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ABSTRACT. We show that the *-algebra of the product of two synchro-
nous games is the tensor product of the corresponding *-algebras. We
prove that the product game has a perfect C*-strategy if and only if
each of the individual games does, and that in this case the C*-algebra
of the product game is *-isomorphic to the maximal C*-tensor prod-
uct of the individual C*-algebras. We provide examples of synchronous
games whose synchronous values are strictly supermultiplicative.

1. INTRODUCTION

Non-local games have been extensively studied in Mathematics, Quan-
tum Physics and Computer Science. Among their numerous applications
is the explicit demonstration of the presence of entanglement. More specifi-
cally, there exist games that have no perfect classical strategies, but can nev-
ertheless be demonstrated to possess perfect entanglement-assisted strate-
gies. Some of the most notable such examples are certain types of linear
binary constraint system (LBCS) games (see [4]).

A prominent family of non-local games is that of synchronous games,
introduced in [11] which, by virtue of [8], include all LBCS games. Synchro-
nous games play an important role in the recent (negative) resolution of
Connes’ Embedding Problem and an equivalent conjecture of Tsirelson [6].
In particular, the authors of [6] construct a synchronous game that has a
perfect strategy in one mathematical model for entanglement description,
but no perfect strategy in an alternate model, thus demonstrating that these
two entanglement models are genuinely distinct. We note that an important
reformulation of the two problems was obtained by Kirchberg (see the mono-
graph [12]); in fact, Kirchebrg’s approach underlies many of the connections
bridging operator algebras and non-local game theory (see [10]).

One of the reasons that synchronous games play a significant role in the
resolution of the aforementioned problems, as well as in operator algebra
theory in general, is that each synchronous game has a canonically associ-
ated *-algebra, and the representation theory of this algebra captures the
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2 PRODUCTS OF SYNCHRONOUS GAMES

existence of perfect strategies for each of the mathematical models used to
describe entanglement [2].

This is the starting point of the present paper, in which we pose, and
answer, the question of the behaviour of the game algebras under parallel
repetition. As one of our main results, we show that the *-algebra affiliated
with a product of synchronous games is the tensor product of the corre-
sponding *-algebras. Thus, the existence/non-existence of perfect strategies
for the product game is related to the behaviour of the various types of rep-
resentations, after the tensor products of the individual *-algebras is taken.
We show, in particular, that the product game has a perfect C*-strategy
[2] if and only if each of the individual game does so and that, in this case,
the C*-algebra of the product game is canonically C*-isomorphic to the
maximal C*-tensor product of the two individual C*-algebras.

Some of the central concepts in non-local game theory are the various
notions of a walue of a game. Given a probabilistic strategy for a non-local
game and a prior probability distribution on its inputs, one may compute
the expected winning probability for the game. The different notions of a
value of the game arise by considering the optimal expected winning prob-
ability over different, fixed, sets of strategies. Thus, in addition to their
classical values [13], non-local games have values, defined by using any pre-
ferred mathematical model of entanglement. For synchronous games, it is
natural to study the optimal winning probabilities over families of synchro-
nous strategies instead of arbitrary ones. In the present paper, we introduce
synchronous values of a synchronous game, and make some first advances
towards their understanding, showing that strict supermultiplicativity may

occur in this new setting, as it does in the usual, non-synchronous, context.

Note on related work. When the first draft of the present paper was
completed, it became clear that the paper [3] also introduces and studies the
notion of the synchronous value of a synchronous game. More precisely, the
authors of 3] examine the behaviour of synchronous values under parallel
repetition and show that they can be strictly supermultiplicative, recovering
some of our results in Section 4. The examples presented here are however
different from the ones given in [3]. In addition, the emphasis in the present
paper is placed on the behaviour of the game algebra with respect to the

formation of products.
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2. PRELIMINARIES

Let X, Y, A and B be finite sets, and recall that a POVM on a Hilbert
space H is a family (E;)¥_, of positive operators such that Zle E, =1
A correlation is a family p = {(p(a,b|z,y))acapes : * € X,y € Y}, where
(p(a,blz,y))ecapen is a probability distribution for every (z,y) € X xY. A
correlation p is called

(i) local if it is the convex combination of correlations of the form

{(p1(alx)p2(bly))acapen : © € X,y € Y} (notation: Cc);

(ii) quantum if there exist a finite dimensional Hilbert space H (resp.
K), a unit vector £ € H ® K and POVM’s (E, 4)aca, v € X on H
(resp. (Fyp)ven, y € Y on K), such that

pla,blz, y) = (Era ® Fyp)E,E)

forall v € X,y € Y,a € A b € B (notation: Cy);

(iii) approzimately quantum if it belongs to the closure C, of the set C,
(notation: Cg,);

(iv) quantum commuting if there exist a Hilbert space H, a unit vector
¢ € H and POVM’s (E, 4)aca, © € X (resp. (Fyp)pen, y €Y) on H,
such that F, . Fy, = F,yE, , for all z,y,a,b, and

pla,blz,y) = (B oFyié, &), € X,yeY,acAbeB
forallz € X,y € Y,a € A b€ B (notation: Cq.).

We note that a correlation of any of the types just defined is non-signalling

in the sense that

(2.1) > pla,bla,y) = plablz,y), z€X,y,y €Y,ac A,
beB beB

and

(2.2) > pla,blz,y) =Y plablr’y), z,2' € X,yeY,beB.

a€A acA



4 PRODUCTS OF SYNCHRONOUS GAMES

We denote the (convex) set of all non-signalling correlations by C,s, and
note the inclusions
Cioc € Cq € Cqa C Cye C Cos.

A non-local game is a tuple G = (X,Y, A, B, \), where X, Y, A, B are
finite sets and A : X xY x A x B — {0,1} is a map, called the rule
function of the game. We interpret X (resp. Y) as the set of questions
posed by a Verifier to a player Alice (resp. Bob), and A (resp. B) as the set
of her (resp. his) possible answers. Alice and Bob play cooperatively against
the Verifier; if a pair (a,b) € A x B of answers is received given the pair
(x,y) € X x Y of questions, the players win (resp. lose) the round of the
game if A(z,y,a,b) =1 (resp. A(z,y,a,b) =0).

A probabilistic strategy for the game G is a family p = {(p(a, b|z,y))scaben
:x € X,y € Y} of probability distributions; p(a, b|z, y) is interpreted as the
probability that the players respond with the pair (a,b) of answers when
they are asked the pair (x,y) of questions. A probabilistic strategy p for G
is called non-signalling if p is a non-signalling correlation; such a strategy
being used by the players expresses the fact that they do not communicate
after the start of the game. A non-signalling strategy p for G is called perfect
if

Az,y,a,0) =0 = p(a,blz,y) =0, z€X,yeY,ac A be B.

For x € {loc, q, qa, qc, ns}, let Cx(\) be the set of all elements of C, that are
perfect strategies for the game G with rule function \.

The game G is called synchronous if X =Y, A= B, and A(z,x,a,b) =0
if a # b; in this case we write G = (X, A, A). The synchronicity game has rule
function A : X x X x Ax A — {0, 1} given by A(x,y,a,b) = 1—(1—04)0z -
For synchronous games, there are two further types of winning strategies
which will be of interest to us. Namely, a synchronous game G = (X, A, \)
is said to have a perfect algebraic strategy (see |2]) if there exists a unital
complex *-algebra with a generating set {e,, : © € X, a € A} satistying the

following relations:

Cra=€hy=0Crq TEX a€EA
(2.3) Zem =1, z€ X, and
acA

Mz, y,a,b) =0 = e, 46, = 0.
If G has a perfect algebraic strategy then there exists a universal *-algebra
A(G) satisfying the conditions (2.3) (in the sense that any unital *-algebra
satisfying (2.3) is a canonical quotient of A(G)) and that A(G) is unique up
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to a unital *-isomorphism. We will reserve the notation e, ., v € X, a € A,
for a family of generators of A(G) satisfying (2.3).

The game G is said to have a perfect C*-strategy if there exists a (uni-
versal) unital C*-algebra C*(G) with generating set {e,, : v € X,a € A}
satisfying the conditions (2.3). It is clear that if G has a perfect C*-strategy
then it has a perfect algebraic strategy. The following observation is also

clear.

Remark 2.1. For i € {1,2}, let G; be a synchronous game with rule func-
tion \; @ X; x X; x A; x A; — {0,1}, i = 1,2. Suppose that \; < \y. If Gy
has a perfect algebraic strategy (resp. perfect C*-strategy) then G, has a
perfect algebraic strategy (resp. perfect C*-strategy).

The synchronicity game with a question set X and an answer set A has
a perfect C*-strategy, and its C*-algebra, which will be denoted by Ax 4,
*

is *-isomorphic, via Fourier transform, to the group C*-algebra C*(Fx 4),

where

FX,A:Z|A|*"'*Z\AL-

-~

|x| times
The following facts were established in [10, 8, 11].

Theorem 2.2. Let p € Cys be a synchronous correlation over the pair (X, A)

of finite sets.
(1) p € Cye if and only if there exists a trace T : Ax a — C such that

(2.4) p(z,y,a,b) = T(epatyp), z,y€ X, a,be A

(i) p € Cqa if and only if there exists an amenable trace 7 : Ax 4 — C
such that (2.4) is satisfied;

(1it) p € Cq if and only if there exist a finite dimensional Hilbert space H,
a *-representation ™ : Ax a4 — B(H) and a trace m, : B(H) — C
such that

(2.5) p(x,y,a,b) = (Tan 0 T)(€x0€yp), T,y € X,a,b€ A,

(1v) p € Coc if and only if there exists a finite dimensional Hilbert space
H, a *representation 7w : Ax a4 — B(H) with an abelian image, and
a trace Ty : B(H) — C such that (2.5) is satisfied.

3. ALGEBRAIC STRATEGIES OF PRODUCT GAMES

Let G = (X3, A41,\1) and Gy = (Xy, Ay, A2) be synchronous games.
Their product Gy x G is the game with pair of input sets (X; X Xy, X1 X X5),
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pair of output sets (A; x Az, A; X Ajy), and a rule function

A1 X Ag: Xy X Xo x Xy X Xo x Ap x Ay x Ay x Ay — {0, 1}
given by

()\1 X AQ)((I‘IJ .1:2), (y17 y2)7 (alu a’2)7 (b17 b2>) = Al(xlv Y1, ax, bl)AQ ('1:27 Y2, a2, b2)

Remarks. (i) If G; and G, are synchronous then so is Gy x Go; we thus
write Gy X Go = (X7 X Xy, Ay X Az, A1 X A2). A similar product can be
defined for any (not necessarily synchronous) pair of non-local games, but
in the sequel we will only be interested in the synchronous case.

(ii) The product game G; x G3 can be thought of as a game where Alice
and Bob play the games G; and Gy in parallel, receiving a question for each
of them. In order to win the combined game, it is necessary and sufficient
to win both G; and Gs. Thus, G; X Gy can be thought of as a conjunctive
product of G; and Gs. We note that there are also other natural ways to
combine the games G; and G, (notably, by forming a disjunctive product),
but they will not be considered in this paper.

We will denote by A; ® A, the algebraic tensor product of *-algebras A;,
i = 1,2. Recall that A; ® A, is a *-algebra with an underlying vector space is
the algebraic tensor product of the underlying spaces, multiplication given
by

(1 ® up)(v1 ® v2) = (u1v1) @ (ugv2),

and involution given by
(u1 @ ug)* = uj ® uj.

If A; and A, are moreover C*-algebras, we write as customary A; ®mpax Ao
for their mawzimal C*-tensor product; thus, A; @max A is the unique C*-
algebra containing A; and A, as unital C*-subalgebras, generated by A;
and A, as a C*-algebra, and satisfying the following universal property: if
H is a Hilbert space and 7; : A; — B(H) is a *-representation, i = 1,2,
such that m(uy)ma(ug) = mo(ug)m (uy) for all uy; € Ay, us € Ay, then there
exists a unique *-representation m; ®max 72 : A Qmax Az — B(H) such that
(71 @max m2)(u;) = mi(u;), if u; € A;, i =1,2.

Theorem 3.1. Let G; and Gy be synchronous games.
(i) The games Gy and Gy have perfect algebraic strategies if and only if
G1 x Gg does. In this case, A(Gy x Gy) = A(G;) ® A(Gy).
(i) The games Gy and Go have perfect C*-strategies if and only if Gy x
Gy does. In this case, C*(Gy X Gg) = C*(G1) Qmax C*(Gy).
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Proof. Write Gy = (X3, A1, A1), Go = (Xa, Ag, A2); set G = Gy x Gy and
A=A X .

(i) Assume that G; and Gy have perfect algebraic strategies. For (zq,x9) €
X1 x Xy and (a1, az) € Ay X Az, set gz, 20),(a1,02) = €a1,01 @ €ao a3 then con-
ditions (2.3) are clearly satisfied for the family {9, 22),(a1,a2) : i € Xisa; €
A;i = 1,2}, It follows that A(G; x Gy) exists and that there exists a
surjective *-homomorphism 7 : A(G; x G2) — A(G;1) ® A(G3) such that
(3.1)

T (€(@1,00) (a1,02)) = Corar ® €apans 1 € X1, 22 € Xo,a1 € Ay, a9 € As.

Conversely, suppose that G; x Gy has a perfect algebraic strategy. For

X € Xl, XTo € XQ and ay € Al, let
f$17$27a1 = Z €(x1,22),(a1,b)-
beAs
We have
(3.2) > frrma =1
a€A;

Let x1, x5, 25 € X, a; € Ay, and suppose that x5 # z7,. Since G, is synchro-

nous,
(3:3)  €(er.w0),(@d)Claral)(are) = 0, forall a,ay € Ay, b,c € Az, a # ay.
By (3.2) and (3.3),

fxl,xz,a1fac1,ac’2,a1 = (1 - Z fm,xz,a) .fac1,x’2,a1

a€Aj,a#a;
Joraha — E E €(a1,w2),(a,b) € (x1,24),(a1,0)
a€A1,a#a; bc€As

fxl,mg,ar

On the other hand,

f$1,$2,a1f961,96/2,a1 = foraa (1_ Z f:):1,33’2,a>

a€A1,a#a1
(3.4) = friana — ) Y Clara). (@10 ara) (ad)
a€A1,a#a1 bc€Az

fx1,$2,a1 ‘

Thus, fz, 2000 = fml,mg,al; we set f2,.a1 = fr1.20.0, fOr any zo € X. From the
calculation (3.4) it now follows that f2
that f*

z1,a1

' a, = Jaei1,a1- Clearly, we also have

/ / !/ / / /
M1, 2,7, Th, a1, ag, ay, a5) =0, @3, 7y € Xo,an,ay € Ay,
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and hence, fixing some x5 € X5, we have

fx1,a1fx’1,a’1 = E €(1,22),(a1,b) (2] ,x2),(a),c) = 0.
b,ceAs

It follows that the subalgebra A; of A(G; x Gy), generated by the family
{fi1.a, + ©1 € X1,a1 € Ay}, satisfies the conditions of a perfect algebraic
strategy for Gy.

Let the projections fi, ., € A, 2 € Xo, as € Ay, be defined similarly,
and let A, be the subalgebra of A(G; x Gy) generated by them. Let p; :
A(G;) — A; be the quotient map satisfying

pi(ea:i,ai> = f:pi,aia I’i 6 XiJGi 6 Ai)

which exists by the virtue of the universality of A(G;), i = 1,2. Then
p1 @ p2: AGr) @ A(Gy) — A @ As is a *~homomorphism.
For x; € X; and a; € A;, i = 1,2, we have

fxl,alfxg,ag = <Z e(am,xg),(m,b)) (Z e(ml,rg),(a,a2)>

be Ao acA;

€(x1,22),(a1,a2) = fa:27a2 f$17a1 .

It follows that sysy = s9s7 for all s; € A;, i = 1,2; thus, by the universal
property of the tensor product, the mapping

m: A @Ay — A(G1 X Ga), m(s1 ® s2) = $182,

is a *-homomorphism. It follows that the map p :=mo (p; ® p2) : A(G1) ®
A(Gy) = A(G; x Gy) is a *-homomorphism; moreover,

(35) p(exl,al ® emg,ag) = e(zl,zg),(al,ag)7 T; € Xiu a; € AuZ = 17 2.

Equations (3.1) and (3.5) show that m o p agrees with the identity on the
generators of A(G;) ® A(G3), and hence on the whole algebra. It follows
that 7 is a *-isomorphism from A(G; x G2) onto A(G;) @ A(Gy).

(ii) If C*(Gy) and C*(G,) exist then, by setting g, z2),(a1,02) = €z1,01 @
€xy.a, inside the maximal tensor product C*(Gi) ®max C*(G2), we obtain
a family of operators that satisfy the relations defining the C*-algebra of
G1 x Gg; thus, C*(G1) ®max C*(G2) implements a perfect C*-strategy for
G1 x Gs. Conversely, if G; x G4 has a perfect C*-strategy then the closure
Ay in C*(G; x Gy) of the *-algebra A; defined in the proof of (i) provides
a perfect C*-strategy for G;. By symmetry, such exists for G, as well.

Now suppose that G; and G, have perfect C*-strategies. Then, by the
universal properties of C*(G; x Gy) and C*(G1) ®max C*(Gz), the maps
7 and p defined in (i) extend to *-homomorphisms 7 : C*(G; x Gy) —
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C*(Gl) ®max C*(Gg) and ﬁ . C*(Gl> ®max C*(Gg) — O*(Gl X GQ), which
shows that C*(G; x G3) = C*(G1) ®max C*(Gs) canonically. O

Remark. Let G; = (X;, A;, \i), @ = 1,2, be synchronous games and x €
{1OC7q7 ga, qc¢, IlS}. If Di € CX(/\1)7 L= ]-7 27
p1®p22A1XAQXA1XA2XX1XX2XX1XX2—>[0,]_],

and

(p1 ® p2)(a1, ag, by, ba|T1, 22, y1,y2) = pr(ar, bi|v1, y1)p2(asz, ba|za, 12),

then p; ® py € Cx(A X Ag). Indeed, it is straightforward that p; ® py €
Cus(A1 X A2). Suppose that p; € Cqe, ¢ = 1,2, and write

pz(a27bz|$27yz) = <Ezi,aiFyi,bi§i7§i>7 1= 1727
as in the definition of quantum commuting correlations. Then

(p1 ® p2)(a1, az, by, ba|x1, 22, Y1, o)
= <((E$1,a1 ® EZQ,G2)<Fy1,b1 ® Fy27b2)<€1 ® 52)7 (51 ® 52)>7

showing that p; X ps € Cy. The argument for x = q and x = loc is similar,
while the statement about qa follows from the definition of Cg, as the closure
of Cq.

It is well-known, and easily seen that, in the converse direction, if p €
Cx(A1 X A\2) and xg, 92 € Xo, then the correlation

Pzoyys - Al X Al X Xl X X1 — [O, 1],
given by
Pas,yo (a1, bilze, y1) = Z plar, ag, by, ba|x1, w2, y1,92),
a2,ba€As

is a perfect strategy for G;. The argument from Theorem 3.1 shows that, if
the games G, and G, are synchronous, the correlation p,, ,, is independent

of the choice of x5 and ys.

Corollary 3.2. Let Gy and Go be synchronous games and t € {loc, q, qc}.
The following are equivalent, for a no-signalling correlation p:

(i) p is a perfect t-strategy for the product game Gy X Go;
(i1) p is the limit of convex combinations of strategies of the form p; ®pa,
where p; is a perfect t-strategy for G;, 1 =1, 2.

Proof. (ii)=-(i) is trivial.
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(i)=(ii) Assume that p is a quantum commuting perfect strategy of
G1 x Ga. By [11, Corollary 5.6|, there exists a tracial state 7 on C*(G; x Gs)
such that

(36) p(((h, a2)’ (bh b2)|(I1, $2), (yh yQ)) =T (6(501,xz),(ahaz)e(yhyz),(h,b2)) )

forall x; € X;, y; € Y;, a; € A; and b; € B;, i = 1,2. By Theorem 3.1, 7 can
be viewed as a tracial state on C*(G1) ®@mpax C*(G2) in a canonical way. By
[5, Corollary 2.2, 7 is the limit of convex combinations of states of the form
T1 ® T9, where 7; is a tracial state on C*(G;), i = 1, 2. Using once again [11,
Corollary 5.6], we see that (ii) holds in the case t = qc.

We next consider the case t = . By |2, Theorem 3.2|, there exist a finite
dimensional Hilbert space H, a *-representation 7 : C*(Gy x G2) — B(H)
and a tracial state 7 : 7(C*(Gy; x Gy)) — C such that (3.6) is fulfilled
for 7 = Tom. Set A = 71(C*(G; x Gy)). Using Theorem 3.1, write A; =
T(C*(G1)®1) and A = 7(1C*(G2)); note that A is generated by its finite
dimensional and mutually commuting C*-subalgebras A; and As. It follows
that A = A ®max Az = A; Qmin As; by |5, Corollary 2.2|, 7 is the limit of

convex combinations of states of the form 71 ® 7, where 7; is a tracial state

on A;, i = 1,2. The functional 7; = 7, o 7|¢«(g,) is a tracial state on C*(G;),
i = 1,2. Another application of |2, Theorem 3.2| now completes the proof
of the statement in this case.

The case t = loc follows similar lines, again using [2, Theorem 3.2|; the

details are omitted. O

4. SYNCHRONOUS VALUES OF GAMES

A synchronous game G = (X, A, \), equipped with a probability dis-
tribution 7 on the set X x X of questions, will be called a synchronous
game with density. For each x € {loc, qa, qc,ns}, we define the synchronous
x-value Wi (G, ) of (G, ) by setting
(4.1)

w3 (G, 7) = sup { > Y w@yMw,y,a,b)plablr,y) i p e Ci} 7
2€XYEY acAbEB
where C? denotes the set of all synchronous correlations over (X, A) of class
X.
Note that each term in the supremum is the expected probability of
the players winning the game given that they use the conditional probabil-
ity density p. So the synchronous x-value represents the optimal winning

probability over the corresponding set of synchronous correlations.
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Remark 4.1. (i) Let x € {loc,qa,qc,ns}. Then wi(G,w) < 1 and,
since C§ is closed, the supremum in the definition of wy(G,) is
achieved. It follows that a synchronous game G has a perfect x-
strategy if and only of wi(G) = 1.

(i) It was shown in [8] that C, = C5. Thus, if in the right hand side
of (4.1) one employs correlations of the class C, the corresponding

o g
supremum coincides with w? (G, ).

Given synchronous games with densities (G;,m;) = (X, A, \i, 1), © =
1,2, equip the question set (X; x X3) x (X7 x X3) of the game G; x Gy
with the probability distribution 7 X w9, given by

(7T1 X 7T2) (($1,$2), (?Jl?y2)) = 7T1(£171, y1)7f2($2, yz)-
We write (G x Gg, m; X mg) for this synchronous game with density.

Proposition 4.2. Let (G;,m;) = (X, Ai, iy mi), @ = 1,2, be synchronous
games with densities and x € {loc,qa,qc,ns}. Then

wi(Gl,m)wi(GQ,m) < W)S((Gl X Gg,’/Tl X 7T2).

Proof. 1f p;(a;, bi|x;, y;) € Cy, i = 1,2, then applying Theorem 2.2, it is easily
checked that

p((ah G2)7 (bh bz)|($1, 302)7 (ylu yz)) = p1<a17 b1|$1, y1)p2(a2, b2|$2, yz) € Cx.

Consequently,
wi(Gy, m)w (G2, 72)

2
= HSHP{ Z i (2, Yi) Ni (T4, Yis @iy )p(as, bz, v3) = pi € C3}
i=1

Tq,Yi,ai,b;
< sup{ Z T1(21, Y1) w2 (@2, Y2) A1, T2, Y1, Y2, a1, Gz, b1, ba)
T;,Yi,a;,b;,1=1,2
play, as, by, ba|xy, T2, y1,y2) : p € Ci}

= wf((((}l X Gg,ﬂ'l X 7T2).
]

The inequality in Theorem 4.2 can be strict, even in the case of the
classical value wy .. We provide two examples towards this end. The first is
an example of a synchronous game with uniform distribution on the inputs
for which the inequality is strict. The second example is of a symmetric
synchronous game with uniform distribution on the inputs for which the

inequality is strict.



12 PRODUCTS OF SYNCHRONOUS GAMES

A rule function \ is called symmetric if A(x,y,a,b) = Ay, z, b, a). Note
that, since synchronous correlations p arise from traces, we have that

p(aa b|£L’, y) = T(ex,aey,b) = T(ey,bex,a) = p(b> (I‘y, 'CE))

thus, they satisfy an extra transposition invariance. For this reason, arguably
the most suitable context to study synchronous values is that of symmetric
synchronous games with symmetric distributions 7 on their inputs, that is,
ones satisfying 7(z,y) = 7(y, z) for all x and y. Our examples illustrate that
even in this more restrictive setting the synchronous value can be strictly
supermultiplicative.

For a rule function A : X xY x A x B — {0,1} of a game over the
quadruple (XY, A, B), and (z,y) € X x Y, let

E,,={(a,b) € Ax B: \(z,y,a,b) = 1}.

Clearly, specifying A is equivalent to specifying the family {£,, : z,y} of
subsets of Ax B. In synchronous games, we have X =Y, A= B,and E, , C
{(a,a) :a € A}, for every x € X. Note that the local synchronous strategies
of a synchronous game arise from functions f : X — A: a function f: X —
A gives rise to the local no-signalling correlation p; = (p(a, b|z,y)) given by
prla,blz,y) = 1if a = f(x) and b = f(y), and p(a,b|z,y) = 1 otherwise;
conversely, every local synchronous strategy is the convex combination of
strategies of the form p; (this can be inferred, e.g., from [11, Corollary 5.6]).

For a synchronous non-local game G with rule function A : X x X x A x
A — {0,1} and probability distribution 7 : X x X — [0, 1], we write

hG = Z 7T(.fl?,y) Z )\(x7yaa'> b)e%aeyzl”

z,yeX a,be A

viewed as an element of the C*-algebra Ax 4.

Example 4.3. Let G be the game with X =Y = A= B = [2] := {1,2}
and rule function A specified by setting

El,l = E2,2 = {(17 1)7 (27 2)}’ El,Z - {(1’ 1)}? E2,1 - {(172)}‘

We claim that, if [2] x [2] is equipped with the uniform probability distri-
bution 7, then

(1.2) W (G ) = w3 (G ) = win(Gm) = B4,
while

(4.3) Wi (GXxG,mx7m) =wi(GXxG,mx7) =w;.(GxG,7x7)=10/16.
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Indeed, we have that

1
he = 1(2[ +ej1e01 + €21€12).

The synchronous values of G are obtained by computing the supremum
of the quantities 7(hg) over traces 7 of A(G) of particular type. Setting
p =e11 and ¢ = ez, we have

dhg = 21 + pq + q(I — p) =21 + g,

and (4.2) follows.
Write X1 = X2 =X and Al = A2 = A and let

{E(xlyﬂcz)’(yl,yz) . (xlayl) € X1 x X, ($2ay2) € Xy X X2}

be the family of subsets of (A; x As) x (A; x Ay) that determine A x A.
Note that

E(x1,x2),(y1,y2) - {((a1’a2>7 (bhb?)) : (al’bl) € Exhyl and (a2762) € E£E27y2}'
Consider the function h : X; x Xy — A; x Ay, given by
L) =LY, 1LY 01, @)=, (22— 0,1).

For each ((x1,x2), (y1,¥2)) listed below, we indicate whether the value (h x
h)((x1,2), (y1,92)) belongs to the set E, 2,) (y1,42):

® Euyaz ={((1,1),(1,1)),((2,1),(2,1))} = Yes;
* B ={((1,1),(1,1)),((1,2),(1,2))} = Yes;
o Euay22 =1{((1,1),(1,1))} = Yes;
* Eugzan ={((1,1),(1,2)),((2,1),(2,2))} = No;
i E(1:2)7(271) = {((17 1)7 (1’2))} = No;
® B2 ={((1,1),(1,1)),((1,2),(1,2))} = Yes;
i E(2:1)7(172) = {((17 1)7 (27 1))} — No;
* Eug)en ={((1,1),(1,2))} = No;
* By ={((11),(1,1)),((21),(2,1))} = Yes;
® Engan =1{((1,1),(2,2))} = Noj;
* Epz)a2 ={((1,1),(2,1)),((1,2),(2,2))} = No;
L E(2,2),(2,1) = {((17 1)v (1’ 1))a ((27 1)7 (2v 1))} = Yes.
The remaining pairs ((x1,22), (v1,y2)) are of the form ((z1,xs), (21, 22))

since the game A\ is synchronous, we have that (h x h)((x1,z3), (21, 22))
meets F(y 2, (x1,20)- L his shows that

10
Woe (G X G, X ) > 6
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On the other hand, let hgxg be the element of A(G x G) with

(4.4) 16hgxec =4 -1+ enn (612,11 + €9211 + 621,11)+
€11,12 (621,12 + 612,11) + er111€21,11 1
€11,22 (622,11 + 621,12)+
€12,21 (621,12 + 622711) + €12,22€22 121
€21,11€22,11 T €21,21€22 21 + €21,12€22,11 + +€21 22€22 21,
and note that
Wee(G x G, m x m) = sup{7(hgxc) : 7 a trace on A(G x G)}.

For any trace 7, if p,q > 0 and r > ¢, then 0 < 7(pq) < 7(pr). We thus see
that

167 (hgxe) 44 71(3e1111) + 7(3e11,12) + 7(3e11,22) + T(2€12,21)

<
+ T(e1222) + T(€2111 + €21.21 + €21,12 + €21,22)
< 44342+ 1=10,

and (4.3) is proved.

The game, exhibited above, shows that strict inequality may take place
in Proposition 4.2 even for the smallest non-trivial games. At the expense of
increasing the number of inputs by one, the game can be made symmetric
— this is achieved in the next example, which also exhibits a separation
between the local and the quantum synchronous value.

Example 4.4. Let X = [3], A = [2], equip X x X with the uniform
probability distribution, and let 7 : X x X x A x A — {0,1} be the rule
function determined by the sets
o Bip=FEy = FEy3=Fs5={(1,2)};
o F13=FE;; ={(2,1)};
o [, =FEy,,=FE;35=1{(1,1),(2,2)}.
The eight possibilities for functions g : X — A are:
e g1 x g1 x¢g1:(1,2,3) = (1,1,1), yielding Ry, = 3;
® go X gy X go:(1,2,3 1,1,2
® g3 X g3 x93 :( 1,2,1), yielding Ry, = 5;
® gy X gy xXgs:( 1,2,2), yielding R,, = 5;
® g5 X g5 X g5 (
(
(
(

)
) — ( ), yielding R,, = 5;
) = ( )
) = (1,2,2)
) — (2,1,1), yielding R,, = 5;
® go X g6 X Jo * ) = ( )
) = (2,2,1)
) = ( )

)

)

)

2,1,2), yielding Ry, = 5;
® g7 X gr X gr:

2,2,1), yielding R, = 5;
® g3 X gs X gs:

2,2,2), yielding Ry, = 3.

Y

W W W W w w

=

1,2
1,2
1,2
1,2
1,2
1,2

)
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Thus, wiec(G, ™) = 3.
Letting as before X; = X5 = X and A; = Ay, = A, consider the function

n: X1 X Xo = Ay X As, given by

(1,1) if (x1,29) € {(1,1),(1,3),(3,1),(3,3)}
(o, 2) = (1,2) if (x1,22) € {(1,2),(3,2)}
! (2,1) if (z1,22) € {(2,1),(2,3)}
(2,2) if (x1,22) = (2,2).

Among the inputs (x1, 2,91, y2) of the product game p x p with z; < o,
y1 < Yo, and (z1,y1) # (22, y2), we single out the following

Eqn,a2 =1{((1,1),(1,2)),((2,1),(2,2))},
Ean,en =1{((1,1),(2,1)),((1,2),(2,2))},
Eq ez ={((1,1),(2,2))},

Eag),e2 ={((1,1),(2,1)),((1,2),(2,2))},
Eon,eo ={((1,1),(1,2)),((2,1),(2,2))},
Eag),es ={((1,1),(2,1)),((1,2),(2,2))},
Eg,e2 ={((1,1),(1,2)),((2,1),(2,2))},

which all meet the graph of the function 1 x 7. Among the inputs (x1, 2,
y1,y2) of the product game G x G with z7 < x9, y1 > o, and (x1,y1) #
(x2,y2), we single out

E(273)»(272) = {<<17 1)’ (17 2))7 ((27 1)7 (27 2))}’
E(373)»(372) - {<(1’ 1)7 (27 1))7 ((27 1)7 (2’ 2))}7

which also meet the graph of n x 1. By symmetry, we thus have that

27 25
> > = = 2,
e > 31 wlOC(G,W)

We finish this note by computing the quantum value of the game G

Wioe (G X G, 7 X )

from Example 4.4, implying that it is strictly greater than the local (clas-
sical) value. As a result, we can see that strict supermultiplicativity of the
game value can take place also in the case the game demonstrates quantum
advantage.

Theorem 4.5. Let (G, ) be the non-local game from Example 4.4. Then
Wee (G, m) = w3 (G, ) = 7/12 > 5/9 = wy, (G, 7).
Proof. By [14], the set C] in our (three input, two output) case is closed.

Thus, the supremum (4.1) used to compute w,(G, 7) is achieved. We write

for brevity e,, in the place of e, ,. Let 7 be a trace on a finite dimensional
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representation of Ax 4 for which the value wfl((G, 7) is attained. By splitting
the representation into irreducible blocks, we can assume that all projections

ez are contained in M,, for some n € N. We note that

(4.5) 9hg = 3I + ej1e + eare12 + €a1€32 + €31€90 + €12€31 + €30€11.

Setting p = €11, ¢ = €91, and r = e31, so that ejo =1 —p,eo0 =1 — q,e30 =
I — r we have

Ohg=31+p(1—q)+q(1—p)+ql—r)+r(1—q)+ (1 —p)r+(1—1)p.

By [1], p commutes with ¢+, ¢ commutes with p+r and r commutes with
p + ¢g. This implies that p + ¢ + r commutes with p, ¢ and r. Thus,

97(hg) =3+ 7(2p(1 —q—7r) + 2r + 2q(1 —1)).
By [9], there exists t € RT such that

(4.6) p+q+r=_tl,

_(Ix O _(C 0
p—<0 0>,sothatq—i—'r—(0 D)’

and note that (4.6) yields
C=(t—1)ly and D =tl, .

(A X
q_X*Bv

(-, -A  -X
"= _X* tl, n—B)"

The identities ¢> = ¢ and r? = r yield
AL XX =A (- —A*+ XX " =@t-1)I,— A

Write

Writing

we have

and

B>+ X*X = B, (tlh—k — B)2 +X*X =tl,_, — B.
Thus,

t—1
((t—l)]k—A)2—|—A—A2:(t—l)]k—A:A: Ik,
and
t

(tl,x —B)?+B—-B*=tl, ,— B = B= It

Therefore

t—1

Bl X
— 2
1 (X* %Ink)



PRODUCTS OF SYNCHRONOUS GAMES 17

and using again the fact that ¢ is an idempotent, we see that

t—1 t—1 4t —t2 —3
XX* = (———)2) ]k:T

I
9 2 F

and )
2t —t
XX = 1

Since 7(X*X) = 7(X X*), we have

k(4t —t* —3) = (2t — t*)(n — k) = k(6t —2t> — 3) = (2t — t*)n.

I k.

This shows that
2t — t2

A T T Y
By [9], the following values of ¢ are feasible:
t=0,1,2,3,3/2.
This leads to
k/n=0,1,0,1,1/2.
The case where ¢t = 3/2 and k/n = 1/2 can be realised in M, and we have

that
10 1/4 +/3/4 1/4 —/3/4
p= qd = 7' = .
00 V3/4  3/4 —\/3/4  3/4
In this case
T(hg) = 1/97(315 + 2p(I — (tI — p) + 2r + 2q(1 —r)) = 7/12.
If t =0, then ¢ has a negative entry, so can be discarded.
If t =1, then again ¢ is not a projection.
If t =2, then p =0 and

o= (12 1) r= (Ul ) =1-e
and in this case
7(hg) = 1/9(tx(3Ls + 2r + 2¢%)) = 5/9 < 7/12.
Finally, if t = 3, then p=q¢ =r = I and so
7(hg) =1/9(3+2(—1) +2+0) = 1/3.

So we get that the value occurs when ¢ = 3/2; note that we have also shown
that, in addition, it can be achieved by matrices in M.

We turn to the quantum commuting value. Let 7 : Ax 4 — C be a tracial
state and 7, : Ax 4 — B(H) be the GNS representation of Ax 4, associated
with 7. We let A = 7, (Ax 4)” and extend 7 to a normal trace on A in the
canonical fashion. Let Z be the centre of A; up to a normal *-isomorphism,
we have that Z = L*(Z, u) for a suitable probability space (Z, x). In the
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sequel, we use the terminology of [7, Chapter 14|. Using |7, Theorem 14.2.2],

we write
H:/sz,u(z) and A:/A(Z)d,u(z)
z z

in their corresponding direct integral decompositions. Note that A(z) C
B(H,) is a factor for p-almost all z € Z (see |7, Theorem 14.2.2|). For an
element 7' € A, we write T' = [, T'(z)dpu(z) for its direct integral decompo-
sition.

Suppressing notation, we write p, ¢ and r for their images under .. By
the arguments from the first part of the proof, p + ¢ + r € Z; thus, there

exists a measurable function ¢ : Z — R, such that
p(z) +q(z) +r(z) =t(2)Ig,, for u-almost all z € Z.

We continue to use the notation from the first part of the proof. Thus, C'

and D are the (unique) operators in A, determined by the requirement
q+r=pCp+p-Dp",
while A, B and X are determined by
¢ =pAp+p Bp +pXp +p X'p.
The previous arguments now imply

7(p(2))(6t(2) — 2t(2)* = 3) = (2t(2) — t(2)°).
Since the function z — t(z) is measurable (and takes finitely many values),
the arguments above now show that there is a partition Z = Z3,, U Z U Z3,
where
Zoy={2€Z:t(2) = a}.
Since u is a probability measure, we have that 7(hg) < 7/12. The proof is
complete. Il
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