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Abstract Active, motor-based cargo transport is important for many cellular functions and cellular devel-
opment. However, the cell interior is complex and crowded and could have many weak, non-specific inter-
actions with the cargo being transported. To understand how cargo-environment interactions will affect
single motor cargo transport and multi-motor cargo transport, we use an artificial quantum dot cargo
bound with few (∼ 1) to many (∼ 5–10) motors allowed to move in a dense microtubule network. We
find that kinesin-driven quantum dot cargo is slower than single kinesin-1 motors. Excitingly, there is
some recovery of the speed when multiple motors are attached to the cargo. To determine the possible
mechanisms of both the slow down and recovery of speed, we have developed a computational model that
explicitly incorporates multi-motor cargos interacting non-specifically with nearby microtubules, including,
and predominantly with the microtubule on which the cargo is being transported. Our model has recovered
the experimentally measured average cargo speed distribution for cargo-motor configurations with few and
many motors, implying that numerous, weak, non-specific interactions can slow down cargo transport and
multiple motors can reduce these interactions thereby increasing velocity.

1 Introduction

The survival and proliferation of all living organisms
rely on critical molecular motor-based active transport
processes occurring within the complex and dynamic
cellular environment. Prior studies have shown that the
cytoskeletal network acts as the highway system for
the transport of macromolecular and vesicular cargo
by enzymes called motor proteins [1]. The organiza-
tion and function of the network depends on micro-
tubule associated proteins and enzymes [2, 3]. When
the network or transport by enzymes is disrupted, the
result is disease states, birth defects, or even failure
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to thrive for the organism [4, 5]. Specifically, disrup-
tions in kinesin-1, the motor tasked with rapid, unidi-
rectional anterograde transport using the microtubule
network, have adverse effects on neuronal signal trans-
duction [6] and are thus connected to neurodegenerative
and neuromuscular diseases in humans [5]. Prior stud-
ies have elucidated kinesin’s structure [7, 8], ATPase
activity [9], force production during motility [10], and
processivity properties in vitro [11–13]. Recent studies
on kinesin-1 cargo-trafficking have revealed that single
motors are easily derailed or impeded by obstacles such
as microtubule defects and surface-binding proteins [14,
15], raising interesting and important questions about
the cell’s traffic control mechanisms. Cargo transport by
multiple kinesin motors has been shown to be far less
sensitive to path-based obstructions [16, 17], reducing
the detachment frequencies and perhaps affording alter-
nate pathways, which circumvent obstacles, indicating
that motor number is a fundamental element of traffic
control mechanisms.

Theoretical work aimed at understanding molecu-
lar motor-based intracellular transport covers a wide
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range of cargo-motor configurations, cytoskeletal com-
ponents, and geometries [18]. These range from stud-
ies that focus at the molecular level on microtubule-
kinesin head interactions and motor stepping kinet-
ics [19–21] to collective transport by multiple motors
[22–31]. Studies of bulk transport at the cellular scale
[32–39] usually model the transport process by consid-
ering the effects of filaments in a mean-field manner,
giving rise to random intermittent ballistic phases when
bound to filaments and diffusive phases when detached
from filaments. When filament networks are explicitly
modeled, it has been found that rebinding and trap-
ping effects are important [40, 41] and on larger scales,
network topology, defined by filament lengths, intersec-
tions and orientation/polarity, is an important deter-
minant of cellular transport [40].

While some prior studies have focused on motor-
network interactions, there has been relatively little
work on illuminating cargo–filament interactions that
are not motor-mediated. Cytoskeletal networks in live
cells can be dense, presenting obstacles and steric hin-
drances. These have been recently studied in the con-
text of cargo behavior at microtubule intersections
[41–45], where the steric effects impact the probability
of switching from one track to another. Both the cargo
and local network organization can associate with many
protein complexes in cells. These associated complexes
may interact in many specific and non-specific ways via
electrostatic and hydrophobic interactions. Such cargo-
network interactions would directly couple mechani-
cally back to motor dynamics, affecting network trans-
port.

Given the tremendous importance of motor trans-
port processes and their fundamental connection to
human disease states, we still have much left to under-
stand. Though cell biological work has the advantage
of observing transport within the naturally crowded,
dynamic, architecturally complex, and dense micro-
tubule networks of the intracellular environment, trans-
port characteristics cannot be confidently deconvolved
from the work of other motors and proteins. For
instance, many cargos, even artificially introduced car-
gos, will associate additional motor proteins like dynein,
a retrograde transporter that frequently acts oppo-
site kinesin-1. Intriguingly, several independent obser-
vations of transport of single cargos in live cells have
shown increased transport speeds [46–50]. These stud-
ies have concluded the increase in speed is the result
of multiple motors, at odds with both in vitro and the-
oretical results. These remarkable observations expose
the need for deeper mechanistic understanding of the
effects of multi-motor transport within the context of
complex microtubule networks.

With the goal of understanding the mechanisms of
how motors and cargos traverse complex cytoskeletal
networks similar to those found in cells, we performed
in vitro experimental studies on artificial cargos trans-
ported on reconstituted dense microtubule networks
and complemented our measurements with computa-
tional modeling. In this paper, we specifically focused
on quantifying the velocities of fluorescent quantum

dot (QD) cargos carried by single (1:1) and multi-
ple (1:10) attached kinesin-1 motors. We character-
ized the transport speed distributions using automatic
two-dimensional (2D) particle tracking. Restricting our
analysis to cargo trajectories on a single filament (no
switching), we found that QD cargos move slower than
single kinesin-1 motors, yet the velocity was recovered
partially with by increasing the number of motors on
the cargo (∼ 5–10 motors).

To theoretically probe the mechanism that causes
this difference, we implemented Brownian dynamics
simulations of motor cargo transport on single micro-
tubules in the presence of non-specific interactions
modeled as local force traps, which accurately repro-
duced the experimental distributions and highlighted
the speed increase in the 1:10 population. The combi-
nation of our experimental and computational results
strongly suggest that multiple motors are able to pas-
sivate or provide a steric buffer to reduce non-specific
microtubule-cargo interactions. These interactions can
exert forces on cargos commensurate with kinesin’s
stall force and therefore encumber transport. Multi-
ple motors can therefore lead to cargo trajectories with
higher average velocities by reducing non-specific inter-
actions that can trap cargos.

2 Results and discussion

In order to test the ability of cargos to transport within
high-density microtubule networks, we first created
dense microtubule networks using a crossed flow path
experimental chamber (Fig. 1A) [16]. Microtubules
were flowed in several times from each direction and
bound to the cover glass using anti-tubulin antibodies.
The network densities from sample to sample appeared
similar. The uncertainty of the measurement was dom-
inated by the resolution of the image, ∼ 300 nm. We
found that the distribution is log-normal, as expected
for bounded Gaussian distributions, with a median
mesh size being 1.9 μm (Fig. 1B, C).

Artificial cargos were made from streptavidin-bound
QDs incubated with biotinylated kinein-1 motors (560
amino acids) using a SNAP tag and biotinylated SNAP
ligand (see methods). QDs were incubated with biotiny-
lated SNAP-kinesin at a 1:1 ratio with few (1 on
average termed “1:1”) motors bound or 1:10 ratio
to create cargos with many (5–10 on average termed
“1:10”) motors bound. QDs were used as cargos because
they were especially bright for imaging in either epi-
fluorescence or total internal reflection fluorescence
(TIRF) microscopy (Fig. 2A, B). QDs were easy to
track by hand or with automated tracking software (see
methods, Fig. 2C–F).

Using our homemade automated software to track
individual QDs with high spatial resolution, we were
able to report both the instantaneous (frame-to-frame)
and average speeds for each QD in the field of view
(Fig. 2). A representative trajectory (Fig. 3A, B), was
broken into instantaneous displacements (d i) equal to
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Fig. 1 Microtubule
network methods and
quantification. A Schematic
of a cross flow chamber,
indicating the directions of
consecutive microtubule
solution flow-throughs
(yellow chevrons). B
Example network of
microtubules observed in
the center of the chamber.
Scale bar is 10 μm. C
Histogram of the length
between intersections
within the networks used in
this study. The distribution
is a log-normal with a
median of 1.9 μm (199
lengths measured). The
uncertainty of the
measurement was 300 nm,
the resolution of our
measurement

the distance traveled over each time step (δti), set
by the experimental exposure time. The instantaneous
speed, v i , was the ratio of the instantaneous displace-
ment and time step (Fig. 3B). For single GFP-kinesin
motor on single microtubules, di were almost identical
for the duration of the transport, resulting in a constant
instantaneous speed over the motor’s run (Fig. 3A, B).
For cargos in dense networks, the di differed over the
trajectory (Fig. 3C, D).

Using the automatically tracked trajectories, we also
deduced the path length, defined as the sum of the
instantaneous displacements. The path length divided
by the total time of the trajectory yielded the average
speed for the trajectory. We measured the total dis-
placement, defined as the distance between the starting
and ending positions of the trajectory. Using the path
length and total displacement parameters, we quan-
tified the tortuosity of the trajectory, defined as the
ratio of the path length to the total displacement of
the trajectory. While some trajectories of QDs through
the network could turn and were highly tortuous, we
focused our analysis on trajectories where the tortu-
osity was approximately equal to 1 (i.e., when the
path length ∼ displacement). We used these trajecto-
ries in order to avoid analyzing trajectories that may
have traversed more than one microtubule. A separate
study will examine trajectories with higher tortuosity
to examine the effects of switching of microtubules on
the transport process, but that is not the focus of this
work.

2.1 Single motors with cargos interact
with filaments

We quantified the average and instantaneous speeds
(defined in the above section) of QD cargos with

an average of one kinesin-1 motor (“1:1”) or many
(5–10) kinesin-1 motors (“1:10”) and compared with
the speeds of single molecule GFP-kinesin-1 motors
(Fig. 4, Supp. Fig. S1). We found that the average speed
distribution for single GFP-kinesin (Fig. 4A) was broad
and roughly Gaussian, with a mode near 0.25 μm/s
and a mean distribution speed of 0.38 μm/s. The
mean kinesin speed we measured was in agreement with
reports of kinesin’s speed in the absence of cargo at
saturating ATP concentrations (1 mM) [10]. The pro-
file also fits with expectations of the distribution for
average speeds for an unloaded motor [51].

The QD cargos with 1 kinesin (1:1) displayed a reduc-
tion in the average speed (0.19 μm/s) as well as an
asymmetry in the distribution (Fig. 4B). Using the Kol-
mogorov–Smirnov test (KS-Test), we found that there
was a less than 0.001% probability that the distribu-
tion for single GFP-kinesin and 1:1 QDs were the same
(Supp. Table S1). The asymmetric non-Gaussian shape
for the average speed distribution for QD cargos was
surprising given that this is a distribution of averages,
and, by the central limit theorem, we would expect it
to tend to a normal distribution. Prior work has shown
that processive motors with discrete steps under load,
where the asymmetry increases with load, will display
an exponential distribution [51]. Thus, this result sug-
gests that the cargos are experiencing a load as they
move. Comparing the GFP-kinesin to the 1:1 QDs indi-
cates that the load acts to reduce the velocity of car-
gos, even when the cargos displaying the highest pro-
cessivity and lowest tortuosity through the network are
specifically selected. Since the viscous drag is minimal
for a QD size cargo at these speeds, we expect that the
load arises either from steric hindrance of the cargo due
to nearby microtubules or specific/non-specific interac-
tions between the cargo and nearby microtubules or
perhaps a combination of the two.
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Fig. 2 Example data for tracking QD cargo. A Example
microtubule network. B Example image of quantum dots
within the microtubule network in (A). C Overlay of micro-
tubule network (green) from (A) and image of quantum
dots (red) from (B) to show quantum dots bound to micro-
tubules (arrowheads). D Image of same microtubule net-
work (green) as (A, C) with quantum dots (red) at 5.8 s
later. E High-resolution tracked quantum dots (magenta
circles) trajectories (green lines) for a time series movie of
quantum dot motility in the same location shown in (A) and
(C). Arrowheads denote the same quantum dots from (C)
(F). Trajectories (green lines) of the tracked QDs (magenta
circles) at the same time point as (D). Arrowheads denote
the same quantum dots. Scale bar is 10 μm for all images

We also performed the same measurement on car-
gos with up to 5–10 motors bound (1:10) and observed
a recovery in the average speed distribution (average
0.23 μm/s) back to higher speeds when compared to
the 1:1 cargos (Fig. 4C). This shift was shown to be
statistically significant (KS-Test, Supp. Table S1). The
recovery of the velocity was also clear in the rightward
shift of the median of the distribution and the longer
tail at higher average speeds. Given that the 1:10 QDs

have about the same size as 1:1 QDs and therefore sub-
ject to about the same steric hindrance (if not more),
it is surprising that they can move faster. This result
implies that the increased motor number must either
overcome or negate the steric hindrance and/or specific
or non-specific interactions with the microtubule net-
work.

We also quantified the instantaneous speeds for sin-
gle GFP-kinesin, 1:1 cargos, and 1:10 cargos. For all
the experiments, the instantaneous speed displayed an
exponential decay (Fig. 4D-F). The medians of these
distributions were low due to a high number of instanta-
neous speeds that were zero. The means of the instanta-
neous speed distributions were highest for single GFP-
kinesin (0.216 μm/s ± 0.002 μm/s), lowest for 1:1 car-
gos (0.084 μm/s ± 0.003 μm/s), and in the middle for
1:10 cargos (0.131 μm/s ± 0.004 μm/s); which is the
same trend that is observed for the average speed dis-
tributions. These distributions are statistically distinct
from one another, using the KS-Test (Supp. Table S1),
with p values of p < 0.001 for all tests.

What could account for the interactions between the
cargo and environment? Firstly, a single kinesin is dif-
ferent than a kinesin with a quantum dot because the
quantum dot is coated with PEG polymers. Although
these are advertised as “inert” polymers, PEG is known
to weakly interact with many biological systems includ-
ing with microtubules [66] and with urease enzymes
[67]. Unbound His-Tags/streptavidin on the surface
may also contribute to the interactions, though they are
far too few (we estimate 0–1 in the vicinity of the micro-
tubule) to result in the sustained interactions observed.
Secondly, given the large distance between neighboring
filaments (about 2 microns), encounters of the cargo
with other filaments (including steric blockades) would
be too infrequent to account for the observations. The
cargo-MT interactions are thus likely dominated by the
non-specific PEG mediated interaction with the micro-
tubule track it is currently walking on.

We also see that the addition of more motors to the
small cargo can partially recover and increase the speed
by about 20%. The maximum force achievable due to
the motors on the 1:10 QDs should be higher than 1:1
or single kinesin motors because each motor can add up
to about 5 pN of force. In an unloaded situation, how-
ever, adding more motors typically does not increase
the speed, since the velocity is not proportional to the
force when there is very little drag. Prior reports have,
in fact, demonstrated that teams of motors could actu-
ally reduce the speed [24, 52, 53]. This is especially true
for kinesin motors that have been shown to be unable
to mechanically coordinate when working in teams [54,
55]. This miscoordination results in reduced speeds,
limited by the slowest motor in the team. Multiple
motors could, however, effectively increase the overall
speed in the presence of a substantial load (due to weak
cooperativity [65]) and potentially enable the cargo to
overcome barriers due to steric hindrance or interac-
tions. In our case, it is also possible that additional
motors “passivate” the QD surface to further reduce
the load that might come from interactions. This could
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Fig. 3 Example
trajectories in space and
time for single
GFP-kinesin-1 and QD
cargos. A Example
trajectory of a single
GFP-kinesin-1 motor
traversing a microtubule in
a sparsely distributed
network of microtubules in
two dimensions over time
(color bar). B Magnification
of the trajectory from (A)
to show individual
displacements, di, for each
time interval, δti, which
were used to find the
instantaneous speed, vi. C
Example trajectory of a QD
with 10 kinesin-1 motors
bound traversing a dense
network of microtubules in
two dimensions over time
(color). D Magnification of
the trajectory from (C) to
show individual
displacements, di, for each
time interval, δti

occur because the motors reduce the number of uncon-
jugated streptavidin linkers on the QD surface (which
might act as sites of filament-QD interactions—though
this is unlikely to be significant given the low estimated
number as pointed out above) and more significantly
providing a physical steric buffer between the PEG QD
surface and the filament it is being transported on.

2.2 Computational modeling

Given the experimental results demonstrating that QD
cargos move slower than single motors, and that the
speed can be partially rescued by adding more motors,
we hypothesized that QD cargos have increased load
due to interactions with the microtubule network and
that adding more motors could reduce these interac-
tions. To test our hypothesized mechanism, we imple-
mented a Brownian dynamics simulation that allowed
us to tune the interactions between the cargo and the
environment and observe the effects on cargo speed.
The simulated cargo’s motion is described by one-
dimensional, over-damped, Langevin dynamics govern-
ing x(t), the cargo’s position on the microtubule along
which it is being transported:

x(t + dt) = x(t) +
√

D ∗ dt ∗ η + F/ξ ∗ dt (1)

Here, D is the diffusion constant of the cargo account-
ing for Brownian noise, η is a normally distributed ran-
dom variable, and ξ is the viscous drag coefficient of
the QD due to the surrounding medium. Finally, F
is the total force on the QD cargo arising from the

motors as well as any external forces due to interac-
tions with the surrounding network. We use a standard
model for the motors [53, 56, 61–64] with parameter
values calibrated from experiment. Motors are modeled
as one-sided springs with rest length Lmot and spring
constant Kmot, exerting a force only under extension
of Kmot(L − Lmot), where L = |xm − x| is the distance
between the motor position on the MT, xm, and the
cargo position, x. The motor’s position was advanced
in each time step, dt , by a distance of l = 8 nm (step
size of kinesin) with a probability of 1 − exp(−vdt/l),
giving rise to an average motor speed of v. The average
motor speed was taken to be load dependent, decreas-
ing with increasing hindering (backward) force, F , as
v = v0[1 − (F/Fs)

w], where v0 is the unloaded motor
speed, F s is the kinesin stall force, and w = 2 [53, 56,
61–63]. The specific form of the relation chosen is not
important as long as the values correspond to experi-
mental calibrations.

While the cargo was transported, we proposed that
it could non-specifically interact with the microtubule
network. These interactions cannot be modeled by a
constant force but rather as local interactions that are
in effect only when the cargos are in the proximity of,
and in particular orientations with respect to micro-
tubules in the network (Fig. 5A). We considered that
these interactions could locally trap the cargo, while
the motors were free to continue to move on the micro-
tubule and exert forces on the cargo (Fig. 5B).

To implement this effect in our simulation, we
included force traps that were stochastically activated
while the cargo was being transported. The trap acti-
vation frequency or trapping rate, Qtrap, was assumed
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Fig. 4 Effects of instantaneous and average speed distri-
butions when motors are loaded with cargo. A Normalized
average speed histogram for GFP labeled kinesin (Sample
size: N = 959). B Normalized average speed histogram
for single motors attached to a QD (i.e., 1:1 configura-
tion) (N = 5614). C Normalized average speed distribution
for 1:10 configuration (N = 8667). D Normalized instan-
taneous speed distribution for single kinesin motors (N =
2.0 × 104). E Normalized instantaneous speed distribu-
tion for 1:1 configuration (N = 1.4 × 105). F Normal-
ized instantaneous speed distribution for 1:10 configura-
tion (N = 2.6 × 105). Average speed distributions include

data only from trajectories with total track displacement
between 0.1 μm and 10 μm (to avoid stuck cargo and
long tortuous trajectories). Averages for distributions in
panel (A) and (D) are 0.348 μm/s ± 0.005 μm/s and
0.216 μm/s ± 0.002 μm/s, respectively. Averages for panels
(B) and (E) are 0.190 μm/s ± 0.002 μm/s and 0.084 μm/s
± 0.003 μm/s, respectively. Averages for panels (C) and
(F) are 0.232 μm/s ± 0.002 μm/s and 0.131 μm/s ±
0.004 μm/s, respectively. See Table S1 for more detailed
statistics of all the distributions shown here

to be constant for a given QD cargo and represents the
frequency with which the QD is positioned and oriented
to interact with neighboring MTs. We modeled the
force within the trap as arising from a Hookean spring
with a spring constant, Ktrap and equilibrium posi-
tion, xtrap set by the position of the cargo at the
instant the trap was activated. This allowed the cargo to
move while trapped, but subject to an opposing force,
Ktrap(x(t) − xtrap), as the position of the cargo, x(t),
shifted away the equilibrium position of the trap. An
example set of individual cargo trajectories, for QD
cargo with 1 motor, is shown in Fig. 5B. It is to be noted
that one trajectory exhibits a biphasic speed behavior
with a slow, trapped phase arising from encountering

many force traps over an approximately 2 s long win-
dow during which the displacement was only 50 nm.
Once the trap threshold force, Ftrap, was reached and
at least one motor was still attached to the microtubule,
the QD could break free of the trap. Once free of the
trap, the cargo was actively transported by the motors
until the next trap was encountered. During each run
of the simulation (maximum run time of tmax = 100 s),
both the position of the cargo and the motors were
recorded. For a complete list of simulation parameters
and pseudo-code, please see the supplementary mate-
rial Supplemental Figure S2 and Supplemental Table
S2.

As a test, we ran our simulation for three values of
the trapping rate, Q trap, for 1 motor, with the unloaded
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Fig. 5 A Illustration of QD network interactions. Micro-
tubule (MT) network (red tubes) is randomly organized.
Cargo spheres (green) are transported by kinesin motors
(black/gray) along the microtubule network in two different
configurations, 1:1 and 1:10. Cargo-MT interactions (force
traps, blue MT sections) can stochastically occur between
MTs and cargo with a frequency (trapping rate), Qtrap,
that we hypothesize decreases with increasing motor num-
ber which passivate the QD. Interactions are modeled as
force traps that exert Hookean forces (red-dashed line) on

the cargo-motor system (B) Typical simulated cargo tra-
jectories; highlighted (in color) tracks exhibit multi-phasic
speed regimes where free travel is flanked by regions of
slower average speed where the cargo is “trapped”. C Aver-
age speed histograms for different values of the trapping
rate Qtrap, produced by 103 simulated trajectories for each
distribution. D Cumulative distributions of the histograms,
clearly showing that the average speed increases for smaller
values of Qtrap. Cargo in (B, C, D) has 1 motor

single motor kinesin speed, v0 drawn from the experi-
mentally measured GFP-kinesin average speed distribu-
tion (from Fig. 4A). We obtained three separate average
speed distributions (Fig. 5C) from these simulations for
103 trajectories each, where each average speed is com-
puted for one simulated trajectory. Figure 5C shows a
systematic shift to higher average speed values as the
trapping rate goes to zero. This is even more clearly vis-
ible in the cumulative distribution (Fig. 5D). The aver-
age speed distribution of the simulated data when the
trapping rate was zero replicated the average speed dis-
tribution of the GFP-kinesin (compare Figs. 4A, 5C).
This is as expected, given that the single motor speeds
that form the basis of the simulation are drawn from
the GFP-kinesin average speed distribution. When the
trapping rate is increased, the distribution shifts to
slower speeds with a median lower than the mean of the
distribution (Fig. 5C). At very high trapping rate, the

distribution appears shifted even more to lower speeds
and drops rapidly for higher speeds as seen in both the
probability and cumulative distributions (Fig. 5C, D).

2.3 Computational model fits to experimental data

We then set out to use the simulation generated aver-
age speed histograms (as in Fig. 5C) to quantita-
tively explain the experimentally measured average
speed histograms (Fig. 4B, C). First, to gain further
insight into the origins of the 1:1 and 1:10 average
speed distributions we looked separately at short cargo
runs (0.05–2.5 μm displacement) and long runs (>
2.5–10.0 μm displacement). We surmised that cargos
that were subjected to force traps would have a greater
chance of detaching as motors would experience higher
opposing forces via the cargo and unbind. Therefore,
those cargos would have shorter runs on average as well
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Fig. 6 Average speed histograms and simulation fits. A
The average speed distribution for 1:1 data split into
two sub-distributions based on total displacement that
were short (low pass, 0.1–2.5 μm) and long (hi pass,
2.5–10.0 μm). B Simulation fit (cyan) of the 1:1 aver-
age speed distribution (pink). Best-fit parameter value was

Ptrap = 0.2. C The average speed distribution for 1:10
data split into two individual normalized distributions that
were short (low pass, 0.1–2.5 μm) and long (hi pass,
2.5–10.0 μm). D Simulation fitted 1:10 average speed dis-
tribution (red) with best-fit parameter value Ptrap = 0.4

as smaller average speeds. We plotted the average speed
histograms for cargo trajectories that were short (low
pass) and long (hi pass) for both the 1:1 (Fig. 6A) and
1:10 (Fig. 6C) cases. In the 1:1 case, we found that long
and short runs both had similar speed histograms and
the median speeds for both were surprisingly similar
(Fig. 6A) with the long runs exhibiting a slightly larger
fraction of high-speed trajectories. This indicated that
for the 1:1 cargo configuration, the cargo was, for the
most part, experiencing high loads and being slowed
down.

The 1:10 speed distribution showed very different
behavior (Fig. 6C). There were two distinct histograms
for the short (low pass) and long (hi pass) cargo trajec-
tories with median speeds that are separated by a signif-
icant amount. The longer trajectories, which displayed
faster speeds, was similar to that for unloaded single
GFP-kinesin, suggesting the dominance of configura-
tions where the load was negligible. The slower (shorter
run) subpopulation, on the other hand, had a speed
distribution comparable to that of the slower distribu-
tion in the 1:1 configuration. These results suggest that
the overall 1:1 and 1:10 speed histograms could be con-
sidered as different combinations of two distinct speed
distributions arising from (i) impeded cargo under load
(slower distributions in 1:1 and 1:10 cases) that experi-
ence force traps and (ii) unloaded cargo (faster distribu-
tion, most evident in 1:10 case) that do not experience
force traps.

To determine the best combination of impeded and
unloaded cargo speed distributions that fit the exper-
imental results for 1:1 and 1:10 cargo configurations,
we implemented the following procedure. We first sim-
ulated and generated speed distributions for two inde-
pendent cargo-force trap scenarios, one where the trap-
ping rate (Q trap) is zero, and the other where the trap-
ping rate is set to a finite value within a range (Sup-
plementary Table 2). We seeded each simulation with
motor speeds from the GFP-kinesin average speeds dis-
tribution (Fig. 4B). Speed distributions created for the
1:10 configuration were simulated with a maximum
of two kinesin motors that could be actively engaged
to accurately mimic the geometry of the situation.
We deduced that this was the likely number available
motors that could bind to the microtubule surface given
the size of the QD and the average spacing of the motors
on the QD surface.

We then created a composite average speed distribu-
tion given by a linear combination of the speed distribu-
tion with trapping rate, Q trap = 0 s−1, with weight Pfit,
and the speed distribution with finite trapping rate,
(here Q trap = 105 s−1), with weight 1-Pfit (Fig. 7).
After the composite distribution was created, we com-
pared the cumulative distribution function (CDF) of
the composite distribution to the CDF of the experi-
mental speed distribution for each cargo configuration
separately (Fig. 7B). We quantified the residual sum
squared (RSS) between the composite CDF and the
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Fig. 7 A The 1:10 cargo configuration average speed dis-
tributions for short trajectories (low pass, 0.1–2.5 μm, blue)
and long trajectories (high pass, 2.5–10 μm, brown). B. Sim-
ulated average speed distributions CDFs with different Pfit

values plotted along with the experimentally measured 1:10
cargo configuration average speed distribution CDF (red).
C The sum squared residual (RSS) of the simulated compos-
ite CDF against the experimentally measured 1:10 config-
uration CDF as a function of Pfit. The minimum indicates

the optimal value of Pfit that determines the best fit for
the 1:10 average speed distribution. D The best-fit average
speed composite distribution for 1:10 cargo configuration
simulation data shows the same two sub-distributions for
high (blue, Qtrap = 105 s-1) and low (brown, Qtrap = 0 s-1)
trapping in the trajectories

experimentally measured CDF for each cargo configu-
ration independently (shown for 1:10 configuration in
Fig. 7C). The minimum of the RSS (Fig. 7C) provided
the best-fit value of Pfit that best reproduced the over-
all average speed distribution. The sub-distributions for
each best-fit simulated distribution were also in good
qualitative agreement with the experimentally mea-
sured one (compare Fig. 7A, D). In physical terms, the
parameter Pfit represents the probability that a par-
ticular QD cargo is non-interacting with the surround-
ings. We note that the cargo speedup we observe is
predominantly due to the reduction in trapping rate
as opposed to multiple motors pulling harder against
load. This can be inferred because there was no statis-
tically significant difference in the speed distributions
between the N = 1 and N = 2 cases for similar trapping
rates (compare Figs. 5C for single motor and 7D and
6D (sub-distributions not shown) for multiple motors)
confirming that increased motors (2 in this case) cannot
measurably speed up the cargo by exerting more force
and/or pulling cargo out of traps.

Using the general method described above, we fit the
simulated data to the experimental data for both the

1:1 and 1:10 cargos. We first set the finite trapping rate
to a value Q trap = 106 s−1, that, within a range (Sup-
plementary Table 2), produced a good fit to the slower
subpopulation speed distributions from the 1:1 and 1:10
cases (“low pass” distributions from Fig. 6A and C).
We then simulated and fit our composite speed distri-
bution to the experimental average speed distribution
for the 1:1 configuration (Fig. 6B) and found the best-
fit value for the weight of the unloaded, force trap free
distribution (Q trap = 0) was Pfit = 0.2. We repeated
this method for the 1:10 cargo configuration, where the
experimental speed distribution clearly had two sep-
arate sub-distributions (Fig. 6C). Here (Fig. 6D), we
found the best-fit weight for the unloaded, force trap
free distribution to be Pfit = 0.4. These results indi-
cated that the 1:1 QDs had an 80% chance of being
impeded via interactions with the surroundings while
the 1:10 QDs had only a 60% chance of being impeded.

Our simulation results show that the experimental
speed distributions can be considered to arise from two
subpopulations of cargo: one with impeded cargo that
had interactions with the surrounding network and a
slower speed and a second with unloaded cargo with
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a faster speed (Fig. 6A, C). This was motivated by
the fact that the 1:1 and 1:10 speed distributions both
possessed a slow subpopulation of cargo speeds with
approximately the same median, mode, and distribu-
tion of the speed (Fig. 6A, C “low pass”), but they
had significantly different fast speed subpopulations
(Fig. 6A, C “hi pass”).

Our simulations were able to quantitatively recapitu-
late the average speed distributions we measure exper-
imentally and also successfully captured the deviation
found in the tails of the 1:1 and 1:10 speed distributions
(Fig. 6B, D).

3 Conclusion

The study presented here represents a significant step
toward closing the gap between in vitro studies of ideal-
ized cargo–motor–filament systems, which provide fun-
damental information outside of the physiological con-
text, and in vivo studies with many, complex non-
specific interactions. It has been shown that motor pro-
teins and cargos appear to go faster in live cells than
the motors can go in vitro. We do see some speedup
in our experiment aided by multiple motors, although
we cannot recapitulate the increased speeds seen in live
cells. Equally interestingly, previous studies comparing
single to multi-motor cargo transport on single micro-
tubules have shown differences in many characteristics
of cargo transport but have not produced this speedup
effect [16, 17, 56], raising still more questions about the
plausibility and circumstances around the cooperation
between motors. Most theoretical constructions result
in multiple motors slowing down and gaining in run
length, but not velocity, as more motors are added [56]
though some speedup has been reported under load due
to weak cooperativity [65].

Experimentally, we find that single kinesins move the
fastest and adding a large cargo (QD) slows even a sin-
gle kinesin, implying that the filaments are capable of
interacting with the cargo and manifest as a load. Inter-
estingly, the added load reduced when more motors
were added. This is different from prior experimental
measurements and theoretical models that mostly sug-
gest that the inability of kinesin motors to cooperate
causes multi-motor cargos to slow down—not speed
up [24, 26, 31, 49, 54]. It is to be noted that we did
not observe a slowdown with QD cargos in our previ-
ous work [17]. There, QD cargos were incubated with
kinesin at the same ratio as our 1:1 case to begin with
but the environment contained free kinesin that could
bind to the MT as well as the cargo. This meant that
the cargo was effectively being transported by multiple
motors even at the lowest background concentrations of
free kinesin. The similarity in speed between the cargo
and GFP-single kinesin in that experiment is therefore
consistent with our results in this paper where the addi-
tion of motors leads to a recovery of speed comparable
to unloaded single motor speeds.

Guided by these observations, we proposed and
tested a mechanism using computational modeling
where the cargos transiently bound to the nearby
microtubule via non-specific interactions during trans-
port. These interactions were assumed to be stochastic,
occurring when the cargo was in the proximity and able
to interact with the filament and were strong enough to
exert forces on the cargo commensurate with kinesin’s
stall force. Our results suggest that there are two sub-
populations of cargo; one with impeded cargo that had
interactions with the filament that moved slower; and
a second, with essentially unloaded cargo that moved
faster (comparable to GFP-kinesin). Cargo could there-
fore be characterized by the probability of being non-
interacting or “inert”, which our simulations showed
to be directly connected with average transport speed.
This non-interacting probability is a fitting parameter
(Pfit) for the model and was able to capture the charac-
teristics of our experimental speed distributions imply-
ing that this mechanism could explain our experimen-
tal results. In particular, the model also predicted sys-
tematic recovery of the unloaded speed when the non-
interacting probability (Pfit) increased with increasing
motor number, leading to the emergence of a second
faster population in the speed histograms.

We believe the existence of two populations is due
to the stochasticity in the number of motors on the
QD due to the way they are prepared. The 1:1 case
may have more than 1 motor while the 1:10 case may
have anywhere from 5–10 motors available. This trans-
lates into both cases having cargo with a distribution
of motor numbers available to bind simultaneously with
the MT. In the low (1:1) motor density case, we expect
the probability of having more than 1 motor to be low,
while it will be higher in the 1:10 case. Having more
than one motor could result in a significant reduction in
the trapping rate as two or more motors can physically
buffer the cargo PEG surface from interacting with the
MT. Thus, the two populations likely correspond to car-
gos with one motor (interacting)) and those with multi-
ple motors (non-interacting). The physical buffering of
cargo–filament interactions by multiple motors leading
to speedup is a novel feature highlighted by our work.

Given the complexity of the physiological environ-
ment, one might generically expect cargo to have
many weak interactions with microtubules, which are
reflected in our experimental set-up by non-specific
PEG-MT interactions. Our results should therefore be
relevant for the in vivo context and represent a spring-
board on which more complex investigations into intra-
cellular transport traffic control may be launched.

4 Methods

Protein Purification A kinesin-1 construct truncated
at amino acid 560 fused to either a carboxy-terminal
SNAP tag (New England Biolabs) or GFP tag and a 6 ×
His tag were expressed using the pET-21( +) or pET17b
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expression vectors, respectively. Expression with iso-
propyl β-D-1-thio-galactopyranoside (IPTG) and affin-
ity purification with nickel beads (Qiagen) were carried
out as described previously [17, 57]. Additional affinity
purification for SNAP-kinesin was performed through
a bind and release to microtubules to remove truncated
fragments of SNAP-kinesin that contained the SNAP
tag, but not the kinesin motor. SNAP-kinesin or GFP-
kinesin concentrations were quantified by comparison
with known BSA standards on a Coomassie-stained
SDS/PAGE gel.
Microtubule Preparation Rhodamine, DyLight 650,

or Alexa-647 labeled microtubules were prepared
using a 1:10 ratio of labeled/unlabeled tubulin. Rho-
damine and DyLight 650 tubulin was purchased from
Cytoskeleton. Alexa-647 labeled tubulin was purchased
from PUR Solutions. Unlabeled tubulin was purified
from porcine brain as described previously [58]. To pre-
pare microtubules, both unlabeled and labeled tubulin
were brought to 5 mg/mL in PEM-100 (100 mM K-
PIPES, pH 6.8, 2 mM MgSO4, 2 mM EGTA) and incu-
bated for 10 min on ice. Tubulin was centrifuged at 4 °C
for 10 min at 100,000 × g to remove tubulin aggre-
gates. The remaining tubulin in the supernatant was
mixed with 1 mM GTP and polymerized at 37 °C for
20 min. Taxol (50 μM) was added to stabilize polymer-
ized microtubules, followed by another 20 min incuba-
tion at 37 °C to equilibrate the filaments. Polymerized
microtubules were centrifuged at 25 °C for 10 min at
14,000 × g to separate unincorporated tubulin. The
microtubule pellet was resuspended in PEM-100 with
40 μM Taxol.

Quantum Dot Cargo Assembly Quantum dots (QDs)
decorated with single (1:1) or multiple (1:10) kinesin
motors were prepared through incubation of QDs with
different concentrations of biotin-SNAP-kinesin. Green-
emitting QDs (520 nm), surface-functionalized with 5
to 10 streptavidin linkers, were purchased from Invitro-
gen and suspended in PEM-20 (20 mM K-Pipes, pH 6.8,
2 mM MgSO4, 2 mM EGTA). SNAP-conjugated biotin
ligands were added to each of two separate QD suspen-
sions such that the ratios of QDs to ligands were 1:1 and
1:10, respectively, and incubated at room temperature
for 20 min. Then, SNAP-tagged kinesin-1 was added
to each of the solutions in amounts proportional to the
biotin ligands and incubated for 4 h on ice, resulting in
separate suspensions of QDs decorated with 1 and ∼
10 kinesin motors, which we referred to as 1:1 and 1:10.
The 1:10 QDs likely had 5–10 motors total on the QD,
and only 2 motors could engage with the microtubule
at a time during motility, due to the geometry of the
motors attached to the QD [59].
Cargo Motility Assays Microtubule networks of high

density were created using crossed flow chambers with
perpendicular flow paths (Fig. 1A). Flow chambers
were constructed from a silanized cover glass, double-
stick tape, and a glass slide. Cover glasses were silanized
to become hydrophobic by standard procedures, as pre-
viously published [17]. The glass surfaces of the cham-
ber were cleaned with 70% ethanol and allowed to
dry completely before being assembled. The chamber

was filled by flowing in and incubating a series of
reagents in aqueous solution, replacing the entire inter-
nal chamber volume (∼ 10 μL) with each new flow.
We chose PEM-20, a low ionic strength PIPES buffer,
as our working buffer for its ability to provide ade-
quate pH control while minimizing dielectric screening
of kinesin-microtubule interactions, thus increasing our
data throughput.

The chamber was first flowed through with anti-
tubulin (YL1/2 rat anti-α-tubulin) in PEM-20. We
found that the concentration of tubulin antibodies
helped to control the mesh size of the microtubule
network where more antibodies allowed more micro-
tubule to adhere. Next, a polymeric blocking agent
(Pluronic F127, 5% in PEM-20) was used to reduce
non-specific protein-glass interactions that cause back-
ground noise in the imaging plane. Next, a suspen-
sion of microtubules (labeled with 647 nm emitting
Alexa-647 or DyLight 650 fluorophores) were flowed
in and incubated along each axis of the crossed cham-
ber. A PEM-20-Taxol solution (20 μM Taxol in PEM-
20) was used to wash untethered microtubules out of
the chamber. Microtubule networks were imaged using
epi-fluorescence imaging to determine network density
and stability prior to following in motors or QDs with
motors.

Single- and multi-motor transport experiments were
conducted in separate chambers prepared using the
same method to produce comparable microtubule net-
works. Kinesin-decorated QDs were introduced to the
network as part of a motility mix solution, which was
flowed into the chamber on top of the microtubule net-
work directly prior to imaging. The motility mix con-
sisted of PEM-20, GFP-kinesin, 1:1, or 1:10 QDs, 1 mM
ATP, reducing agent dithiothreitol (DTT) at 1 mM,
a glucose oxidase (0.5 mg/ml), catalase (0.15 mg/ml),
glucose (15 mg/ml) oxygen scavenging system, back-
ground concentrations of blocking agents Pluronic F127
(0.5%) and BSA (0.25 mg/ml), and the microtubule
stabilizing agent, Taxol (20 μM).

Imaging Data were taken using a Nikon Ti-E inverted
microscope with a 60x, 1.49NA objective and addi-
tional 2.5 × or 4 × magnification prior to projection
onto the Ixon EM-CCD camera (Andor). The pixel size
for these magnifications was 108 nm/pixel for 150 ×
or 67.5 nm/pixel for 240 × magnifications. The cen-
tral regions of the crossed flow chambers were imaged
for microtubule networks using epi-fluorescence (exci-
tation/emission = 530 nm/647 nm). Microtubules were
imaged at the beginning and end of each time series
movie of QD transport to ensure that the networks
remained stationary during kinesin transport. The QDs
were imaged directly using a home-built total internal
reflection fluorescence system built around the micro-
scope body. Laser excitation was 488 nm and fluores-
cence emission 530 nm. Video microscopy with 10 ms
exposures every 500 ms for a total of 5 min was recorded
using the Nikon Elements software and saved a nd2 files
as uncompressed tif files with meta data attached. Sev-
eral videos were recorded on the same region of the
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microtubule network to increase statistics within the
same network. The video of the transport assay was
superimposed on the picture of the microtubule net-
work during post processing. Collapsing the movie stack
of images by calculating the standard deviation of each
pixel was used to correct for drift during imaging, since
stationary particles in the background would all appear
as lines in the standard deviation map.

Microtubule Network Measurements To measure the
mesh size of the microtubule networks, we used the
FIbeR Extraction (FIRE) algorithm [60] to extract
information about the filament network from an image
(Fig. 1B). FIbeR identified individual filaments that
were composed of line segments connected at vertices,
whose positions were recorded. By identifying the posi-
tions of intersections, which were vertices that are part
of multiple filaments, we computed the distribution of
distances between intersections (Fig. 1C).

Motility Data Analysis To properly quantify the 2D
motion of QD or GFP labeled kinesin traffic on the
microtubule network, we used automatic spot tracking
software that is available for ImageJ/Fiji, called Track-
mate [56]. Raw data (Fig. 2 A,B) and analyzed data
with tracked QDs were highlighted with magenta cir-
cles with their trajectories are shown in green (Fig. 2
C-F). In any given set of QD image data, thousands of
particles can be seen (Supplemental movie S1). Tran-
sient particles, such as those involved in non-processive
binding and unbinding events, move in and out of the
field of view rapidly and can still be tracked for a short
time. We focused our analysis on cargos that remained
in the field of view for longer than 1 s. These longer
tracks displayed highly non-trivial trajectories, but for
the purpose of this discussion, we have focused on the
speed statistics (Fig. 3).

Using the extracted position and time data from the
individual QD trajectories, we were able to calculate the
instantaneous and average speed (speed in the case of
unidirectional transport) distributions, for both the 1:1
and 1:10 motor cargo configurations (Fig. 4). To ensure
selection of processive runs, the trajectories were fil-
tered such that the maximum displacement, defined as
the largest distance from the starting position achieved
during that cargos track, exceeded our chosen thresh-
old. The threshold was set to 0.4 μm. We parsed each
track into a vector of instantaneous velocities, with each
element (v i) equal to the instantaneous displacement
divided by the time step, and extracted an average
speed vavg, equal to the total path length over the total
transit time.
Simulation Methods All simulation methods and

parameters are given in the Supplemental methods.

Supplementary Information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epje/s10189-023-00394-4.
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17. L. Conway, D. Wood, E. Tüzel, J.L. Ross, Motor trans-
port of self-assembled cargos in crowded environments.
Proc. Natl. Acad. Sci. 109, 20814–20819 (2012)

18. P.C. Bressloff, J.M. Newby, Stochastic models of intra-
cellular transport. Rev. Mod. Phys. 85, 135 (2013)
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