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ABSTRACT. Using the simulation paradigm in information theory, we
define notions of quantum hypergraph homomorphisms and quantum
hypergraph isomorphisms, and show that they constitute partial or-
ders and equivalence relations, respectively. Specialising to the case
where the underlying hypergraphs arise from non-local games, we de-
fine notions of quantum non-local game homomorphisms and quantum
non-local game isomorphisms, and show that games, isomorphic with
respect to a given correlation type, have equal values and asymptotic
values relative to this type. We examine a new class of no-signalling
correlations, which witness the existence of non-local game homomor-
phisms, and characterise them in terms of states on tensor products of
canonical operator systems. We define jointly synchronous correlations
and show that they correspond to traces on the tensor product of the
canonical C*-algebras associated with the game parties.
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1. INTRODUCTION

The connections between operator algebra theory and quantum informa-
tion theory are undergoing at present a phase of intensive development. One
of the chief catalysts for this trend was the equivalence between the Connes
Embedding Problem in von Neumann algebra theory and the Tsirelson Prob-
lem in quantum physics, established in [26, 29, 42]. Its culminations are ar-
guably the refutal of the weak Tsirelson Problem in [54], the demonstration

Date: 21 February 2023.



2 G. HOEFER AND I.G. TODOROV

of the non-closedness of the set of quantum correlations presented in [53]
(see also [22]) and, more recently, the announced in [29] resolution of the
aforementioned Connes Embedding Problem.

Behind the developments in [54], [22] and [29] one discerns the role of
non-local games and their optimal winning probabilities. These objects
were first studied from the perspective of quantum information theory (see
e.g. [14, 15, 41]), where they can effectively witness entanglement, lead-
ing to proofs of Bell’s Theorem [6]. Important combinatorial ramifications
were established in [12] and later in [40, 4], where quantum graph homo-
morphisms and quantum graph isomorphisms were defined and studied. A
wealth of mathematical developments in non-local game theory took place
within the past decade [22, 37, 38, 39, 44, 46, 51], relying on operator system
theory, quantum group theory, quantum information theory and combina-
torics, among others.

A non-local game is a cooperative game, played by two players, Alice
and Bob, against a verifier. In each round of the game, the verifier selects
an input pair (z,y) from the cartesian product of two finite sets X and
Y, following a probability distribution 7 on X X Y, and sends input = to
Alice and input y to Bob. Alice produces an output a lying in a specified
set A, and Bob — an output b lying in a specified set B; the combination
(z,y,a,b) yields a win for the players if it satisfies a previously fixed predicate
A: X XY x Ax B — {0,1}, representing the rules of the game.

During the course of the game, the players are not allowed to communi-
cate; mathematically this is expressed by saying that the probabilistic strate-
gies p = {(p(a,b]7,Y))(@p)caxp : (z,y) € X x Y} that they are allowed to
use are no-signalling correlations, that is, correlations p(a, b|z,y) with well-
defined conditional marginals p(a|z) and p(bly). Several types of strate-
gies are usually used: local (corresponding to classical resources), quantum
(corresponding to finite dimensional entanglement), quantum approximate
(corresponding to liminal entanglement) and quantum commuting (arising
from the commuting model of quantum mechanics). Each correlation type
gives rise to a corresponding game value and asymptotic game value: these
are, respectively, the optimal winning probability in one round, and the op-
timal winning probability in the limit when independent rounds, forming an
infinite sequence, are conducted.

One of the main motivations behind the present work is to identify condi-
tions, upon which seemingly different games may have the same value with
respect to a given strategy class. We propose notions of game homomor-
phisms and game isomorphisms, associated with a fixed correlation type.
The existence of a homomorphism from a game G into a game Go of type
t leads to an inequality between the two t-values, while the existence of an
isomorphism of type t — to an equality of these values.

In order to define game homomorphisms (resp. game isomorphisms) of
a given type, we embed the two games into a larger game; we can think
of the new game as a non-local “super-game”, played by the verifiers of
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the original games and controlled by a “super-verifier”. More specifically,
suppose that game G; has inputs from X; x Y; and outputs from A; x B;,
1 = 1,2. The super-verifier sends a pair xoys from X X Y5 to the verifier
of GG1, and a pair a;by from A; x Bj to the verifier of Go. The two verifiers
return pairs z1y; from X7 x Y7 and agby from As X Bs, respectively. The
rules of the super-game are appropriately determined by the rules of the
individual games, requiring that (zoys2, a1b1, z1y1, azbs) yields a win for the
super-game if (z1,y1,a1,b1) and (z2, Y2, az, be) either simultaneously yield a
win or simultaneously yield a lose for the games (G; and G». Heuristically,
in this setup, the goal of the two verifiers is to convince the super-verifier
that the games G and G4 are equivalent.

Non-local game homomorphisms of a given type t are defined using no-
signalling correlations of the same type, satisfying certain stronger condi-
tions, which allow us to transport the perfect strategies of type t for the
game (1 to perfect strategies of the same type for the game Gg; the strat-
egy transport thus achieved allows the comparison between the values of GGy
and Go. In order to define non-local game isomorphisms of a given type,
we employ a special kind of no-signalling correlations, defined in [10] and
called therein bicorrelations, that allow reversibility. A game isomorphism
of local type amounts to reshuffling the question-answer sets that transforms
the rule predicates into each other. Much as in the case of quantum graph
isomorphisms [4], the quantum identification of non-local games is a weaker
equivalence relation, designed to take into account the possible presence of
entanglement between the participating verifiers.

The construction described in the previous paragraphs is obtained as a
special case of a more general setting hosting hypergraph homomorphisms
(resp. isomorphisms); this is the second main motivation behind the present
paper. The latter is achieved by employing the simulation paradigm in infor-
mation theory [16], according to which, starting with a classical information
channel from an alphabet X7 to an alphabet A;, using assistance with no-
signalling resources over a quadruple (X2, A1, X1, A2), one can simulate an
information channel from alphabet X5 to alphabet A,. Placing extra re-
strictions on the support of the input and the output channels, we define
hypergraph homomorphism (resp. isomorphism) games. The perfect lo-
cal strategies of the latter class of games correspond to a type of classical
homomorphisms (resp. classical isomorphisms) of the underlying hyper-
graphs. Allowing non-classical resources, this leads to notions of quantum
hypergraph homomorphisms (resp. isomorphisms).

We now describe the content of the paper in more detail. After collecting
some general notation at the end of the present section, in Section 2 we
recall the definition of the main no-signalling correlation types and intro-
duce the simulation setup, showing that simulators can be composed with
preservation of their types. In Section 3 we define an intermediate game,
which we call the hypergraph quasi-homomorphism game, and show that
quasi-homomorphism of a fixed type is a partial quasi-order on the set of
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all hypergraphs. We exhibit an example of hypergraphs that are quantum
quasi-homomorphic but not locally quasi-homomorphic.

The hypergraph quasi-homomorphism game provides the base for defin-
ing, in Section 4, the hypergraph homomorphism game, which allows us to
specify, for every correlation type t, a notion of t-homomorphic hypergraphs.
In order to define t-isomorphic hypergraphs, we employ the notion of a clas-
sical bicorrelation of type t. The latter concept was introduced in [10] by
specialising the notion of a quantum bicorrelation studied therein and using
the correlation types defined in [55] based, in their own turn, on the setup
of quantum no-signalling correlations of Duan and Winter [19]. Using the
examples of the separation between quantum isomorphic and locally iso-
morphic graphs [4], we provide examples that separate quantum isomorphic
hypergraphs from locally isomorphic ones. We further establish charac-
terisations of hypergraph isomorphisms of quantum approximate, quantum
commuting and no-signalling type in terms of states on operator system
tensor products. The latter charaterisations are obtained as consequences
of the characterisations of correlation types in [37] and [10].

Section 5 of the paper contains the definitions of the different types for a
class of no-signalling correlations over a quadruple of the form (X3 x Y2) x
(A1 x By) x (X1 x Y1) x (Ag X Bs), which we call strongly no-signalling,
and collects some of their properties. In Section 6, we use the strongly no-
signalling correlations as strategies for the homomorphism game between
two given non-local games. This is achieved by applying the results of Sec-
tion 4 in the case of hypergraphs that arise from non-local games. Theorem
6.1 and Theorem 6.4, in particular, establish the strategy transport for cor-
relations and bicorrelations, respectively, allowing the comparisons of the
values and the asymptotic values established in Theorem 6.12. We also ob-
serve that homomorphism (resp. isomorphism) between non-local games, of
a given type, is a partial quasi-order (resp. an equivalence relation).

Section 7 is dedicated to the operator system representation of strongly
no-signalling correlations. En route, we develop some basic multivariate
tensor product theory in the operator system category, extending part of
the work on bivariate operator systems tensor products in [34]. Our results
can be seen as a continuation of the characterisations of general correlation
types in [45, 37].

In Section 8, we restrict our attention to synchronous games, a class of
non-local games first studied in [45] and having gained prominence through
a number of recent developments (see e.g. [4, 20, 21, 22, 28, 29, 35, 44]). The
usual synchronicity condition for a correlation [45] needs to be adapted for
the case of the super-game under consideration; this leads to the definition of
jointly synchronous correlations. The main result in this section is Theorem
8.3, which contains a tracial representation of jointly synchronous corre-
lations, continuing the tracial characterisation thread from [45] and [35].
The strategy transport from Section 6 specialises in the synchronous case
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to transport of traces, leading to a necessary condition on the tracial state
spaces of the game algebras (see [28]) whose games are quasi-homomorphic.

We point out that the work [5] establishes a simulation scheme between
contextuality scenarios in the sense of [1], using the simulation paradigm
in an identical way to the one utilised here. Noticing that contextuality
scenarios have as their base ingredients some underlying hypergraphs, we
see that [5, Definition 17] coincides with our definition of local hypergraph
quasi-homomorphism. While the authors of [5] adopt a general categorical
perspective and are mainly interested in the consequences for generalised
probabilistic theories, our emphasis is placed on the hierarchy of the different
concepts one obtains by varying the available correlation resources, and
their operator theoretic characterisation. As a result, we make use of, and
augment as necessary, the existing operator algebraic techniques in the area.

We use various concepts and results from operator space theory, and refer
the reader to the monographs [43] and [48] for the general background.

In the remainder of this section we set notation, to be used throughout
the paper. For a finite set X, we let C* = @,exC and write (e;)zex for
the canonical orthonormal basis of CX. We denote by My the algebra of
all complex matrices over X x X, and by Dx its subalgebra of all diagonal
matrices. We write €, ./, x,2’ € X, for the canonical matrix units in Mx,
denote by Tr the trace functional on Mx, and set (S,T) = Tr(ST). We
denote by V ® W the algebraic tensor product of vector spaces V and W,
except when V and W are Hilbert spaces, in which case the notation is
used for their Hilbertian tensor product. Given sets X;, ¢ = 1,...,n, we
abbreviate X --- X, = X1 x --- x X,,, and write Mx,..x, = ®;*Mx, and
Dx,..x, = @ Dx,. Welet L, : Mx,x, — Mx, be the slice map with
respect to a given element w € My, = £(CX)*; thus,

Lw(Tl ®T2) = <w,T2>T1, Tl c MXNZ' = 1,2.

The partial trace Trx, : Mx, x, = Mx, is the slice map with respect to the
identity operator Ix, of My,. Finally, for a Hilbert space H, we write B(H)
for the C*-algebra of all bounded linear operators on H, and denote by Iy
the identity operator on H.

2. GENERAL SETUP

A hypergraph is a subset £ C V x W, where V and W are finite sets. For
we W, let BE(w)={veV:(vw)e E}. Werefer to V as the set of vertices
of E, and to {E(w) : w € W} as the set of its edges. The hypergraph E will
be called full if for every v € V there exists w € W such that (v,w) € E.
The dual of the hypergraph £ C V x W is the hypergraph

E* = {(w,v) : (v,w) € E}.

Let V and W be finite sets. A (classical) information channel from V
to W is a positive trace preserving linear map £ : Dy — Dy. We write
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14 r£> W and set
g(wh)) = <S(E’U,v)a€’w,w>, RS V,ZU S W

A channel V &% W defines a hypergraph
Ee ={(v,w) e Vx W : E(w|v) > 0}.
Given a hypergraph £ C V x W we set
C(E) = {v S W . a channel with Eg C E} :

if £ € C(E), we say that & fits E. We note that if C(E) # 0 then E is

full. The set C(V x W) coincides with the set of all channels V' S w and, if
E CV xW,then C(E) is a convex (with respect to the usual linear structure
on the space of all linear maps from Dy to Dy ) subset of C(V x W).

A channel € : Dy — Dy is called unital if E(Iy) = Iy . If £ is unital
then

(W[ =Te(E(Iv)) = Tr(Iy) = [V];

in this case it will be natural to assume that V = W. If £ : Dy — Dy is
a unital channel then the map £* : Dy — Dy, given by £*(v|w) := E(w|v)
(or, equivalently,

<5(S),T>:<S,g*(T)>, SED\/,TEpw)

is also a channel.

Let V; and W; be finite sets, i = 1,2. A no-signalling (NS) correlation on
the quadruple (Va, W1, Vi, Ws) is an information channel I' : Dy,w, — Dyyw,
for which the marginal channels

PV2—>V1 : DVQ — DV17 FV2—>V1 (Ul‘UQ) = Z P('l)l,'ll}Q"l)Q,w,l)
w2 EW?
and
rWi=We oDy Dy, T2 (g = Z I (v1, wa|vh, wy)
v1€EV]

are well-defined (independently of the choice of w] and v}). In the sequel,
when there is no risk of confusion, the indicating sub/superscripts in the
notation for the marginal channels will be dropped. We denote by Cys the
collection of all NS correlations (the quadruple (Va, Wi, Vi, Wa) will usually
be understood from the context).

A positive operator-valued measure (POVM) is a (finite) family (E;)*_; of
positive operators acting on a Hilbert space H such that Zle E;=1 An
NS correlation I' : Dy, — Dy, w, is called quantum commuting if there
exists a Hilbert space H, a unit vector £ € H and POVM’s (Ey, v, )v,evis
vo € Va, and (Fuy ws )wsewsy, w1 € Wi, such that

F('Ul,w2|’l)2,’w]_) - <EU2,’01Fw1,w257£>7 v; € ‘/’ivwi S VI/’UY’ - 172
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We call I' quantum if it is quantum commuting and H can be chosen of the
form H = Hy ® Hy in such a way that Hy, Hy are finite dimensional,
E’W’U1 = ELQWI ® Iy and le7w2 =1y ® leul,wz? v; € Vi, w; € Wy, 1 =1,2.
The correlation I' is approximately quantum if it is the limit of quantum cor-
relations, and local if it is a convex combination of correlations of the form
I'vy ® I'w, where I'yy : Dy, — Dy, and I'y : Dy, — Dy, are information
channels. We refer the reader to [37, 45] for further details, and denote the
subclasses of local, quantum, approximately quantum and quantum com-
muting NS correlations by Cioc, Cq, Cqa and Cqc, respectively. We point out
the inclusions

(1) Cloc c Cq c an C ch C Cns,

all of them strict: Cjoc 7# Cq is the Bell Theorem [6], Cq # Cqa is a negative
answer to the weak Tsirelson Problem [53] (see also [22, 54]), and Cga # Cqc
— in view of [26, 30, 42], a negative answer to the announced solution of the
Connes Embedding Problem [29].

A non-local game on the quadruple (Vo, Wi, Vi, W5) is a hypergraph A C
VoW1 x ViWs. For a non-local game A and t € {loc, q,qa, qc, ns}, we write
Ci(A) = Ct NC(A). The elements of C¢(A) will be referred to as perfect t-
strategies of the game A, and the set VoW; (resp. ViWa) as the question
(resp. answer) set for the two players of the game A. Note that non-
local games are usually defined as a tuple (Va, Wi, Vi, Wa, ), where A :
Vo x Wi x Vi x Wa — {0,1} is a function (referred to as a rule function); in
the above definition, we have identified A with the support of A.

We recall the simulation paradigm in information theory [16]. Given an

NS correlation I" on the quadruple (Va, Wi, Vi, Ws) and a channel V; & Wi,
let T'[€] : Dy, — Dy, be the linear map, given by

(2) T[E](walva) = > > T(vy, walva, wi)E(wy|vy).

v1e€V] wieWy
It is straightforward to check that I'[€] is a channel (see [16]) and that the
map £ — I'[£] is an affine map from C(V; x Wy) into C(Va x Wa). We say
that a channel F : Dy, — Dy, is simulated by £ with the assistance of T' [16]

if F =T[€], we call ' a simulator, and we write (V; — W) 5 (Vo = Wha).
The simulation procedure is illustrated by the diagram:

| 77
" .

¥
v, 2w

Suppose that (V; — W) 0 (Vo = Wy) and (Vo — Wa) I (V3 +— Ws),
and define the linear map I'y * I'y : Dyw, — Dy, by letting

(g T1)(vn, wslvg,wi) = Y Y Tu(vr, walve, wi)To(ve, wslvs, wa).
vo €Vo wo€Wo
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Theorem 2.1. If (Vi — W1) 53 (Va > Wa) and (Va > Wa) 3 (V3 s W)
then

(Vi = W) 250 (15— W),
Moreover,
(i) if t € {loc,q,qa,qc,ns} and T'; € Cy, i = 1,2, then Ty x 'y € Cy;
(11) if €€ C(Vi X Wl) then (F2 * Fl)[g] = 1—‘2{1—‘1[5]]

Proof. 1t is clear that the map I'y * I'y : Dyaw, — Dyyw, is positive. Fix
w1 € Wi. Then

> (T xT1)(v1, wslvs, wy)

w3z W3

= > > > Ti(vr, walvg, wr)Ta(va, wslvs, wy)

w3EW3 v2€Vo wa €W

= Z Z Iy (1, welva, wi)Ta(va|vs) = Z Iy (v1|v2)Ta(v2|vs).

v2€Ve woeWs v2€Va

Therefore, if v3 € V3 then

) (ToxTy) (v wsvg,wi) = Y > Ty(vi|va)Ta(vafvs)

v1€V] wzeWs v1E€V] vaeVs

= ) Ta(valvs) = L.

va €V

It follows that I'y * I'; is trace preserving and the marginal channel (' *

I'1)vs—y, is well-defined. By symmetry, so is the marginal channel (I'y *
Fl)W1—>W3‘

(i) Assume that T'; € Cye, @ = 1,2. Let H (resp. H') be a Hilbert space,
¢ € H (resp. & € H') a unit vector, and (Ey, v, )vevi and (Fu, ws )wses
(resp. (Ey, ) vacvy and (Fy,, . )wsews) be families of POVM’s such that

EU27”1 Fw17w2 = Fw17w2Ev27U1 (resp. E1/)3,U2F’l/112,w3 = F1/112,w3E1/13,’U2) for all v; €
Vi, w; € Wy, i =1,2,3, and

L1 (v1,walve, w1) = (Euy v) Fuy s, €)y To(va,wslvs,wa) = (Ey, 0, €€,
for all v; € Vi,w; e Wi, 1=1,2,3. Let H' = H H',{" =£® ¢, and
Ellllg,vl = Z EU?vvl ® E’i)37v2 and F’Zl,w3 = Z le’U’? ®F”L/U2,w3'
vo€Vs wo €Wo

It is clear that E” F" =F" E' forallv,eV;, w; € W; i=1,3.

U3,V1 7 W1,W3 w1, W3 "~v3,V1

In addition, if vg € V3 then

DB =D, D Bun®By,= ) I0E,, =1

v1EV] v1€EV] veeVy vo€Va
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Thus, (B , )vw is a POVM for every vs € Vi. Similarly, (F) ,.)ws IS &

v3,v1 wi,w3

POVM for every w1 € Wy. Finally, we see
<E1/)/3 V1 w1 ’wgé-// §//>
= Z Z '027111 ®E1/}3 vg)(thU& ®F1/1)2,w3)(§®€/)7(§®€/)>

v Vo woeWo

= Z Z U2U1 w1,w2§ £>< V3,2 wgwgf §>

v Vo waEWo
= Y Y Ti(vr,walvg,wi)To(ve, wslvg, wa) = (T2xT'1) (01, ws|vs, wr).
va €V waEW?

This implies that I'9xI"; € Cqc. The cases where t = q and t = loc are similar.
Finally, the case t = qa follows from the case t = q and the continuity of
the operation (I'1,T'g) — [gxI'y.

(ii) We have

(Tg # I'1) (€] (ws]vs)
= > Y (D) (vr, wafvs, wi)E(wifvr)

v1€VI w1eWy

= Z Z Z Z [y (v1, walvg, w1 )2 (ve, ws|vs, wa)E (wr|v1)

v1€V1I w1 €W vaeVa waEWa

= > > Ta(vz,wsfos, wo)T1[E](walvz) = To[L1[E]] (wsfos).

vo €Vo wo€Wo

3. QUASI-HOMOMORPHISM GAMES

In this section, we study an auxiliary notion, which will be specialised to
the main cases of interest in Section 4. Let E; C Vi3 x W7 and Ey C Vo x Wh.
We write

E\~Ey = {(vg,w1,v1,w2) : (vi,w1) € By = (v2,ws) € Eo};
thus,
El’\f)EQ = {(vg,wl,vl,wg) (vl,wl) € El or (vl,wl,vg,wg) S E1><E2}

We consider E1~»FEs as a hypergraph in VoW; x V1 W5, and hence as a game
with question and answer sets Vo x W7 and V; x Wa, respectively.

Definition 3.1. Let E; C V; x W; be a hypergraph, i = 1,2, and t €
{loc,q,qa, qc,ns}. We say that E; is t-quasi-homomorphic to Es (denoted
Ey ~ EQ) if Ct(Elwag) #* 0.

If T € C(E1~E>), we say that Ey ~» Eo via T.

Proposition 3.2. Let E; C V; x W; be a full hypergraph, i = 1,2, and I be
an NS correlation over (Vo, W1, Vi, Ws). Then Ey ~ng Eo via T if and only
if € = T'[&] restricts to a well-defined affine map from C(Ey) into C(E2).
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Proof. Assume that Ej ~»,s Fo via I' and let £ € C(F;). Suppose that
(vo,we) & Eay. If E(wi|vy) # 0 then (v1,w1) € E; and hence, since T" fits
E1~Ey, we have that I'(vy, wa|ve,w1) = 0. It follows that T'[€](wsa|ve) = 0;
thus, Ep[g] C Es.

Conversely, assume that & — I'[€] restricts to a well-defined map from
C(E1) into C(E2). Suppose that (vi,w;) € E; and (vy,wz) € Es. Let
€ : Dy, — Dy, be any channel that fits E; such that £(wi|v1) = 1 (note
that the existence of such a channel is guaranteed by the fact that F; is
full). We have that

(3) T[E](welvz) = D(or, walvz,wi) + Y T(v], walos, w))E(w) o).

(vll 7wl1)7é(vl ,’11)1)

Since (v2,w2) € E2, we have that I'[€](wa|va) = 0. Now (3) implies that
['(v1, wa|vg, w1) = 0; thus, T' fits F1~ Fy, that is, Ej ~ps Fy via T O

Theorem 3.3. Let t € {loc,q,qa,qc,ns}. The relation ~ is a quasi-order
on the set of all hypergraphs.

Proof. Fix t € {loc,q,qa,qc,ns}. Reflexivity follows from the fact that
the identity channel is a local correlation. Suppose that E;, Es and Fj
are hypergraphs such that E; ~» Fy via I'y and Es ~» FE3 via I's. By
Theorem 2.1, I's x I'y € C;. It suffices to show that I'y x I'y fits £1 — Fs.
Suppose that (v1,w;) € Ey and (I * I'1)(vy, ws|vs,w1) # 0. Then there
exists (v, ws) € Vo x Wy such that

Fl(vl,w2|vg,w1) 75 0 and FQ(UQ,UJ3|’03,’LU2) 75 0.

Since I'y fits E1~ Fs, we have that (ve,ws) € Eo, and since I'y fits Fo~s E3,
we conclude that (vs,ws) € E3. The proof is complete. O

Let B4 C Vi x Wy and Ey C Vo x Wy be hypergraphs. A map f: Vo — V)
will be called a quasi-homomorphism from E; into Es if f~!(a) is contained
in an edge of Es for every edge « of E/1. A quasi-homomorphism f: Vo — 1}
gives rise to an accompanying map g : W1 — Ws such that

(4) f_l(El(wl)) C Es(g(wy)) for every wy € Wr;

conversely, if the maps f: Vo — Vj and g : Wy — Wy satisfy (4), then f is
a quasi-homomorphism. If there exist a quasi-homomorphism from E; into
Es>, we say that E; is quasi-homomorphic to Es.

Proposition 3.4. Let £ C Vi x W1 and Eo C Vo x Wy be hypergraphs.
Then Ey ~oc Es if and only E71 is quasi-homomorphic to Es.

Proof. Assume that T' is a local correlation that fits Fq ~ Ey. We may
assume that I' is an extreme point in Cjo. and hence, by no-signalling, there
exist functions f : Vo — Vi and g : W7 — W5 such that

{(vo, w1, f(v2),g(w1)) : w1 € Wi,v2 € Vo} C Ey~Eo.



QUANTUM HYPERGRAPH HOMOMORPHISMS 11

This implies
(5) f(vg) S El(wl) — U9 € Eg(g(wl)) for all wy € Wl,

which means that (f,g) determines a quasi-homomorphism from F; to FEs.

Conversely, suppose that (5) is satisfied. Let ® : Dy, — Dy, (resp. ¥ :
Dw, — Dw,) be the channel given by ®(vi|v2) = d,, f(v,) (resp. ¥(wa|wr) =
Ouws,g(wy)) and I' = @@W; then T fits F1~ F». Indeed, assume that (vi,w;) €
E; and (v, w2) & Es, but

Oy, f(v9) Owa,g(wr) = [(v1, wa|vg, wy) # 0.

This means that f(va) = v; and hence f(vy) € Ej(wi), implying ve €
Es(g(w1)). Since g(wy) = wa, we have (ve, we) € Ea, a contradiction. O
It is clear that, if t and t’ are correlation types such that C; C Cy/, then
By~ By — By ~u By

We next show the irreversibility of the latter implication for some of the
hypergraph quasi-homomorphism types. If G is a simple graph with vertex
set X, we write x ~g 2’ if {x,2'} is an edge of G, and x ~¢ 2’ if z ~ 2’ or
x = 2’ (if G is understood from the context, we write z ~ 2’ and x ~ a/,
respectively). We let a(G) be the independence number of G, defined as
the maximum cardinality |S| of an independent set S of vertices (that is,
a subset S C X such that z,2/ € S = =z # 2’). We fix a hypergraph
FE C X xY, and write Gg for the corresponding confusability graph: the
vertex set of Gg is X and the adjacency is given by letting

r~a ifz#2 andIyeY st. (z,y) € E and (¢/,y) € E.
If X & Y, the confusability graph Gg¢ of £ [52] is defined by letting G¢ =
GE,. For a given set Z, let
Az ={(z,2):2€ Z}
be the diagonal over Z, considered as a hypergraph in Z x Z.

Lemma 3.5. Let E C X XY be a full hypergraph. We have that E ~» o Ay
if and only if a(Gg) > |Z|.

Proof. Suppose that F ~»,. Az and, using Proposition 3.4, let f: 7 — X
and g : Y — Z be maps realising a quasi-homomorphism from E into Ay.
This means

(6) (f(2),y) € E = z=g(y).

Let z,2' € Z with f(z) ~ f(7/) in Gg. Since E is full, there exists y € Y
such that (f(z),y) € E and (f(2’),y) € E. By (6), g(y) = z = 2’. Thus,

(7) 2 #2 = f(2) #ap F(Z);
it follows that f(Z) is an independent set in G and hence, since f is injective
by (7), a(GE) > |Z|.
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Conversely, let f : Z — X be an injective map such that f(Z) is an
independent set in Gg. Fix zg € Z. Let y € Y; then E(y) is a clique in Gg;
thus, |f(Z) N E(y)| < 1. If f(Z)NE(y) = {f(2)} for some z € Z, define
g(y) = z; if f(Z)NE(y) =0, define g(y) = 2o. It is straightforward that the
pair (f,g) of maps realises a quasi-homomorphism from F into Ay. O

Proposition 3.6. The implications
E~pe FF= E~gFoand E~g Fo= Erogg F

are not reversible.

Proof. Recall [16, 18] that the quantum independence number ay(G) of a
graph G with vertex set X is defined by letting

aq(G) =max{k € N: 3 X5Y with Gg =G and T'€Cq s.t. T[] =id p, }.

By [16, Theorem 13], there exists a graph G such that o(G) < aq(G). Let Y
be a (finite) set and £ : Dx — Dy be a channel that achieves the maximum
in the definition of ay(G). Let E = Eg; since E is the hypergraph of a
channel, F is full. Letting Z be a set with |Z| = a4(G), we have that
E ~»q Az. On the other hand, by Lemma 3.5, E 10 Az.

To show that the second implication fails in general, use [16, Theorem 7],
according to which, if £ C X x Y is a hypergraph then

max{Z : E ~ns Az} = [a"(E)],

where a*(FE) is the fractional packing number of E (see [16, Definition 5]).
By the first paragraph, it suffices to exhibit an example of a hypergraph F
such that |a*(E)] > aq(GEg). Let 9(G) (resp. x¢(G)) be the the Lovész
number [36] of a graph G (resp. the fractional chromatic number of the
complement of G). By [18] and the discussion surrounding [16, Proposition
6], we have the inequalities

aq(Gg) <9(GE) < xt(Gg) < a*(E).

It hence suffices to exhibit an example of a graph G with [¢(G)] < | x¢(G)].
Let n,r € N with r < n and let K(n,r) be the graph whose vertices are the
subsets of [n] of cardinality r, with two such subsets S and T" being adjacent
if SNT = (. By (the proof of) [36, Theorem 13], 9(K (n,r)) = ("~|) while,
as stated after [36, Corollary 7], x¢(K(n,7)) = (7)/[2]. Thus, an example

T

is furnished by letting, e.g., n =5 and r = 3. O

Remark. We do not have counterexamples that show the irreversibility
of the implications Ey ~»q Eo = FEi ~>ga Eg or By ~ga Fo = Ep ~qc
FE5. Such counterexamples would provide an alternative way to observe the
inequalities Cq # Cqa and Cqa # Cqc, respectively, and would thus be of
substantial interest.

In the rest of the section, we link hypergraph quasi-homomorphisms to
tensor products of operator systems. Recall that an operator system is a
selfadjoint subspace of B(H), for some Hilbert space H, containing Iz. If
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S is an operator system, we write M, (S)" for the cone of positive elements
in the space M, (S) of all n by n matrices with entries in S. If S and T are
operator systems and ¢ : S — 7 is a linear map, we let ¢("™ : M,(S) —
M, (T) be the map, given by ¢ ((x;;)i;) = (¢(i;))ij. The map ¢ is
called positive if ¢(ST) C T+, completely positive if (™ is positive for
every n € N, and wunital if ¢(1) = 1. We call S and T completely order
isomorphic, and write S = ;. T, if there exists a unital completely positive
bijection ¢ : & — T with completely positive inverse. We write S Ceoi T
if S € 7 and the inclusion map & — 7T is a complete order isomorphism
onto its range. We note that if S is a finite dimensional operator system, the
Banach space dual S¢ can be viewed, via Choi-Effros Theorem [43, Theorem
13.1], as an operator system [13, Corollary 4.5].

We refer to [43] for further details about operator systems, and recall here
the three types operator system tensor products [34] of operator systems S
and T that will be used in the sequel:

(i) the minimal operator system tensor product S ®mi, 7 arises from
viewing S®7T as a subspace of B(H® K ), where S and T are realised
as operator systems in B(H) and B(K), respectively (and H and K
are Hilbert spaces);

(ii) the commuting tensor product S ®. 7 has the smallest family of
matricial cones that makes the maps ¢ - ¥, where ¢ : S — B(H)
and ¢ : T — B(H) and completely positive maps with commuting
ranges, completely positive; here, ¢ - ¢ is the linear map, given by
(@ )z ®y) =o(@)Y(y), v €S, yeT;

(iii) the mazimal tensor product S ®max 7 has matricial cones generated
by the elementary tensors of the form S ® T, where S € M, (S)*
and T € M, (T)*, n,m € N.

For finite sets X and A, let Ax g4 = D *; --- %1 Dy, a C*-algebra free
—_—
| X times
product, amalgamated over the units. Let (€;4)qsca be the standard basis
of the z-th copy of D4 in Ax 4, and

Sx,a =span{é, ,:z € X,a € A},

viewed as an operator subsystem of Ax 4. As is readily seen, the opera-
tor system Sx 4 satisfies the following universal property: for every family
{(Ez,4)aca : x € X} of POVM’s, acting on a Hilbert space H, there exists a
unital completely positive map ¢ : Sx a4 — B(H) such that ¢(€,4) = Ez.q,
z € X, a € A; conversely, if ¢ : Sx 4 — B(H) is a unital completely positive
map for some Hilbert space H, then (¢(€;4))aca is a POVM, z € X.

Set

RX,A = {()‘ac,a)xeX,aeA : )\x,a e C, Z )\x,a = Z )\r’,av x7x/ € X} )

acA a€A
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viewed as an operator subsystem of Dx 4. By [24, Theorem 5.9],
(8) S% A Zeoi. Rx,a-

Remark 3.7. By [37, Theorem 3.1], I" is a no-signalling correlation over the
quadruple (Va, W, Vi, W) if and only if there exists a state s : Sy, v, @max
Sw,,w, — C such that

F(vlan‘U%wl) =S (é’l}z,’l)l ® éwl,wz) , U € V%,’UJZ‘ S Wz’, = 1,2.
By (8) and [25, Proposition 1.9],
(Svovy Pmax Sy W) Zeod. RV v Omin Ry W

thus, the simulators (Vi — W) 5 (Vo +— Wa) correspond canonically to
the elements of the subset

{A € (RV2,V1 Omin RW1,W2)+ : (TrV1 ® TrW2)(A) = 1} .

Hence we have the following are equivalent for hypergraphs £F; C Vi x Wy
and EQ - Vg X WQZ
(i) the relation Ej ~»pg Fo holds true;
(ii) there exists a matrix A € (Ry, v; @min Ry, w,) ' supported on the
set Ei~~Fs.

Remark 3.8. In Proposition 3.2, we saw that a simulator I" that fits F1~F»
induces an affine map from C(F;) to C(E2). We point out that not all
such affine maps arise via simulation. We identify the set C(V x W) of all
information channels V +— W with the subset

(9) {A S RV,W : Trw(A) = 1}

of the operator system Ry . Let ® : C(Vi x Wp) — C(V2 x Wa) be an
affine map, and extend it linearly to a map (denoted in the same way)
® : Ryyw, = Rv,,w,. By [43, Theorem 3.9], ® is completely positive.
By [13, Lemma 4.6], ® corresponds in a canonical fashion to an element
© € Ryy, W, ©min R?/27W2; by (8), we can view ¢ as an element of Ry, w, ®min
Sv,,w,- Reversing these steps, we see that every element ¢ € Ry, w;, @min
Sv,,w, gives rise in a canonical fashion to an affine map ® : C(V; x Wy) —
C (VQ X WQ)

On the other hand, suppose that the map ® : C(V; x W) — C(Va x Wa)
has the form ®(-) = I'[:] for some simulator I'. According to Remark 3.7,
I' can be canonically identified with an element v of Ry, v; @min Rw,,ws-
Matrix multiplication

m: Ry, vi @min Rvi,wy @min Ry we — Rve,w,

is completely positive and can hence be viewed, via [13, Lemma 4.6], as a
positive element

- d
m € Ry, v; @min Rvy, wy @min Ry wy @min Ry, w,
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which, taking into account (8), induces a completely positive map

m Ry, v Omin Ry, we — Svi, vy @max Rve, W -

The simulator I" can thus be identified with the element m(y). The difference
between all affine maps C(V; x Wp) — C(Va x W3) and the simulators can
now be visualised as the difference between the operator systems Ry, w, ®min
Svo,w, and Sv; w, @max Ry, Wo-
To be more specific, fix w) € Wy and let £ € C(V; x W) be the channel,
given by
5(’[1)1”[)1)25 0 V1 €V1,w1 e W;.

wi,wy?

If (Vi — W1) 5 (Vo s Wa) then

lE] (woluz) = 3 Do wafon, w) = D)
v1€VL
We see that the probability distribution I'[E](-|vs) is independent of the

variable vy and of the choice of w?, a property not enjoyed by arbitrary
affine maps from C(V; x Wy) to C(Va x Wa).

4. HOMOMORPHISM GAMES

In this section, we adapt the set-up from Section 3 to define quantum
versions of hypergraph homomorphisms and hypergraph isomorphisms.

4.1. Bicorrelations. We recall the definitions of a bicorrelation and of the
various bicorrelation types introduced in [10], which will be needed in the
sequel. Suppose that V3 = Vo =: V and W7 = Wy =: W. We call an element
I’ € Cys a no-signalling (NS) bicorrelation [10] if T' is a unital channel and
its dual I'* is a no-signalling correlation.

Recall [17] that, if H is a Hilbert space, a quantum magic square over V
on H is a block operator matrix (Ey, v, )v, v,ev Whose entries are positive
operators, and

Z Evl,vé = Z Ev’l,'ug =1, v,veV
vheV vieV

An NS bicorrelation I' is called quantum commuting if there exists a Hilbert

space H, a unit vector £ € H and quantum magic squares (Ey, v, )vg eV
and (Fu, ws )w,weew With commuting entries, such that

(10) F(Uwa‘UQ?wl) = <EU2,U1FU)1,’LU2§7§>7 v; € V7 w; € VV7Z = 172

The bicorrelation I' is called quantum if the expression (10) is achieved for
H = His ® Hp, where H4 and Hp are finite dimensional Hilbert spaces,
Epywy = By @ Iy and Fyy oy = Ty @ Foy s vi €V, wp € W,i =
1,2. The gquantum approximate bicorrelations are the limits of quantum
bicorrelations. Finally, the local bicorrelations are the convex combinations
of correlations of the form p!) (vy|va)p® (we|wy ), where (p(!) (v |v2))y; 4, and

(pP (wa|w1))wy.w, are (scalar) bistochastic matrices.
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We use the notation CP' for the (convex) set of all bicorrelations of type
t. For a subset A C VoW x Vi Wa, we set CPY(A) = CP' N Cps(A).

Remark 4.1. Let t be a correlation type. If T' € CP' then I'* € CP. For
t # ns, this is a consequence of the fact that the transpose of a quantum
magic square is again a quantum magic square, while for t = ns this is part
of the definition.

4.2. Game definitions and properties. We fix finite sets V; and W;, and
let B; C V; x W; be a hypergraph, ¢ = 1,2. Set

El(—)EQ = {(vg,wl,vl,wg) : (’01,’(1)1) € E1 = (’02,102) S EQ};
thus, E1 <+ FE> consist of the quadruples (vg, w1, v1,wsy) for which
(vl,wl,vg,wg) € F1 x Ey or (vl,wl,vg,wQ) S Ef X Eg

We consider F4 <+ Eo as a non-local game with question and answer sets
VoW1 and V3 Ws, respectively.

Definition 4.2. Let E; C V; x W; be a hypergraph, i = 1,2, and t €
{loc, q, qa, qc,ns}. We say that
(i) E1 is t-homomorphic to Fay (denoted Ey — Ey) if Co(E1>Es) # 0;
(il) Ey is t-isomorphic to Ep (denoted Ey ~ Es) if Vi = Vo, W1 = Wy
and CFI(E1<—>E2) 7é Q)

An element T of Ci(E1 <> Es) (resp. CPH(E1 <+ F»)) will be referred to as a
t-homomorphism (resp. t-isomorphism) from E; to Es. It is clear that

(11) FEi~ FEy — FE|{—FEy =— FE|~ Es.

Remark 4.3. Let I' € C. The following are equivalent:
(i) By ~ps Eo via T
(ii) the map & — T'[€] is well-defined from C(E;) into C(E3), and the
map F — I'*[F] is well-defined from C(Es) into C(E).

Indeed, taking into account (11), condition (i) implies that Ey ~¢ Eo via
I’ and Ey ~¢ E; via I, and (ii) follows from Proposition 3.2. Conversely,
assuming (ii), Proposition 3.2 implies that I' fits F1 — FEo while I'* fits
FEy — Eq. This means that I'" fits Eq <> FEs.

Theorem 4.4. For t € {loc,q,qa, qc,ns}, the relation — (resp. ~) is a
quasi-order (resp. an equivalence relation).

Proof. Similarly to the proof of Theorem 3.3, one can verify that if I'y and
I'y are correlations such that I'y fits FEq <> Eo, while I'y fits Ey <> E3, then
the correlation I'y x I'; fits E1 <> E3. The claim about — now follows from
Theorem 2.1 (i).

To see the claim about the relation ~, it suffices to establish its transi-
tivity. It is therefore enough to show that whenever I';,T's € CP!, we also
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have I'y x '] € CEi. In the case t = ns, the claim is a consequence of Remark
4.1, Theorem 2.1 and the fact that (I'y x I'1)* = I'] * ', which we verify:

(Co % T'1)*(vs, wi|vr,w3) = (Fa*I'1)(v1, ws|vg, wr)

= Y Y Tu(vr,wavg, w1)To(va, wslvs, wo)

v2 €V waEW2
= Z Z 5 (vs, walva, w3) '] (v2, w1 v, w2)
v Vo waeWo
= (FT *F;)(U3,W1|U1,UJ3).
In the case t = qc, the claim follows from the proof of Theorem 2.1 and the
fact that the transpose (Ey, v, )v;,0, of & quantum magic square (Ey, v )v; s

is also a quantum magic square. The claim in the case of the remaining
types, t = qa, q, loc, follow similarly. O

Let E; CV; x W; be a hypergraph, : = 1,2. A map f: Vo — 17 is called
a homomorphism from E; to Es if f~1(a) is an edge of Ey whenever « is
an edge of Fq; equivalently, f : Vo — Vj is a homomorphism precisely when
there exists a map g : W1 — Ws such that

(12) FHE(w)) = Ea(g(wy))  for every wy € Wi.

If Vi = V4 and Wy = Wa, an isomorphism from E; to Fs is a bijective ho-
momorphism f, for which the map g in (12) can be chosen to be a bijection.

Proposition 4.5. Let E1 C Vi x Wy and Eo C Vo x Wy be hypergraphs.
Then

(i) E1 —10c B2 if and only if there exists a homomorphism from Ej to
EQ;

(ii) of Vi = Vo and Wy = Wy, then Ey ~joc Es if and only if the hyper-
graphs E1 and Es are isomorphic.

Proof. (i) As in the proof of Proposition 3.4, the existence of a perfect local
strategy for the homomorphism game F;— F5 implies the existence of maps
f: Vo — Vi and g : W7 — Ws such that

(f(v2),w1) € By <= (v2,9(w1)) € Eo,

which is equivalent to (12).
Conversely, assuming (12) and adopting the notation from the proof of
Proposition 3.4, we have that

1ifor = dwy =
(P ® W) (v, ws|vy, wr) = 1L vy 'f(UQ) and wy = g(wy)
0 otherwise.

Thus, assuming that (® ® ¥)(vy, wa|ve, wi) = 1, we have that
(vl,wl) < E1 <~ (f(’l)g),wl) € E1 <~ (vg,g(wl)) < EQ <~ (’Ug,wg) S EQ,
which shows that ® ® W fits F1<> Es.
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(ii) Assume that the bicorrelation T' is a perfect local strategy for the
hypergraph isomorphism game F;<+Fs. By definition, I' = Zle AP @Y,
as a convex combination, where ®; : Dy — Dy and ¥; : Dy — Dy
arise from (scalar) bistochastic matrices. Using Birkhhoff’s Theorem, we
decompose these bistochastic matrices as convex combinations of permuta-
tion matrices; this allows us to assume that ®; and ¥, each arise from per-
mutation matrices. By positivity, ®; ® U; is a perfect strategy for the game
E1 <+ Ey. We may thus assume that I' = ® @ U, where ®(v;|vg) = O (ve),01
and ¥(wa|wy) = dg(w)w, for some bijections f: Vo — V7 and g : W1 — Wa.
Identifying ® and ¥ with the corresponding conditional probability distri-
butions, we have that

supp(® @ ¥) = {(ve, w1, f(v2), g(w1)) : vo, w1 € V'}.

It follows that Ey and Ey are isomorphic via the pair (f, g).

Conversely, assuming that f and g are bijections that fulfill (12), the
channel I' = & ® ¥, defined in the previous paragraph, is a bicorrelation
that is a perfect strategy for the game Fj< Fs. O

4.3. Values of probabilistic hypergraphs. A probabilistic hypergraph is
a hypergraph £ C V x W, equipped with a probability distribution 7 : V' —
[0,1] on its vertex set. Given a convex subset & C C(V x W) of channels
from V to W, we let

(13) we(E,m) = sup Z E(w|v)

56@ (v,w)EE

be the E-value of (E, ). Suppose that I' is a perfect no-signalling strategy
for the homomorphism game E;— FEs. Given a probability distribution 7o
on Vo, let m = Ty, (m2); thus, 71 is the probability distribution on Vj
given by

mi(v1) = Z Ly (vifv2)ma(v2),  v1 € Vi
v2€V2

Similarly, for a probability distribution 7; on Vi, let my = F”{/l YA (my). If
V1 = Vo =: V, the probability distribution 7 on V' will be called I"-stationary
ifVl :V2 and7rz7r1 = 9.

Proposition 4.6. Let E; C V; x W; be a hypergraph, & C C(V; x W;),
i =1,2, my be a probability distribution on Vi, and w1 = Ty, (m2).
(i) Suppose that Ey —ns E2 via a correlation T' such that T[] C &,.
Then
we, (B1,m) < we, (F2,m2).

(ii) Suppose that Vi = Vo =: V, that 7 is a I'-stationary probability
distribution on V' and that Eh ~ns E9 via a bicorrelation I' such that
I'[€)] C & and I'[€y] C €. Then we, (E1,m) = we, (E2, 7).
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Proof. (i) Let I be a perfect no-signalling strategy for the homomorphism
game F1—Fs. Let £ € € and F =T'[€]. We have that

Y. Flunfvo)ma(vs)

(v2,w2)€E>

= > 3 ST T(vrwalva, wn)E(wy [vr)ma(v2)

(v2,w2)€Ey v1€VI w1EW]

> Z Z F(’Ul,wg‘vg,wl)g(wllvl)ﬂ'g(’l&)

(vg ,w2)€E2 (’Ul ,wl)EEl

= Z Z Z I'(v1, wa|ve, wr)E (w1 |v1)m2(v2)

(vi,w1)EEL v2€V2 w2 W,
= Z Z Ul|’02 w1|’01)7'('2(1}2) = Z g(w1|’01)7{'1(1}1).
(vi,w1)€EE v2€V2 (v1,w1)€Er
Taking the supremum over all £ € €; yields the desired inequality.
(ii) follows by symmetry from (i). O
If ECV xWand F C X xY are hypergraphs, their product is the
hypergraph £ ® F C (VX) x (WY), given by
E@F ={(v,z,w,y): (v,w) € E,(z,y) € F}.

We write E®" = @I E. Given a probability distribution 7 on V, let
" = ®;* 7 be the n-fold product distribution of 7 on the vertex set V" of
E®". We fix subsets &, C C(V"™ x W") with the property that

(14) e, Fe€, = ERFe&im n,meN,
and write € = (&,)nen. The asymptotic €-value of (E,7) is the quantity

(15) wg(E, ) = limsupwe, (E®™, 7™)7.
neN

Remark 4.7. Let ¢ = (&,),en be a sequence of families of channels, where
¢, CC(V" x W™), n € N, satisfying (14). By the definition of the value
(13), we then have

for all n,m € N. Thus, by Fekete’s Lemma (see [23]), the limsup in the
definition (15) can be replaced by a limit.
Corollary 4.8. Let E; C V; x W; be a hypergraph and &; = (@S))neN be
sequences of families of channels, where @g) C C(V» x W), satisfying (14),
i=1,2.

(i) Suppose that Ey —pns Eo via a correlation T' such that F®"[(’37(11)] C

67(12), n € N, and let mo be a probability distribution on Va. Set
m = Dy,—v, (m2). Then
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@@1 (El, 7T1) < @@2 (EQ, 71'2).

(ii) Suppose that Vi = Vo =: V, that 7 is a T'-stationary probability
distribution on V. and that F1 ~,s FEs via a bicorrelation T such
that T[] C &P and T [€P] C €. Then wg, (E1,7) =
@@2(E2,7T).

Proof. Proposition 4.6 (i) implies that
W, (Eigmvﬂ-?) < Q@Q(Eégmvﬂ-g)v n €N,

implying part (i). Part (ii) follows by symmetry, applying Proposition 4.6
(ii). O

4.4. An operator system approach. We recall the universal operator
system for bicorrelations, introduced in [10]. A ternary ring of operators
(TRO) is a subspace V C B(H, K), for some Hilbert spaces H and K, such
that ST*R € V whenever S,T,R € V (see e.g. [7, 32]). Let Vy be the
universal TRO generated by the entries w,, of a bi-isometry, that is, a
block operator matrix U = (4 )y ey such that both U and its transpose
Ut = (W v)vorev are isometries. Thus, Vy is the universal TRO with
generators u, ./, v,v" € V, and relations

Z[ua”,x”aua,xaua,x’]:5x,x’ua”,x” and Z[ua”,m”>ua,xvua’,x]:5a,a’ua”,x”7
acV eV
for all z,2', 2", a,a’,a” € V. Let Cy be the right C*-algebra of Vy,, when
the latter is viewed as an imprimitivity bimodule [50]; thus, up to a *-
isomorphism, we have that Cy ~ span(6(Vy)*0(Vy)), for any faithful ternary

representation 6 : Vy — B(H, K) (H and K being Hilbert spaces). We write

* 1o .
Uy oy Uy s V1, V2,01, Vg € V5

/ /=
6U17U17v27v2 v2,V1

note that Cy is generated, as a C*-algebra, by the elements e
VY, v2, Vh € V. Set €y vy 1= €uy w1 0995 V1,02 € V, and let

v1,0],02,05) U1,

. _ . / /
Sy =span{ey, v, : v1,v2 € V} and Ty =span{e,, v .0y V1,01, V2,05 € V',

viewed as operator subsystems of Cy .
The following was shown in [10]:

Theorem 4.9 ([10]). Let H be a Hilbert space. If ¢ : Sy — B(H) is a unital
completely positive map then (¢(€y, vy))v ey @S a quantum magic square.
Conversely, if (Euy, vy )vy0ev 5 @ quantum magic square on H then there
exists a (unique) unital completely positive map ¢ : Sy — B(H) such that
Evl,vg = ¢(ev1,v2), vy, v € V.

Lemma 4.10. The flip map § : €y, v, — €uo0, extends to a unital complete
order automorphism of Sy .
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Proof. Let ¢ : Sy — B(H) be a unital complete order embedding and set
Eyi vy = ¢(€p; 05), V1,02 € V. By Theorem 4.9, (Ey, vy)v;,vpev 1S @ quantum
magic square. Therefore, (Ey, 1, )v; 0ev 18 @ quantum magic square and
Theorem 4.9 gives rise to a unital completely positive map ¢ : Sy — B(H)
with the property

¢(€v1,v2) = Evz,vla v1,v2 € V.

Note that ¥ = ¢ o f; hence § is completely positive. By symmetry, § is a
complete order isomorphism. O

We now assume that V43 = Vo =: V and Wy = Wy =: W. Let
Eis B, = (El X E2) @] (Ef X Eg),

consider F1< FE5 as a non-local game with question and answer sets Vi Wy
and VoWy, respectively, and refer to it as an equivalence game. Note that, if

t:Vox Wiy x Vi x Wy = Vi x Wy x Vo x Wy

is the shuffle map, given by t(vg, wy,v1,ws) = (vi, w1, ve,we), then E} <
E2 = ‘C(El HEQ)

For clarity, we denote the canonical generators of the operator system Sy
by fuwiws, w1, w2 € W. Given a linear functional s : Sy ® Sy — C, we let
T's : Dyw — Dyw be the linear map given by

FS(Ula w2|U27 wl) = 3(6v1,v2 @ fwl,wz)'

For an NS correlation I' over (Va, W1, Vi, Wa), let F(T') : Dv,w, — Dvuws
be the linear map, defined by letting

(D) (v2, wa|vr, wr) := T'(v1, walva, wy).

Proposition 4.11. Let t € {_loc, q,qa, qc, ns}. The map I' — §(I') is an
affine isomorphism between CP(E14>Es) and CPH(Ey < Es).

Proof. Let t = qc. and I' € CPI(F; <+ E»). By [10], there exists a state
s: Sy ® Sy — C such that I' = T'y. Let § := so (f ®id); by Lemma 4.10
and the functoriality of the commuting tensor product, § is a state on the
operator system Sy ®. Sy. Since F(I') = I's, we have that F(T') € Cgé. The
fact that supp(F(T')) = t(supp(T)) is straightforward. We finally note that
&2 = id, showing that § is an isomorphism.

The cases t = qa and t = ns are analogous, using the minimal (resp.
maximal) tensor product instead of the commuting one.

For the case t = q, assuming that I" € CPi(El < F3), there exist quan-
tum magic squares (Ey, v, )v; vecv (T€SP. (Fuy ws )wyweew ) acting on Hilbert
spaces Hy (resp. Hy ) and unit vectors £ € Hy,n € Hy so that

F(vlvw2’v27w1> = <(EU2,U1 ® le,wz)(é ®n)v£ ®77>'

Let E = (Euyuy oy ey, Where By, i= By 4,; it is clear that E is a
quantum magic square and that

S(F)(UQ’ w2|v1, wl) = <(Ev1,v2 ® Fw1,w2)(f ® 77)’ £® 77>'
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Thus, § induces an isomorphism from Cgi(El < FE5) onto Cgi(El < FEy).
Assume that I' € CPL(E; <> Ep); thus, I' = Zle )\Z-p(Al) ® p(2), where

2 = @ wile2))u, 2 € VY (resp. 5 = {0 (walwn))u : wn € W)
is a channel in C(V2 x V7) (resp. C(W; x Wa)), with the property that the
matrices (pl(-l) (v1|v2))vy,0, and (pz(?)(wg|wl))whw2 are bistochastic. It follows

that the matrix @(1) = (pgl)(vglvl))vhm, i = 1,...,k, is bistochastic. In
addition,

k
30 =3 a0 p?.
i=1

As in the first paragraph, § induces an isomorphism from CEC(El < E») onto
Ch (E1 & Ey). O

loc
Let 1 C Vi3 x Wy and Ey C Vo x Wy be hypergraphs, and let
J = Span{evg,m & fwl,wg : (U27w1avlaw2) ¢ E1<_>E2}-

Corollary 4.12. The map s — I's is an affine surjective correspondence
between

(i) the states of Sy ®max Sw that annihilate J and the perfect ns-
strategies of F1<>FEs;
(ii) the states of Sy ®.Sw that annihilate J and the perfect qc-strategies
Of El(—>E2,‘
(iii) the states of Sy ®@min Sw that annihilate J and the perfect qa-
strategies of F1+>FEs.

4.5. Faithful isomorphisms. In this subsection, we assume that V; =
Wi=Vo=Wy=V.

Deﬁnifcion 4.13. Let E1 C Vi x Wy and Ey C Vo x Wy, A bicorrelation
Te CEI over (Vo, W1, Vi, Wa) is called faithful if

[(v1, we|vg, w1) =0 whenever (v1 =wy & ve #ws) or (v Zwy & vo=ws).

A faithful t-isomorphism between Ey and E3 is a faithful bicorrelation I' €
Ctl?l (E1 (—)EQ) .

A faithful isomorphism I' between the hypergraphs F; and Es can be
thought of as a means of mutually simulating the noiseless channels id :
Vo — W5 and id : Vi — Wj by each other: every time the original channel
E . Vi — Wi transmits faithfully a certain symbol v € Vj, the simulated
channel I'[€] does so too, and vice versa.

We note that a correlation I" over (Va, Wy, Vi, Wh) is faithful if and only
if the correlation F(I') over (Vi, Wy, Va, Ws) is bisynchronous in the sense
of [44, Definition 1.2]. This enables us to use the works [38] and [44] in
the sequel. Recall that a quantum permutation acting on Hilbert space
H is a unitary matrix (P,./)ywcv, whose entries P, ,s are projections in
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B(H). (We note that every quantum permutation is automatically a quan-
tum magic square.) The quantum permutation group over V' is the universal
C*-algebra 2y generated by the entries of a quantum permutation [38, Sec-
tion 2.2]. We write p, ., v,w € V, for a fixed family of generators of 2y
(so that (pyw)vwey is a universal quantum permutation). We call a quan-
tum permutation (P, )y ./cv & quantum g-permutation (resp. a quantum
qc-permutation) if its entries act on a finite dimensional Hilbert space (resp.
there exists a C*-algebra A with a trace containing its entries).
Given a hypergraph £ CV x V, let

be the incidence matrix of FE.

Theorem 4.14. Let t € {loc,q,qc}. The following are equivalent:

(i) Eq is faithfully t-isomorphic to Eso;

(ii) there exists a quantum t-permutation P = (Pv,v’)v,v’EV such that
(16) P(Ag, ®Ig) = (Ag, ® Ig)P.

Proof. The proof relies on the ideas from the proof of [4, Lemma 5.8]. We
only consider the case t = qc.

(ii)=(i) Suppose that A is a unital C*-algebra, equipped with a trace 7
(which can be assumed to be faithful), and that (P, ,),ev is a quantum
permutation with entries in A, satisfying (16). If v,w’ € V then, denoting
by (A)yw the (v,w’)-entry of a matrix A over V x V, we have

(17) Z Pv/,w’ = ((AE2 ®I’H)P)v,w/ = (P(AE1 ®I’H))v,w’ = Z Pv,w-
v'€E}(v) weE (w')
Since the columns of P are PVM’s,
2
< > PU,’w,> = Y Py
v'€E3(v) v'€E3(v)

Pairing this with (17), we see

> e ¥ A= (T Aw)

v'€E} (v) weFE (w') v'€E}(v)
- T Rw- ¥ RwThe
v'€E3(v) v'eES (v weV
This implies
Z Pv’,w’ Z Pv w = 7
v'€ES(v) wgEy (w')

hence

Z Z v’w’PUw)ZOa

v'€ES (v) wgE1(w')
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forcing 7(Py ' Pow) = 0 whenever (v,v') € E, while (w,w’) ¢ Ei. By
symmetry, 7(Py 4 Py w) = 0 whenever (w,w’) € Ey while (v,v") € Ea. As T
is faithful, this implies

(18) Py Pyw = PpwPyw =0 whenever (v,0') € By ¢ (w,w') € E.
Define the linear map I' : Dy, — Dy, w, by letting
F(Ul, WQ|U2, 'LU1) = T(Pvg,vlpwl,wz)'

We claim I' € Cgé(El < E»), and that it is faithful. It is clear that I' is
a quantum commuting correlation. The unitality of I' is straightforward,
while the fact that I'* is quantum commuting follows from Remark 4.1.
The faithfulness of I" is an immediate consequence of the fact that the rows
and columns of a quantum permutation are PVM’s. Finally, since §(T")
is a perfect strategy for the equivalence game FE; < FEs, Proposition 4.11
implies that I' is a perfect (quantum commuting) strategy for the hypergraph
isomorphism game FE;<> Fs.

(i)=(ii) Assume that E is faithfully qc-isomorphic to Ey via I € CoL(Ey <+
Es). By Proposition 4.11, §F(T') is a perfect quantum commuting and bisyn-
chronous strategy of the equivalence game E;< FEs. By [44, Theorem 2.2]
and [4, Lemma 5.13], there exists a faithful tracial state 7 on a C*-algebra
A, and a *-representation 7 : 2y — A such that, if P,,, = 7(pyw) for
v,w € V, then

P(Uh w2‘1)27 wl) = T(Pv1,v2Pw17w2)'
Since T fits Fj <> Ey, we have that if (v1,w1) € Eq and (vg, wa) € Es, then
T(Pyy o Py ws) = 0, whenever (vi,w1) € Ey ¢ (v2,w2) € Ey. It follows
that

Py, o Py w, =0 whenever (vi,w1) € Ey 4 (v2, w2) € Es.

Let P = (Py)vwev; it is clear that P is a quantum permutation. For any
v,w €V, we have

((AE2 ®IH)P>v,w = Z Pv w — va,w’ Z Pv’,w

v'eE; (v w'eV v'€ES(v)

= X ZPv wPrw= 3 3. PuwPra
veE;(v)w'eV v'€E3(v) w'eE (w)

= X Z PowPrw=" 3, Puwr Y Prw
v eV w'eE (w) w'€E1 (w) VeV

= Z PU w! = AE1 ®IH))vw
w’'€E (w)

This shows the validity of (16). O

Remark. Let G; and G2 be graphs on a vertex set X. The graph isomor-
phism game G = G3 is defined in [4] and, according to [4, Theorems 5.9
and 5.14], G and G3 are quantum (resp. quantum commuting) isomorphic
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(denoted G1 =y Ga (resp. G =qc G2)) if and only if there exists a quantum
g-permutation (resp. quantum qc-permutation) P acting on a Hilbert space
H, such that P(Ag, ® Ig) = (Ag, ® Ig)P, where Ag, and Ag, are the
adjacency matrices of the graphs G and Go, respectively. Thus, Theorem
4.14 generalises [4, Theorems 5.9 and 5.14].

Lemma 4.15. Let E; C V; x W; be a hypergraph, i = 1,2. If the pair
(f,9) of functions determines an isomorphism from Ey to Es, then g is an
isomorphism from Gpr to Gg;.

Proof. We set G; = Ggr, i =1,2. Suppose that z ~ 2/ in Gy, andlet v € V
be such that v € Ey(z)NE1(2’). Let v € V be the unique element such that
f(¥') = v. We have that v' € f~1(Ei(z)) N f~Y(E1(z")). As fH(E1 (7)) =
By(g(x)) and [~ (E1()) = Ea(g(a’)), we have o/ € Ba(g(z)) N Ex(g()).
that is, g(x) ~ g(2') in Gs.

Now suppose g(z) ~ g(2') in Go, and let v € V be such that v €

B (g(x))NE2(g(a")); then f(v') € f(E2(g(z)Nf(E2(9(x")). As f~1(Er(z))
= E»(g(x)), this implies E (z) = f(E2(g(z))). Thus, f(v') € Ei(z)NE(2'),
meaning that z ~ 2’/ in G7. This shows that g is an isomorphism. ([l

Let G be a graph with vertex set X. Recall [27, Section 1.7] that the
line graph L(G) of G has as a vertex set the set L of all edges of G and its
adjacency relation is given by

I ~pl' if there exist z,y,z € X s.t. © # 2,1 = {z,y} and I' = {y, 2}
(in other words, I ~pq) I’ precisely when [ and [" are distinct edges that
share a common vertex). Let

Ec={(z,2) e X x X : x ~g 7'},
considered as a hypergraph in X x X, and
Fo={((z,y),y) : x ~q y},
considered as a hypergraph in XX x X.
Theorem 4.16. Let G and G2 be graphs with vertex set X such that G1 =4
G2 but G1 % Gg. Then
(1) EG1 =q EG2 but EG1 :#IOC EGQ;
(ii) Fg, ~q Fa, but Fg, %10c Fa,-
Proof. (i) Set E; = Eg,, i = 1,2. By [4, Theorem 5.8], there exist d € N
and a quantum permutation P € Mx ® My such that
(AEl X Id>P = P(AE2 (9] Id)

Theorem 4.14 now implies that Ey ~q Fs.

By Proposition 4.5, it now suffices to show that the hypergraphs E; and
E5 are not isomorphic. Assume, towards a contradiction, that there exists
a pair (f,g) of bijections, where f : X — X and g : X — X, such that

fH(E(2) = Ba(g(x), z€X.
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By Lemma 4.15, g is an isomorphism from Gg; to Ggz. Note that Gpg:
is either isomorphic to L(G;) or contains L(G;) as a connected component,
potentially with additional isolated vertices. It follows that L(G1) = L(G2).
On the other hand, since quantum and classical isomorphism differ for the
graphs GG1 and G, we have that the cardinality of the vertex sets of G; and
G exceeds four [51, Section 3]. Thus, L(G;) 2 K3, K 3 for i = 1,2 (where
K 3 stands for the bipartite graph on four vertices with three vertices in
one disjoint set, and the remaining in the other). Whitney’s Isomorphism
Theorem [56] now implies that G; = G9, a contradiction.

(ii) Asin [4, Section 2], let rel(z, y) denote the relation between vertices of
the graph G, of either being adjacent (rel(z,y) = 1), equal (rel(x,y) = 0) or
non-adjacent (rel(z,y) = —1). By [4, Theorem 5.9], there exists a quantum
permutation P = (P, 4)., over X x X, acting on a (finite dimensional)
Hilbert space, such that

(19) P, P,y =0 if rel(z,y) # rel(a’,y).

Abbreviating the notation (z,y) to xy, given pairs zy, ab € XX, let Quy ap =
Py Py oP,p. Note that

Z Q:r:y,abzzp,b (ZPx,a> Py,b:ZPy,b:I;

abe X X beX acX beX
thus, the family (Qy.ap)avex x is a POVM, for every zy € X X.
Suppose that (zy,y) € Fg, but (ab,c) € Fg,. Let a g, b. Since x ~¢, v,
by (19) we have
Qx:’habpy?c = Pyzb(szaPyvb)Py7c = 0
On the other hand, if a ~¢, b then ¢ # b and hence, again,

Q:vy,abp < = y,be7a(Py,be,c) = 0.
Similarly, if (zy,y) € Fa, but (ab,c) € Fg,, we obtain Quy e Py = 0. Let
¢ be a maximally entangled vector in H ® H; thus,
(S®T)E€) = T(STY), S,T € B(H).
A perfect quantum strategy p for the isomorphism game Fg, = Fg, is then
given by letting
p(abv C|nya Z) = <(Q$y,ab ® P;,c)§7 £> ’ x,Y,z,a, b7 ce X.
By Proposition 4.11, p gives rise to a perfect quantum strategy for the
hypergraph isomorphism game Fg, ~ Fg,.

Suppose that Fg, ~oc Fg,. By Proposition 4.5, there exist bijections
f: XX — XX and g : X — X such that

(ry,2) € Fo, <= (f(zy),9(2)) € Fa,.

We check that f is an isomorphism from L(G;) onto L(G2), thus arriving
at a contradiction as in (i). Suppose that xy ~r(g,) 2y, where z,y,2 € X,
T F# 2z, T~ Y ~e, 2 Write f(zy) = ab and f(zy) = cd. Then g(y) = b
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and hence d = b. Since a ~g, ¢ ~g, b, we have that ab ~ (g, cd, that is,
f(zy) ~r(a,) f(2y). By symmetry,

f(xy) ~pay) fluv) = 2y ~pq,) wo.
O

Corollary 4.17. There exist hypergraphs Ey and Eo such that By ~q FE»
but Ey ¢loc Es.

Proof. By [4, Theorem 6.4], there exist graphs G; and G that are quantum
isomorphic, but not isomorphic. The statement now is a consequence of
Theorem 4.16. O

5. STRONGLY NO-SIGNALLING CORRELATIONS

In the rest of the paper, we restrict the setup of Sections 2-4 to the
special case where the underlying hypergraphs are non-local games. We
start by introducing, in this section, the types of correlations that will serve
as suitable strategies.

Let X, Y, A and B be finite sets, and H be a Hilbert space. In the sequel,
to simplify notation, if there is no risk of confusion, we will abbreviate an
ordered pair (z,y) in X X Y to xy. A positive operator P = (Pyy ab)zy,ab €
Dxyap ® B(H) will be called a no-signalling (NS) operator matriz if the
marginal operators

b
P o= Z P,y and PY? .= Z Poy.ab
beB acA

are well-defined, and (Pyq)aca (and hence (P¥?)ycp) is a POVM for every
z € X (and every y € Y). This notion formed the base for the concept
of a nonsignalling operator system in [2, Definition 5.2], although it was
not defined there explicitly. An NS operator matrix P = (Ppy.ab)ay,ab 15
called dilatable if there exist a Hilbert space K, an isometry V : H — K
and POVM’s (E;q)aca and (Fyp)ep on K, x € X, y € Y, such that
Ex,aFy,b = Fy,bEx,a and

(20) Pryay =V 'E, o Fy)V, vzeXyeYacAbeB.

Remark. If the entries Py 4, of an NS operator matrix are projections
then
Px,ap%b = Z Z P:L‘y,ab/ny,a’b = ny,ab
a'€AVEB
for all z,y, a,b.

We recall the operator system Sx, 4 and the C*-algebra Ax 4, introduced
before Remark 3.7, whose canonical generators are the the elements €, , of
universal PVM’s {€; 4}aca, * € X. For clarity, we will denote the canonical
generators of the operator system Sy, by f%b, yeY, beB.
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Proposition 5.1. If P = (Pypyab)aya s o dilatable NS operator matric
acting on the Hilbert space H then there exists a unital completely positive
map v : Sx.4 ®c Sy,p — B(H), such that y(éz.a ® fyp) = Pryap- Con-
versely, if v : Sx,A ®c Sy, — B(H) is a unital completely positive map then
<’y(éz,a ® fyyb)) , is a dilatable NS operator matriz.

X

)

Proof. Let K be a Hilbert space, V : H — K be an isometry, and (Ey 4)aca
and (Fyp)pep be mutually commuting POVM’s on K satisfying (20). The
linear map ¢ : Sx a4 — B(K) (resp. ¢ : Sy, — B(K)), given by ¢(éy4) =
E.q (resp. T/)(fw’a) = F,) is (unital and) completely positive. By the
definition of the commuting tensor product, the map ¢ -1 : Sx 4 ®c Sy,p —
B(K), given by (¢-1¢)(u®v) = ¢(u)y(v), is (unital and) completely positive.
Set
Y(w) = V(6 )W)V, w € Sx.a®e Sv.p:

we have that 7 is unital and completely positive, and v(€z,q, ® f%b) = Ppy.ab,
reX,yeY, ae A beB.

Conversely, suppose that v : Sx 4 ®. Sy,p — B(H) is a unital completely
positive map. By [46, Lemma 2.8], Sx 4 ®c Sy,B Cco.i Ax,A4 Omax Av,B.
Using Arveson Extension Theorem, let ¥ : Ax 4 @max Ay,z — B(H) be a
completely positive extension of «v. Applying Stinespring’s Theorem, write

F(w) =Vir(w)V, we Ax A Omax Ay.B,
for some *-representation 7 of Ax 4 ®max Ay,p on a Hilbert space K and
an isometry V : H — K. Letting E, o = m(€;,,® 1) and F, = (1 ® fy,b)v
we obtain a representation (20) for the matrix (y(é%a ® f%b)) K O

y7a

The following fact is implicit in the proof of Proposition 5.1:

Corollary 5.2. If P = (Pyy.ab)ay.ab 1S @ dilatable NS operator matriz then
(Era)aca, x € X, and (Fyp)een, y €Y, in (20) can be chosen to be PVM'’s.

Remark 5.3. There exist non-dilatable NS operator matrices whenever the
cardinalities of X, Y, A are at least 2. Indeed, let ¢ : Sx 4 ®max Sy,B —
B(H) be a unital complete order embedding, and set Py o = ¢(€z,q ® f%b),
r e X,yeY, ac A be B 1Itis clear that (Ppyap)zye is an NS
operator matrix. Suppose that it is dilatable; by Proposition 5.1, there
exists a unital completely positive map ¢ : Sx 4 ®c Sy, — B(H) such
that ¢(€z,, ® fy,b) = Pryar, v € X,y €Y, a€c A bec B. The map
d o Sx,4 ®c Sy,B —+ Sx,A @max Sy,B is completely positive, and by
the extremal property of the maximal operator system tensor product (see
[34, Theorem 5.5]), it is a (unital) complete order isomorphism. By virtue
of [37, Theorem 3.1], this contradicts the fact that Cpns # Cqyc (see e.g. [24,
Corollary 7.12]).

In the next proposition, we identify the NS operator matrices that give
rise to local NS correlations. Call a NS operator matrix (Pyy ab)z g0, locally
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dilatable if it admits a dilation of the form (20), where the family {E, o, Fy
xeX,yeY,ae€ A be B} is commutative.

Proposition 5.4. An NS correlation p = {(p(a,b|z,y))ep : (z,y) € X XY}
over (X,Y, A, B) is local if and only if there exists a Hilbert space H, a
locally dilatable NS operator matrix (ny,ab)xyﬂb and o unit vector £ € H
such that

(21) p(a‘7b|x>y):<Pl‘y,ab£7£>v $6X1y6Y7a€A>bEB'
Proof. Assume that p € Cjoc, namely,
k
(22) p=3 2l ©p”
i=1

as a convex combination, where p(l) = (pgl)(a|x)) (resp. pEZ) = (pgz)(b|y)))

(]
are conditional probability distributions. Set Py o, = (pgl) (a\x)p?) (bly))k_,,
considered as a matrix in Dj. The representation (21) is obtained by letting
¢ = (VN)F, € C¥ and E,, (resp. F,}) be the diagonal matrix with
diagonal (p{" (alz))_; (resp. (p”) (bly))L,).

Conversely, suppose that (Pgy qb)zy,ab 15 a locally dilatable NS operator
matrix satisfying (21). By replacing the Hilbert space H with the Hilbert
space K arising from the dilation (20) of (Pyy qb)zy,ab, and the vector £ with
the vector V§, we may assume that P,y . = Epolfyp, v € X, y € Y,
a € A, b e B, where the family {E,q, Fyp:x € X,y € Y,a € Ajbe B} is
commutative.

Let A (resp. B) be the C*-algebra, generated by {E,;, : x € X,a € A}
(resp. {Fyp:y € Y,be B}), and let s : A @max B — C be the state, given
by s(S®T) = (STE, €). Using the nuclearity of abelian C*-algebras, we
view s as a state on A ®uin B. Identify A = C(Q;) and B = C(Qy), for
some compact Hausdorff spaces 2; and {29, and the state s with a Borel
probability measure p on the product topological space €21 x 9. We thus
have

pla,blz,y) = / oy a(w1) Eyp(w2)dp(wn, w2),
Q1 XQZ

reX,yeY,a€ A be B. Approximating pu with convex combinations
of product measures ;11 X pa2, we see that p can be approximated by convex
combinations of the form (22). By the Carathéodory Theorem, the num-
ber of terms in the sum in each of the approximants of the form (22) can
be chosen to be at most |X||Y]||A||B| + 1. Using a standard compactness
argument, we conclude that p is itself of the form (22). O

Remark 5.5. Call an NS operator matrix P = (Pyyab)zyab, acting on a
Hilbert space H, quantum dilatable if there exist families (E;4)aca and
(Fyp)ven of POVM’s, acting on finite dimensional Hilbert spaces H4 and
Hp, respectively, and an isometry V : H — H4 ® Hp, such that

Pryab =V (Era @ Fy)V, zeX,ycYaecAbeB.
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It is clear that a NS correlation p over (X,Y, A, B) is quantum if and only
if there exists a quantum dilatable NS operator matrix P = (Pyy.ab)ay.ab
acting on a Hilbert space H and a unit vector £ € H such that

pla,blz,y) = (Pry.apé, &), z€X,yeY,acAbeB.

It follows from [3, Theorem 7.4] that an NS operator matrix is quantum
dilatable precisely when its entries generate a quantum k-AOU space for
some k € N in the sense of [3] (we refer the reader to [3, Section 7] for
the definition and the properties of the latter type of Archimedean ordered
spaces).

We now introduce the suitable correlation types for hypergraph homomor-
phism games, provided the hypergraphs are non-local games in their own
right. Thus, in the notation of Section 3, we assume that V; = X,;Y; and
W; = A;B; for some finite sets X;, Y;, A; and B;, and let E; C X;Y; x A; B;,
i =1,2. We note that X;Y; (resp. A4;B;) is interpreted as the question (resp.
answer) set for the game Ej;, i = 1,2. A channel

F : DXQYQXAlBl — DX1Y1 XAQBQ
will be called a strongly no-signalling (SNS) correlation if

Z F($1y1,6252|$2y2, albl) :Z F(xlyla a2b2|$2y2, albll)’ b1, b/1 € By,
ba€ By b2EBy

> T(z1yn, agbs|raya, a1br) = > T(w1yn, agbslrays, dibr), a1, df € Ay,
as€As as€As

Z D(z1y1, agbe|wayz, a1by) :Z L(x1y1, azbo|zays, arbi), y2,ys € Yz,
Yy1€Y1 Y1€Y1
and

> D@y, asba|wayz, arby) = Y T(@1y, asba|ahyz, ar1by), 2, 2% € Xo.
r1€X1 r1€X1

We denote by Cgns the (convex) set of all SNS correlations (the specific
question-answer sets will be understood from the context), and note that
Csns C Cps. For a subset A C Vo x Wy x V) x Wa, we write Cgps(A) for the set
of all SNS correlations with support contained in A. If I" € Cgpg, we write

L(z1y1, az|w2y2, a1), T(x1y1, be|x2ys, b1),
['(x1, agba|wa, a1b1) and T'(y1,azbz|y2,a1b1)
for the corresponding marginal conditional probability distributions, which

are well-defined by the definition of strong no-signalling. The SNS conditions
imply that the further conditional probability distributions

D(z1,a2lw2,a1) = > T(z1y1, azlzaye, ar),
Y1EY]

T(y1,baly2,b1) = > T(x1y1, balways, by)
r1€X1
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T(y1, azlyz, 1) = Y T(w191, aglaays, a)
z1€X1

and
[(z1,bolza,b1) = Y T(z1y1, bolwaya, br)
y1€Y1

are well-defined and are no-signalling correlations in their own right; for
example, for 1 € X1, x9 € Xo, a1,a} € A; and ay € Ay we have

> T(ar,aslwa,ar) = Y > T(xayr, azlways, ar)

as€Ao a2€As y1 €Y1

= > > Y T(aiy, azbolrays, arb))

a2€Az y1 €Y7 baEBy

— Z Z Z F(xlyl,a262!x2y2,alb/1)

Y1€Y1 bo€B2 as€ A2

— Z Z Z [ (z1y1, agba|zoys, al b))

Y1€Y1 boEB2 ax€A2

= Z [(z1,az2|z2,d).

az€A2

Definition 5.6. An SNS correlation T' over the quadruple (XoYa2, A1 B,
X1Y1, A2Bs) is called
(i) quantum commuting if there exist a Hilbert space H , dilatable NS op-

erator matrices P = (Pryys w1y1 )zays,oryr and Q@ = (Qayby,azbs)arby asbe
on H with mutually commuting entries, and a unit vector £ € H,

such that
(23) F($1y17 a2b2|$23/27 albl) - <P:Jc2y2,x1y1 Qalbhagbzgv £>

forallx; € X;, y; €Y, a; € A; and b; € By, i =1,2;
(ii) quantum if there exist finite dimensional Hilbert spaces H and K,
quantum dilatable NS operator matrices

M = (Mw2a1,w1a2)w27a1,x1,a2 on H, and N = (Nyzbhylbz)yz,bl,yl,b on K,
and a unit vector £ € H ® K, such that

(24) [(@1y1, azbz|z2y2, a1b1) = (Mzgay,z1a @ Nysby i) §56)

forallx; € X, y; €Y, a; € A; and b; € By, i =1,2;
(iii) approximately quantum if it is a limit of quantum SNS correlations;
(iv) local if it is quantum, and the matrices M and N from (ii) can be
chosen to be locally dilatable.

We denote by Csqec (resp. Csqa, Csq and Cyoc) the classes of quantum
commuting (resp. approximately quantum, quantum and local) SNS corre-
lations.
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Remark 5.7. Let I" be a local SNS correlation I" over the quadruple (X2Y53,
A1By, X Y1, A3Bs). By choosing dilations of the matrices M and N in (24)
with mutually commuting entries, we can write I' in the form

I(z1y1, agba|zay2, a1by) = <Ex2,x1Eal’aszz,ylFbl’b2§7§> ;

where the POVM’s (Eyy 1 )ays (BE¥%) 0y, (Fyy g1 )ys and (F81:%2), have mu-
tually commuting entries. An argument, similar to the one in the proof of
Proposition 5.4 now shows that I" = Zle Ni®; ® U, as a convex combina-
tion for some local NS correlations ®; : Dx,y, — Dx,v, and V; : Dy, B, —
DBy, i=1,... k.

The following lemma will be used in Sections 6 and 7.

Lemma 5.8. The SNS correlation I' belongs to Csqc if and only if there
exists a Hilbert space K, PVM’s (Pyy 21 )ziexi, (PY2Y)yievis (Qaras)azcAs

and (le’bZ)l,QeB2 on K with mutually commuting entries, and a unit vector
n € K, such that

(25) [(x1y1, agbz|z2y2, a1b1) = <Pz2,z1Pyg’leal,angl’bzﬁy77>
forallz, € X;, y; €Y, a;, € A; and b; € B;, i =1,2.
Proof. Let I' € Csqc. Suppose that H is a Hilbert space,

P = (Px2y27$1y1)x2y2,961y1 and @Q = (mel,azbz)albl,azbz

are dilatable NS operator matrices acting on H with mutually commuting
entries, and £ € H is a unit vector, for which (23) holds. By Proposition
5.1, [46, Lemma 2.8] and the Stinespring Theorem, there exist a Hilbert
space K, a unital *-representation 7 : Ax, x, ®max Ays,y; = B(K), and an
isometry V : H — K, such that
szyz,zlyl = V*Tl’(éx%xl & éywl)V, z; € X,y €Y, i=1,2.
After replacing K with the closure of the span of 7(Ax, x; ®maxAyvs,v;)VH,
we may assume that the latter span is dense in K. Let N be the C*-
algebra, generated by the family {Qq b, 400, : @i € A;,b; € B, i =1,2}. By
Arveson’s Commutant Lifting Theorem [43, Theorem 12.7|, there exists a
*_representation
p N = m(Ax, x;, Omax Ava,yy)'s
which is unital by the uniqueness clause of the theorem, such that
Vu=pu)V, ueN.
Set Qayiby,asbs = P(Qaybr.anhs), @i € Ai, by € By, i = 1,2, Since the map
p:Sa,,4, @ SB,,B, = B(K) is unital and completely positive, Proposition
5.1 implies that the NS operator matrix (Quyby asbs)ay.azbibe 15 dilatable.
Let H be a Hilbert space, p A Ay Omax AB, B, — B(lfl) be a unital
*_representation, and W : K — H be an isometry, such that

Qa1b1,a2b2 - W*ﬁ(éal,az ® ébl,bg)Wy a; € Aia bZ S Blal - ]-a 27
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assume, without loss of generality, that p(Aa, 4, ®maxAB, B,)W K has dense
span in H. Applying Arveson’s Commutant Lifting Theorem again, we
obtain a *-homomorphism

T Axy X, Omax Ava vy — A4 A, Omax AB,.B,)
such that
Wr(u) =7(w)W, ue Ax, x, @max Avs.v; -
Set
PCC2,CI31 = ﬁ(ém,m ® 1)7 Pyt = 7?(1 ® éy27y1)7
Qa1,a2 - ﬁ(éahtm ® 1)a QbLbQ = ﬁ(l & éb17b2)7
and 7 = WV to obtain the representation (25).

Conversely, assuming (25), we have that the NS operator matrices with
entries Proyy 21y1 = Pz PY?Y" and Qo by agby = Qalmel’b2 are (trivially
dilatable and) commuting, showing that I' is a quantum commuting SNS
correlation. ([l

6. HOMOMORPHISMS BETWEEN NON-LOCAL GAMES

In this section, we demonstrate how hypergraph homomorphisms, defined
in Sections 3 and 4, give rise to homomorphisms between non-local games.
In the next subsection we restrict the simulation paradigm to the case of NS
correlations.

6.1. Strategy transport. Let X;, Y;, A; and B; be finite sets, i = 1, 2.

Theorem 6.1. Let ' be an SNS correlation over the quadruple (XoY2, A1 B,
X1Y1, A2B3) and € be an NS correlation over the quadruple (X1,Y1, A1, B1).
The following hold:
(i) T[€] € Cns;
(i) if I € Csqe and € € Cyc then I'[E] € Cyc;
(ili) if I’ € Coqa and € € Cqa then T'[E] € Cya;
(iv) if I' € Csq and € € Cq then T'[E] € Cy;
(v) if T € Cgioc and & € Cioc then T'[E] € Cioc-

Proof. (i) Set F =T'[€], and fix 2 € X3, y2 € Y3 and ag € Ay. We have
> Flag, balaz, o)

ba€B2

= Z Z Z I'(z1y1, a2ba|x2y2, a1b1)E (a1, bi|z1, 1)

ba€B2 x1y1€X1Y1 a1b1€A1 B,

= Z Z [(x1y1, azlw2ys, a1)€ (a1, brlx1, y1)

r1y1€X1Y1 a1b1€A1 By

= > Y (i, azlrays, ar)E(asnr)

z1y1€X1Y1 a1€A;

— Z Z [(z1, aglz2, a1)E(a1|z1),

r1€X1 a1€A1
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and hence the marginal F(ag|z2) is well-defined. Similarly, the marginal
F(baly2) is well-defined.

(ii) Appealing to Lemma 5.8, let (Pry 01 )ziex:s (PY?Y)y1evis (Qar,as)ase s
and (Q"*2);, ¢, be mutually commuting POVM’s on a Hilbert space H and
¢ € H be a unit vector, such that

F(xlyla G252’$2y2, albl) - <PJ:2,CB1Py27y1Qa1,a2Qb1,b2§7£>

for all z;, ys, ai, b, 1 = 1,2. Let (Ey, .q,)aea, and (Fy, b, )b ep, be mutually
commuting families of POVM'’s on a Hilbert space K and n € H be a unit
vector such that

E(al,b1|x1,y1) = <E:Jc1,a1Fy1,b177a 77>, x1 € X1,y1 € Yi,a1 € Al,bl € Bj.
Set

(26) Exz,az = Z Z Pry21Qaya2 @ Bz 0y

r1€X1 a1 €A

and

(27) ﬁy%bQ — Z Z Py27y1Qb1,b2 @ Fy, b,
y1€Y1 b1€By

We have that (Eq,.a0)ascds (reSp. (Fyy by )bseB,) is @ POVM, x9 € Xy (resp.
y2 € Ya), acting on the Hilbert space H ® K. In addition,

Exz,aszg,bg = yz,ngxg,a27 To € Xz,yg S YQ,CLQ S Ag,bg € BQ,

and
D€} (az: bolw,y2) = (Ersiar Py (@ 1) O )

for all z9,ys, az, be, showing that I'[£] is quantum commuting.

(iv) Let M = (Mmahmaz)ﬂcz,ahm,@ and N = (Nyzbl,y1b2)y2,b1,y1,b2 be quan-
tum dilatable NS operator matrices, acting on finite dimensional Hilbert
spaces H and K, respectively, and £ € H ® K be a unit vector, for which I
admits a representation of the form (24). Write

S(al,b1|x1,y1): ((Ewl,lh ®Fy1,b1)77777>7 T € Xl,yl S Yi,al (S Al,bl S Bl,

where (Ez, a,)aea, and (Fy, p, )b, ep, are finite dimensionally acting. Define

E5627a2 = E § Mzga1,zla2 ® Exl,a1
r1€X1 a1€A,

and

Fyy 0 = Z Z Nyoby yibe @ Fyy by
1€Y1 bh1€By

it is straightforward to see that (Eg,a,)ascas (resp. (Fy, bs)boeB,) is a finite
dimensionally acting POVM. The proof in (ii) can now continue without
further modification.

(iii) is a direct consequence of (iv).
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(v) follows from Remark 5.7 and the fact that, if ®x : Dx, — Dx,,
®y : Dy, = Dy,, V4 : Dy, = Dy, and Vg : D, — Dp, are channels then

(Px @ Py @ VA @ Up)[€ © F] = (Px @ V4)[€] @ (Py ® ¥p)[F]
for all channels £ : Dx, — D4, and F : Dy, — Dp,. O

Remark 6.2. The proof of Theorem 6.1 (i) shows that, in its notation,
letting I'x,4,-x,4, be the NS correlation determined by the conditional
probability distributions I'(x1, ag|x2, a1), we have that

I‘)(2141—>X1142 [5X1—>A1] - F[g]X2—>A2'

We next define the suitable version of the notion of a bicorrelation, defined
in [10], in the strongly no-signalling context. Assume that X; = Xo =: X,
Y1I=Ys=Y, Ay = Ay =: A and By = By =: B. We further assume that
X = Aand Y = B. A positive operator P = (Ppy ab)ay,ab € Pxyap @
B(H) will be called a magic bisquare if it is an NS operator matrix, and
the matrices (Pyq)z,q and (Py’b)%b are quantum magic squares. A magic
bisquare P = (Py . q.b)ay.ab 15 called dilatable if there exist a Hilbert space
K, an isometry V : H — K and quantum magic squares (E; )z qex and
(Fyp)ypey on K, x € X,y € Y, such that E, . F,, = F, pE; o and relations
(20) hold for all z,a € X and all y,b € Y. Quantum dilatable and locally
dilatable magic bisquares are described similarly to quantum and local NS
operator matrices, using quantum magic squares in the place of families of
POVM’s.

An SNS correlation T" will be called an SNS bicorrelation if T is uni-
tal and I'* is also an SNS correlation. An SNS bicorrelation I' over the
quadruple (XY, XY, XY, XY) is called quantum commuting if there exist
a Hilbert space H, dilatable magic bisquares P = (Pryys 2141 )aoys,z1yn a0d
Q = (Qaib1,asbs)arbr,azb, o0 H with mutually commuting entries, and a unit
vector £ € H, such that equation (23) holds. The classes of quantum SNS bi-
correlations (denoted C;)(il), approximately quantum SNS bicorrelations (de-
noted CL,), and local SNS bicorrelations (denoted C5! ) are described sim-
ilarly to the their correlation counterparts, using magic bisquares of the
appropriate type in the place of NS operator matrices of that type. The
following remark is straightforward from the definitions:

Remark 6.3. For a correlation type t € {loc,q,qa,qc,ns}, if I' € Cé)ti then
I* e Ch.

Theorem 6.4. Let I' be an SNS bicorrelation over the quadruple (XY, AB,
XY, AB) and £ be an NS correlation over the quadruple (X,Y, A, B). The
following hold:

(i) T[E] € oy

(ii) if T € Cé’(ilc and € € Cgé then T'[€] € Cgé;
(iii) 4f T € Chi, and £ € Cé’; then T[] € CPL;
)

sqa qa’

: ; bi bi bi.
(iv) if I' € Cq; and € € Cy' then T'[€] € C';
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(v) if T € Chi

sloc

and £ € CPI then T'[€] € CPI

loc loc*

Proof. (i) The claim follows as in Theorem 6.1, using the fact that in our
case we have, in addition, that T'[E]* = I'*[£*]. We verify that latter identity:

L[E] (w2, y2|az, b2)

= Z Z [(x1y1, agba|z2y2, a1b1)E(ar, bi|z1, y1)
z1y1€X1Y1 a1b1€A1 By

- Z Z ™ (z2y2, a1bi|z1y1, a2be)E™ (x1, yiar, b1)
a1b1€A1B1 t1y1€EX1 Y1

= T*[EY(z2,y2|az, ba),

forall zo € X,ys € Y,a0 € A, by € B.

(ii) follows as Theorem 6.1 (ii), after noting that the POVM’s defined in
(26) and (27) are quantum magic squares. The proofs of (iii), (iv) and (v)
is now similar to those of Theorem 6.1 (iii), (iv) and (v). O

Definition 6.5. Let F; C X;Y; x A;B; be a non-local game, i = 1,2, and
t € {loc,q,qa,qc,ns}. We say that

(i) Ep is t-quasi-homomorphic to Fy (and write Ey ~g Eo) if the hy-
pergraph quasi-homomorphism game Ei1~»FEo has a perfect strategy
I'e Cst;'

(ii) E; is t-homomorphic to Ey (and write Ey —, E2) if the hypergraph
homomorphism game E1— Eo has a perfect strategy I' € C};

(iii) Ej is t-isomorphic to Es (and write Ey ~g FE2) if the hypergraph
isomorphism game E1<+Ey has a perfect strategy T' € C5.

Corollary 6.6. Let E; C X,Y; x A;B; be a non-local game, i = 1,2, and
t € {loc,q,qa,qc,ns}. If By —4 E2 and Eq has a perfect t-strategy then Es
has a perfect t-strategy.

Proof. The statement follows after an application of Theorem 6.1 and Propo-
sition 3.2. |

Theorem 6.7. Fort € {loc,q,qa, qc,ns}, the relations —g, and ~g (resp.
the relation ~g ) are quasi-orders (resp. is an equivalence relation) on the
set of non-local games.
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Proof. Let I'y and I'y be elements of Cg,s. The range of the variables in the
summations below being understood from the context, we have

> (Ty *T1)(21y1, asbs|wsys, arby)
b3

= > 3> Ti(aryr, agbolways, a1by)Ta(zaya, asbs|wsys, asby)

b3 x2,Y2 az,b2

= > ) Ti(z1y1, agbs|raya, a1b1)Ta(w2ys, aslzsys, az)

2,92 a2,b2

= Y (@i, aslrays, a1)Ta(ways, as|wsys, az)

x2,Yy2 a2

= Z(F2 + T'1) (2191, azbs|z3ys, a1 b))
b3

for all by, ). One verifies similarly the remaining three relations required in
the definition of an SNS correlations; thus, I'y * I'1 € Cgns. Using Remark
6.3, we now also see that, if T'y and I'y be elements of C2i, then T'yxI'; € CPL.
The cases where t = ns now follows taking into account Theorem 3.3.
Among the remaining correlation types, we only consider the case t = qc.
Suppose that I'1,I'y € Csqe. Suppose that P = (Pryysc1y1 )eoys,z1yn and
Q = (Qayb asbs)arby,asb, arve dilatable NS operator matrices on a Hilbert
space H with mutually commuting entries, and & € H is a unit vector, such

that
Ly (21y1, agbe|m2y2, a161) = (Puyys w141 Qarbr a26265 §)
for all x; € X;, y; € Y;, a; € A; and b; € B;, i = 1,2. Similarly, write

Do (2212, asbs|sys, azba) = (Pr.y. 10w Qusb.asbsE € ) »

for all z; € X;, y; € Y;, a; € A; and b; € B;, i = 2,3, in a Hilbert space H'.
Similarly to the proof of Theorem 2.1, set

i . 2 : 2 : /
Px3y3,1‘1y1 - P$2y2,w1y1 ® Px;;yg,mgyg’
T2€X2 Y2€Y2

lebl,agbg = Z Z Qalb1,a2b2 ® Q:lgbg,ag,bg?
a2€A2 bo€By
and & = £ ® ¢, in the Hilbert space H” := H ® H'. Tt is straighforward
that (P, »1y,) and (7, ..p,) are dilatable NS operator matrices with
commuting entries, which give rise to the correlation I'y x I'; as in (23).
The case where Iy and I'y are (quantum commuting) SNS bicorrela-

tions follows from the previous paragraph and the fact that the matri-

ces (P zy,) and (@7, 4.p,) are magic bisquares, provided (Pryys a1y ),
(Qa1b17a2b2)7 (Pzégyg,ajgyg) and (Qitgbg,agbig) are such. g

Remark 6.8. The statements in Theorem 6.1 are not reversible: e.g. not
every affine map Cns(E1) — Cps(E2) has the form & — I'[&] for some I' € Cgqc
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that fits Ey <> Es. Indeed, let E; = [1] x Y; x [1] X B;, i = 1,2. In this case,
Cns(E;) = C(Y; X B;), i = 1,2, and the statement follows from Remark 3.8.

Remark 6.9. Let E; C X;Y; x A;B; be a non-local game, i = 1, 2. It follows
from Remark 5.7 and Proposition 4.5 (i) that E1 —oc E2 if and only if there
exist maps fX : X2 — Xl, fy : ng — Yl, ga : A1 — A2 and gB : B1 — B2
such that

(28) (fx xfy) "(Ei((a1,b1))) = Ea2((9a(ar), gB(b1))), (a1,b1) € A1 xB.

Similarly, if X1 = Xs, Y1 = Y3, A1 = Ay and By = Bs then F; ~. Es
if and only if the maps fx, fy, g4 and gp can be chosen bijective, that is,
there exist permutations on the corresponding question and answer sets of
the four players that transform the rules functions of the two games into one
another. Finally, Fy ~, F2 amounts to having inclusions in (28) instead
of equalities.

Remark 6.10. By Proposition 3.6, there exists hypergraphs F; C X; x A;,
i = 1,2, such that Fy ~y E> via a quantum correlation I', but Ey 751oc Eo.
Let

Ei = {((1,1‘), (1,&)) : (ZE,CL) € El}’
considered as a non-local game over ([1], X;,[1], 4;), i = 1,2. It is straight-
forward that the correlation I', given by

I(1z1, lag|lze, lay) := (21, az|xa, a1),

is a quantum SNS correlation that realises a homomorphism E; ~rq Es.
On the other hand, E; % F2 as the relation Fy ~» . Fo would force
Eq ~oc B

6.2. Optimal winning probabilities. The results in this subsection can
be viewed as a strengthening of Corollary 6.6. We first recall the notion
of a product game from non-local game theory (see e.g. [39]). Given non-

local games A, C XV 5 x®y® k= 1,2, their product Ay ® Ay is
the non-local game on X2(1)X§2)Y1(1)Y1(2) X X}l)Xl(Z)YQ(l)YQ(z) arising from
the product set A; x Ag after the natural reshuffling (see [39, Section 3]).
Here, (X2(1)X2(2),Y1(1)Y1(2)) (resp. (Xfl)sz),Yz(l)YQ(Q))) is the corresponding
question (resp. answer) set.

Lemma 6.11. Let Xz-(k), Yi(k), Agk) and Bl-(k) be finite sets, i,k = 1,2, and
Iy Dxék)Y;k)XA(lk)B§k) — DX£k>Y1<k)XA(2k)B§k)
be an SNS correlation, k =1, 2.

(i) If Ty, € Cst, k= 1,2, then T1 @ Ty € Cst;
(i) If Ty, € Ch, k=1,2, then T1 ® Ty € CY.

Proof. We give details for the case t = qc only; the arguments for the rest
of the correlation types follow along similar lines.
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. k k
(i) Let P = (Pagzz)/z,xly1):v2y2,x1y1 and Q) = (Q( ) Jarbr,azby O Hi,

a1b1,a2b2
with mutually commuting entries, and a unit vector £ € H, such that

k
F(k) (1613/1, a252|$2y2, albl) = <Px(]2€g)/2,a:1y1le)bl,a2b2§7 £> ) k= 1’ 27

for all z; € Xi(k)7 Y; € Yi(k), a; € Agk) and b; € Bi(k), 1 = 1,2. Letting
H:H1®H2)£:£1®527

_ p(1) (2) _ D (2)
szyz,wlyl - Px2y2,z1y1 ® Px2y2,fc1y1 and Qalblmb? - Qa1b1,a2b2 ® Qaﬂn,azbz’

we see that the operator matrices P = (Ppyyy1y:) and Q = (Qayby aqby) are
dilatable and have mutually commuting entries. In addition, I'; ® I'y arises
as in equation (23) from Definition 5.6 via the quadruple (H,¢&, P, Q).

(ii) is similar to (i); the case t = ns uses the fact that (I't ®T'2)* = I'f ®T%,
the case t = qc — the fact that the NS operator matrices (Pr,ysa191 )zoys,z1v1
and (Qa,by.a9bs )aibi,asb, defined in (i) are magic bisquares, and the rest of
the cases are analogous. ([

Given a correlation type t, the t-value of a non-local game E C VoW; X
V1iWs, equipped with a probability distribution 7 on VoW1, is the parameter
wi(E,m) =we,(E,m) (see (13) in Subsection 4.3). We set

@y (B, m) = limsup we, (E®™, 77")%;
neN
the parameter w(FE, ) is the optimal t-value of the game E under parallel
repetition [49].

Theorem 6.12. Let E; C X,;Y; X A;B; be a non-local game, wo be a proba-
bility distribution on X2Ya, and m = U'x,v,—x v, (72).

(i) If B4 —st Fo via T € Cy then
wi(E1,m) < wi(Eo,m2) and wi(Er,m) < wi(Ea,m2);

(ii) Suppose that X1 = X9 =: X, Y1 = Yo =1 Y and that that m is a
I-stationary probability distribution on XY If By ~y Eo viaT' € C
then

wt(Ebﬂ-) = wt(E%ﬂ-) and a}t(Elaﬂ-) = (Dt(E%T‘-)'

Proof. The statements in (i) and (ii) regarding the t-values follow from The-
orems 6.1 and 6.4, and Proposition 4.6. The statements regarding the pa-
rameters @y follow from Lemma 6.11 and Corollary 4.8. O

7. REPRESENTATIONS OF SNS CORRELATIONS

Our goal in this section is to obtain representations of the quantum com-
muting and the approximately quantum correlation types in terms of oper-
ator system tensor products; this is achieved in Subsection 7.2. In the next
subsection, we develop the required multivariate tensor product theory in
the operator system category, which extends the bivariate theory developed
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in [34] and may be of interest in its own right. We will emphasise the dif-
ferences with the bivariate theory, and will omit those arguments that can
be easily adapted from [34].

7.1. Multivariate operator system tensor products. We fix through-
out this subsection operator systems Sy, ..., S. Following [34], we define a
tensor product of Si,...,Sk (in this order) to be an operator system struc-
ture 0 = (X,,)nen on the algebraic tensor product §; ® -« - ® S satisfying
the following properties:

(T1) (®§:18j, (30 nen, ®§:115j) is an operator system;

(T2) if Pj € My,;(S;)", j € [k], then ®%_, P € ¥y, .5, and

(T3) if f; : S; — M, is a unital completely positive map, j € [k], then

®?:1 fj is completely positive.

A tensor k-product in the operator system category is an assignment o of a
tensor product o- ®§:1 S; to each ordered k-tuple (Si,...,Sk) of operator
systems. We call o functorial if, whenever 7T; are operator systems and
¥j + 8§ — T; are unital completely positive maps, j € [k], we have that
the tensor product map ®§?:11/1j :o- ®;‘?:1 S — o- ®§:1 7; is (unital and)
completely positive.

We will see that, as in the bivariate case, the operator system category
admits natural minimal, maximal and commuting tensor k-products. Equip
the algebraic tensor product &1 ® - -- ® S with the involution, given by

(U1 @ - @uk)" ==ul @ R uy,
and extend it to an involution on M, (S1 ® --- ® S) by letting (u”)f] =

(u5 ;)i Write Mp(S1 @ -+ - @ Sg)p, for the real vector space of all hermitian
elements of M, (51 ® -+ ® Sk).

7.1.1. The mazimal tensor product. By [34, Theorem 5.5], the maximal ten-
sor product between two operator systems is associative; we can thus un-
ambiguously give a meaning to the multivariate maximal tensor product

max—@é?:l S = 51 Omax " * Omax Sk-
We will need an explicit description of its positive cones, in the spirit of the

one given in [34, Section 5]. For notational simplicity, we restrict to the case
k = 3. For each n € N, let

D = La(PL@ Pa@Ps)a* : P, € My, (Si)T, o€ My pyngns, ni €N, i € [3]}.

Remark 7.1. Let S;,i = 1,2,3 be operator systems and (D)2, be a
matrix ordering, with D,, C M, (S1 ® S» ® S3), satisfying property (T2)
from the start of Subsection 7.1. Then the compatibility condition implies
that D®* C D, for all n € N.

It is straightforward to verify that 15, ®1s, ®1s, is a matrix order unit for
the matrix ordering (D)% ,; we let (C1***)>°, be its Archimedeanisation
[47, Section 3.1].
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Proposition 7.2. Let S;,i = 1,2,3, be operator systems. Then
C;—Zlax — Mn ((Sl O max 82) O max 83)+ ; n € N.

Proof. Set Cp, = M, ((S1 @max S2) @max S3)7, n € N. By Remark 7.1,
Ccrax C C,. Let Q € Mp((S1 @max S2) @max S3)T; without loss of gen-
erality, we may assume that Q = a(Q1 ® R1)a* for Q1 € Mi(S1 Omax S2) T,
Ri € Mp(S3)" and o € My k. As Q1 € My(S1 @max S2)t, again with-
out loss of generality we may assume that Q1 = [B(P; ® P3)5*, where
P € Mg(Sl)Jr,PQ S Mp(82)+, and 5 € Mk,fp- Write ,3 = ZCI ® D;

i=1
for some C; € My, ¢ and D; € My, , with niny = k. We see that

,
B(PL @ P)B* = > C;PC; ® DiPD;.
ij=1
Let P{ = (C;P1C)f; and Py = (D;P,D})7 ; thus, P| € M, (S1)T and
P} € Myp,(S2)™, and we view P| ® P} as a r?k x r?k matrix.
Let 8/ = (B1,...,B,2), where 3; € My, for 1 < j <r? and
B1 = Bri2 = Pors3 =+ = B2 = I,

with 3; = 0 otherwise. We have that ' € My j,2; thus, v := ' ® I, €
Mkm,Tkau and

Y(P{ @ Py @ Ry )Y = (' ® Iy) (P ® Py) ® R1)(8' ® L)

r

= ( Z CiPCF ® DZPQD;> ® Ry = B(P® P)B" ® Ry.

ij=1

Thus,

a(f(Pr® P2)B" @ Ri)a” = a(y(P{® P;® Ri)y")a”

= (a)(P] @ Py ® Ra)(e)",

where ay € M, ,3,,. This shows Q € D;'®*, and so C, = C** for each
n € N. O

Corollary 7.3. We have that Mn(max—®§:1 Sj)T =Cr* neN.

Proposition 7.4. If A;, j € [k], are unital C*-algebras then max-®§:1Aj~
is completely order isomorphic to the image of ®f:1./4j inside the mazximal
C*-algebra tensor product C*max—@?zl./lj.

Proof. The proof relies on the ideas in the proof of [34, Theorem 5.12]; we
only consider the case k = 3. Let C = A ®c*max A2 ®@C*max A3z denote
the maximal C*-algebraic tensor product of Ay, Ay and Az. The faithful
inclusion of A; ® Ay ® A3 C C endows A; ® Ay ® Az with an operator
system structure; let T—®§-’:1Aj denote this operator system, and let C'**,
n € N, be the matricial cones of max—@?zlAj. For n € N, let D,, = M, (7-
®?:1Aj)+. By maximality, C}'** C D,,. For the converse inclusion, note
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1

k
that, if X = Zal(l) ® al(?) ® a!¥ where al(-l) € Mn(Al),az@) € Ay and

3 € As, then

Zal) (1 X a; )a() ®a(3)a§).
1,j=1

Let AV = (a; (1) ; * )i ,], A®) = (az(?)agz) )ij and A®) = (a (3)a§ )*)i,j§ then

AN € My(M, (A1), A® € My (As)* and A®) € My (A3)*. Similarly to
the proof of Proposition 7.2, there exists 8 € M,, ,,;3 such that

ﬁ(A(l)(X)A ﬂ = Za a ®a( )a() ®a() §~)*:XX*,
t,5=1

and hence XX* € CP**. Since D, is generated, as a closed convex set,
by elements of the form X*X, we have that D, C C*. The proof is
complete. O

7.1.2. The minimal tensor product. According to [34, Theorem 4.6], the bi-
variate minimal tensor product is associative and hence one can unambigu-
ously define the operator system

min-®%_; S 1= 81 Amin * ** Omin Sk-
Proposition 7.5. Let n € N. Then
My (min-®5_y 8;)F = {u € Mu(@518)) + (51 ;)" (u) € Mf,
for all w.c.p. maps fj: S; — My;,n; € N, j € [k]}.

Proof. We consider the case k = 3 only. For n € N| let

Cr = {u € My(®718)) + (@3_1/5)"™ (u) € Myhy g,

for all u.c.p. maps f; : §; = M,,;, n; €N, j=1,2,3}.
We will show that C,, = M, ((S1 @min S2) @min S3)T. We assume, without
loss of generality, that S; € B(#H;), j = 1,2,3. Let P € C,, and suppose

4
that P = > X; ®y; ® z;, where X; € M, (S1),y; € Sz and z; € S for i € [I].
=1

Furthermore, let ¢ = Z & ®ns® Ps where & € 7—[ ),ns € Ho and (B, € Hs,
s € [k]. Let ®; : (81) — My, @ : So — My, and 3 : S3 — M, be the

maps given by

(Dl(X) = (<X€87€t>)8,t7 (p2(y) = (<y77877]t>)87t7 (1)3(2) = (<Zﬂ57ﬂt>)s,t-
It is clear that ®; is completely positive, j = 1,2,3. Note that (fi ® fo ®
f3)") = fl(n) ® fo ® f3 for all linear maps f; : S — My, j = 1,2,3.
Thus, (fl(n) ® fo® f3)(P) € M;—k?’ if fj : S; — Mj, is unital and completely
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positive, i = 1,2,3. By [34, Lemma 4.2], (®; ® ®» @ ®3)(P) € M* ;. Let
e=(e1®ei,... e, @ ep) € CH where {e;}%_, is the standard orthonormal
basis of CF. We have

/ k
(P,w) = D) (Xile, &) (Wins, mi) (ziBs, Br)

i=1 s,t=1

I
gl

(21(X;) ® Pa(y:) ® P3(2:))e, €)

- Z(cp1 ® O3 ® 3)(P)e,e).

It follows that P € B((@?:l’;‘—[j) )t and hence C,, C D,. The reverse
inclusion follows easily using the functoriality and injectivity of the minimal
C*-algebraic tensor product; the details are omitted. O

Remark 7.6. By their definition, and the fact that the bivariate minimal
and maximal operator system tensor products are functorial [34, Theorems
4.6 and 5.5, the minimal and the maximal multivariate operator system
tensor products are functorial. Similarly, the minimal multivariate operator
system tensor product is injective (see [34, Section 3]).

7.1.3. The commuting tensor product. Let H be a Hilbert space and ¢; :
S; — B(H) be a completely positive map, j € [k]. We call the family
(gbj);‘-‘:l commuting if ¢; and ¢; have mutually commuting ranges whenever

i#j. Let H?Zlqﬁi : ®"-‘:18- — B(H) be the linear map, given by

(W_165) (@) = T 165(uy), wj € S5 € [K].
For n € N, let
= {u € Mu(@j215)) : (1) ™ (w) € Ma(B(H))',
for all commuting families (gbj)?:l and all Hilbert spaces H }.

Lemma 7.7. Let Sy, ...,S; be operator systems and S = ®§:187;. Then Cf,
is a cone in M, (S) and S, equipped with the family (Cy)nen and the element
1:=15, ®---®1s, as an Archimedean matriz order unit, is an operator
system.

Proof. 1t is straightforward to verify that C, is a cone, n € N. Let n,m € N,
a € My, and u € Cf,. We have

(n)
<H§1¢j> (aua®) =

thus, the family (C)°; is compatible.
Let ¢j : S — My, be a unital completely positive map, j € [k], and
qb} : 8 — My, ..., be the map, given by

di(u) =15, ® - ®@¢;(u)®--- @15, ucS;

(m)
(H?mj) <u>] o" € M, (B(H))*:
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Then qi;j is completely positive for each j € [k], and (qgj);?:l is a commuting
family. Therefore

A\ ™
@ro oo = (Id;) W20, uecs

By Proposition 7.5, C¢ C M, (min- ®§:1 Sj)T, n € N. In particular,
Ce N (—=C¢) = {0} for each n € N. On the other hand, by Remark 7.1,
Mn(max—@?:1 S;)T € Cf, n € N. In particular, 1s, ® --- ® 1s, a matrix
order unit; it is straightforward to verify that it is Archimedean. O

We denote the operator system (S, (Cf)nen, 1) from Theorem 7.7 by c-
®F_S;.
7=1%7

Theorem 7.8. The map (S1...,8) — c—®§:18j is a functorial operator
system tensor product.

Proof. Lemma 7.7 and its proof establish properties (T1) and (T3), while
Remark 7.1 implies property (T2). To show functoriality, let S; and 7; be
operator systems, ¢; : S; — T; be completely positive maps, j € [k], and
u € My(c-@5_ 1 S;)*. If ¢ : Tj — B(H), j € [k], are completely positive
maps such that the family (1/1]-);?:1 is commuting then the family (1;0¢;) ;?:1
is commuting, and hence

(I 90 (@5_105) (w) = (51 (45 © 65)) (u) € Mu(B(H))™.
It follows that ®§:1¢j : C—®§:1Sj — C—®§:17} is completely positive. O

Proposition 7.9. If Ay, ..., A are unital C*-algebras, then A1 ®max’ * -@max
Ak:Al ®C®C~Ak

Proof. By Remark 7.1, Mn(max—®§:1flj)+ - Mn(c—®§:1¢4j)+, n € N. For
the reverse inclusion, fix u € Mn(c—®§:1./4j)+. It suffices to show that

<Z>(”) (u) > 0 for all unital completely positive maps ¢ : A; @max- * - Omax Ax —
B(H). By Proposition 7.4, and an application of Stinespring’s Theorem,
we may further assume ¢ is a *-homomorphism. By associativity of the
maximal tensor product of operator systems (see [34, Theorem 5.5]) and the
universal property of the maximal tensor product of C*-algebras, we write
o= H?ﬂ(bj, where ¢; : Aj — B(H) are *-homomorphisms with commuting
ranges. By assumption, we have

(n)
6w = (1) (w20
and so u € Mn(max—®§:1.4j)+. The proof is complete. O

For the next theorem, recall that the coproduct S1 @1 So of two operator
systems is the (unique, up to a unital complete order isomorphism) operator
system, containing &1 and S as operator subsystems, satisfying the follow-
ing universal property: for every operator system R and unital completely
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positive maps ¢; : S; > R, i = 1,2, there exists a unique unital completely
positive map ¢ : S; 1 S2 — R such that ¢|s, = ¢, i = 1,2 (see [24, 33]).
We denote by A *1 B the C*-free product of the unital C*-algebras A and
B, amalgamated over their units. The next statement extends [46, Lemma
2.8] to the multivariate case.

Theorem 7.10. Let Al(j) be a unital C*-algebra, i € [n;], j € [k], and set
S; = Aﬁ” @1 D1 Aﬁf} and A; = Agj) SREEE ! Agj), j € [k]. Then
C'®;‘€:18' Ceoi A1 Omax * - Omax Ak

Proof. Set S = c- ®?:1 §; for brevity. By Theorem 7.8 and Proposition
7.9, the inclusion map ¢ : c—®§:15} — max—®§:1.,4i is completely positive.
Let u € My(S) N My(max-®5_;.A;)"; we will show that u € M, (S)". For
Jj € [k], let ¢; : S; — B(H) be a completely positive map, j € [k], such
that the family (gbj);‘?:l is commuting. Assume first that ¢; is unital for
each j € [k]. Using [24, Theorem 5.2], identify S; with the linear span of
Agj ), .. ,Aﬁf} inside A;, j € [k]. Each map ¢; is determined by a family
(¢;)?i , of maps qﬁi : Aé] ) B(H), which are unital and completely positive,
in that

$j(al + - +a),) = l(a]) + -+ &}, (a),

ag e AD =1, . ,nj. As shown in [8], if j € [k], there exists a unital
completely positive map ¢; : A; — B(H), given by
qgj(azil...az] )=y (a))-- ¢, (ap ),

where azp € A;p for each p, and ¢1 # - - - # £,,. Since ranqﬁz C rang;, j € [k],
we have that ¢}(A§i)) and cZ)%I(A%)) mutually commute whenever i # j. As
Aj is generated, as a C*-algebra, by the operator subsystems .Az(j), i € [nj],
we have that ¢;(A;) and ¢;(A;) commute whenever i # j. By Proposition

7.9, the map H;?:ld)j is completely positive on A @max - - - @max Ak, and thus

() o
<H§—1¢j> (u) = (¢1-+ )™ (u) >0,

showing u € M, (S)*.

Now relax the assumption on the unitality of the maps ¢;. Without loss
of generality, assume that [|¢;[| < 1, so that the operator Tj := ¢;(1s;) is a
positive contraction. Assume first that 7} is invertible for each j € [k]. Let
M be the von Neumann algebra generated by ¢;(S;); as T; € ran(¢;), we
have that T; € M; if ¢ # j. We conclude that TZ-_l,TZ-l/2 and Ti_l/2 are in
./\/l;-, whenever ¢ # j. Define the maps gb}- 1S5 — B(H) via

$i(u) =T, Pos()T; ', wes;, jelk
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As Tj_l/ % s positive, qgj is a (unital) completely positive map, j € [k]. We
have that T; € /\/l; if i # j; in particular, T;7; = T;T; when i # j, and hence

V212 121/ Ti1/2T]'1/2 :Tj1/2Til/27 i

' J J 7
Ifues;,veds;andi#j, then
bi(wdi(v) = T, Pei(u), _1/27}.‘1/2¢j(v)T;1/2

_ 1/2%(1}) 1/2¢Z( )T, 1/2Tj—1/2

—-1/2 —1/277—1/2 -1/2 _ ;
= 170,01 PTT Pe()TT = 65(0)dilw).
Thus, the family (QZ; ) _, is commuting. Using the previous paragraph, we

see that H?:ﬁl;j( )>0. Let T = Tl/2 . Tkl/Q7 then T is a positive operator
and thus

(n) .
(H§:1¢j) (u) = (T'® L) (I ;) ())(T © 1) > 0,

implying u € M,,(S)*.

Finally, relax the assumption on the invertibility of the operators T},
Jj € [k]. Let € > 0; then T; + el (positive and) invertible, j € [k]. Let
fj : §§ = C be a state, and define the map gZ;j :S; — B(H) by letting

bj(u) = ¢j(u) +efi(w)I, weS;, jelk]

We have that (gb]) _, is a commuting family of completely positive maps.
Furthermore, gbj(lgj) = Tj + €I, and so (b](lgj) is invertible, j € [k]. By
the previous paragraph, (Hg‘?:lggj)(") (u) € M,(B(H))*t. Letting € — 0, we
obtain (Hg‘?zlqﬁj)(”)(u) € M,(B(H))"; thus v € M,(S)" and the proof is
complete. (]

7.2. Representations of correlations via operator systems. In this
subsection, we describe the correlations from the classes Cgns, Csqc and Csga
in terms of states on operator system tensor products. Recall that €,
are the canonical generators of the operator system Sxy and, for a linear
functional

1 Sxy,x, ® Sy vy ® Say4, ®SByB, = C,
let I : Dx,v, ® Da,B, = Dx,v; ® Da,B, be the linear map, given by

Ls (z1y1, a2ba|r2y2, a1b1) = 8 (Exyey @ Eyyyy @ €ay by @ €aynby) -
Theorem 7.11. The map s — ' is an affine isomorphism from

(i) the state space of Sx,,x, @max Sa,¥1 Omax SA;,4; Omax SBy,B, ONtO
CSHS;
(ii) the state space Of SX2,X1 Re SYQ,Yl ®ec SAl,AQ ®ec SBl,Bz onto quc;
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(iii) the state space of Sx, x; @min Svs,¥; @min SA;, A3 Omin SBy,B, 0NtO
Csqa-

Proof. (i) Let I' € Cqps, and consider it as an element of Dx, x, ®min Py, V4 @min
Da, A, @min DB, B, For an element w € Dy,y; @min DB, B,, let
Ly : Dx,x; @min Dy,y; @min DAy 4, @min PB1B, — Dxyxy @min DA, A,

be the corresponding slice map. Based on the remarks preceeding Definition
5.6, the strongly no-signalling conditions imply that, if w = €y, y, ® €y, 4, ®
€by,by @ €by by then Ly, (I') € Cps. By [37, Theorem 3.1],

L,(T') € Rx,x, @min RA; 455 W € Dy,y; @min DB, B, -
By symmetry,

Ly (T) € Ryyyy @min RBiByy, ' € Dxyxy @rmin DAy 4y
It follows that

I' € Rx,,x; @min Rys, i @min RAa;,45 @min RB;,Bs-
On the other hand, relation (8) implies that

d ~
(SXQ,Xl R max SYQ,Yl Qmax SAl,AQ Qmax SBl,Bg) =c.o.i.

R x5,x; @min Rys,v; @min RA;, 42 Qmin RB,,B,-
The claim is proved.
(ii) Suppose that

S SXz,X1 ®c ‘S‘Y27Y1 e SA1,A2 e SB1,BQ —C

is a state. By Theorem 7.10, we may assume that s is the restriction of a
state

5 AXQ,Xl Qmax -AYQ,Yl Qmax -AAl,Ag Qmax ABl,BQ — C.
The GNS construction applied to s produces a Hilbert space H, a unit vector
¢ € H and mutually commuting projection-valued measures (Ez, 2, )z, eX
(EyQ’yl)yleYu (Fa1,a2)a2€A2 and (Fbl’b2)b2€B2 on H such that

Iy (xlyla G252!332y2, albl) = <Em2,mlEy2’ylFal,angthga §> )

for all @;, v, a;s, b5, 1 = 1,2. Setting Proyo 2191 = Faya Y29 and Quiby,a0b, =
Fy, .0, FP1%2 we have that the NS operator matrices P = (Puyyy o151 )as.01,59.01
and @ = (Qayas,bibs)ar,a0,61,b are dilatable and have mutually commuting
entries; thus, I's € Cyqc.

Conversely, suppose that I' € Cyqc and use Lemma 5.8 to write I' in the
form (25) for some mutually commuting PVM’s Px = (Pyy 2, )a1ex,, Py =
(PyQ’yl):lﬂGYla PA — (Pa1,a2)a2€A27 PB — (Pb17a2)a2€142a T2 € X27 Y2 S Y27
a1 € Ay, by € By. Let mx, my, m4 and 7p be the unital *-representations of
Ax, x5 Avy vy, Aa, 4, and Ap, B,, arising canonically from Py, Py, P4 and
Ppg, respectively. Then 7 := mx @ Ty ® T4 ® Tg is a unital *-representation
of the C*_algebra A= AXg,Xl Omax AYQ,Yl Omax AAl,Ag max ABl,Bz- Using
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Theorem 7.10, let s be the restriction to Sx, x; ®c Sy;,v; ®cSA;,4, R SB,,B,
of the state on A, given by w — (w(w)n,n). We have that I' = T';.

(iii) Let T be a quantum SNS correlation; without loss of generality, we
may thus assume that

[(2z1y1, agbz|r2y2, a1by) = <<Ma:z,ac1 @ MY ® Ny, 4y @ Nbl’b2> n, 77> ,

for all z; € X5, y; € Vi, a; € A; and b; € B;, i = 1,2, where the families
Mx = (Mw27$1)9€1€X17 My = (Mal,aQ)GQEAw Ny = (Ny27y1)y16Y1 and Np =
(Nb1:b2), e, are POVM'’s acting on finite dimensional Hilbert spaces Hyx,
Hy4, Hy and Hp, respectively, and n € Hx ® H4 ® Hy ® Hp is a unit
vector. After an application of Naimark’s Theorem, we can further assume
that Mx, M4, Ny and Ng are PVM’s. Let 7x : AXQ,X1 — B(Hx), Ty :
.AY27Y1 — B(Hy), TA: AAl,Ag — B(HA) and g : -ABl,Bg — B(HB) be the
unital *-representations, canonically arising from My, M4, Ny and Npg,
respectively. Letting mn = 7nx Qmy Qma®@np, N € Hx @ Hy ® Hy ® Hp be
the vector obtained from n after applying the canonical shuffle, § be the state
on Ax, x; ®min AYs i @min A4 4, @min AB, B, given by 5(w) = (m(w)7, ),
and s be its restriction to Sx, x; @min Sv5,v7 @min S4;,4, Omin SBy,By, We
obtain that I' = T';.

Suppose that I' € Csqa, and let (I'y)pen be a sequence of quantum SNS
correlations with I';, —,, o ['. Using the previous paragraph, choose a state
5n of Sx,. X1 @min SYs,v7 @min S4;,45 @min SB,,B, such that I', =T’y , n € N.
Letting s be a cluster point of the sequence (s, )nen in the weak™® topology,
we have that I' =T';.

Conversely, let s : Sx, x; @min Syz,v; @min S4;,4, Omin SB;,B, — C be a
state, and, using the injectivity of the minimal operator system tensor prod-
uct (pointed out in Remark 7.6), let 5 : Ax, x; ®min Avs,y; @min A4, Ay Omin
Ap, B, = C be an extension of s. By [31, Corollary 4.3.10], s is in the
weak™ closure of the convex hull of vector functionals on mx (Ax, x,) ®min
Ty (Ays, 1) OminTa (A4, 4,) OminTB(AB, B, ) for some unital *-representations
mx, Ty, 74 and . The argument given in the proof of [46, Theorem 2.10]
can now be used to show that I' is a limit of quantum SNS correlations. [

8. SYNCHRONOUS GAMES

A synchronous game [45] over a quadruple (X, X, A, A) is a non-local
game F C XX x AA such that

(r,z,a,b) e E = a=0b.

A perfect strategy for a synchronous game £ C XX x AA is called a syn-
chronous correlation over (X, X, A, A).

Assume that Y; = X; and B; = A;, i = 1,2. In this section, we re-
strict our attention to the case where the games E; C X1 X7 x A1 A and
Ey C X5X5 x A Ay participating in a quasi-homorphism game Eq ~» Ey
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are synchronous. We achieve tracial representations of SNS quantum com-
muting and approximately quantum correlations, which lead to necessary
conditions for the existence of an isomorphism between two synchronous
games in terms of the corresponding game algebras. As in the paragraph
before Definition 5.6, we have that, if I' is an SNS correlation over the
quadruple (X9X9, A1 A1, X1X1, A2A2), then the linear maps I'x, x,»x, x; :
Dx,x, — Dx,x, and T424224141 Dy 3 Dy 4., given by

(29) Pxaxooxx (@, mles,yo) = @iy, asbolaays, arby)

a2,ba€As

and

(30) rAA= A2 (g, bylag, by) = Z D(z1y1, azbe|w2y2, a1b),
z1,y1€X1

are NS correlations over (Xa, Xo, X7, X1) and (A1, A1, Aa, As), respectively.

Definition 8.1. An SNS correlation T' over (XoXo, A1 A1, X1X1, A2 Ag) is
called jointly synchronous i#f I'x, x,x, x, and DA =4242 gre synchronous
correlations.

Remark 8.2. Since the terms in (29) and (30) are non-negative, an element
I' € Cgps is jointly synchronous precisely when
[ (z1y1, agba|roxe,a1b1) #0 = 1 =11
for all o € X5, 21,91 € X1, a1,b1 € A1 and ag, by € Ao, and
D(z1y1, agba|z2y2, a1a1) #0 = a2 = by.
for all xo,y2 € Xo, 1,91 € X1, a1 € A1 and as, by € As.

For a linear functional T on Ax, x; ® A4, 4,, set

FT(xlyla azb2|1‘2y2> albl) = T(ezvg,:vl €ya,y1 X eal,agebl,b2)7

where z;,vy; € X;,a;,b; € A;,;i = 1,2. In the sequel, we will use the terms
“trace” and “tracial state” interchangeangly.

Theorem 8.3. The following hold:

(i) If T is a trace on Ax, x, @max AAa, 4, then I'r is a jointly synchro-
nous and quantum commuting correlation.
(ii) If I' € Csqe is jointly synchronous then there exists a trace T on
Ax, X, @max Aay,4, such that T =T'1.
(iii) A jointly synchronous SNS correlation I is approzimately quantum
if and only if there exists an amenable trace T on Ax, x, ®minAA4,, 4,
such that I' = I't such that I’ = T't.

Proof. (i) That I't is strongly no-signalling is straightforward. The GNS
construction, applied to T, yields a Hilbert space H, a unit vector £ € H
and a representation 7 : Ax, x, @max Aa,,4, — B(H) such that T(w) =
<7r(w)f,£>, w e -AXQ,Xl Omax ‘AAl,AQ' Set

Proyswiy = W(exzmleyz,m ®1) and Qayby,azby = T(1l® €a1702€b1,b2)7
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for all z;,y; € X; and a;,b; € A;, i = 1,2. Proposition 5.1, applied to the
map ¢ : Sx,,x, ®c Sx,,x, — B(H), given by
D(€xs,01 ® €yoyn) = Prgyoaryr,  Tir¥i € Xiyi=1,2,
shows that (Pp,y..e14,) is a dilatable operator matrix; by symmetry, so is
(Qaiby asby)- Thus, I't is a quantum commuting SNS correlation. Finally,
the strong synchronicity is immediate from Remark 8.2 and the fact that
(6952,931):216)(1 and (ea17az)a2€A2 are PVM’s.
(ii) For brevity, write
B = 'AXQ,Xl O max -AXQ,Xl Smax -AAl,Ag O max -AAl,Ag
and
A= AXQ,Xl Qmax AAl,Ag'
Note that, up to a flip of the tensor terms, B = A R nax 2A; in the rest of the
proof, the latter identification is used without explicit mention.
By the (proof of) Theorem 7.11, there exists a state § : B — C such that
I =T; If w,wy € ARmax A, write wy ~ ws if §(w; —wy) = 0. For x; € X;
and a;,b; € A;, i = 1,2, we have

5(epge1 ®1® ey 00 @by py) = Z 5(€pg,21 ® €zo41 @ €ar.as © €by by)
y1€X1
5(epg,z1 @ €zo.21 @ a1 a0 @ €h) by)
= D(z121,azbs|zowe, a1b1)
= Z 5(ezayn @ gy @ €ayay @ €y by)
y1€X1
= (1 ® epyz1 @ e€ar a0 @ €y by)i
thus,
€roz1 @1 €a1a0 Dby ~ €rpzy @ Crpzy D €aya0 @ Ehy by
~ 1® e,z ®€ayay @ €y by
It follows that
rpa; ®1®1IR® L~ eryz erya RO~ 1R®esy2 1B,
for x; € X;,1=1,2. Write
D=, @111 —1Q ey @1 @1,
and note that
h2 = e, ®1Q101 — gy @€y, @101
—Cryz ®Craz 11 +1Rep, 2 @11,

implying h? ~ 0. An application of the Cauchy-Schwarz inequality now
shows that wh ~ 0 and hw ~ 0 whenever w € 9B. In particular, for all
x; € X;,1=1,2, we have

(31) z€ppp RLI RV~ 2R €py 0y QU ~ 2€3y 2, ¥RV, 2z € Ax, x,,v €A
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Similarly,
(32) u®z2'€qy 0y ®1 ~UR2 Re€gy a0y ~ UR€Ea 007 @1, 2 € Apy ay,u €A
Equations (31) and (32) imply
(33) z€ry 0, ®1®Z €y 0, DL ~ €ay 2y ®2Q€a;,0,R7 ~ €1y 21 201 ®€4; 0,2’ ®1

for all z € Ay, x,, all 2/ € A, 4, and all z; € X;, a; € A;, 1 = 1,2. An
induction by the length of the words w on {eg, 2, : x; € Xj,7 = 1,2} and
w' on {eq, a, : ;i € Aj,i = 1,2}, whose base step is provided by (33) shows
that

wRlZw@l~wz@lew? ®l, 2,2 € Ax, x,,w,w' € Aay 4,

(see the proof of [37, Theorem 6.1]). We conclude that the functional T on
Ax, X, @max A4y, 4, given by

Tu®v)=5u®leuel), ueAx,x,,ve A a,,

is a tracial state. The fact that I' = I't follows from (33).

(iii) Suppose that I' is an approximately quantum jointly synchronous
SNS correlation. By Theorem 7.11, there exists a state s on Ax, x; ®min
Ax, x; @min AA; Ay Omin Aa, 4, such that I' = T's. Using (i), let T :
Ax, X, @max Aa,,4, — C be a tracial state such that I' = I'y. By [35,
Lemma II1.3], there exists a *-isomorphism 0 : Ax, x, — A(;g, x, such that

6(612,361) = egg,xl' Let g : AXQ,X1 ®max AAl,A2 - AXz,Xl ®min AALAZ be the
quotient map,

F: Axy x, @min A4y, 4y Omin Axy, X Omin AAa; A,
— Ax,, X1 Omin Axy, X, Omin AA4;, 40 Omin A4, 4,
be the flip operation, and
1 (Axy X, Omax AdpAy) Omin (Axs, X, Omax Aay a,)F = C
be the linear functional, defined by letting
p=s0Fo(qe(qgo(0'®0™h)).
It is then straightforward to check that
p(u @ vP) =T(w), u,v € Ax, x; Omax A, 4s-

By [11, Theorem 6.2.7], T is amenable. The converse direction follows by
reversing these steps. O

Proposition 8.4. IfT' is a jointly synchronous SNS correlation then T'[€]
is synchronous whenever £ is such.
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Proof. Let € be a synchronous no-signalling correlation over (X1, X7, A1, A1).
Suppose that o € X5 and ag, by € As. We have

T[€](az, bolra,32) = Y Y T(x1y1, asbolrama, arby)E(ar, bilar, 1)
z1,y1€X1 a1,b1€A1

=Y T(wiz1,a9bs|wam2, arby)E(ar, bilz, 1)
z1€X1 a1,b1€A;

=Y ) T(wi1, azbs|wam, ara1)€(ar, arlar, x1).
r1€X1 a1€A,

Since T is jointly synchronous, I'(z121, agba|zaz2,a1a1) = 0 whenever ag #
by. Thus, I'[€](ag, be|ze, x2) = 0 whenever ay # be, that is, I'[€] is synchro-
nous. O

Remark 8.5. Let T be a tracial state on Ax, x, ®maxAa,,4, and 7 be a tra-
cial state on Ax, a,. Let & : Dx, x; — Da, 4, be the quantum commuting
no-signalling correlation [45], given by

(34) Er(a,blx,y) = T(exaeyp), =,y € Xq,a,b€ Aj.
By Theorem 6.1, I't[€;] is a quantum commuting NS correlation while, by

Proposition 8.4, it is synchronous. By [45, Theorem 5.5], there exists a
tracial state T[7] : Ax, 4, — C such that

(35) Prles] = Erp.
Let, on the other hand,
TOT: Ax, x; Omax Ax,,4; Omax A, 4, = C

be the tracial state, given by

(ToNu®vew)=T(uw)r(v), uveAx,x,,v € Ax, A, w € Aa, A,-
Equation (35) implies

T7](exs,a2€y2,b5) :Z Z (T O T)(€as,01€y0,01 @ €a1,a1€y1,b1 D €ar,az€hybo)-

1,91 a1,b1

We recall synchronous game E C XX x AA gives rise to the C*-algebra
(28] A(E) = Ax,a/JE, where Jg is the closed ideal of Ax 4, generated by
the set {ezq€yp : (z,y,a,b) € E} (the C*-algebra A(FE) is known as the
game C*-algebra of E). Write gp for the quotient map from Ax 4 onto
A(E). We denote by Ta(A(E)) the convex set of all restrictions of tracial
states on a C*-algebra A(F) to the subspace

A(2)(E) = span{q(ezaeyp) : 7,y € X,a,b € A}.
By [28, Theorem 3.2], the perfect quantum commuting strategies for E are

in correspondence with the elements of T(A(FE)), by associating with every
7 € T(A(E)) the correlation defined in (34).

Corollary 8.6. Let E; C X;X; x A;A; be a synchronous game, i = 1,2. If
Ey ~qc Ey then 7 — T'[7] is an affine map from Ta2(A(Er)) into To(A(E?)).
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Proof. For a tracial state 7 on A(FE), let 7(2) be its restriction to the subspace

AP(E) of A(E). By Proposition 8.4 and Remark 8.5, it suffices to show
that the map

T2(A(E1)) — T2(A(E2));  72) = TI7l(2),

is well-defined. This is immediate from Theorem 6.1 (ii) and the discussion
in Remark 8.5. U
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