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Abstract. We show that the *-algebra of the product of two synchro-
nous games is the tensor product of the corresponding *-algebras. We
prove that the product game has a perfect C*-strategy if and only if
each of the individual games does, and that in this case the C*-algebra
of the product game is *-isomorphic to the maximal C*-tensor prod-
uct of the individual C*-algebras. We provide examples of synchronous
games whose synchronous values are strictly supermultiplicative.

1. Introduction

Non-local games have been extensively studied in Mathematics, Quan-

tum Physics and Computer Science. Among their numerous applications

is the explicit demonstration of the presence of entanglement. More specifi-

cally, there exist games that have no perfect classical strategies, but can nev-

ertheless be demonstrated to possess perfect entanglement-assisted strate-

gies. Some of the most notable such examples are certain types of linear

binary constraint system (LBCS) games (see [4]).

A prominent family of non-local games is that of synchronous games,

introduced in [11] which, by virtue of [8], include all LBCS games. Synchro-

nous games play an important role in the recent (negative) resolution of

Connes’ Embedding Problem and an equivalent conjecture of Tsirelson [6].

In particular, the authors of [6] construct a synchronous game that has a

perfect strategy in one mathematical model for entanglement description,

but no perfect strategy in an alternate model, thus demonstrating that these

two entanglement models are genuinely distinct. We note that an important

reformulation of the two problems was obtained by Kirchberg (see the mono-

graph [12]); in fact, Kirchebrg’s approach underlies many of the connections

bridging operator algebras and non-local game theory (see [10]).

One of the reasons that synchronous games play a significant role in the

resolution of the aforementioned problems, as well as in operator algebra

theory in general, is that each synchronous game has a canonically associ-

ated *-algebra, and the representation theory of this algebra captures the
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existence of perfect strategies for each of the mathematical models used to

describe entanglement [2].

This is the starting point of the present paper, in which we pose, and

answer, the question of the behaviour of the game algebras under parallel

repetition. As one of our main results, we show that the *-algebra affiliated

with a product of synchronous games is the tensor product of the corre-

sponding *-algebras. Thus, the existence/non-existence of perfect strategies

for the product game is related to the behaviour of the various types of rep-

resentations, after the tensor products of the individual *-algebras is taken.

We show, in particular, that the product game has a perfect C*-strategy

[2] if and only if each of the individual game does so and that, in this case,

the C*-algebra of the product game is canonically C*-isomorphic to the

maximal C*-tensor product of the two individual C*-algebras.

Some of the central concepts in non-local game theory are the various

notions of a value of a game. Given a probabilistic strategy for a non-local

game and a prior probability distribution on its inputs, one may compute

the expected winning probability for the game. The different notions of a

value of the game arise by considering the optimal expected winning prob-

ability over different, fixed, sets of strategies. Thus, in addition to their

classical values [13], non-local games have values, defined by using any pre-

ferred mathematical model of entanglement. For synchronous games, it is

natural to study the optimal winning probabilities over families of synchro-

nous strategies instead of arbitrary ones. In the present paper, we introduce

synchronous values of a synchronous game, and make some first advances

towards their understanding, showing that strict supermultiplicativity may

occur in this new setting, as it does in the usual, non-synchronous, context.

Note on related work. When the first draft of the present paper was

completed, it became clear that the paper [3] also introduces and studies the

notion of the synchronous value of a synchronous game. More precisely, the

authors of [3] examine the behaviour of synchronous values under parallel

repetition and show that they can be strictly supermultiplicative, recovering

some of our results in Section 4. The examples presented here are however

different from the ones given in [3]. In addition, the emphasis in the present

paper is placed on the behaviour of the game algebra with respect to the

formation of products.
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2. Preliminaries

Let X, Y , A and B be finite sets, and recall that a POVM on a Hilbert

space H is a family (Ei)
k
i=1 of positive operators such that

∑k
i=1 Ei = I.

A correlation is a family p = {(p(a, b|x, y))a∈A,b∈B : x ∈ X, y ∈ Y }, where

(p(a, b|x, y))a∈A,b∈B is a probability distribution for every (x, y) ∈ X ×Y . A

correlation p is called

(i) local if it is the convex combination of correlations of the form

{(p1(a|x)p2(b|y))a∈A,b∈B : x ∈ X, y ∈ Y } (notation: Cloc);
(ii) quantum if there exist a finite dimensional Hilbert space H (resp.

K), a unit vector ξ ∈ H ⊗K and POVM’s (Ex,a)a∈A, x ∈ X on H

(resp. (Fy,b)b∈B, y ∈ Y on K), such that

p(a, b|x, y) = 〈(Ex,a ⊗ Fy,b)ξ, ξ〉

for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B (notation: Cq);
(iii) approximately quantum if it belongs to the closure Cq of the set Cq

(notation: Cqa);
(iv) quantum commuting if there exist a Hilbert space H, a unit vector

ξ ∈ H and POVM’s (Ex,a)a∈A, x ∈ X (resp. (Fy,b)b∈B, y ∈ Y ) on H,

such that Ex,aFy,b = Fy,bEx,a for all x, y, a, b, and

p(a, b|x, y) = 〈Ex,aFy,bξ, ξ〉, x ∈ X, y ∈ Y, a ∈ A, b ∈ B

for all x ∈ X, y ∈ Y, a ∈ A, b ∈ B (notation: Cqc).
We note that a correlation of any of the types just defined is non-signalling

in the sense that

(2.1)
∑

b∈B

p(a, b|x, y) =
∑

b∈B

p(a, b|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A,

and

(2.2)
∑

a∈A

p(a, b|x, y) =
∑

a∈A

p(a, b|x′, y), x, x′ ∈ X, y ∈ Y, b ∈ B.
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We denote the (convex) set of all non-signalling correlations by Cns, and

note the inclusions

Cloc ⊆ Cq ⊆ Cqa ⊆ Cqc ⊆ Cns.
A non-local game is a tuple G = (X, Y,A,B, λ), where X, Y,A,B are

finite sets and λ : X × Y × A × B → {0, 1} is a map, called the rule

function of the game. We interpret X (resp. Y ) as the set of questions

posed by a Verifier to a player Alice (resp. Bob), and A (resp. B) as the set

of her (resp. his) possible answers. Alice and Bob play cooperatively against

the Verifier; if a pair (a, b) ∈ A × B of answers is received given the pair

(x, y) ∈ X × Y of questions, the players win (resp. lose) the round of the

game if λ(x, y, a, b) = 1 (resp. λ(x, y, a, b) = 0).

A probabilistic strategy for the game G is a family p = {(p(a, b|x, y))a∈A,b∈B

: x ∈ X, y ∈ Y } of probability distributions; p(a, b|x, y) is interpreted as the

probability that the players respond with the pair (a, b) of answers when

they are asked the pair (x, y) of questions. A probabilistic strategy p for G

is called non-signalling if p is a non-signalling correlation; such a strategy

being used by the players expresses the fact that they do not communicate

after the start of the game. A non-signalling strategy p for G is called perfect

if

λ(x, y, a, b) = 0 =⇒ p(a, b|x, y) = 0, x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

For x ∈ {loc, q, qa, qc, ns}, let Cx(λ) be the set of all elements of Cx that are

perfect strategies for the game G with rule function λ.

The game G is called synchronous if X = Y , A = B, and λ(x, x, a, b) = 0

if a 6= b; in this case we write G = (X,A, λ). The synchronicity game has rule

function λ : X×X×A×A → {0, 1} given by λ(x, y, a, b) = 1−(1−δa,b)δx,y.

For synchronous games, there are two further types of winning strategies

which will be of interest to us. Namely, a synchronous game G = (X,A, λ)

is said to have a perfect algebraic strategy (see [2]) if there exists a unital

complex *-algebra with a generating set {ex,a : x ∈ X, a ∈ A} satisfying the

following relations:

ex,a = e∗x,a = e2x,a, x ∈ X, a ∈ A;

(2.3)
∑

a∈A

ex,a = 1, x ∈ X, and

λ(x, y, a, b) = 0 =⇒ ex,aey,b = 0.

If G has a perfect algebraic strategy then there exists a universal *-algebra

A(G) satisfying the conditions (2.3) (in the sense that any unital *-algebra

satisfying (2.3) is a canonical quotient of A(G)) and that A(G) is unique up
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to a unital *-isomorphism. We will reserve the notation ex,a, x ∈ X, a ∈ A,

for a family of generators of A(G) satisfying (2.3).

The game G is said to have a perfect C*-strategy if there exists a (uni-

versal) unital C*-algebra C∗(G) with generating set {ex,a : x ∈ X, a ∈ A}
satisfying the conditions (2.3). It is clear that if G has a perfect C*-strategy

then it has a perfect algebraic strategy. The following observation is also

clear.

Remark 2.1. For i ∈ {1, 2}, let Gi be a synchronous game with rule func-

tion λi : Xi ×Xi × Ai × Ai → {0, 1}, i = 1, 2. Suppose that λ1 ≤ λ2. If G1

has a perfect algebraic strategy (resp. perfect C∗-strategy) then G2 has a

perfect algebraic strategy (resp. perfect C∗-strategy).

The synchronicity game with a question set X and an answer set A has

a perfect C*-strategy, and its C*-algebra, which will be denoted by AX,A,

is *-isomorphic, via Fourier transform, to the group C*-algebra C∗(FX,A),

where

FX,A = Z|A| ∗ · · · ∗ Z|A|
︸ ︷︷ ︸

|X| times

.

The following facts were established in [10, 8, 11].

Theorem 2.2. Let p ∈ Cns be a synchronous correlation over the pair (X,A)

of finite sets.

(i) p ∈ Cqc if and only if there exists a trace τ : AX,A → C such that

(2.4) p(x, y, a, b) = τ(ex,aey,b), x, y ∈ X, a, b ∈ A;

(ii) p ∈ Cqa if and only if there exists an amenable trace τ : AX,A → C

such that (2.4) is satisfied;

(iii) p ∈ Cq if and only if there exist a finite dimensional Hilbert space H,

a *-representation π : AX,A → B(H) and a trace τfin : B(H) → C

such that

(2.5) p(x, y, a, b) = (τfin ◦ π)(ex,aey,b), x, y ∈ X, a, b ∈ A;

(iv) p ∈ Cloc if and only if there exists a finite dimensional Hilbert space

H, a *-representation π : AX,A → B(H) with an abelian image, and

a trace τfin : B(H) → C such that (2.5) is satisfied.

3. Algebraic strategies of product games

Let G1 = (X1, A1, λ1) and G2 = (X2, A2, λ2) be synchronous games.

Their product G1×G2 is the game with pair of input sets (X1×X2, X1×X2),
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pair of output sets (A1 × A2, A1 × A2), and a rule function

λ1 × λ2 : X1 ×X2 ×X1 ×X2 × A1 × A2 × A1 × A2 → {0, 1}

given by

(λ1 × λ2)((x1, x2), (y1, y2), (a1, a2), (b1, b2)) = λ1(x1, y1, a1, b1)λ2(x2, y2, a2, b2).

Remarks. (i) If G1 and G2 are synchronous then so is G1 ×G2; we thus

write G1 × G2 = (X1 × X2, A1 × A2, λ1 × λ2). A similar product can be

defined for any (not necessarily synchronous) pair of non-local games, but

in the sequel we will only be interested in the synchronous case.

(ii) The product game G1×G2 can be thought of as a game where Alice

and Bob play the games G1 and G2 in parallel, receiving a question for each

of them. In order to win the combined game, it is necessary and sufficient

to win both G1 and G2. Thus, G1 ×G2 can be thought of as a conjunctive

product of G1 and G2. We note that there are also other natural ways to

combine the games G1 and G2 (notably, by forming a disjunctive product),

but they will not be considered in this paper.

We will denote by A1⊗A2 the algebraic tensor product of *-algebras Ai,

i = 1, 2. Recall that A1⊗A2 is a *-algebra with an underlying vector space is

the algebraic tensor product of the underlying spaces, multiplication given

by

(u1 ⊗ u2)(v1 ⊗ v2) := (u1v1)⊗ (u2v2),

and involution given by

(u1 ⊗ u2)
∗ = u∗

1 ⊗ u∗
2.

If A1 and A2 are moreover C*-algebras, we write as customary A1 ⊗max A2

for their maximal C*-tensor product ; thus, A1 ⊗max A2 is the unique C*-

algebra containing A1 and A2 as unital C*-subalgebras, generated by A1

and A2 as a C*-algebra, and satisfying the following universal property: if

H is a Hilbert space and πi : Ai → B(H) is a *-representation, i = 1, 2,

such that π1(u1)π2(u2) = π2(u2)π1(u1) for all u1 ∈ A1, u2 ∈ A2, then there

exists a unique *-representation π1⊗max π2 : A1⊗maxA2 → B(H) such that

(π1 ⊗max π2)(ui) = πi(ui), if ui ∈ Ai, i = 1, 2.

Theorem 3.1. Let G1 and G2 be synchronous games.

(i) The games G1 and G2 have perfect algebraic strategies if and only if

G1 ×G2 does. In this case, A(G1 ×G2) ∼= A(G1)⊗A(G2).

(ii) The games G1 and G2 have perfect C*-strategies if and only if G1 ×
G2 does. In this case, C∗(G1 ×G2) ∼= C∗(G1)⊗max C

∗(G2).
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Proof. Write G1 = (X1, A1, λ1), G2 = (X2, A2, λ2); set G = G1 × G2 and

λ = λ1 × λ2.

(i) Assume that G1 and G2 have perfect algebraic strategies. For (x1, x2) ∈
X1 ×X2 and (a1, a2) ∈ A1 ×A2, set g(x1,x2),(a1,a2) = ex1,a1 ⊗ ex2,a2 ; then con-

ditions (2.3) are clearly satisfied for the family {g(x1,x2),(a1,a2) : xi ∈ Xi, ai ∈
Ai, i = 1, 2}. It follows that A(G1 × G2) exists and that there exists a

surjective *-homomorphism π : A(G1 ×G2) → A(G1)⊗A(G2) such that

(3.1)

π
(
e(x1,x2),(a1,a2)

)
= ex1,a1 ⊗ ex2,a2 , x1 ∈ X1, x2 ∈ X2, a1 ∈ A1, a2 ∈ A2.

Conversely, suppose that G1 × G2 has a perfect algebraic strategy. For

x1 ∈ X1, x2 ∈ X2 and a1 ∈ A1, let

fx1,x2,a1 =
∑

b∈A2

e(x1,x2),(a1,b).

We have

(3.2)
∑

a∈A1

fx1,x2,a = 1.

Let x1, x2, x
′
2 ∈ X, a1 ∈ A1, and suppose that x2 6= x′

2. Since G1 is synchro-

nous,

(3.3) e(x1,x2),(a,b)e(x1,x′

2
),(a1,c) = 0, for all a, a1 ∈ A1, b, c ∈ A2, a 6= a1.

By (3.2) and (3.3),

fx1,x2,a1fx1,x′

2
,a1 =

(

1−
∑

a∈A1,a 6=a1

fx1,x2,a

)

fx1,x′

2
,a1

= fx1,x′

2
,a1 −

∑

a∈A1,a 6=a1

∑

b,c∈A2

e(x1,x2),(a,b)e(x1,x′

2
),(a1,c)

= fx1,x′

2
,a1 .

On the other hand,

fx1,x2,a1fx1,x′

2
,a1 = fx1,x2,a1

(

1−
∑

a∈A1,a 6=a1

fx1,x′

2
,a

)

= fx1,x2,a1 −
∑

a∈A1,a 6=a1

∑

b,c∈A2

e(x1,x2),(a1,c)e(x1,x′

2
),(a,b)(3.4)

= fx1,x2,a1 .

Thus, fx1,x2,a1 = fx1,x′

2
,a1 ; we set fx1,a1 = fx1,x2,a1 for any x2 ∈ X. From the

calculation (3.4) it now follows that f 2
x1,a1

= fx1,a1 . Clearly, we also have

that f ∗
x1,a1

= fx1,a1 . Finally, if λ1(x1, x
′
1, a1, a

′
1) = 0 then

λ(x1, x2, x
′
1, x

′
2, a1, a2, a

′
1, a

′
2) = 0, x2, x

′
2 ∈ X2, a2, a

′
2 ∈ A2,
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and hence, fixing some x2 ∈ X2, we have

fx1,a1fx′

1
,a′

1
=
∑

b,c∈A2

e(x1,x2),(a1,b)e(x′

1
,x2),(a′1,c)

= 0.

It follows that the subalgebra A1 of A(G1 × G2), generated by the family

{fx1,a1 : x1 ∈ X1, a1 ∈ A1}, satisfies the conditions of a perfect algebraic

strategy for G1.

Let the projections fx2,a2 ∈ A, x2 ∈ X2, a2 ∈ A2, be defined similarly,

and let A2 be the subalgebra of A(G1 × G2) generated by them. Let ρi :

A(Gi) → Ai be the quotient map satisfying

ρi(exi,ai) = fxi,ai , xi ∈ Xi, ai ∈ Ai,

which exists by the virtue of the universality of A(Gi), i = 1, 2. Then

ρ1 ⊗ ρ2 : A(G1)⊗A(G2) → A1 ⊗A2 is a *-homomorphism.

For xi ∈ Xi and ai ∈ Ai, i = 1, 2, we have

fx1,a1fx2,a2 =

(
∑

b∈A2

e(x1,x2),(a1,b)

)(
∑

a∈A1

e(x1,x2),(a,a2)

)

= e(x1,x2),(a1,a2) = fx2,a2fx1,a1 .

It follows that s1s2 = s2s1 for all si ∈ Ai, i = 1, 2; thus, by the universal

property of the tensor product, the mapping

m : A1 ⊗A2 → A(G1 ×G2), m(s1 ⊗ s2) = s1s2,

is a *-homomorphism. It follows that the map ρ := m ◦ (ρ1 ⊗ ρ2) : A(G1)⊗
A(G2) → A(G1 ×G2) is a *-homomorphism; moreover,

(3.5) ρ(ex1,a1 ⊗ ex2,a2) = e(x1,x2),(a1,a2), xi ∈ Xi, ai ∈ Ai, i = 1, 2.

Equations (3.1) and (3.5) show that π ◦ ρ agrees with the identity on the

generators of A(G1) ⊗ A(G2), and hence on the whole algebra. It follows

that π is a *-isomorphism from A(G1 ×G2) onto A(G1)⊗A(G2).

(ii) If C∗(G1) and C∗(G2) exist then, by setting g(x1,x2),(a1,a2) = ex1,a1 ⊗
ex2,a2 inside the maximal tensor product C∗(G1) ⊗max C

∗(G2), we obtain

a family of operators that satisfy the relations defining the C*-algebra of

G1 × G2; thus, C∗(G1) ⊗max C
∗(G2) implements a perfect C*-strategy for

G1 ×G2. Conversely, if G1 ×G2 has a perfect C*-strategy then the closure

Ã1 in C∗(G1 ×G2) of the *-algebra A1 defined in the proof of (i) provides

a perfect C*-strategy for G1. By symmetry, such exists for G2 as well.

Now suppose that G1 and G2 have perfect C*-strategies. Then, by the

universal properties of C∗(G1 × G2) and C∗(G1) ⊗max C∗(G2), the maps

π and ρ defined in (i) extend to *-homomorphisms π̃ : C∗(G1 × G2) →
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C∗(G1) ⊗max C
∗(G2) and ρ̃ : C∗(G1) ⊗max C

∗(G2) → C∗(G1 × G2), which

shows that C∗(G1 ×G2) ∼= C∗(G1)⊗max C
∗(G2) canonically. �

Remark. Let Gi = (Xi, Ai, λi), i = 1, 2, be synchronous games and x ∈
{loc, q, qa, qc, ns}. If pi ∈ Cx(λi), i = 1, 2,

p1 ⊗ p2 : A1 × A2 × A1 × A2 ×X1 ×X2 ×X1 ×X2 → [0, 1],

and

(p1 ⊗ p2)(a1, a2, b1, b2|x1, x2, y1, y2) = p1(a1, b1|x1, y1)p2(a2, b2|x2, y2),

then p1 ⊗ p2 ∈ Cx(λ1 × λ2). Indeed, it is straightforward that p1 ⊗ p2 ∈
Cns(λ1 × λ2). Suppose that pi ∈ Cqc, i = 1, 2, and write

pi(ai, bi|xi, yi) = 〈Exi,aiFyi,biξi, ξi〉, i = 1, 2,

as in the definition of quantum commuting correlations. Then

(p1 ⊗ p2)(a1, a2, b1, b2|x1, x2, y1, y2)

= 〈((Ex1,a1 ⊗ Ex2,a2)(Fy1,b1 ⊗ Fy2,b2)(ξ1 ⊗ ξ2), (ξ1 ⊗ ξ2)〉,

showing that p1 × p2 ∈ Cqc. The argument for x = q and x = loc is similar,

while the statement about qa follows from the definition of Cqa as the closure

of Cq.
It is well-known, and easily seen that, in the converse direction, if p ∈

Cx(λ1 × λ2) and x2, y2 ∈ X2, then the correlation

px2,y2 : A1 × A1 ×X1 ×X1 → [0, 1],

given by

px2,y2(a1, b1|x1, y1) =
∑

a2,b2∈A2

p(a1, a2, b1, b2|x1, x2, y1, y2),

is a perfect strategy for G1. The argument from Theorem 3.1 shows that, if

the games G1 and G2 are synchronous, the correlation px2,y2 is independent

of the choice of x2 and y2.

Corollary 3.2. Let G1 and G2 be synchronous games and t ∈ {loc, q, qc}.
The following are equivalent, for a no-signalling correlation p:

(i) p is a perfect t-strategy for the product game G1 ×G2;

(ii) p is the limit of convex combinations of strategies of the form p1⊗p2,

where pi is a perfect t-strategy for Gi, i = 1, 2.

Proof. (ii)⇒(i) is trivial.
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(i)⇒(ii) Assume that p is a quantum commuting perfect strategy of

G1×G2. By [11, Corollary 5.6], there exists a tracial state τ on C∗(G1×G2)

such that

(3.6) p((a1, a2), (b1, b2)|(x1, x2), (y1, y2)) = τ
(
e(x1,x2),(a1,a2)e(y1,y2),(b1,b2)

)
,

for all xi ∈ Xi, yi ∈ Yi, ai ∈ Ai and bi ∈ Bi, i = 1, 2. By Theorem 3.1, τ can

be viewed as a tracial state on C∗(G1)⊗max C
∗(G2) in a canonical way. By

[5, Corollary 2.2], τ is the limit of convex combinations of states of the form

τ1 ⊗ τ2, where τi is a tracial state on C∗(Gi), i = 1, 2. Using once again [11,

Corollary 5.6], we see that (ii) holds in the case t = qc.

We next consider the case t = q. By [2, Theorem 3.2], there exist a finite

dimensional Hilbert space H, a *-representation π : C∗(G1 × G2) → B(H)

and a tracial state τ̃ : π(C∗(G1 × G2)) → C such that (3.6) is fulfilled

for τ = τ̃ ◦ π. Set A = π(C∗(G1 × G2)). Using Theorem 3.1, write A1 =

π(C∗(G1)⊗1) and A2 = π(1⊗C∗(G2)); note that A is generated by its finite

dimensional and mutually commuting C*-subalgebras A1 and A2. It follows

that A = A1 ⊗max A2 = A1 ⊗min A2; by [5, Corollary 2.2], τ̃ is the limit of

convex combinations of states of the form τ̃1 ⊗ τ̃2, where τ̃i is a tracial state

on Ai, i = 1, 2. The functional τi = τ̃i ◦ π|C∗(Gi) is a tracial state on C∗(Gi),

i = 1, 2. Another application of [2, Theorem 3.2] now completes the proof

of the statement in this case.

The case t = loc follows similar lines, again using [2, Theorem 3.2]; the

details are omitted. �

4. Synchronous Values of Games

A synchronous game G = (X,A, λ), equipped with a probability dis-

tribution π on the set X × X of questions, will be called a synchronous

game with density. For each x ∈ {loc, qa, qc, ns}, we define the synchronous

x-value ωs
x(G, π) of (G, π) by setting

(4.1)

ωs
x(G, π) = sup

{
∑

x∈X,y∈Y

∑

a∈A,b∈B

π(x, y)λ(x, y, a, b)p(a, b|x, y) : p ∈ Cs
x

}

,

where Cs
x denotes the set of all synchronous correlations over (X,A) of class

x.

Note that each term in the supremum is the expected probability of

the players winning the game given that they use the conditional probabil-

ity density p. So the synchronous x-value represents the optimal winning

probability over the corresponding set of synchronous correlations.
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Remark 4.1. (i) Let x ∈ {loc, qa, qc, ns}. Then ωs
x(G, π) ≤ 1 and,

since Cs
x is closed, the supremum in the definition of ωx(G, π) is

achieved. It follows that a synchronous game G has a perfect x-

strategy if and only of ωs
x(G) = 1.

(ii) It was shown in [8] that Cs
qa = Cs

q. Thus, if in the right hand side

of (4.1) one employs correlations of the class Cs
q, the corresponding

supremum coincides with ωs
qa(G, π).

Given synchronous games with densities (Gi, πi) = (Xi, Ai, λi, πi), i =

1, 2, equip the question set (X1 × X2) × (X1 × X2) of the game G1 × G2

with the probability distribution π1 × π2, given by

(π1 × π2) ((x1, x2), (y1, y2)) = π1(x1, y1)π2(x2, y2).

We write (G1 ×G2, π1 × π2) for this synchronous game with density.

Proposition 4.2. Let (Gi, πi) = (Xi, Ai, λi, πi), i = 1, 2, be synchronous

games with densities and x ∈ {loc, qa, qc, ns}. Then

ωs
x(G1, π1)ω

s
x(G2, π2) ≤ ωs

x(G1 ×G2, π1 × π2).

Proof. If pi(ai, bi|xi, yi) ∈ Cx, i = 1, 2, then applying Theorem 2.2, it is easily

checked that

p((a1, a2), (b1, b2)|(x1, x2), (y1, y2)) := p1(a1, b1|x1, y1)p2(a2, b2|x2, y2) ∈ Cx.

Consequently,

ωs
x(G1, π1)ω

s
x(G2, π2)

=
2∏

i=1

sup{
∑

xi,yi,ai,bi

πi(xi, yi)λi(xi, yi, ai, bi)p(ai, bi|xi, yi) : pi ∈ Cs
x}

≤ sup{
∑

xi,yi,ai,bi,i=1,2

π1(x1, y1)π2(x2, y2)λ(x1, x2, y1, y2, a1, a2, b1, b2)

p(a1, a2, b1, b2|x1, x2, y1, y2) : p ∈ Cs
x}

= ωs
x(G1 ×G2, π1 × π2).

�

The inequality in Theorem 4.2 can be strict, even in the case of the

classical value ωs
loc. We provide two examples towards this end. The first is

an example of a synchronous game with uniform distribution on the inputs

for which the inequality is strict. The second example is of a symmetric

synchronous game with uniform distribution on the inputs for which the

inequality is strict.
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A rule function λ is called symmetric if λ(x, y, a, b) = λ(y, x, b, a). Note

that, since synchronous correlations p arise from traces, we have that

p(a, b|x, y) = τ(ex,aey,b) = τ(ey,bex,a) = p(b, a|y, x);

thus, they satisfy an extra transposition invariance. For this reason, arguably

the most suitable context to study synchronous values is that of symmetric

synchronous games with symmetric distributions π on their inputs, that is,

ones satisfying π(x, y) = π(y, x) for all x and y. Our examples illustrate that

even in this more restrictive setting the synchronous value can be strictly

supermultiplicative.

For a rule function λ : X × Y × A × B → {0, 1} of a game over the

quadruple (X, Y,A,B), and (x, y) ∈ X × Y , let

Ex,y = {(a, b) ∈ A× B : λ(x, y, a, b) = 1}.

Clearly, specifying λ is equivalent to specifying the family {Ex,y : x, y} of

subsets of A×B. In synchronous games, we have X = Y , A = B, and Ex,x ⊆
{(a, a) : a ∈ A}, for every x ∈ X. Note that the local synchronous strategies

of a synchronous game arise from functions f : X → A: a function f : X →
A gives rise to the local no-signalling correlation pf = (p(a, b|x, y)) given by

pf (a, b|x, y) = 1 if a = f(x) and b = f(y), and p(a, b|x, y) = 1 otherwise;

conversely, every local synchronous strategy is the convex combination of

strategies of the form pf (this can be inferred, e.g., from [11, Corollary 5.6]).

For a synchronous non-local game G with rule function λ : X×X×A×
A → {0, 1} and probability distribution π : X ×X → [0, 1], we write

hG =
∑

x,y∈X

π(x, y)
∑

a,b∈A

λ(x, y, a, b)ex,aey,b,

viewed as an element of the C*-algebra AX,A.

Example 4.3. Let G be the game with X = Y = A = B = [2] := {1, 2}
and rule function λ specified by setting

E1,1 = E2,2 = {(1, 1), (2, 2)}, E1,2 = {(1, 1)}, E2,1 = {(1, 2)}.

We claim that, if [2] × [2] is equipped with the uniform probability distri-

bution π, then

(4.2) ωs
loc(G, π) = ωs

q(G, π) = ωs
qc(G, π) = 3/4,

while

(4.3) ωs
loc(G×G, π×π) = ωs

q(G×G, π×π) = ωs
qc(G×G, π×π) = 10/16.
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Indeed, we have that

hG =
1

4
(2I + e1,1e2,1 + e2,1e1,2).

The synchronous values of G are obtained by computing the supremum

of the quantities τ(hG) over traces τ of A(G) of particular type. Setting

p = e1,1 and q = e2,1, we have

4hG = 2I + pq + q(I − p) = 2I + q,

and (4.2) follows.

Write X1 = X2 = X and A1 = A2 = A and let

{E(x1,x2),(y1,y2) : (x1, y1) ∈ X1 ×X1, (x2, y2) ∈ X2 ×X2}

be the family of subsets of (A1 × A2) × (A1 × A2) that determine λ × λ.

Note that

E(x1,x2),(y1,y2) = {((a1, a2), (b1, b2)) : (a1, b1) ∈ Ex1,y1 and (a2, b2) ∈ Ex2,y2}.

Consider the function h : X1 ×X2 → A1 × A2, given by

(1, 1) → (1, 1), (1, 2) → (1, 1), (2, 1) → (1, 1), (2, 2) → (1, 1).

For each ((x1, x2), (y1, y2)) listed below, we indicate whether the value (h×
h)((x1, x2), (y1, y2)) belongs to the set E(x1,x2),(y1,y2):

• E(1,1),(1,2) = {((1, 1), (1, 1)), ((2, 1), (2, 1))} =⇒ Yes;

• E(1,1),(2,1) = {((1, 1), (1, 1)), ((1, 2), (1, 2))} =⇒ Yes;

• E(1,1),(2,2) = {((1, 1), (1, 1))} =⇒ Yes;

• E(1,2),(1,1) = {((1, 1), (1, 2)), ((2, 1), (2, 2))} =⇒ No;

• E(1,2),(2,1) = {((1, 1), (1, 2))} =⇒ No;

• E(1,2),(2,2) = {((1, 1), (1, 1)), ((1, 2), (1, 2))} =⇒ Yes;

• E(2,1),(1,2) = {((1, 1), (2, 1))} =⇒ No;

• E(1,2),(2,1) = {((1, 1), (1, 2))} =⇒ No;

• E(2,1),(2,2) = {((1, 1), (1, 1)), ((2, 1), (2, 1))} =⇒ Yes;

• E(2,2),(1,1) = {((1, 1), (2, 2))} =⇒ No;

• E(2,2),(1,2) = {((1, 1), (2, 1)), ((1, 2), (2, 2))} =⇒ No;

• E(2,2),(2,1) = {((1, 1), (1, 1)), ((2, 1), (2, 1))} =⇒ Yes.

The remaining pairs ((x1, x2), (y1, y2)) are of the form ((x1, x2), (x1, x2));

since the game λ is synchronous, we have that (h × h)((x1, x2), (x1, x2))

meets E(x1,x2),(x1,x2). This shows that

ωloc(G×G, π × π) ≥ 10

16
.



14 PRODUCTS OF SYNCHRONOUS GAMES

On the other hand, let hG×G be the element of A(G×G) with

(4.4) 16hG×G = 4 · I + e11,11
(
e12,11 + e22,11 + e21,11

)
+

e11,12
(
e21,12 + e12,11

)
+ e11,21e21,11+

e11,22
(
e22,11 + e21,12

)
+

e12,21
(
e21,12 + e22,11

)
+ e12,22e22,12+

e21,11e22,11 + e21,21e22,21 + e21,12e22,11 ++e21,22e22,21,

and note that

ωs
qc(G×G, π × π) = sup{τ(hG×G) : τ a trace on A(G×G)}.

For any trace τ , if p, q ≥ 0 and r ≥ q, then 0 ≤ τ(pq) ≤ τ(pr). We thus see

that

16τ(hG×G) ≤ 4 + τ(3e11,11) + τ(3e11,12) + τ(3e11,22) + τ(2e12,21)

+ τ(e12,22) + τ(e21,11 + e21,21 + e21,12 + e21,22)

≤ 4 + 3 + 2 + 1 = 10,

and (4.3) is proved.

The game, exhibited above, shows that strict inequality may take place

in Proposition 4.2 even for the smallest non-trivial games. At the expense of

increasing the number of inputs by one, the game can be made symmetric

– this is achieved in the next example, which also exhibits a separation

between the local and the quantum synchronous value.

Example 4.4. Let X = [3], A = [2], equip X × X with the uniform

probability distribution, and let π : X × X × A × A → {0, 1} be the rule

function determined by the sets

• E1,2 = E2,1 = E2,3 = E3,2 = {(1, 2)};
• E1,3 = E3,1 = {(2, 1)};
• E1,1 = E2,2 = E3,3 = {(1, 1), (2, 2)}.

The eight possibilities for functions g : X → A are:

• g1 × g1 × g1 : (1, 2, 3) → (1, 1, 1), yielding Rg1 = 3;

• g2 × g2 × g2 : (1, 2, 3) → (1, 1, 2), yielding Rg2 = 5;

• g3 × g3 × g3 : (1, 2, 3) → (1, 2, 1), yielding Rg3 = 5;

• g4 × g4 × g4 : (1, 2, 3) → (1, 2, 2), yielding Rg4 = 5;

• g5 × g5 × g5 : (1, 2, 3) → (2, 1, 1), yielding Rg5 = 5;

• g6 × g6 × g6 : (1, 2, 3) → (2, 1, 2), yielding Rg6 = 5;

• g7 × g7 × g7 : (1, 2, 3) → (2, 2, 1), yielding Rg7 = 5;

• g8 × g8 × g8 : (1, 2, 3) → (2, 2, 2), yielding Rg8 = 3.
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Thus, ωloc(G, π) = 5
9
.

Letting as before X1 = X2 = X and A1 = A2 = A, consider the function

η : X1 ×X2 → A1 × A2, given by

η(x1, x2) =







(1, 1) if (x1, x2) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}
(1, 2) if (x1, x2) ∈ {(1, 2), (3, 2)}
(2, 1) if (x1, x2) ∈ {(2, 1), (2, 3)}
(2, 2) if (x1, x2) = (2, 2).

Among the inputs (x1, x2, y1, y2) of the product game µ × µ with x1 ≤ x2,

y1 ≤ y2, and (x1, y1) 6= (x2, y2), we single out the following

E(1,1),(1,2) = {((1, 1), (1, 2)), ((2, 1), (2, 2))},
E(1,1),(2,1) = {((1, 1), (2, 1)), ((1, 2), (2, 2))},
E(1,1),(2,2) = {((1, 1), (2, 2))},
E(1,2),(2,2) = {((1, 1), (2, 1)), ((1, 2), (2, 2))},
E(2,1),(2,2) = {((1, 1), (1, 2)), ((2, 1), (2, 2))},
E(1,3),(2,3) = {((1, 1), (2, 1)), ((1, 2), (2, 2))},
E(3,1),(3,2) = {((1, 1), (1, 2)), ((2, 1), (2, 2))},

which all meet the graph of the function η × η. Among the inputs (x1, x2,

y1, y2) of the product game G × G with x1 ≤ x2, y1 ≥ y2, and (x1, y1) 6=
(x2, y2), we single out

E(2,3),(2,2) = {((1, 1), (1, 2)), ((2, 1), (2, 2))},
E(3,3),(3,2) = {((1, 1), (2, 1)), ((2, 1), (2, 2))},

which also meet the graph of η × η. By symmetry, we thus have that

ωloc(G×G, π × π) ≥ 27

81
>

25

81
= ωloc(G, π)2.

We finish this note by computing the quantum value of the game G

from Example 4.4, implying that it is strictly greater than the local (clas-

sical) value. As a result, we can see that strict supermultiplicativity of the

game value can take place also in the case the game demonstrates quantum

advantage.

Theorem 4.5. Let (G, π) be the non-local game from Example 4.4. Then

ωs
qc(G, π) = ωs

q(G, π) = 7/12 > 5/9 = ωs
loc(G, π).

Proof. By [14], the set Cs
q in our (three input, two output) case is closed.

Thus, the supremum (4.1) used to compute ωq(G, π) is achieved. We write

for brevity exa in the place of ex,a. Let τ be a trace on a finite dimensional
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representation of AX,A for which the value ωs
q(G, π) is attained. By splitting

the representation into irreducible blocks, we can assume that all projections

exa are contained in Mn for some n ∈ N. We note that

(4.5) 9hG = 3I + e11e22 + e21e12 + e21e32 + e31e22 + e12e31 + e32e11.

Setting p = e11, q = e21, and r = e31, so that e12 = I − p, e22 = I − q, e32 =

I − r we have

9hG = 3I + p(1− q) + q(1− p) + q(1− r) + r(1− q) + (1− p)r + (1− r)p.

By [1], p commutes with q+ r, q commutes with p+ r and r commutes with

p+ q. This implies that p+ q + r commutes with p, q and r. Thus,

9τ(hG) = 3 + τ(2p(1− q − r) + 2r + 2q(1− r)).

By [9], there exists t ∈ R
+ such that

(4.6) p+ q + r = tIn.

Write

p =

(
Ik 0
0 0

)

, so that q + r =

(
C 0
0 D

)

,

and note that (4.6) yields

C = (t− 1)Ik and D = tIn−k.

Writing

q =

(
A X
X∗ B

)

,

we have

r =

(
(t− 1)Ik − A −X

−X∗ tIn−k − B

)

.

The identities q2 = q and r2 = r yield

A2 +XX∗ = A, ((t− 1)Ik − A)2 +XX∗ = (t− 1)Ik − A

and

B2 +X∗X = B, (tIn−k − B)2 +X∗X = tIn−k − B.

Thus,

((t− 1)Ik − A)2 + A− A2 = (t− 1)Ik − A =⇒ A =
t− 1

2
Ik,

and

(tIn−k − B)2 +B − B2 = tIn−k − B =⇒ B =
t

2
In−k.

Therefore

q =

(
t−1
2
Ik X

X∗ t
2
In−k

)
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and using again the fact that q is an idempotent, we see that

XX∗ =

(
t− 1

2
− t− 1

2
)2
)

Ik =
4t− t2 − 3

4
Ik

and

X∗X =
2t− t2

4
In−k.

Since τ(X∗X) = τ(XX∗), we have

k(4t− t2 − 3) = (2t− t2)(n− k) =⇒ k(6t− 2t2 − 3) = (2t− t2)n.

This shows that

k/n =
2t− t2

6t− 2t2 − 3
.

By [9], the following values of t are feasible:

t = 0, 1, 2, 3, 3/2.

This leads to

k/n = 0, 1, 0, 1, 1/2.

The case where t = 3/2 and k/n = 1/2 can be realised in M2 and we have

that

p =

(
1 0
0 0

)

, q =

(
1/4

√
3/4√

3/4 3/4

)

, r =

(
1/4 −

√
3/4

−
√
3/4 3/4

)

.

In this case

τ(hG) = 1/9τ(3I2 + 2p(I − (tI − p) + 2r + 2q(1− r)) = 7/12.

If t = 0, then q has a negative entry, so can be discarded.

If t = 1, then again q is not a projection.

If t = 2, then p = 0 and

q =

(
1/2 1/2
1/2 1/2

)

, r =

(
1/2 −1/2
−1/2 1/2

)

= 1− q,

and in this case

τ(hG) = 1/9
(
tr(3I2 + 2r + 2q2)

)
= 5/9 < 7/12.

Finally, if t = 3, then p = q = r = I and so

τ(hG) = 1/9(3 + 2(−1) + 2 + 0) = 1/3.

So we get that the value occurs when t = 3/2; note that we have also shown

that, in addition, it can be achieved by matrices in M2.

We turn to the quantum commuting value. Let τ : AX,A → C be a tracial

state and πτ : AX,A → B(H) be the GNS representation of AX,A, associated

with τ . We let A = πτ (AX,A)
′′ and extend τ to a normal trace on A in the

canonical fashion. Let Z be the centre of A; up to a normal *-isomorphism,

we have that Z = L∞(Z, µ) for a suitable probability space (Z, µ). In the
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sequel, we use the terminology of [7, Chapter 14]. Using [7, Theorem 14.2.2],

we write

H =

∫

Z

Hzdµ(z) and A =

∫

Z

A(z)dµ(z)

in their corresponding direct integral decompositions. Note that A(z) ⊆
B(Hz) is a factor for µ-almost all z ∈ Z (see [7, Theorem 14.2.2]). For an

element T ∈ A, we write T =
∫

Z
T (z)dµ(z) for its direct integral decompo-

sition.

Suppressing notation, we write p, q and r for their images under πτ . By

the arguments from the first part of the proof, p + q + r ∈ Z; thus, there

exists a measurable function t : Z → R+, such that

p(z) + q(z) + r(z) = t(z)IHz
, for µ-almost all z ∈ Z.

We continue to use the notation from the first part of the proof. Thus, C

and D are the (unique) operators in A, determined by the requirement

q + r = pCp+ p⊥Dp⊥,

while A,B and X are determined by

q = pAp+ p⊥Bp⊥ + pXp⊥ + p⊥X∗p.

The previous arguments now imply

τ(p(z))(6t(z)− 2t(z)2 − 3) = (2t(z)− t(z)2).

Since the function z → t(z) is measurable (and takes finitely many values),

the arguments above now show that there is a partition Z = Z3/2∪Z2∪Z3,

where

Zα = {z ∈ Z : t(z) = α}.
Since µ is a probability measure, we have that τ(hG) ≤ 7/12. The proof is

complete. �
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