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1 Introduction and summary

For well over two decades there has been an ongoing program to apply the holographic
gauge/gravity duality to gain insights into the dynamics of strongly coupled quantum phases
of matter [1]. Indeed, the techniques of holography have been adopted to probe the transport
properties of a wide spectrum of strongly correlated systems, ranging from the QCD quark
gluon plasma (QGP) to high temperature superconductors, strange metals and a variety
of electronic materials. Within this program, the most elegant result to date remains the
universality [2, 3] of the shear viscosity η to entropy s ratio,

η

s
= ℏ

4πkB
, (1.1)

which holds in strongly coupled gauge theories in the limit of an infinite number of colors,
N → ∞, and infinite ’t Hooft coupling, λ → ∞. These theories are dual to Einstein
gravity coupled to an arbitrary matter sector, with the result (1.1) relying on the additional
assumption that rotational invariance is preserved.1

The significance of (1.1) can be traced not only to its universal nature, but also to
the fact that its value is remarkably close to the experimental range extracted from the
QGP data at RHIC and at the LHC. This led to the compelling KSS proposal [5, 6] that
the shear viscosity might obey a fundamental lower bound in nature, η

s ≥ 1
4π (from now

on we take ℏ = kB = 1). Despite its appeal, it is now well understood that the KSS
bound can be violated in a number of ways, either by relaxing symmetries or by introducing

1For a recent discussion of η/s in anisotropic theories we refer the reader to [4].
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higher derivative curvature corrections to the low-energy gravitational action (see i.e. [7]
for a review). Indeed, notable early examples of the effects of higher derivatives include
Weyl4 corrections to Einstein gravity [8], which encode finite λ effects in the dual gauge
theory, and Riemann2 corrections [9, 10], which describe finite N effects in the dual theory.2
Holographic models involving a more complicated matter sector have been used to study
the temperature dependence of η/s [11, 12] and have direct applications to the QGP, where
the temperature variations of η are expected to play an important role (see e.g. the recent
review [13]). A key lesson that has emerged from these studies is that the universality
of η/s is generically lost once we move away from the limits λ,N → ∞ (or appropriately
break symmetries). Moreover, other transport coefficients have failed to exhibit the simple
universal behavior encoded in (1.1).

In addition to η, the bulk viscosity ζ has also attracted considerable attention in
holography (see e.g. [14–23]), largely because of its relevance to the physics of the QGP
near the deconfinement transition, where ζ is expected to rise dramatically. As non-zero
bulk viscosity requires theories with broken conformal symmetry, holographic model building
has typically involved adding bulk scalars with non-trivial profiles. Since the latter also
yields a non-trivial temperature dependence for η/s, such holographic models have played a
prominent role in the attempts to build realistic models of QCD [24, 25].

In holography, transport coefficients such as η and ζ can be extracted in a number
of complementary ways, e.g. computing correlators of the stress energy tensor and using
Kubo formulas, or from linearized quasi-normal modes on black brane backgrounds, which
in the hydrodynamic limit correspond to shear and sound modes of the dual field theory.
The standard holographic dictionary instructs us to extract correlators from the boundary
behavior of fluctuating bulk fields, appropriately supplemented with boundary conditions
at the horizon. However, hydrodynamics is an effective description of the system at long
wavelengths and small frequencies, and thus one would expect it to be encoded in properties
of the geometry and its fluctuations in the IR, i.e. near the horizon. Thus, a natural question
is to what extent the horizon of a black brane can fully capture the hydrodynamic behavior
of a strongly coupled plasma, and its transport properties. Indeed, the diffusive modes
can be understood [5, 26] as fluctuations of the black brane horizon using the membrane
paradigm [27, 28], which identifies the horizon with a fictitious fluid. This approach was made
more precise in [29] and led to various formulations for extracting transport coefficients entirely
from the horizon geometry. However, these methods have been limited to special cases.

In this paper we revisit some of these questions, and set up a universal — and efficient —
framework for extracting the shear and bulk viscosities of strongly coupled gauge theories
with holographic duals involving higher derivative corrections. A crucial step in our analysis
is the realization that the terms needed to compute both η and ζ can be extracted from
radially conserved currents, even in the presence of higher derivatives. In turn, this implies
that they can be evaluated at the black brane horizon. As we will see, one clear advantage of
our framework is that it avoids having to compute dispersion relations. In our analysis we will
consider both Weyl4 corrections and Riemann2 corrections, encoding, respectively, finite ’t
Hooft coupling and finite N effects. Moreover, our gravitational dual has an arbitrary number

2These are due to non-equal central charges c ̸= a of the gauge theory at the UV fixed point.
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of scalars, with an arbitrary interaction potential. Having such a framework is especially
valuable for theories with higher derivatives, where the computations are intrinsically more
cumbersome and a number of subtleties arise, related to the presence of, for instance,
additional boundary terms and counterterms.

In closing we should mention that the recent paper [30] has also examined the connection
between horizon and boundary data and has put forth an efficient method for computing
transport coefficients directly from the horizon.3 However, their analysis is restricted to
two-derivative theories, and to matter sectors involving, in addition to Einstein gravity
and a U(1) gauge field, only one scalar field. In our analysis, on the other hand, we have
included an arbitrary number of scalars and allowed for curvature corrections to the leading
gravitational action.

1.1 Summary of results

We will work with a five-dimensional theory of gravity in AdS coupled to an arbitrary number
of scalars, described by

S5 = 1
16πGN

∫
M5

d5x
√
−g L5

≡ 1
16πGN

∫
M5

d5x
√
−g

[
R+ 12 − 1

2
∑

i

(∂ϕi)2 − V {ϕi} + β · δL
]
,

(1.2)

where δL denote terms involving higher derivative corrections to Einstein gravity. In particular,
in this paper we consider two classes of models, to leading order4 in β:

• four-derivative curvature corrections described by:

δL2 ≡ α1 R
2 + α2 RµνR

µν + α3RµνρλR
µνρλ ; (1.3)

• eight-derivative curvature corrections described by:

δL4 ≡ ChmnkCpmnqCh
rspCq

rsk + 1
2C

hkmnCpqmnCh
rspCq

rsk , (1.4)

where C is the Weyl tensor.

For the shear viscosity to the entropy ratio we find, respectively:

•
η

s

∣∣∣∣
δL2

= 1
4π

(
1 + β · 2

3α3 (V − 12)
)

; (1.5)

•
η

s

∣∣∣∣
δL4

= 1
4π

(
1 − β · 1

72(V − 12)
[
3
∑

i

(∂iV )2 + 5(V − 12)2
])

, (1.6)

where ∂iV ≡ ∂V
∂ϕi

.

3See also [31–33] for related earlier treatment.
4Throughout the paper we keep the subscripts 2 or 4 in reference to models (1.3) and (1.4). The parameter

β is assumed to be perturbatively small. The asymptotic AdS radius is set L = 1, in the absence of the higher
derivative corrections.
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All the quantifies in (1.5) and (1.6) are to be evaluated at the horizon of the dual black
brane solution. Since the O(β0) results are universal [3], it is sufficient to evaluate the scalar
potential and its derivatives to leading O(β0) order only.

For the bulk viscosity to the entropy ratio we find, respectively:

• 9πζ
s

∣∣∣∣
δL2

=
(

1− 2
3(V −12)(5α1+α2−α3)β

)∑
i

z2
i,0

+β · 4(5α1+α2−α3)
3(V −12)

∑
i

(zi,0 ·∂iV )2 ; (1.7)

• 9πζ
s

∣∣∣∣
δL4

=
(

1+ 5
144β(V −12)3

)∑
i

z2
i,0−β ·

5
24(V −12)

∑
i

(zi,0 ·∂iV )2 . (1.8)

Once again, all the quantifies in (1.7) and (1.8) are to be evaluated at the horizon of the dual
black brane solution. Here zi,0 are the values of the gauge invariant scalar fluctuations, at
zero frequency, evaluated at the black brane horizon, see section A.3 and in particular (A.69).
While the scalar potential and its derivatives can be evaluated to the leading O(β0) order of
the background black brane solution, the horizon values of the scalars zi,0 must be evaluated
including O(β) corrections.

The rest of the paper is organized as follows. In section 2 we present the analysis for
some specific models, and provide extensive checks on the general formalism. We conclude
in section 3 and highlight future directions. The formal proofs of the main results — the
final expressions (1.5), (1.6) for the shear viscosity, and (1.7), (1.8) for the bulk viscosity
are delegated to appendix A. We discuss the background black brane geometry in A.1, η

s

is computed in section A.2, and ζ
s is computed in section A.3.

2 Applications

In this section we use simple toy models to validate the general formulas reported in (1.5)–(1.8).
First and foremost, note that if the boundary gauge theory is a CFT with

V ≡ 0 , (2.1)

we find5 from (1.5) and (1.6)

η

s

∣∣∣∣CFT

δL2

= 1
4π (1 − β · 8α3) , η

s

∣∣∣∣CFT

δL4

= 1
4π (1 + β · 120) , (2.2)

reproducing [9] and [8, 35, 36] correspondingly.
We discuss the following models:

• (A2,∆): δL2 model with
{α1 , α2 , α3} = {0 , 0 , 1} , (2.3)

with
V = m2

2 ϕ2 , m2
(

1 + 2
3β
)

= ∆(∆ − 4) . (2.4)

5The bulk viscosity of a CFT plasma vanishes; see [34] for the original analysis of N = 4 SYM.
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Note the O(β) modification of the relation between the mass of the bulk scalar and
the dimension ∆ of the dual boundary operator.6 We consider ∆ = {2, 3}. The bulk
viscosity in these models was not discussed in the literature before.

Models A2,∆ are interesting in that the gravitational holographic bulk is higher derivative
and the black brane horizon Wald entropy differs from its Bekenstein entropy, see (A.28).

• (B2,∆): δL2 model with
{α1 , α2 , α3} = {1 ,−4 , 1} , (2.5)

with
V = m2

2 ϕ2 , m2
(

1 + 2β
)

= ∆(∆ − 4) . (2.6)

The O(β) modification of the relation between the mass of the bulk scalar and the
dimension ∆ of the dual boundary operator is precisely as reported in [37]. We consider
∆ = {2, 3}. The bulk viscosity in these models was considered in [37], but only to
leading order in the non-normalizable coefficient of the scalar ϕ (albeit to all orders in
β). Here we consider leading perturbative in β corrections to transport in these models,
but to all orders in the conformal symmetry breaking parameter, i.e., non-perturbatively
in the non-normalizable coefficient of the bulk scalar ϕ.

Models B2,∆ are interesting in that the gravitational holographic bulk represents a
two-derivative model: the coefficients in (2.5) assemble Riemann squared terms into
the Gauss-Bonnet combination. Notice that for the black branes in these models the
Wald entropy is identical to their Bekenstein entropy, see (A.28).

• (C2,∆): δL2 model with
{α1 , α2 , α3} = {0 , 1 , 1} , (2.7)

with
V = m2

2 ϕ2 , m2
(

1 + 2β
)

= ∆(∆ − 4) . (2.8)

The O(β) modification of the relation between the mass of the bulk scalar and the
dimension ∆ of the dual boundary operator is identical to the one in models (B2,∆).
We consider ∆ = {2, 3}. The bulk viscosity in these models was not discussed in the
literature before.

Models C2,∆ are interesting in that the gravitational holographic bulk is higher-derivative,
but the horizon physics is effectively two-derivative: as in the case above, in these
models there is no difference between the Wald and the Bekenstein entropies of the
dual black brane horizon.

• (D4,∆): δL4 model with

V = m2

2 ϕ2 , m2 = ∆(∆ − 4) . (2.9)

6See [37] where the need for such a modification was first pointed out.
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Notice that here the Weyl4 higher derivative corrections to the gravitational action (1.4)
do not modify the bulk scalar mass/dimension of the dual operator relation. We consider
∆ = {2, 3}. The bulk viscosity in these models was not discussed in the literature
before.

Models D4,∆ are interesting in that here the higher derivative corrections are associated
with finite ’t Hooft coupling corrections of the UV fixed point CFT, rather than with
the difference between the central charges of the UV CFT, encoded by β · α3 ≡ c−a

8c , as
in models {A,B, C}2,∆.

In the models just introduced we compute the shear and the bulk viscosities using (1.5)–
(1.8), and compare the results with direct computation of these quantities from the dispersion
relation of the shear and the sound modes,

shear : w = −i 2πη
s

q2 + O(q3) ,

sound : w = cs · q− i
4πη
3s

(
1 + 3ζ

4η

)
q2 + O(q3) .

(2.10)

These are the appropriate quasinormal modes of the dual black brane [38]. The first non-
conformal gauge theory computations of the bulk viscosity from the dispersion relation were
performed in [15]. In genuinely higher-derivative holographic models the shear and the sound
mode dispersion relations where studied only in conformal N = 4 SYM in [34]. In this paper,
we generalize (and combine) the computation methods of [15] and [34]. Such analysis are
much more involved and are extremely technical. We will not provide any details — in fact
our motivation of developing the framework explained in sections A.2 and A.3 was precisely to
avoid computation of the dispersion relations in the first place. As we already emphasized, here
we use such dispersion computations in models A−D as a check on our general framework.

Finally, we mention one additional test we performed. The speed of the sound waves
cs in (2.10) is related to the equation of state P = P (E) of the holographic gauge theory
plasma via

c2
s = ∂P

∂E

∣∣∣∣
λ∆=const

, (2.11)

where in computing derivatives of the pressure P with respect to the energy density E one
has to keep the non-normalizable coefficient λ∆ of the bulk scalar (i.e., the coupling constant
of the dual operator O∆ explicitly breaking the conformal invariance) constant.

As we explicitly show in this section, all the validations pass with excellence.

2.1 Shear viscosity in models A − D

Given (1.5), we find that in all models A− C the shear viscosity to the entropy density is

η

s

∣∣∣∣
A,B,C

= 1
4π
(
1 + β · δA,B,C

η;∆

)
, δA,B,C

η;∆ = −8 + ∆(∆ − 4)
3 (ϕh

0,0)2 , (2.12)
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η
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Figure 1. Corrections to the shear viscosity in models A − C due to the UV fixed point central
charges c ̸= a are universal, see (2.12). In the left panel we consider non-conformal gauge theories with
a UV fixed point deformed by a dimension ∆ = 3 operator, CFT → CFT +mfO3, while in the right
panel a UV fixed point is deformed by an operator of dimension ∆ = 2, CFT → CFT +m2

bO2. Solid
curves represent the corrections to the shear viscosity extracted from the shear channel quasinormal
mode of the background black brane (2.10), while the red dashed curves are obtained applying (2.12).

while from (1.6) in models D the shear viscosity to the entropy density is

η

s

∣∣∣∣
D

= 1
4π
(
1+β ·δDη;∆

)
, δDη;∆ =− 1

72

(∆(∆−4)(ϕh
0,0)2

2 −12
)
×

×
(

5
(1

2∆(∆−4)(ϕh
0,0)2−12

)2
+3∆2(∆−4)2(ϕh

0,0)2
)
,

(2.13)

where ϕh
0,0 is the leading O(β0) order horizon value of the bulk scalar. It is computed

numerically solving the leading order O(β0) background equations of motion (A.7)–(A.10),
using the metric parameterization (A.23), subject to the boundary conditions:

r→ 0 : f ∼ 1+· · · , g∼ 1+· · · , ϕ∼

λ3 ·r+· · · , when ∆ = 3;
λ2 ·r2 lnr+· · · , when ∆ = 2 ,

r→ rh : f ∼ 0+· · · , g∼ gh
0,0+· · · , ϕ∼ϕh

0,0 .
(2.14)

Without loss of generality we can fix rh = 1, provided we present all results as dimensionless
quantities. From (A.14) we find

2πT =
√
gh

0,0

(
2 + ∆(4 − ∆)

12 (ϕh
0,0)2

)
. (2.15)

Comparisons between the corrections to the shear viscosity (see (2.12) and (2.13)) for
the holographic models A − D extracted from the dispersion relation of the shear modes
using (2.10) (the solid curves) and using (2.12) and (2.13) (dashed red curves) are presented
in figures 1–2. In the left panels we consider models with ∆ = 3 with the non-normalizable

– 7 –
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Figure 2. Corrections to the shear viscosity in models D due to finite ’t Hooft coupling corrections,
see (2.13). In the left panel we consider non-conformal gauge theories with a UV fixed point deformed
by a dimension ∆ = 3 operator, CFT → CFT + mfO3, while in the right panel a UV fixed point
is deformed by an operator of dimension ∆ = 2, CFT → CFT + m2

bO2. Solid curves represent
the corrections to the shear viscosity extracted from the shear channel quasinormal mode of the
background black brane (2.10), while the red dashed curves are obtained applying (2.13).

gravitational bulk scalar coefficient λ3 identified as a fermionic mass term λ3 ≡ mf of
the boundary gauge theory. In the right panels we consider models with ∆ = 2 with the
non-normalizable gravitational bulk scalar coefficient λ2 identified as a bosonic mass term
λ2 ≡ m2

b of the boundary gauge theory.7 The difference between the solid and the dashed
red curves is ∼ 10−8 · · · 10−5 % over the ranges of λ∆/T

4−∆ reported. When mf = 0 and
m2

b = 0 we recover the conformal gauge theory results (2.2):

δA,B,C
η;∆

∣∣∣∣
mf =m2

b
=0

= −8 , δDη;∆

∣∣∣∣
mf =m2

b
=0

= 120 . (2.16)

2.2 Bulk viscosity in models A − D

Unlike the shear viscosity, the bulk viscosity in models A and B, C differs: using (1.7) we find

ζ

η

∣∣∣∣
A

= 4
9 z2

0,0 + β · δAζ;∆ ,

δAζ;∆ = 8
9z0,0z0,1 + 8

27

(1
2∆(∆ − 4)(ϕh

0,0)2 − 12
)
z2

0,0 −
16
27

∆2(∆ − 4)2(ϕh
0,0)2

1
2∆(∆ − 4)(ϕh

0,0)2 − 12
z2

0,0

− 4
9z

2
0,0 δ

A,B,C
η;∆ , (2.17)

ζ

η

∣∣∣∣
B,C

= 4
9 z2

0,0 + β · δB,C
ζ;∆ , δB,C

ζ;∆ = 8
9z0,0z0,1 −

4
9z

2
0,0 δ

A,B,C
η;∆ , (2.18)

7We adopted mf and m2
b labels from [39].
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and
ζ

η

∣∣∣∣
D

= 4
9 z2

0,0 + β · δDζ;∆ ,

δDζ;∆ = 4
9z

2
0,0

[ 5
144

(1
2∆(∆ − 4)(ϕh

0,0)2 − 12
)3

− 5
24

(1
2∆(∆ − 4)(ϕh

0,0)2 − 12
)

∆2(∆ − 4)2(ϕh
0,0)2

]
+ 8

9z0,0z0,1 −
4
9z

2
0,0δ

D
η;∆ ,

(2.19)

where ϕh
0,0 is the leading O(β0) order horizon value of the bulk scalar. In (2.17), (2.18)

and (2.19) we denoted

zi,0 ≡ z0,0 + β · z0,1 , (2.20)

since our toy models have a single bulk scalar. To proceed further we need to evaluate the gauge
invariant bulk scalar fluctuations z0 at the horizon to order O(β) as emphasized in (2.20).

We present details for the model A2,∆=3, and only the final results for the other models.

2.2.1 Model A2,∆=3

Since we will need the gauge invariant bulk scalar fluctuations z0 at the horizon to order
O(β), we need the background geometry to order O(β). It is convenient to use the metric
warp-factor parameterization as in (A.23). Explicitly,

c1 = f1/2√g + β · g1,1
r

, c2 = 1
r
, c3 =

1 − 1
3β

rf1/2(1 + β · g2,1)
, ϕ = ϕ0 + β · ϕ1 . (2.21)

From (A.7)–(A.10) we find

0 = f ′ − r

6(ϕ′0)2f + ϕ2
0

2r − 4f
r

+ 4
r
, (2.22)

0 = g′ + g

3(ϕ′0)2r , (2.23)

0 = ϕ′′0 +
(

1
r
− ϕ2

0
2rf − 4

rf

)
ϕ′0 + 3ϕ0

r2f
, (2.24)

at order O(β0), and

0 = g′2,1−
(
ϕ2

0
2rf + 4

rf

)
g2,1−

r

6ϕ
′
0ϕ

′
1−

fr5

72 (ϕ′0)6− r3

24(2ϕ2
0+f+16)(ϕ′0)4

+ 4
9ϕ0r

2(ϕ′0)3+
(11

3 rf+2r− 8r
f
− r

8f ϕ
4
0−
(2r
f
− r

12

)
ϕ2

0

)
(ϕ′0)2

+
(4ϕ3

0
3f + 4(8−4f)ϕ0

3f

)
ϕ′0−

ϕ4
0

24rf +
(1
r
− 14

3rf

)
ϕ2

0+ϕ0ϕ1
2rf − 4(f−1)2

rf
, (2.25)

0 = g′1,1+ r

3(ϕ′0)2g1,1+ gr

3 ϕ
′
0ϕ

′
1−

g(ϕ2
0+8)
rf

g2,1+ gϕ0
rf

ϕ1+ fr5g

108 (ϕ′0)6+ r3g

36 (2ϕ2
0

−11f+16)(ϕ′0)4− 2
9gϕ0r

2(ϕ′0)3++ rg

12f
(
ϕ4

0−2ϕ2
0(3f−8)+72f2−48f+64

)
(ϕ′0)2

− 2gϕ0(ϕ2
0+8f+8)
3f ϕ′0−

g

12rf
(
ϕ4

0−8ϕ2
0(3f−2)+96(f−1)2

)
, (2.26)
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(1
r
− ϕ2

0
2rf −

4
rf

)
ϕ′1−

rϕ0ϕ
′
0−3

r2f
ϕ1−g2,1

6ϕ0−r(ϕ2
0+8)ϕ′0

r2f

+ fr5

108(ϕ′0)7+ r3

36(2ϕ2
0+7f+16)(ϕ′0)5− r2ϕ0

3 (ϕ′0)4+ r

12f (ϕ4
0+2ϕ2

0(f+8)−80f2

+64)(ϕ′0)3−ϕ0(ϕ2
0−8f+8)
f

(ϕ′0)2+ ϕ′0
12rf (ϕ4

0−8ϕ2
0(3f−8)+96(f−1)2) , (2.27)

at order O(β). The background equations (2.22)–(2.27) are solved subject to the following
asymptotics:

near the AdS boundary, i.e., as r → 0,

ϕ0 = λ3r + r3
(
ϕ0;3 + 1

6λ
3
3 ln r

)
+ O(r5 ln r) , g = 1 − 1

6r
2λ2

3 + O(r4 ln r) ,

f = 1 + 1
6r

2λ2
3 + r4

(
f4 + 1

12λ
4
3 ln r

)
+ O(r6 ln2 r) ,

ϕ1 = r3
(
ϕ1;3 −

2
3λ

3
3 ln r

)
+ O(r5 ln r) ,

g1,1 = r4
(
−1

3λ
4
3 −

2
3λ3ϕ0;3 −

1
2λ3ϕ1;3 + 2g2,1;4

)
+ O(r6) ,

g2,1 = −1
3r

2λ2
3 + r4

(
g2,1;4 −

1
9λ

4
3 ln r

)
+ O(r6 ln2 r) ,

(2.28)

where λ3 ≡ mf is the non-normalizable coefficient of the bulk scalar, and the coefficients
{ϕ0;3, f4, ϕ1;3, g2,1;4} are related to the thermal expectation values of various boundary gauge
theory operators;

in the vicinity of the black brane horizon, i.e., as y ≡ (1 − r) → 0,

ϕ0 = ϕh
0,0 + O(y) , g = gh

0,0 + O(y) , f =
(

4 + 1
2(ϕh

0,0)2
)
y + O(y2) ,

ϕ1 = ϕh
1,0 + O(y) , g1,1 = gh

1,1;0 + O(y) ,

g2,1 = −
(ϕh

0,0)4 + 28(ϕh
0,0)2 − 12ϕh

0,0ϕ
h
1,0 + 96

12((ϕh
0,0)2 + 8)

+ O(y) ,

(2.29)

specified by the set of coefficients {ϕh
0,0, g

h
0,0, ϕ

h
1,0, g

h
1,1;0}.

Using (2.29), from (A.14) we compute

2πT ≡ s0 + β · s1 , s0 =
(gh

0,0)1/2

4

(
(ϕh

0,0)2 + 8
)
,

s1 =
(gh

0,0)−1/2

48

[
12gh

0,0ϕ
h
0,0ϕ

h
1,0 + 6gh

1,1;0

(
(ϕh

0,0)2 + 8
)
− gh

0,0

(
(ϕh

0,0)4 + 24(ϕh
0,0)2 + 64

)]
.

(2.30)

It is important that s1 ̸= 0, since as we will show it affects the representation of δAζ;∆=3
in the plots.
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We continue with the equations of motion for the gauge invariant fluctuations z0,0 (at
leading order in β) and z0,1 at order O(β), see (A.66), (A.69) and (2.20),

0 = z′′0,0−
ϕ2

0−2f+8
2rf z′0,0+ z0,0

6r2f

(
(ϕ′0)2r2(ϕ2

0+8)−12rϕ0ϕ
′
0+18

)
, (2.31)

0 = z′′0,1−
ϕ2

0−2f+8
2rf z′0,1+ z0,1

6r2f

(
(ϕ′0)2r2(ϕ2

0+8)−12rϕ0ϕ
′
0+18

)
+
[7fr5

108 (ϕ′0)6

+ 5r3

36 (4ϕ2
0+7f+32)(ϕ′0)4−3ϕ0r

2(ϕ′0)3+ r

4f

(
3ϕ4

0−6ϕ2
0(f−8)

−16(f+2)(5f−6)
)

(ϕ′0)2+ 1
108rf

(
−684ϕ3

0r+144rϕ0(21f−38)
)
ϕ′0+ 1

12rf

(
ϕ4

0

+4ϕ2
0(3g2,1−6f+40)−12ϕ1ϕ0+96g2,1+96(f−1)2

)]
z′0,0+

[
fr6

324(ϕ′0)8+ r4

108(4ϕ2
0

+7f+32)(ϕ′0)6−ϕ0r
3

9 (ϕ′0)5+ r2

36f

(
ϕ4

0−22ϕ2
0f+16ϕ2

0−80f2−188f+64
)

(ϕ′0)4

+ϕ0r

2f (ϕ2
0+8f+8)(ϕ′0)3− 1

36f

(
7ϕ4

0+4ϕ2
0(3g2,1−6f+88)−12ϕ1ϕ0−96f2

+96g2,1−480f+1152
)

(ϕ′0)2+ r(ϕ2
0+8)ϕ′0−6ϕ0

3rf ϕ′1+ 1
6f2r2

(
ϕ5

0r+4r(f+4)ϕ3
0

+8r(3g2,1f−6f2+16f+8)ϕ0−12fϕ1r

)
ϕ′0−

ϕ4
0+6g2,1f−4ϕ2

0(f−2)
f2r2

]
z0,0 . (2.32)

The fluctuations z0,0 and z0,1 are then solved subject to the following asymptotics:
near the AdS boundary, i.e., as r → 0,

z0,0 = 1
2λ3r + r3

(
z0,0;3 + 1

4λ
3
3 ln r

)
+ O(r5 ln r) , z0,1 = r3

(
z0,1;3 − λ3

3 ln r
)

+ O(r5 ln r) ,

(2.33)
where we note that the non-normalizable coefficients of {z0,0, z0,1}, i.e., {1

2λ3, 0} are precisely
as required by (A.72);

in the vicinity of the black brane horizon, i.e., as y ≡ (1 − r) → 0,

z0,0 = zh
0,0;0 + O(y) , z0,1 = zh

0,1;0 + O(y) . (2.34)

Even though we will not present the equations for zi,1 ≡ z1 ≡ z1,0 + β · z1,1, we solved
them as well, to validate the conservation of the imaginary part of the current (A.77) along
the radial flow. Specifically, see (A.79),

lim
r→0

F ≡ F (b) = 1
2λ3z1,0;3 , lim

r→rh=1
F ≡ F (h) =

(gh
0,0)1/2

8

(
(ϕh

0,0)2 + 8
)

(zh
0,0;0)2 , (2.35)
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Figure 3. Bulk viscosity in model (A2,∆=3), (2.3). The solid curves represent the leading O(β0)
order bulk viscosity (the left panel) and its O(β) correction (the right panel) extracted from the sound
wave channel quasinormal mode of the background black brane (2.10). The red dashed curves are
obtained from (2.17).

where z1,0;3 is the normalizable coefficient of z1,0 (similar to z0,0;3 of z0,0 in (2.33)), and

lim
r→0

δF ≡ δF (b) =
(1

6z1,0;3+ 1
2z1,1;3

)
λ3 ,

lim
r→rh=1

δF ≡ δF (h) = (zh
0,0;0)2

((gh
0,0)1/2

96

(
−(ϕh

0,0)4+72(ϕh
0,0)2−64

)
+

gh
1,1;0

16(gh
0,0)1/2

(
(ϕh

0,0)2+8
)

+ 1
8(gh

0,0)1/2(ϕh
0,0)ϕh

1,0

)
+ 1

4z
h
0,0;0(gh

0,0)1/2zh
0,1;0

(
(ϕh

0,0)2+8
)
, (2.36)

where z1,1;3 is the normalizable coefficient of z1,1 (similar to z0,0;3 of z0,0 in (2.33)). Conser-
vation of the imaginary part of current (A.77) in particular requires that

F (b)

F (h) − 1 = 0 , δF (b)

δF (h) − 1 = 0 , (2.37)

and provides a stringent test on our numerics.
In practice we solve numerically (2.22)–(2.27), (2.31)–(2.32), along with the equations

for z1,0 and z1,1, parameterized by λ3 ≡ mf . We use (2.17) to extract the bulk viscosity,
and compare the results with the quasinormal modes computations8 (2.10). It is important
to present the physical results as dimensionless quantities, as we fixed the overall scale on
the gravitational side of the computations setting rh = 1. From (2.30), the dimensionless
quantity mf/T is O(β) corrected,

mf

2πT ≡ x(λ3) + β · δx(λ3) . (2.38)

Assume that we have a dimensionless quantity K that is O(β) corrected, and that is ex-
tracted from the numerics as a functions of λ3, but we need to present it as a function
of mf/(2πT ). Then,

K = K0(x+ β · δx) + β · K1(x+ β · δx) = K0(x) + β ·
(
δx · dK0(x)

dx
+ K1(x)

)
, (2.39)

8As we already mentioned, these computations are too technical to report in details here.
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Figure 4. Numerical test of the conservation of the imaginary part of current (A.77) in model
(A2,∆=3) to leading order O(β0) (the left panel), and to subleading order O(β) (the right panel).
See (2.37) for more details.
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| 0

Figure 5. To order O(β0) there is a perfect agreement between the ratio of bulk viscosity to the
shear viscosity evaluated using our novel formula (2.41), shown in the solid curves, and the Eling-Oz
expression (2.40), shown in the dashed green curves.

i.e., the O(β) correction of the quantity K receives an extra derivative in the K0 term. This
was not an issue in our discussion of the shear viscosity to the entropy density ratio in
section A.2, since there the appropriate quantity K0 ≡ 1

4π is a constant.
In figure 3 we compare the leading O(β0) (the left panel) and the subleading O(β)

correction (the right panel) of the ratio of the bulk viscosity to shear viscosity using the
formalism of section A.3 (the red dashed curves), and the same quantities obtained from the
computation of the sound channel quasinormal mode of the background black brane (2.10).
The difference between the solid and the dashed red curves is ∼ 10−6 · · · 10−4 %.

In figure 4 we numerically validate the conservation of the imaginary part of cur-
rent (A.77).

2.2.2 Models A − D

Analysis of the remaining models proceeds as detailed for the model (A2,∆=3) in section 2.2.1.
As for model (A2,∆=3), there is an excellent agreement between the general computation
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Figure 6. At order O(β) there is a disagreement between the ratio of bulk viscosity to the shear
viscosity evaluated using (2.17) (the left panel) and (2.18) (the right panel), shown in the solid curves,
and the extension of the Eling-Oz formula (2.40) to order O(β), shown in the dashed green curves.
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δ
[ζ
/s
]

Figure 7. We compare O(β) correction to ζ
s in the holographic model B2,3: solid curve is obtained

from the quasinormal mode (2.10) analysis, the red dashed curve is obtained from (2.42), and the
green dashed curve is the application of the EO formula (2.43).

framework of section A.3 and the alternative extraction of the bulk viscosity from the
quasinormal modes (2.10).

A simple formula to compute the bulk viscosity in two-derivative holographic models
was proposed in [22] (EO):

ζ

η
= c4

s

∑
i

(
∂ϕi

∂ ln T

)2 ∣∣∣∣
λ∆=const

, (2.40)

where cs is the speed of the sound waves in the holographic plasma (2.11), and the bulk
scalar derivatives are evaluated at the black brane horizon, keeping the non-normalizable
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Figure 8. Although models A− C have the same value of the higher derivative coupling α3 = 1, and
the coupling constants α1 and α2 can be removed by a metric redefinition, such a redefinition modifies
the scalar sector of the model resulting in distinct bulk viscosity corrections. Black curves represent
A2,∆ models, blue curves represent B2,∆ models, and magenta curves represent C2,∆ models.
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Figure 9. Bulk viscosity corrections in the D4,3 model (the left panel) and in the D4,2 model (the
right panel). Solid curves represent corrections extracted from the sound wave channel quasinormal
mode of the background black brane (2.10). The red curves are obtained from (2.19).

coefficients of these scalars — the mass terms of the boundary gauge theory — fixed [20, 23].
The EO was extensively tested in many models, and it is verified to leading order O(β0) in

the models discussed here. Specifically, in figure 5 we compare ζ
η

∣∣∣∣
0

for A−D models with

∆ = 3 and ∆ = 2 (the green gashed curves) with the predictions (1.7) of the framework
discussed in section A.3 (the solid curves):

ζ

s

∣∣∣∣
0

= 1
9π
∑

i

z2
i,0 =⇒ ζ

η

∣∣∣∣
0

= 4
9
∑

i

z2
i,0 . (2.41)

We stress that (2.41) is a simple, novel expression for the bulk viscosity in two-derivative
holographic models: unlike [18], there is no restriction to a single bulk scalar, and there is no
need to compute scalar derivatives at the horizon — zi,0 are values of the gauge invariant scalar
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Figure 10. We parameterize the speed of the sound waves in the gauge theory plasma as in (2.44).
The solid curves represent (β1,0)2 and β1,1 in the holographic model D4,3 obtained from the sound
wave channel quasinormal mode (2.10); the dashed red curves represent the same data obtained
applying the equation of state (2.11).

fluctuations9 at zero frequency evaluated at the horizon. Furthermore, the first expression
in (2.41) is true even in higher-derivative holographic models, provided the dual gravitational
physics is effectively two-derivative (as in the Gauss-Bonnet models B(2,∆)), or, at least,
effectively two-derivative at the horizon10 (as in the class of models C(2,∆)), see (1.7),

ζ

s

∣∣∣∣
B,C

= 1
9π
∑

i

z2
i,0 , (2.42)

where zi,0 has to be evaluated at the horizon including O(β) corrections.
Figure 6 demonstrates that the naive application of the EO formula (2.40) does not work

in higher-derivative models. By “naive” application we mean the evaluation of the speed of
the sound waves and the background scalar derivatives at the horizon in (2.40) to order O(β).
Again, the solid curves represent the corrections11 to the bulk viscosity from (2.17) (the left
panel) and (2.18) (the right panel), and the dashed green curves indicate corrections from
the EO formula (2.40). Interestingly, there is a disagreement even for models belonging to
class B (the right panel), which are effectively two-derivative in the bulk. One might wonder
whether the comparison of the ratio ζ

s , which is somewhat more universal as it is partly
applicable to higher-derivative theories (see (2.42)), would fare better. From [22],

ζ

s
= c4

s

4π
∑

i

(
∂ϕi

∂ ln T

)2 ∣∣∣∣
λ∆=const

. (2.43)

As we show in figure 7, this is not the case for the effective two-derivative in the bulk model
B2,3: the solid curve represents the O(β) correction δ ζ

s extracted from the quasinormal
9From the quasinormal mode perspective, the zi’s are spatially SO(3) invariant background scalar fluctua-

tions of the sound channel which decouple from the metric fluctuations as q → 0.
10Recall that we refer to the physics as being effective two-derivative at the horizon if there is no distinction

between the Bekenstein and the Wald entropy densities, see (A.28).
11The quasinormal mode analysis (2.10) validates these results.
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mode (2.10) analysis, the red dashed curve is obtained from (2.42), and the green dashed
curve is the application of the EO formula (2.43). It should probably not come as a surprise
that the EO formula for the bulk viscosity fails in higher derivative as well as in Gauss-
Bonnet holographic models: the naive application of the EO formalism does not capture the
Gauss-Bonnet coupling correction to the shear viscosity either [9].

In the holographic models A− C (1.3) doing a metric field redefinition removes the bulk
higher derivative coupling constants α1 and α2 [9]. However, in the presence of the scalar
sector, as in (1.2), such a redefinition generates new higher derivative coupling constants in
the scalar sector of the form R · (∂ϕ)2 and Rµν∂µϕ∂νϕ. Because computing the shear viscosity
involves only the metric fluctuations, see (A.30), such a redefinition does not affect it, and
the final correction is universal for all these models, see (2.12). On the contrary, computing
the bulk viscosity necessitates turning on the bulk scalar fluctuations, see (A.62). As a result,
the bulk viscosity is different in models A2,∆ , B2,∆ and C2,∆ even though all these models
have the same value of α3 = 1. This is shown explicitly in figure 8. Black curves represent
A2,∆ models, blue curves represent B2,∆ models, and magenta curves represent C2,∆ models.

In figure 9 we present bulk viscosity corrections in the models D4,3 (the left panel)
and D4,2 (the right panel). The solid curves show the bulk viscosity corrections extracted
from the dispersion relation (2.10), and the dashed red curves represent (2.19). This is
an excellent validation of our computational framework in holographic models with Weyl4
higher derivative corrections.

We conclude this section mentioning one of the numerous consistency tests we performed.
The speed of the sound waves cs can be extracted from the dispersion relation of the sound
channel quasinormal modes of the background black brane (2.10), or from the background
black brane equations of state (2.11). We parameterize the speed of the sound waves as

cs = β1,0√
3

(
1 + β · β1,1

)
. (2.44)

In figure 10 we compare results for (β1,0)2 (the left panel) and β1,1 (the right panel). Solid
curves indicate data from the dispersion relation (2.10), and the dashed red curves are the
corresponding results obtained from the equation of state (2.11) in the holographic model D4,3.

3 Conclusion

In this paper we developed a novel framework for computing transport coefficients in holo-
graphic model with higher derivative corrections. This allowed us to produce compact
expressions (1.5)–(1.8) for the shear and bulk viscosities in large classes of non-conformal
holographic models with higher derivative corrections. We expect that these formulas would
be useful in exploring conditions under which the shear viscosity [6] or the bulk viscosity [17]
bounds are violated. The explicit expressions for the Wald entropy density (A.28) would be
useful in searches of stable holographic conformal order [40–44]. Moreover, since holographic
models with scalar fields have been used, depending on the choice of scalar potential, to
generate a wide spectrum of temperature dependence for η, in addition to a non-zero ζ,
our analysis is also useful for direct comparison to the physics of the QGP. In particular,
our simple expressions for the shear and bulk viscosities in the presence of arbitrary scalars
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can facilitate holographic model building and guide the efforts to describe the behavior of
the QGP near the deconfinement transition.

We demonstrated that there are particularly simple and universal expressions for the
ratio ζ

s , see (2.42), valid even in models with higher derivatives in the bulk, but effectively
two-derivative physics at the horizon, specifically when there is no distinction between the
Bekenstein and the Wald entropies of the gauge theory thermal state dual black brane horizon.
We also explored the applicability of the Eling-Oz formula for the bulk viscosity [22], and
demonstrated that its naive application fails even in effectively two-derivative holographic
Gauss-Bonnet models. At this stage it is not clear to us how to extend [22] to capture theories
with higher derivatives and whether that construction can be generalized in a simple way.

Specific models discussed in section 2 can be of interest to phenomenological applications
in heavy ion collisions. To facilitate these applications we recall the relations of some of
the parameters used on the gravitational side of the holographic correspondence to the
gauge theory observables:

• If c and a are the two central charges of a gauge theory UV fixed point,

β · α3 = c− a

8c . (3.1)

The holographic coupling α3 appears in models A− C. We are not aware of the simple
relation for the other two coupling constants, α2 and α3, in the models B2,∆ and C2,∆.

• Assume for simplicity12 that the UV fixed point is N = 4 SU(Nc) supersymmetric
Yang-Mills theory with a gauge coupling g2

YM. Then, in models D4,∆,

β ≡ 1
8ζ(3)

(
g2

YMNc

)−3/2
. (3.2)

In this paper we focused on the first-order transport coefficients, i.e., η and ζ, of the
hydrodynamics theory derivative approximation. Stability and causality of the Landau-frame
hydrodynamics can be ensured including higher-order transport coefficients. Holographic
computations of the second-order transport coefficients of conformal gauge theories were first
done in [46, 47],13 and finite ’t Hooft coupling corrections were discussed in [49–52]. It would
be interesting, albeit challenging, to extend the computational framework proposed here to
the analysis of these coefficients in holographic models with higher derivative corrections. We
expect that such results will be sensitive to the holographic renormalization of the models, as
well as to the details of the proper formulation of the variational principle, i.e., the precise
expressions for the Gibbons-Hawking terms.

In the future, it would also be interesting to extend the results reported here to holographic
models with conserved charges, and to capture the effects of a chemical potential. It is natural
to wonder whether, in the presence of generic higher derivative terms, the conductivity can
also be extracted from a radially conserved current, and thus entirely from the horizon of the
geometry. Finally, it would be useful to extend our framework to magnetohydrodynamics,
again in the presence of higher derivatives. We leave these questions to future work.

12See [45] for more examples.
13See also [48] for some extensions to nonconformal models.
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A Transport coefficients from Kubo formulas

A.1 Black brane geometry dual to thermal states of the boundary theory

The background geometry dual to a thermal equilibrium state of a boundary gauge theory
takes form

ds2
5 = −c2

1 dt
2 + c2

2 dx2 + c2
3 dr

2 , (A.1)

where ci = ci(r), and additionally ϕi = ϕi(r). The radial coordinate is r ∈ [0, rh], with rh

being the location of the regular black brane horizon,

lim
r→rh

c1 = 0 . (A.2)

Notice that at this stage we do not fix the residual diffeomorphism associated with the
reparametrization of the radial coordinate.

One can efficiently compute the background equations of motion from the effective one
dimensional action,

S1 = 1
16πGN

∫ rh

0
dr

[
I + β · δI

]
, (A.3)

obtained from the evaluation of (1.2) on the ansatz (A.1). Here (′ ≡ d
dr ),

I = c1c
3
2c3

(
12− 2c′′1

c1c2
3
− 6c′′2
c2c2

3
− 6(c′2)2

c2
2c

2
3

+ 6c′3c′2
c2c3

3
− 6c′1c′2
c2c1c2

3
+ 2c′1c′3
c1c3

3
− 1

2c2
3

∑
i

(ϕ′i)2−V
)
, (A.4)

with the higher derivative contributions in model (1.3) given by

δI2 = c1c
3
2c3

(
4α1

[ 3c′′2
c2c2

3
+ c′′1
c1c2

3
− c′1c

′
3

c1c3
3

+ 3c′1c′2
c2c1c2

3
− 3c′3c′2

c2c3
3

+ 3(c′2)2

c2
2c

2
3

]2
+ α2

[6c′1c′2c′′2
c2

2c1c4
3

− 6c′1c′3c′′2
c2c1c5

3
− 6c′2c′3c′′1

c2c1c5
3

− 6c′1(c2,
′ )2c′3

c2
2c1c5

3
− 24c′2c′3c′′2

c2
2c

5
3

− 12(c′2)3c′3
c3

2c
5
3

+ 6c′1c′2(c′3)2

c2c1c6
3

+ 6c′1c′2c′′1
c2c2

1c
4
3

+ 6c′′1c′′2
c2c1c4

3
+ 12c′1(c′2)3

c3
2c1c4

3
+ 12(c′2)2c′′2

c3
2c

4
3

− 4c′1c′3c′′1
c2

1c
5
3

− 6(c′1)2c′2c
′
3

c2c2
1c

5
3

+ 2(c′′1)2

c2
1c

4
3

+ 12(c′2)4

c4
2c

4
3

+ 2(c′1)2(c′3)2

c2
1c

6
3

+ 12(c′1)2(c′2)2

c2
2c

2
1c

4
3

+ 12(c′′2)2

c2
2c

4
3

+ 12(c′2)2(c′3)2

c2
2c

6
3

]
+ α3

[4(c′′1)2

c2
1c

4
3

+ 12(c′1)2(c′2)2

c2
2c

2
1c

4
3

+ 12(c′′2)2

c2
2c

4
3

+ 12(c′2)4

c4
2c

4
3

− 8c′1c′3c′′1
c2

1c
5
3

− 24c′2c′3c′′2
c2

2c
5
3

+ 4(c′1)2(c′3)2

c2
1c

6
3

+ 12(c′2)2(c′3)2

c2
2c

6
3

]
,

(A.5)
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and in model (1.4) by

δI4 = 5
36c1c

3
2c3

(
c′1c

′
2

c2c1c2
3

+ c′1c
′
3

c1c3
3
− (c′2)2

c2
2c

2
3
− c′3c

′
2

c2c3
3
− c′′1
c1c2

3
+ c′′2
c2c2

3

)4
. (A.6)

From (A.3) we obtain the following equations of motion:14

0 = c′′1 − c1(c′2)2

c2
2

+ 2c′2c′1
c2

− c′3c
′
1

c3
+ 1

12c1
∑

i

(ϕ′i)2 + 1
6c

2
3c1(V − 12) + β ·

[
· · ·
]
, (A.7)

0 = c′′2 − c′2c
′
3

c3
+ (c′2)2

c2
+ 1

12c2
∑

i

(ϕ′i)2 + 1
6c2c

2
3(V − 12) + β ·

[
· · ·
]
, (A.8)

0 =
∑

i

(ϕ′i)2 − 12(c′2)2

c2
2

− 12c′2c′1
c2c1

− 2c2
3(V − 12) + β ·

[
· · ·
]
, (A.9)

0 = ϕ′′i − ϕ′ic
′
3

c3
+ 3ϕ′ic′2

c2
+ c′1ϕ

′
i

c1
− c2

3 ∂iV . (A.10)

We verified that the constraint (A.9) is consistent with the remaining equations to order
O(β) inclusive.

On-shell, i.e., evaluated when (A.7)–(A.10) hold, the effective action (A.3) is a total
derivative. Specifically, we find

I + β · δI = −6c2
2c1
c3

· eq.(A.8) + d

dr

{
−2c3

2c
′
1

c3
+ β · δB

}
, (A.11)

with the higher derivative terms δB given by

δB2 = − 4(2α1 + α2 + 2α3)c
3
2c

′′′
1

c3
3

− 6(4α1 + α2)c1c
2
2c

′′′
2

c3
3

+ 12(4α1 + α2)c1(c′2)3

c3
3

+ 2c2(c′1)2

c5
3c1

(
24c′2c2c

2
3α1 + 6c′2c2c

2
3α2 − 8c′3c2

2c3α1 − 4c′3c2
2c3α2 − 8c′3c2

2c3α3

)
+ 4c2c

′
1

c5
3

(
2c′′3c2

2c3α1 + c′′3c
2
2c3α2 + 2c′′3c2

2c3α3 + 12(c′2)2c2
3α1 + 3(c′2)2c2

3α2 + 6(c′2)2c2
3α3

+ 6c′2c2c3α1c
′
3 + 3c′2c2c3α2c

′
3 + 6c′3c2c3α3c

′
2 − 6(c′3)2c2

2α1 − 3(c′3)2c2
2α2 − 6(c′3)2c2

2α3

)
− 4(2α1 + α2 + 2α3)c

2
2c

′′
1

c4
3c1

(
3c′2c3c1 − 3c′3c2c1 − 2c2c3c

′
1

)
+ 6(4α1 + α2)c2c1c

′
3(c′2)2

c4
3

+ 6(4α1 + α2)c
2
2c1c

′
2

c5
3

(
c′′3c3 − 3(c′3)2

)
+ 6(4α1 + α2)c

′′
2
c6

3

(
−c′2c2c

3
3c1 + 3c′3c2

2c
2
3c1

)
,

(A.12)

14The · · · represent the O(β) terms that we omit for readability. Of course, these terms must be taken into
account to obtain the correct results.

– 20 –



J
H
E
P
0
4
(
2
0
2
4
)
0
3
2

and

δB4 = 5
9

((c′2)2

c2
2

+ c′2c
′
3

c3c2
− c′′2
c2

− c′2c
′
1

c2c1
− c′3c

′
1

c3c1
+ c′′1
c1

)2
·
(3c′′3c′1c3

2
c8

3
− 3c1c

′′
3c

′
2c

2
2

c8
3

− 3c′′′1 c
3
2

c7
3

+ 3c1c
′′′
2 c

2
2

c7
3

− 4(c′1)2c′2c
2
2

c7
3c1

− 4(c′1)2c3
2c

′
3

c8
3c1

+ 2c′1(c′2)2c2
c7

3
− c′1c

′
2c

2
2c

′
3

c8
3

+ 4c′1c3
2c

′′
1

c7
3c1

+ 2c′1c2
2c

′′
2

c7
3

− 9c′1c3
2(c′3)2

c9
3

+ 2c1(c′2)3

c7
3

+ 5c1(c′2)2c2c
′
3

c8
3

− c′2c
2
2c

′′
1

c7
3

− 5c1c
′
2c2c

′′
2

c7
3

+ 9c1c
′
2c

2
2(c′3)2

c9
3

+ 9c3
2c

′
3c

′′
1

c8
3

− 9c1c
2
2c

′
3c

′′
2

c8
3

)
. (A.13)

In what follows we will need the entropy density s and the temperature T of the boundary
thermal state. The temperature is determined by requiring the vanishing of the conical deficit
angle of the analytical continuation of the geometry (A.1),

2πT = lim
r→rh

[
−c2
c3

(
c1
c2

)′]
= lim

r→rh

[
−c

′
1
c3

+ c1c
′
2

c2c3

]
= lim

r→rh

[
−c

′
1
c3

]
, (A.14)

where to obtain the last equality we used (A.2). The thermal entropy density of the boundary
gauge theory is identified with the entropy density of the dual black brane [53]. Since our
holographic model contains higher-derivative terms, the Bekenstein entropy sB,

sB = lim
r→rh

c3
2

4GN
, (A.15)

must be replaced with the Wald entropy sW [54],

sW = − 1
8πGN

lim
r→rh

[
c3

2 ϵµνϵρλ
δL5

δRµνρλ

]
, (A.16)

i.e., s = sW . The simplest way to compute the Wald entropy density is instead to use the
boundary thermodynamics:

According to the holographic correspondence [55, 56], the on-shell gravitational action
S1, properly renormalized [57], has to be identified with the boundary gauge theory free
energy density F as follows,

−F = S1

∣∣∣∣
on−shell

= 1
16πGN

∫ rh

0
dr

d

dr

{
−2c3

2c
′
1

c3
+ β · δB

}
+ lim

r→0

[
SGH + Sct

]
, (A.17)

where we used (A.11). SGH is a generalized Gibbons-Hawking term [8], necessary to have a
well-defined variational principle, and Sct is the counter-term action — we will not need the
explicit form of either of these corrections.

eq. (A.17) can be rearranged to explicitly implement the basic thermodynamic relation
−F = sT − E between the free energy density F , the energy density E and the entropy
density s [58]:

−F = 1
16πGN

lim
r→rh

[
−2c3

2c
′
1

c3
+β ·δB

]
− lim

r→0

[ 1
16πGN

(
−2c3

2c
′
1

c3
+ β · δB

)
+SGH+Sct

]
. (A.18)
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Finally, we identify15

sT ≡ sWT = 1
16πGN

lim
r→rh

[
−2c3

2c
′
1

c3
+ β · δB

]
. (A.19)

Notice that to leading order O(β0), using (A.14), we recover from (A.19) the Bekenstein
entropy (A.15); the order O(β) term implements the correction to get the Wald entropy
density. In what follows we will need the ratio of the Wald and the Bekenstein entropy
densities of the black brane, evaluated at the same temperature:

sW

sB
≡ 1 + β · lim

r→rh
κ(r) , κ ≡ − c3

2c3
2c

′
1
· δB . (A.20)

We proceed to evaluate κ for our two holographic models (1.3) and (1.4). Since we work
to order O(β) in (A.20), we can evaluate δB to leading order in β, i.e., we can use the
leading order equations of motion (A.7)–(A.10), and algebraically eliminate c′′′1 , c

′′′
2 , c

′′
1, c

′′
2

from δB2 and δB4:

δB2 = (16α1 + 5α2 + 4α3)2c3
2c1

3c3

∑
i

∂iV · ϕ′i − c3
2

(
(28α1 + 11α2 + 16α3)2c′1

3c3

+ (4α1 + α2)6c1c
′
2

c3c2

)
V − 36c1(c′2)3

c3
3

(4α1 + α2) − 24c′1c2(c′2)2

c3
3

(9α1 + 3α2 + 2α3)

− 36c2
2c

′
2(c′1)2

c3
3c1

(2α1 + α2 + 2α3) + 8c3
2c

′
1

c3
(28α1 + 11α2 + 16α3) + 72c2

2c
′
2c1

c3
(4α1 + α2) ,

(A.21)

δB4 = − 15(c′2)2

c2
2

(
c′1
c1

− c′2
c2

)2((c′1c2 − c′2c1)c2
2

c5
3

V − 12c′1c3
2

c5
3

+ 12c1c
′
2c

2
2

c5
3

+ 7(c′1)2c′2c
2
2

c7
3c1

+ 7c′1(c′2)2c2
c7

3
− 14c1(c′2)3

c7
3

)
.

(A.22)

We need to evaluate (A.21) and (A.22) at the horizon, i.e., as r → rh. It is convenient to
fix the residual diffeomorphism in (A.1) as16

c1 = f1/2(g + O(β))1/2

r
, c2 = 1

r
, c3 = 1

rf1/2(1 + O(β))
, (A.23)

where {f, g} = {f, g}(r). Given (A.7)–(A.9), to leading order in β,

f ′ = f

6r
∑

i

(ϕ′i)2 + 4f
r

+ V

3r − 4
r
, g′ = −gr3

∑
i

(ϕ′i)2 . (A.24)

From (A.2), the horizon is located at rh, such that

lim
r→rh

f = 0 . (A.25)

15Strictly speaking, (A.19) is correct up to an arbitrary constant. But this constant must be set to zero
from the comparison with thermal AdS, in which case the black brane geometry is dual to a thermal state of a
boundary CFT with vanishing entropy in the limit T → 0.

16Of course, final results are independent of this choice.
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Regularity of ϕi at the horizon then implies from (A.10) that17

ϕ′i ∼
3∂iV

r(V − 12) , as r → rh . (A.26)

Using (A.24) and (A.26) we find from (A.21), (A.22) and (A.20)

κ2 ∼ 2
3(V − 12)(5α1 + α2 − α3) and κ4 ∼ − 5

144(V − 12)3 as r → rh , (A.27)

i.e.,

sW

sB
= 1 + β ·


2
3(V − 12)(5α1 + α2 − α3) , when δL = δL2 ;

− 5
144(V − 12)3 , when δL = δL4 ,

(A.28)

where all quantities in (A.28) are to be evaluated at the black brane horizon.
Finally, note that in the class of models δL2 there are two special cases for which the

Wald and Bekenstein entropies coincide to order O(β):

• α1 = 1 , α2 = −4 , α3 = 1 — the combination in (1.3) assembles into a Gauss-Bonnet
term, which renders the full gravitational action (1.2) two-derivative;

• α1 = 0 , α2 = α3 = 1 — the gravitational action (1.2) is higher-derivative in the bulk,
but is effectively two-derivative in the vicinity of the black brane horizon.

This will be relevant to our discussion later on, when we examine the applicability of the
Eling-Oz construction [22].

A.2 η
s

with higher derivative corrections

Following [2, 8], we use the Kubo formula to compute the shear viscosity from the two-point
retarded correlation function of the boundary stress-energy tensor with indices along the
spatial directions 12,

η = − lim
w→0

1
w

ImGR(w) , GR(w) = −i
∫
dtdxeiwtθ(t)⟨[T12(t,x), T12(0,0)]⟩ . (A.29)

To compute the retarded thermal two-point function of the components of the stress-energy
tensor entering (A.29) we add the bulk metric perturbation

ds2
5 → ds2

5 + 2h12(t, r) dx1dx2 . (A.30)

Simple symmetry arguments [59] show that all the remaining metric and bulk scalars fluc-
tuations can be consistently set to zero; additionally, we can restrict to SO(3) invariant
metric perturbations.

It is convenient to use the idea of the complexified effective action for the fluctuations
introduced in [18]. This complexified action is a functional of h12,w(r) and h∗12,w(r) ≡ h12,−w(r)

S(2) = 1
16πGN

∫ rh

0
dr LC{h12,w, h

∗
12,w} , (A.31)

17We use l.h.s. ∼ r.h.s. to denote that limr→rh
l.h.s.
r.h.s.

= 1.
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and is constructed in such a way that the h12,w equation of motion obtained from LC,

0 = δS(2)

δh∗12,w

, (A.32)

is identical to the one obtained from the effective action (1.2), assuming the harmonic
dependence for the fluctuations h12(t, r) = e−iwth12,w(r). In practice, it is straightforward to
construct LC:

Evaluate (1.2) to quadratic order in the fluctuations (A.30).
Complexify every term of the resulting quadratic action as follows: e.g., replace

h12 ∂
2
rrh12 −→ 1

2
(
h12 ∂

2
rrh

∗
12 + h∗12 ∂

2
rrh12

)
,

or

∂th12 ∂
2
trh12 −→ 1

2
(
∂th12 ∂

2
trh

∗
12 + ∂th

∗
12 ∂

2
trh12

)
.

(A.33)

Introduce the harmonic dependence as

h12 = e−iwth12,w(r) , h∗12 = eiwth12,−w(r) . (A.34)

The resulting action gives LC.
For the model (1.3) we find LC ≡ LC;2,

LC;2 =B1 h
′′
12,−wh

′′
12,w +B2

2
(
h′′12,wh

′
12,−w +h′′12,−wh

′
12,w

)
− 1

2(B3w
2−A1−B4)

(
h′′12,wh12,−w +h′′12,−wh12,w

)
+(B10w

2+B11+A4) h′12,wh
′
12,−w

− 1
2((B6−B9)w2−A5−B12)

(
h′12,wh12,−w +h′12,−wh12,w

)
+h12,wh12,−w

(
B5w

4−w2(B7−B8+A2−A3)+B13+A6
)
,

(A.35)

where the connection coefficients Ai(r) = O(β0) and Bi(r) = O(β) are functionals of the
background geometry (A.1). Coefficients Ai are presented in appendix B; coefficients Bi are
too long to be reported here. For the model (1.4) we find LC ≡ LC;4 of the form as in (A.35),
albeit with a distinct set of the connection coefficients Bi.

On-shell, the effective action (A.35) can be re-expressed as a total derivative,

LC = 16πGN · h∗12,w · δS
(2)

δh∗12,w

+ ∂rJw , (A.36)

with a current

Jw =
[
B1h

′′
12,w + B2

2 h′12,w − 1
2(B3w

2 −A1 −B4)h12,w

]
h′12,−w +

[
−B1h

′′′
12,w −B′

1h
′′
12,w

+
((

B10 + 1
2B3

)
w2 − 1

2B
′
2 +B11 +A4 −

1
2A1 −

1
2B4

)
h′12,w

+
((

−1
2B6 + 1

2B9 + 1
2B

′
3

)
w2 − 1

2A
′
1 −

1
2B

′
4 + 1

2A5 + 1
2B12

)
h12,w

]
h12,−w .

(A.37)
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A crucial observation originally made in [18] was that an analog of Jw in two-derivative
holographic models (no Bi coefficients in (A.37)) has a radially conserved imaginary part,
on-shell. It is straightforward to verify that this property holds, even in the presence of
higher derivatives of the effective action:

∂r(Jw − J−w)
∣∣∣∣
on−shell

= 2 ∂rImJw

∣∣∣∣
on−shell

= 0 . (A.38)

The conservation law (A.38) is a direct consequence of the exact U(1) symmetry of LC (A.31)
that rotates the phase of fluctuations, namely h12,w → eiθh12,w and h12,−w → e−iθh12,−w.
The conserved Noether charge associated with this symmetry is precisely ImJw. Indeed,

16πGN
δS(2)

δθ
= −i ∂rθ · (Jw − J−w) , (A.39)

for infinitesimal θ-rotations. In [18] this conserved charge was interpreted as the radially
conserved number flux of gravitons18,.19

Essentially following the discussion of [60], the retarded two point correlation function of
the stress-energy tensor (A.29) has to be identified with the boundary limit (i.e., r → 0) of
the current Jw (A.37). It is easy to see that Jw diverges as one approaches the AdS boundary

— it must be regularized and renormalized [57] by adding an appropriate counter-term Jct.
Additionally, one must add a generalized Gibbons-Hawking boundary term JGH [8, 61] to
have a well-defined variational principle for S(2). Thus,

GR(w) = 1
8πGN

lim
r→0

(Jw + JGH + Jct) . (A.40)

Recall from (A.29) that, in order to extract the shear viscosity, we need only the imaginary part
of GR(w). However, both JGH and Jct can not contribute to ImGR. For example, from the
representation (A.36), the variation δS(2)

δh∗
12,w

would produce a boundary term −A1h12,w ·δh′12,−w.
Such a term must be cancelled with the appropriate term in the variation of JGH:

δ

(
+A1

(
h12,wh

′
12,−w + h12,−wh

′
12,w

))
= +A1h12,w · δh′12,−w . (A.41)

However, Im[A1
(
h12,wh

′
12,−w + h12,−wh

′
12,w

)
] = 0. Clearly, this will be the case for all terms

in JGH and Jct: indeed, originally the Gibbons-Hawking term and the counterterms are real,
and the complexification as in (A.33) will not change this fact. As a result,

ImGR(w) = 1
8πGN

lim
r→0

ImJw = 1
8πGN

lim
r→rh

ImJw , (A.42)

where in the second equality we used the fact that ImJw is conserved along the radial flow,
and so can be evaluated at the horizon. Of course, this is the reason underlying the original
claims of the universality of the shear viscosity in two-derivative holographic models [3, 62].

18See [18] for further discussion and related earlier work.
19It is an interesting open question as to why the quadratic action for the fluctuations has this peculiar

property, (A.36).
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Before we can evaluate Jw at the black brane horizon, we need to derive the equation
of motion for h12,w. From (A.32) we find

0 = (A1 −A4) h′′12,w + (A′
1 −A′

4) h′12,w +
(1

2A
′′
1 − 1

2A
′
5 +A6 + (A3 −A2)w2

)
h12,w

+
{
B1 h

′′′′
12,w + 2B′

1 h
′′
12,w +

(
B′′

1 + 1
2B

′
2 +B4 −B11 − w2(B3 +B10)

)
h′12,w

+
(1

2B
′′
2 −B′

11 +B′
4 − (B′

3 +B′
10)w2

)
h′12,w +

(
B5w

4 +
(
B8 −B7 + 1

2B
′
6 −

1
2B

′
9

− 1
2B

′′
3

)
w2 +B13 + 1

2B
′′
4 − 1

2B
′
12

)
h12,w

}
. (A.43)

All the terms in the bracket {} above are O(β), and the equation (A.43) can reduced to a
second order equation for h12,w eliminating h′′′′12,w , h

′′′
12,w , h

′′
12,w with Bi connection coefficients

using the O(β0) equation of motion. We will need to solve the equation (A.43) in the
hydrodynamic approximation, specifically to order O(w). It is convenient to introduce

h12,w = c2
2 H12,w , H12,w =

(
c1
c2

)−iw

(H0 + iw H1) , (A.44)

where we set

w = w

2πT . (A.45)

With (A.44), the incoming wave boundary condition for the fluctuations, and the correct
normalization at the boundary, result in

lim
r→0

H0(r) = 1 , lim
r→0

H1(r) = 0 ,

lim
r→rh

H0(r) = finite , lim
r→rh

H1(r) = finite .
(A.46)

Using the black brane background equations of motion (A.7)–(A.10), the equation for
the fluctuations (A.43), and (A.44), we can evaluate the O(w) part of Jw from (A.37)

Jw = J0 − iw J1 , J1 ≡ F + β · δF , (A.47)

F = −c
2
2(c2c

′
1 − c′2c1)
2c3

H2
0 + c3

2c1
2c3

(H0H
′
1 −H ′

0H1) , (A.48)

while for the model (1.3), δF ≡ δF2,

δF2 = − 2
3

(
H2

0 (c2c
′
1 − c′2c1) − c2c1(H0H

′
1 −H ′

0H1)
)(2c2

2
c3

(2α1 + α2 + 2α3)V

+
(
c2c

′
1c

′
2

c1c3
3

+ (c′2)2

c3
3

)
(9α1 + 9α2 + 24α3) + 3(c′2)2

c3
3

α3 −
24c2

2
c3

(2α1 + α2 + 2α3)
)
,

(A.49)

and for the model (1.4), δF ≡ δF4,

δF4 = − c′2(c1c
′
2 − c2c

′
1)2

4

(
H2

0 (c2c
′
1 − c′2c1) − c2c1(H0H

′
1 −H ′

0H1)
)(24c′2(c′1)2

c4
1c

2
2c

7
3

− 48c′1
c3

1c2c5
3

− 96c′2
c2

1c
2
2c

5
3

+ 117(c′2)2c′1
c3

1c
3
2c

7
3

+ 111(c′2)3

c2
1c

4
2c

7
3

+
( 4c′1
c3

1c2c5
3

+ 8c′2
c2

1c
2
2c

5
3

)
V

)
. (A.50)
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Finally, from (A.29) and (A.42) we obtain

η = − 1
8πGN

lim
w→0

1
w

ImJw = − 1
8πGN

lim
w→0

(−1) · w
w
J1 = 1

8πGN
· 1

2πT · (F + β · δF ) .
(A.51)

Further simplifications occur when (A.48), (A.49) and (A.50) are evaluated at the
horizon. Using (A.23)–(A.26), see also footnote 17,

F ∼ (4GNsB)(2πT ) ·
(1

2H
2
0

)
,

δF2 ∼ (4GNsB)(2πT ) ·
(
H2

0
3 · (V − 12)(5α1 + α2)

)
,

δF4 ∼ (4GNsB)(2πT ) ·
(
−H

2
0

96 · (V − 12)
[
5(V − 12)2 + 2

∑
i

(∂iV )2
])

,

(A.52)

where the Bekenstein entropy density is given by (A.15) and the temperature is determined
by (A.14).

Notice that in (A.52) we only need to know the value of H0 at the black brane horizon.
The equation of motion for H0 is determined from (A.43) setting w = 0,

0 = H ′′
0 +H ′

0

[
ln c1c

3
2

c3

]′
+ β · δeq , (A.53)

where for the model (1.3), δeq ≡ δeq2,

δeq2 = 4H ′
0

3

[
−54(c′2)3

c3
2c

2
3

(α1 + α2 + 3α3) − 18c′1(c′2)2

c1c2
2c

2
3

(4α1 + 4α2 + 11α3)

+
(

12c′1
c1

− 6c′2(c′1)2

c2c2
3c

2
1

)
(3α1 + 3α2 + 8α3) + 12c′2

c2
(9α1 + 9α2 + 26α3) + 2(2α1 + α2

+ 2α3)
∑

i

∂iV · ϕ′i −
(

(9α1 + 9α2 + 26α3)c
′
2
c2

+ c′1
c1

(3α1 + 3α2 + 8α3)
)
V

]
,

(A.54)

and for the model (1.4), δeq ≡ δeq4,

δeq4 = H ′
0

6

(
c′1
c1

− c′2
c2

)2[12c′2(2c1c
′
2 + c2c

′
1)

c1c4
3c

2
2

∑
i

∂iV · ϕ′i −
(20c′2
c2

3c2
+ 4c′1
c2

3c1

)
V 2 +

(480c′2
c2

3c2

+ 96c′1
c2

3c1
− 849(c′2)3

c4
3c

3
2

− 639c′1(c′2)2

c4
3c

2
2c1

− 96(c′1)2c′2
c4

3c2c2
1

)
V − 2880c′2

c2
3c2

− 576c′1
c2

3c1
+ 10188(c′2)3

c4
3c

3
2

+ 7668c′1(c′2)2

c4
3c

2
2c1

+ 1152(c′1)2c′2
c4

3c2c2
1

− 5994(c′2)5

c5
2c

6
3

− 8316c′1(c′2)4

c1c4
2c

6
3

− 3402(c′1)2(c′2)3

c2
1c

3
2c

6
3

− 432(c′1)3(c′2)2

c3
1c

2
2c

6
3

]
. (A.55)

We seek solution of (A.53) recursively in β,

H0 = H0,0 + β H0,1 . (A.56)
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To leading order, we have

H0,0 = C1,0 + C2,0

∫
dr

c3
c3

2c1
. (A.57)

Regularity of H0,0 at the horizon fixes C2,0 = 0 (see (A.23) and (A.25)), while the normalization
as r → 0 sets C1,0 = 1. With H0,0 ≡ 1, the general solution for H0,1 once again takes the
form (A.57), albeit now the boundary conditions (A.46) set C1,1 = C2,1 = 0. Thus, putting
all this together, we have

H0(r) ≡ 1 + O(β2) . (A.58)

Finally, collecting (A.51), (A.52) and (A.58) we find

4π η

sB
= 1 + β ·


2
3(5α1 + α2)(V − 12), when δL = δL2 ;

− 1
48(V − 12)

[
5(V − 12)2 + 2∑i (∂iV )2

]
, when δL = δL4 .

(A.59)

Noting that

4πη
s

= 4π η

sB
· sB

sW
, (A.60)

and using (A.28) we arrive at the results reported in (1.5) and (1.6) for the final shear
viscosity to entropy ratio in the presence of higher derivative corrections.

A.3 ζ
s

with higher derivative corrections

The computation of the bulk viscosity ζ parallels the discussion of section A.2. The starting
point is the Kubo formula [18]

ζ = −4
9 lim

w→0

1
w

ImGR(w) , GR(w) = −i
∫
dtdxeiwtθ(t)⟨[1

2T
i
i (t,x), 1

2T
j
j (0,0)]⟩ . (A.61)

To compute the relevant retarded correlation function we consider the decoupled set of SO(3)
invariant metric fluctuations and the bulk scalars

ds2
5 → ds2

5 + htt(t, r) dt2 + h11(t, r) dx2 + 2htr(t, r) dtdr + hrr(t, r) dr2 ,

ϕi → ϕi + ψi(t, r) .
(A.62)

For convenience, we fix the axial gauge as

htr = hrr = 0 . (A.63)

To study the equations of motion for the fluctuations, it is convenient to introduce new
variables H00 , H11

htt(t, r) = e−iwt c2
1 H00(r) , h11(t, r) = e−iwt c2

2 H11(r) , (A.64)

and the gauge invariant scalar fluctuations Zi as in [15]

ψi(t, r) = e−iwt
(
Zi(r) + ϕ′ic2

2c′2
H11(r)

)
. (A.65)
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The equations of motion for Zi completely decouple from the equations for the metric
fluctuations,

0 = Z ′′
i +

(
ln c1c

3
2

c3

)′

Z ′
i + c2

3w
2

c2
1

Zi − ϕ′i · (V − 12) c2
2c

2
3

9(c′2)2

∑
j

Zj · ϕ′j

− c2c
2
3

3c′2

(
∂iV

∑
j

Zj · ϕ′j + ϕ′i
∑

j

∂jV · Zj

)
− c2

3
∑

j

Zj · ∂2
ijV + β ·

[
· · ·
]
.

(A.66)

Furthermore, we have

H11 ≡ c′2
c2c3

H , 0 = H ′ + c3c2
3c′2

∑
i

Zi · ϕ′i + β ·
[
· · ·
]
, (A.67)

0 = H ′
00 + c2

3c′2

∑
i

ϕ′i · Z ′
i −

1
3

(
c3(V − 12) + 3c3w

2

c2
1

+ 9c′1c′2
c3c2c1

+ 3(c′1)2

c3c2
1

)
H

− c2
9c1(c′2)2

(
c1c2c

2
3(V − 12) + 3c′1c′2

) ∑
i

Zi · ϕ′i −
c2c

2
3

3c′2

∑
i

∂iV · Zi + β ·
[
· · ·
]
,

(A.68)

where once again we omit the O(β) terms for readability. We will need to solve the equa-
tions (A.66)–(A.68) in the hydrodynamic approximation, specifically to order O(w) (see (A.45)
for the definition of w),

Zi =
(
c1
c2

)−iw

(zi,0+iw zi,1) , H = H0+iwH1 , H00 = H00,0+iwH00,1 . (A.69)

The set of the gauge invariant scalar equations is solved first. The incoming wave boundary
condition implies that zi,0 and zi,1 must be regular at the black brane horizon. To correctly
normalize the retarded correction function in (A.61) we must set

lim
r→0

H11(r) = 1 , lim
r→0

H00(r) = 0 . (A.70)

Additionally, the coefficients of ψi that are non-normalizable near the AdS boundary must
vanish [15]. From (A.65) this implies that if the non-normalizable coefficient λi of the
background scalar ϕi dual to a gauge theory operator of dimension ∆i is nonzero, i.e.,

ϕi = λi · r4−∆i + · · · , as r → 0 , (A.71)

the near-AdS boundary asymptotic of Zi much be

lim
r→0

Zi

r4−∆i
= 4 − ∆i

2 · λi = lim
r→0

zi,0
r4−∆i

, lim
r→0

zi,1
r4−∆i

= 0 . (A.72)

As we show shortly, we will need only the values of the scalars zi,0 near the horizon. These
would have to be determined numerically.

Parallel to our discussion in section A.2, we compute the complexified action for the
fluctuations. This action is a functional of {h00,w , h11,w , pi,w},

htt(t, r) = e−iwt h00,w , h11(t, r) = e−iwt h11,w , ψi(t, r) = e−iwt pi,w , (A.73)
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and their complex conjugates:

S(2) = 1
16πGN

∫ rh

0
dr LC{h00,w , h11,w , pi,w, h

∗
00,w , h

∗
11,w , p

∗
i,w} , (A.74)

with

LC = 1
2A1

(
h′′11,wh00,−w + h′′11,−wh00,w

)
+ 1

2A2
(
h′′11,wh11,−w + h′′11,−wh11,w

)
+ 1

2A3
(
h′′00,wh11,−w + h′′00,−wh11,w

)
+ 1

2A4
(
h′′00,wh00,−w + h′′00,−wh00,w

)
+ 1

2A5
(
h′11,wh

′
00,−w + h′11,−wh

′
00,w

)
+ 1

2A6
(
h′11,wh00,−w + h′11,−wh00,w

)
+ 1

2A7
(
h′11,wh11,−w + h′11,−wh11,w

)
+ 1

2A8
(
h11,−wh

′
00,w + h11,wh

′
00,−w

)
+ 1

2A9
(
h00,−wh

′
00,w + h00,wh

′
00,−w

)
+A13h

′
00,−wh

′
00,w

+ 1
2
∑

i

A17,i ·
(
h00,−wp

′
i,w + h00,wp

′
i,−w

)
+ 1

2
∑

i

A18,i ·
(
h11,−wp

′
i,w + h11,wp

′
i,−w

)
+A19

∑
i

p′i,wp
′
i,−w + 1

2(A16 + w2(A12 −A10))(h00,−wh11,w + h00,wh11,−w)

+A14h00,wh00,−w + (A15 − w2A11)h11,wh11,−w + 1
2
∑

i

A23,i · (pi,wh00,−w + pi,−wh00,w)

+
∑

i

(A21,i + w2A20) · pi,wpi,−w + 1
2
∑

i

A22,i · (h11,−wpi,w + h11,wpi,−w)

+ 1
2
∑
i ̸=j

A24,ij(pi,wpj,−w + pi,−wpj,w) + β

[
· · ·
]
,

(A.75)

where for readability we suppressed O(β) terms. The O(β0) connection coefficients Ai are
collected in appendix C.

On-shell, the effective action (A.75) can be re-expressed as a total derivative,

LC = 16πGN ·
(
h∗00,w · δS

(2)

δh∗00,w

+ h∗11,w · δS
(2)

δh∗11,w

+ p∗i,w · δS
(2)

δp∗i,w

)
+ ∂rJw , (A.76)

with a current given by

Jw =
[
A4
2 h00,w + A3

2 h11,w

]
h′00,−w +

[
A1
2 h00,w + A2

2 h11,w

]
h′11,−w +

[1
2(A5 −A1)h′00,w

− 1
2A2h

′
11,w + 1

2(A7 −A′
2)h11,w + 1

2(A6 −A′
1)h00,w

]
h11,−w +

[1
2(A5 −A3)h′11,w

+
(
A13 −

1
2A4

)
h′00,w + 1

2(A9 −A′
4)h00,w + 1

2(A8 −A′
3)h11,w

]
h00,−w +

[
A17,i

2 h00,w

+ A18,i

2 h11,w +A19pi,w

]
pi,−w + β

{
· · ·
}
. (A.77)

Parallel to the discussion of the shear channel fluctuations in section A.2, the imaginary part
of Jw in (A.77) is radially conserved. The same arguments as in section A.2 lead to

ImGR(w) = 1
8πGN

lim
r→rh

ImJw , (A.78)
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with (see (A.69))

Jw = J0 − iw J1 , J1 ≡ F + β · δF , (A.79)

F = −c
2
2(c2c

′
1 − c′2c1)
2c3

∑
i

(zi,0)2 + c3
2c1
2c3

∑
i

(
z′i,1zi,0 − z′i,0zi,1

)
, (A.80)

where we used the equations of motion (A.67) and (A.68) to eliminate all derivatives of
H11 and H00. What is remarkable is that the final result (A.80) depends only on zi,0 and
zi,1. While we will not present here the results for δF ’s, we note that they are functionals
of zi,0 and zi,1 only as well.

As in section A.2, further simplification occurs when J1 is evaluated at the horizon.
We find:

F ∼ (4GNsB)(2πT ) ·
(

1
2
∑

i

(zi,0)2
)
, (A.81)

δF2 ∼ (4GNsB)(2πT ) ·
(

2(5α1 + α2 − α3)
3(V − 12)

∑
i

(zi,0 · ∂iV )2
)
, (A.82)

δF4 ∼ (4GNsB)(2πT ) ·
(
− 5

48(V − 12)
∑

i

(zi,0 · ∂iV )2
)
, (A.83)

(A.84)

where the Bekenstein entropy density is given by (A.15) and the temperature is determined
by (A.14). As before, we used δF ≡ δF2 to refer to the model (1.3), and δF ≡ δF4 to
refer to the model (1.4).

Finally, using (A.78) and (A.84), we obtain from (A.61) the following expressions for
the bulk viscosity,

ζ = sB

4π · 4
9

[ ∑
i

z2
i,0 + β ·


4(5α1+α2−α3)

3(V −12)
∑

i(zi,0 · ∂iV )2 , when δL = δL2 ;
− 5

24(V − 12) ∑i(zi,0 · ∂iV )2 , when δL = δL4

]
.

(A.85)
Noting that

9πζ
s

= 9π ζ

sB
· sB

sW
, (A.86)

and using (A.28), we arrive at the results reported in (1.7) and (1.8).

B Connection coefficients of (A.35)

A1 = 2c1
c2c3

, (B.1)

A2 = − 2c3
c1c2

, (B.2)

A3 = − 3c3
2c1c2

, (B.3)
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A4 = 3c1
2c2c3

, (B.4)

A5 = −2c1c
′
3

c2c2
3

− 6c1c
′
2

c2
2c3

+ 2c′1
c2c3

, (B.5)

A6 = c3c1
2c2

V + c1
4c2c3

∑
i

(ϕ′i)2 − 6c3c1
c2

− c′′2c1
c2

2c3
+ c′3c

′
2c1

c2
2c

2
3

+ 5(c′2)2c1
c3

2c3
+ c′′1
c2c3

− c′3c
′
1

c2c2
3
− c′1c

′
2

c2
2c3

. (B.6)

C Connection coefficients of (A.75)

A1 = 3c2
2c3c1

, (C.1)

A2 = − 3c1
2c2c3

, (C.2)

A3 = 3c2
2c3c1

, (C.3)

A4 = c3
2

2c3c3
1
, (C.4)

A5 = 3c2
2c3c1

, (C.5)

A6 = − 3c2c
′
1

2c2
1c3

− 3c2c
′
3

2c1c2
3
, (C.6)

A7 = − 3c′1
2c2c3

+ 3c1c
′
3

2c2c2
3
, (C.7)

A8 = − 3c2c
′
1

c2
1c3

− 3c2c
′
3

2c1c2
3

+ 3c′2
2c1c3

, (C.8)

A9 = − 3c3
2c

′
1

c4
1c3

− c3
2c

′
3

2c3
1c

2
3

+ 3c2
2c

′
2

2c3
1c3

, (C.9)

A10 = 3c2c3
2c3

1
, (C.10)

A11 = 3c3
2c2c1

, (C.11)

A12 = 3c2c3
2c3

1
, (C.12)

A13 = c3
2

2c3c3
1
, (C.13)

A14 = c3
2c3
8c3

1
V + c3

2
16c3c3

1

∑
i

(ϕ′i)2 − 3c3
2c3

2c3
1

+ 3c2
2c

′′
2

4c3c3
1
− 3c3

2c
′′
1

4c3c4
1

+ 3c3
2(c′1)2

c3c5
1

+ 3c3
2c

′
1c

′
3

4c2
3c

4
1

− 9c2
2c

′
1c

′
2

4c3c4
1

− 3c2
2c

′
2c

′
3

4c2
3c

3
1

+ 3c2(c′2)2

4c3c3
1

, (C.14)
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A15 = − 3c3c1
8c2

V − 3c1
16c3c2

∑
i

(ϕ′i)2 + 9c3c1
2c2

+ 3c′′2c1
4c3c2

2
− 3c′′1

4c3c2
+ 3c′1c′3

4c2
3c2

+ 3c′1c′2
4c3c2

2

− 3c1c
′
2c

′
3

4c2
3c

2
2

+ 3c1(c′2)2

4c3c3
2

, (C.15)

A16 = 3c2c3
4c1

V + 3c2
8c1c3
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i

(ϕ′i)2 − 9c2c3
c1

+ 3c′′2
2c1c3
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′′
1
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1c3

+ 3c2(c′1)2
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1c3

+ 3c2c
′
1c

′
3

2c2
1c

2
3
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2c2

1c3
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3

+ 3(c′2)2

2c2c1c3
, (C.16)

A17,i = c3
2

2c3c1
ϕ′i , (C.17)

A18,i = − 3c2c1
2c3

ϕ′i , (C.18)

A19 = − c1c
3
2

2c3
, (C.19)

A20 = c3
2c3
2c1

, (C.20)

A21,i = − c3
2c3c1

2 ∂2
iiV , (C.21)

A22,i = − 3c2c3c1
2 ∂iV , (C.22)

A23,i = c3c
3
2

2c1
∂iV , (C.23)

A24,ij = − c3
2c3c1 ∂

2
ijV . (C.24)
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