J =4, I such that J is Nb-indiscernible.
By Lemma 6.7, since I =57 J and I and J are both N-indiscernible, starting with a, we have I =x J, from
which it follows that J is \LK -Morley over N as well. By Fact 6.3(3), this shows b \Lg a, completing
the proof. m

7. From NSOP; to NSOP,

In this section, we show that treeless NSOP; theories with trivial indiscernibility are NSOP,. Trivial
indiscernibility is a weak form of binarity introduced in [BL21]. Because binary theories are always
treeless, our results show, in particular, that binary NSOP3 theories are necessarily NSOP;.

Definition 7.1. The properties SOP, and SOP; are defined as follows:

1. The theory T has SOP; if there is a formula ¢(x; y) and a collection of tuples (a;;),ew<e satisfying
the following:

o Forallp Lvew<?, {p(x;ay),¢(x;a,)} is inconsistent.
o Foralln € w®, {¢(x;a,;) : i < w} is consistent.

https://doi.org/10.1017/fms.2024.35 Published online by Cambridge University Press


https://doi.org/10.1017/fms.2024.35

22 1. Kaplan, N. Ramsey and P. Simon

2. The theory T has SOPj if there are formulas ¥ (x; y) and ¢ (x;y) and an indiscernible sequence
{a; i < w) satisfying the following:
o Forall k < w,

{Yo(x;a;) i < k}U{yi(xsaj) :j >k}
is consistent.

o Foralli < j, {¢1(x;a;),¥o(x;a;)} is inconsistent.

Remark 7.2. We have defined SOP, and SOP3 in the form most convenient for us to use them, though
the equivalence of SOP; defined here with its usual definition can be found in [She95, Claim 2.19].

In the end, we did not use the following description of SOP3, but we found the reformulation of
SOP; in terms of detecting disjointness of intervals to be useful at the level of intuition and so decided
to include it.

Lemma 7.3. Let T denote the set of all nonempty closed intervals in [0, 1]. The following are equivalent:

1. T has SOP;.
2. There is a formula ¢(x;y) and a collection of tuples (br)rer such that, for any family J € T
consisting of intervals with all endpoints distinct,

{o(x;by) : I € T} is consistent ﬂj * 0.

Proof. (1) = (2). By compactness, there are formulas ¢(x;y) and ¢ (x;y) and an indiscernible
sequence (a;);e[o,1] such that:

o Forall k € [0, 1],

{p(x;ai) 2 i€ [0,k]} U Y (x;a:) 20 € (k, 1]}

is consistent.
o Foralli < j e [0,1],

{y(x;ai), p(x;a;)}
is inconsistent.

Define a formula x (x;y,z) = @(x;y) A ¢(x;z). For each I = [i, j] € Z, let by = (a;,a;). Suppose
J ={lg =[ig,jo] : @ < B} C T is afamily of intervals with all endpoints distinct. If (| J # 0, then,
for all @, @’ < B, we have i, < jo, and hence

{o(xiai,) s a < BrU{y(xia;,)  a < B}

is consistent. It follows that { v (x; b;) : I € J} is consistent.

Conversely, if () J = 0, then there are disjoint closed intervals 7, I’ € J. Without loss of generality,
I=1Ti,jl,I"=1[i",j'] and j <i’. Then {y(x;a;), ¢(x;ar)} is inconsistent, from which it follows that
{x(x;by), x(x; by)} is inconsistent.

(2) = (1). For each k € (0, %), letcy = (b[%+k,%+k], b[k’%k]) and define Yo (x;y, 2) = ¢(x;y) and

U (x;y,2) = p(x; z). Notice, then, that if k € (0, %),

n (]

ie(k,})

1 .2 .
—+i,=+i

3 3 0,

N
i,—+i

i€(0,k]
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so {Wo(x;c;) 1 i € (0,k]} U {Yi(x;¢;) 1 i € (k, %)} is consistent. On the other hand, if i < j are
numbers in (0, %), then [i, % +ilN [% +7J, % +j] =050 {yo(x;cj), ¥1(x;c;)} is inconsistent. Thus, we
obtain SOP;. ]

Lemma 7.4. Suppose T is treeless. Suppose (ay)yeT is treetop indiscernible and v € T_. Let

J={neTi nAv<av,n <jex v}
J'={neT, nAvav,v <jexn}

Then (ay)yes and (ay)yey are ay-indiscernible sequences (with J and J' linearly ordered by <. ).

Proof. By symmetry, it suffices to prove that (a,),cs is a,-indiscernible. As 7_ is the Fraissé limit of
finite meet trees (as Lo-structures) it is Ng-saturated, and thus there is an Ly-embedding f : 7 — 7_
sending some element from 7 above v in the tree partial order to v. Let S be the image of f, and set
Si = f(T:). Interpret P® = S, so that S = T as Ly, p-structures. Note that S is an Lo-substructure of
T, but it is not an Ly _p-substructure of 7.

For each element ny € S,, pick some (1) € T, withn < (n). Define (b,;),cs as follows: Forn € S_,
we set b, = a, and, forn € S, we set by, = (a,,az(y))-

Claim 7.5. (b;;); cs is treetop indiscernible.

Proof of Claim. Suppose 77 and & are finite tuples from S with aftpz, , () = aftpz, , (£). We may

assume that 77 = (10, m1) and_g = (£, &) With 77y, &y € S_ and 7y, €, € Sy Let 7’ = (7o, 1 £(m))
and, likewise, & = (&g, &, {(£,)), finite tuples from 7. Our assumption that gftp Lop () = qftp Lop &)

in S entails that gftp Lo.p (@) = qftp Lop (?) in 7, and therefore that az = az. By the definition of
(by)yes, it follows that by = bg, which proves the claim. » O

Next, we establish the following:

Claim 7.6. For all finite 77 from J, there is some & from S, such that

aftpy, , (7.v) = aftpy, , (£(€),v)

holds in 7.

Proof of claim. The proof uses the following easy observation.

(M InT,if ap <jex ... <iex k-1, a;,a; are not comparable in the tree partial order for distinct 7, j
and and a; < b; for all i < k, then gftp,, (a) = qftp,, (b). (This is true since b; A bj =a; A aj for any
i,j<k.)

Let n” € 7 be such that f(n’) = v. Recall that f was chosen so that n” > v. By choice of f,
aftp,, (. n") = qftp,, (f (77), v). By (), this type is equal to qftp;, (7, v) on the one hand (since v < 17")
and to qftp, (£ (f(77)), v) on the other hand (since in general, n < ¢ (7)). This gives the desired equality
of types without P, but on both generated structures, the only elements from P are 77 and £ (77). Together,
we are done. O

By treelessness and Claim 7.5, it follows that (b)), s, is an indiscernible sequence. By definition,
this entails that (az (;))yes,,n<..v is an a,-indiscernible sequence. Then, by treetop indiscernibility
and Claim 7.6, it follows that (a,;), s is a,-indiscernible. m]

We will mostly make use of a certain corollary of Lemma 7.4, but, in order to state it, we will need
the following definition from [BL21]:

Definition 7.7. Say T has indiscernible triviality if, whenever I = (a; : i < w) is simultaneously
a-indiscernible and b-indiscernible, then / is ab-indiscernible.

We note that binary theories clearly have indiscernible triviality, though there are nonbinary examples.
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Corollary 7.8. Suppose T is treeless and has indiscernible triviality. Suppose (ay)ye7 is treetop
indiscernible and v € T_. Let

J={neTi nAv<av,n <jex v}
J ={neT, nAvav,v <jexn}.
Then (an)yes and (ay)yey are aw-indiscernible sequences (with J and J' linearly ordered by <. ).

Proof. Fix v as in the statement. For each & € 7_, define J ¢ so that

Je={ne€T :nANEQV, N <pex £}

As in the proof of Lemma 7.4, it is enough to prove that (a,);ey, is aw,-indiscernible by symmetry.
Note that if v’ > v, then J,» 2 J,, and (a,;);ey,, is a,/-indiscernible by Lemma 7.4 and thus, a fortiori,
(ay)nes, is a,s-indiscernible. Moreover, by treelessness, (a;),e7; is an indiscernible sequence so
(an)yes, is indiscernible over (ay,);ec(v)- It follows by indiscernible triviality that (a;);es, is a<y-
indiscernible. |

Lemma 7.9. Assume T has SOP, witnessed by the formula ¢(x;y). Then there is a treetop indiscernible
(an)yewse satisfying the following:

o Foralln Lv fromw=®, {¢(x;ay),¢(x;ay,)} are inconsistent.
o Foralln € w®, a; r{e(x;ay;) i < w}.

Proof. Let (by);ecw<w be a tree of tuples witnessing that ¢ has SOP», that is,

1. Foralln L v, {¢(x;by), ¢(x; by)} is inconsistent.
2. Foralln € w®, {¢(x; b,);) : i < w} is consistent.

Choose, for each 7 € w®, some b, £ {¢(x;by);) : i < w}. Let (ay)peqw<w be any treetop indiscernible
locally based on (b)), cq<w. It is easy to check that this satisfies the desired properties. O

Theorem 7.10. Suppose T is a treeless theory with indiscernible triviality. Then if T has SOP,, then T
has SOP5.

Proof. Assume T has SOP;, witnessed by the formula ¢(x; y). Then, by Lemma 7.9 and compactness,
we can find a treetop indiscernible (a,;), <7 satisfying the following:

1. If n L v are from 7_, then {¢(x; a,), ¢(x;a,)} is inconsistent.
2. Iftp* € Ty, then a,r £ {e(x;ay,) :n<an'}.

Let Yo(x;y,z) = ¢(x;y) and ¢ (x; v, 2) = ¢(x; 7). We will show that o and | witness SOP;.
By compactness, it suffices to show, for each n, that there is a sequence (d;);<, such that

1. {Yo(x;d;) i < jU{yi1(x;d;) : j <i <n}isconsistent for all j < n.
2. Ifi < j < n, then {y1(x;d;),Yo(x;d;)} is inconsistent.

So fix an arbitrary n > 1. Choose arbitrary L v in 7- with n <jex v. We choose i} , <iex 17, in T

with ’77,0 A nj’o = n and, likewise, V;F,o <lex V;,o in T, with Vl*o A V;,o =vy.

* * * * ;
Now, we choose Vi Vet Vi1 Ve € T+ such that

* * * * * *
Y10 <lex Vil <lex Vin-1 <lex V0 <lex Ve <lex - -- <lex V-1

We define some intervals in 7, as follows:

Ip= {f €T 7]7,0 <lex € <lex leyo}a
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and, for all i < n,
Ji={E€Ti v <tex & <tex Vy ;}-
Then, finally, we define
K={£e€eTi:EANVQV,E <ex vV}
Claim 7.11. There are 0y, ...,0,-1 € Aut(7T;, <jex) (Where (75, <jex) is regarded as a dense linear

order with no additional structure) satisfying the following:

1. 0i(Jy) = J; foralli < n.
2. v, €0 (K)foralli <n-1.
3. The map (ag)ger, = (Ao, (£))eeT; is partial elementary over a,, for all i < n.

Proof of claim. To begin, we define oy to be the identity map. Assume oy, .. ., 0; have been defined.
Write 7 as the disjoint union Lo U L, where

Lo={éeT.: @) m<n AN <iex ']}

Then it is easy to see that Ly and L; are both countable dense linear orders without endpoints and
Ly € K. Pick some ¢ € K\ Ly and some ¢’ € {¢ € T, : v;"i <lex &€ <lex V;,i+1}' Define
79 € Aut((Lg, <jex)) to be the identity and 71 € Aut((Li, <jex)) to be an automorphism mapping
(¢, V?,o’ V:,o) — (7, v;‘,m, vj’m). Then define 04 = 19 U 71, which is an automorphism of (74, <jex)
with 041 (Jo) = Ji+1. Moreover, since K is an initial segment of 7, it follows that o741 (K) is an initial
segment of 7. Since 041 (K) also must contain ¢’ and ¢’ >j¢x v;‘,i, we must also have v;"i € 0i41(K).
Finally, we know by treelessness that (a¢)¢cr, is (ag)ger,-indiscernible and also a,-indiscernible,

by Corollary 7.8, as we have

L1={§€715§/\77<”7777<1exf}-

It follows by indiscernible triviality that (az)zer, iS (ag)ger,awy,-indiscernible. Thus, the mapping
(ag)eer; & (Ao, (£))eeT; is partial elementary over a,. ]

Now, we pick n;"i, r]ﬁ’i € 07(K) such that the ('77,1')1'<" and (nj’ ;)i<n are increasing and, moreover,
777,[ <lex 'ﬁ,o <lex v;‘fl <lex 77;,1' for each 1 < i < n. Note that, since o7(Jy) = J;, we also have
ny ; <lex v;‘ . Define

N
Li={£€T:: 7]?’[ <tex & <lex n:,i}'

Note that we have

ﬂ]k N ﬂ Ik 2 (V;,i’n;i,i+l) =0

k<i i<k<n

for all i < n, where n; ,, = v, and
I;n Jj =0
foralli < j <n.
For each i < n, let 6; € Aut(M/a,;) extend the mapping (as)ser; = (A, (£))eeT, With 0 defined

to be the identity. Define ag = a,, and a; = ;(a,) for 1 <i < n. By Lemma 7.4, we have

{ag : £ €K}
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is ao-indiscernible and contains (a¢)gey,- As K is an initial segment of (75, <jex), we know that o (K)
is an initial segment which contains 7} ;, and therefore, all of 177 | <iex 17, | <tex< -+ <iex M, ;- It
follows, then, that for each i < n,

o‘i({ag (&€ K}) ={ao, &) € €K} ={ag : £ € 0y(K)}

is a;-indiscernible and contains {az : € € Ip U ... U I;}. Since we have K = 0y(K) C o((K) C
... € 0,-1(K), we have, by indiscernible triviality, that (a¢)¢eq, (k) is @ . . . an—1-indiscernible. Given
1 < i < n, we can find some 7; € Aut((75, <jex)) Which restricts to an automorphism of o;(K)
taking Io to I; and which is the identity on 7 \ 0;(K). Then the mapping (as)ser, = (A (£))¢eTs
is partial elementary over q; . . . a,—1, so we can find some extension 7; € Aut(M/aq; . ..a,-1) mapping
(ag)ezer, > (ag)zer,. We define by = a,, and b; = T;(bg) foreach 1 <i < n.

This completes the construction, so now we check that it works. Note that, by construction, ifi < j,
then

biaj = aya; = aya,

and hence {¢(x; b;), ¢(x; a;)} is inconsistent by the definition of SOP,. On the other hand, we know that

ﬂ]kﬂ ﬂ I # 0,

k<i i<k<n

so we can fix some £ in this intersection. Then for each i < k < n, we know that 7, (&) € Iy and hence
E go(akal(‘f*), a;), which implies £ ¢(a ¢+, br). Additionally, for each k < i, we know a-k‘l (%) € Jp and
hence k ga(atr’zl (£+)» Av), which entails F ¢(ag«, ax). This shows

ag E{o(xiar) t k <iyU{p(x;by) 1i <k <n}.
Therefore, defining d; = (a;, b;) for all i < n, we have proved that ¢ and ¢| have SOP;3. m|

Corollary 7.12. If T is a treeless NSOP3 theory with indiscernible triviality, then T is simple. In
particular, a binary NSOP3 theory is simple.

Proof. By Theorem 7.10, such T is NSOP, and, by [Mut22], this entails that 7 is NSOP; which, in
turn, entails that 7 is simple by Theorem 6.5. The ‘in particular’ clause follows because binarity implies
treelessness and indiscernible triviality. O
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