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The low-lying energy spectrum of the static-colour-source-anti-source system in a vacuum containing light and

strange quarks is computed using lattice QCD for a range of different light quark masses. The resulting levels are
described using a simple model Hamiltonian and the parameters in this model are extrapolated to the physical
light-quark masses. In this framework, the QCD string tension is found to be \/; =445(3)41(6)5ys MeV.

sys

1. Introduction

The energy levels of a static quark anti-quark pair V,,(r) as a function
of the interquark distance r probe Quantum Chromodynamics (QCD)
at all scales. For very small distances r < 0.1 fm the potential can be
computed by perturbation theory. At large distances the behaviour of
the potential depends on the matter content. In pure-gauge theory at
large separations, the potential can be modelled by an effective bosonic
string. With dynamical quarks, the ground-state potential V;(r) flattens
at large r due to the formation of a pair of static-light mesons (“light”
refers here to the dynamical quarks). It was noted already in [1] that
“the ground state potential therefore be called a static quark potential
or a static meson potential”. A first estimate of the distance where satu-
ration of the ground state potential sets in was provided in [2]. Later, a
model for string breaking as a mixing phenomenon between a string
and a two-meson state was formulated in Ref. [3], which predicted
for lighter quark mass the energy gap becomes larger and the width
of the mixing region also expands. First observations of string break-
ing were made in the three-dimensional [4] and four-dimensional [5,6]
SU(2) gauge-Higgs model with scalar matter fields. Evidence for string
breaking in QCD with N; =2 quark flavours was shown in [7] for a
sea quark mass slightly below the strange quark mass corresponding
to m, ~ 650MeV. String breaking occurred for static-source separa-
tions of r, ~ 1.25 fm. Our previous work [8] presented a computation
of the three lowest potential energy levels in QCD with Ny =2 + 1
quark flavours at quark masses corresponding to m, ~ 280 MeV and
mg ~ 460 MeV. The computation was performed on the N200 gauge
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ensemble generated by the CLS consortium [9]. We found two string
breaking distances r, ~ 1.22fm and r, = 1.29 fm corresponding to the
saturation of the potential levels by two static-light and two static-
strange meson levels, respectively.

This work extends the analysis of Ref. [8] to study the quark-mass
dependence by including two additional gauge ensembles with the
same lattice spacing a ~ 0.063 fm and with one ensemble at a lighter
quark mass and one heavier ensemble, covering a range of pion masses
m, € [200,340] MeV. Ref. [8] showed the energy levels are modelled
reliably by a simple three-state Hamiltonian with six parameters. One
model parameter can be interpreted as a string tension. In this work we
determine the quark-mass dependence of these model parameters. We
introduce one more parameter in the model to include a curvature term
proportional to 1/r as seen in the Cornell potential [10]. We extrap-
olate values of the seven parameters to the physical point following a
trajectory where the sum of the bare quark masses is kept constant and
close to its physical value.

The string tension enters as a parameter into models describing the
fragmentation of partons into hadrons [11-14]. The so called “Lund
model” [15] is implemented to describe hadronisation in the “Pythi-
a” Monte-Carlo event generator [16]. In such models the string tension
corresponds to a constant energy per unit length of the flux tube con-
taining the colour field of a quark and anti-quark pair. The result of the
present work provides input from first principles which could be used
to refine these models by adding information on the excited states, for
example.
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Table 1
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CLS ensembles [9,17] used in this work. N, is the number of configurations on
which fermionic observables were measured. NcW“f is the number of Wilson loop mea-
surements, binned into N, bins. The third column gives the flow scale 7, [18] in
lattice units. The lattice sizes are T = N,a in time and L = N,a in space. The last three
columns list the pion mass, the kaon mass and the value of m, L from [19].

label N, . NY o o1)/d N, N, m, [MeV]  my [MeV] m,L
N203 94 752 5.1433(74) 48 128 340 440 5.4
N200 104 1664  5.1590(76) 48 128 280 460 4.4
D200 209 1117 5.1802(78) 64 128 200 480 4.2

The paper is organised as follows. The methodology of the lattice
calculation, closely following the techniques used in our earlier work,
is reviewed in Sec. 2. Section 3 introduces the simple model describing
the dependence of the lowest energy levels on the static-colour-source
separation, including the addition of the 1/r term. Having extracted the
model parameters from the data at three values of the light quark mass,
Section 4 establishes their dependence on the light quark dynamics and
extrapolates to the physical quark-mass value. This is used to present
the energy levels in the physical theory as the final result of the paper
in Fig. 9. Our conclusions are presented in Section 5.

2. Methodology

To investigate the dependence of the static energies on quark mass,
we extend our previous analysis to include three ensembles of gauge
configurations generated by the CLS consortium [9,17]. These ensem-
bles include the dynamics of Ny =2 + 1 flavours of non-perturbatively
O(a) improved Wilson fermions [20] with a tree-level o) improved
Liischer-Weisz gauge action [21] and are described in Table 1. In
addition to ensemble N200 analysed in Ref. [8], we consider one
ensemble at a smaller value of the pion mass, D200 and one at a
larger pion mass, N203. These ensembles have the same lattice spac-
ing a = 0.0633(4)(6) fm (corresponding to an inverse bare gauge cou-
pling 6/g§ = f =3.55) [22]. The quark masses m, = Mmyq,, =m; and
My ange = Mg vary along a chiral trajectory with constant sum of the
bare quark masses. The bare quark masses were chosen such that the
chiral trajectory approximately passes through the physical point [19].
Since the bare parameters corresponding to the physical point are only
determined after completing the analysis of the trajectory, some dis-
crepancy can remain. For the ensembles considered in this work, these
quark mass mistunings have been computed in [19,22]. We are con-
fident the effects these mistunings have on our analysis are small and
subsequently neglect them. We introduce the quark-mass parameter,

2

T
= — )
2 2
m”+2mK

3m

where m_,my are the pion and kaon masses. We take these meson

masses in lattice units from Ref. [19] to compute y;. To leading-order

. . . 3
in chiral perturbation theory u; ~ ——

S, and so along a trajectory
which holds the sum of the quark masses 2m; + m, fixed, y, is pro-
portional to the light quark mass m,. At the N; =3 flavour-symmetric
point y; = 1 holds. For physical quark masses and correcting for isospin-
breaking effects, m, = 134.8 MeV, myg = 494.2MeV [19] and conse-
quently ;4}) hys — 0.1076. To mitigate against topological freezing, open
boundary conditions in time [23] are used. Reweighting factors [24] are
included in the analysis of observables to modify the action to the ap-
propriate one. Statistical uncertainties are determined by the I'-method
[25,26]. There are no measurable autocorrelations in our data and we
do not add a tail to the autocorrelation function.

We compute the allowed energies of a system comprising a static
quark at spatial position X and a static anti-quark at position ¥ as a func-
tion of separation ¥ = y— X. The calculation involves the computation of
a matrix of time-correlation functions C(7, ) between states created by a
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Fig. 1. Schematic representation of the string breaking mixing matrix.

flux tube operator or states consisting of a static meson and anti-meson
pair with isopin zero. In a theory with degenerate dynamical up and
down light quarks and a strange-quark, two sets of mesons are formed
by combining a static source with either a light or strange quark, giving
the static-light or static-strange mesons. C(F, ), the relevant matrix cor-
relation function needed to study this spectrum is shown schematically
in Fig. 1. Explicit expressions for the interpolation operators of string
and two-meson states are given in [8].

All gauge links in the interpolating operators are smeared using
HYP2 parameters [27-31] a; = 1.0,a, = 1.0,a3 = 0.5. For the string
operators, 15 and 20 levels of spatial HYP smearing with parameters
a, = 0.6, a3 = 0.3 [31] are used. To increase spatial resolution of the
energies in the string breaking regions we use on- and off-axis distances
7. For off-axis displacements, gauge-link paths which follow the straight
line connecting the static source and anti-source as closely as possible
are constructed [32], using the Bresenham algorithm [33]. Following
this closest path significantly enhances the overlap between creation
operator and physical string states.

Two distinct computational techniques to compute quark propaga-
tors (represented by the wiggly lines in Fig. 1) are needed. We refer
to propagators starting and terminating on the same time slice ¢, =¢
as “relative”, while quark propagators with 7, # ¢, are called “fixed”.
Evaluation of quark line diagrams uses the stochastic LapH method
[34], based on the distillation quark-smearing technique [35]. Distil-
lation projects the quark fields on a time-slice into the space spanned
by the lowest N, eigenmodes of the three-dimensional gauge-covariant
Laplace operator, constructed from stout-smeared gauge-links [36] with
parameters p = 0.1, n, = 36. Propagators between distillation spaces
are estimated using stochastic LapH, with the variance reduced by di-
lution [37-39]. Fixed quark propagators are evaluated on two source
times t,/a = {32,52} using full time and spin dilution with interlace-
8 LapH eigenvector dilution, denoted collectively by (TF, SF, LI8)
[34]. Relative quark propagators are evaluated on all source times
to/a € {32,33,...,95} using interlace-8 time and full spin dilution with
interlace-8 LapH eigenvector dilution, labelled (TI8,SF,LI8). A total of
§-L-N,-t;+S-T-L- N, (fixed+relative) solutions of the Dirac equa-
tion (inversions) are required per gauge configuration for each quark
flavour. Here N, denotes the number of random vectors in the space
defined by the dilution projectors. For our choice of dilution schemes
the number of inversions per quark flavouris4-8-N,.-2+4-8-8- N,
(fixed+relative). These parameters are summarised in Table 2. Note
correlation functions for off-axis static source separations are easy to
compute using relative and fixed quark propagators, unlike the off-axis
gauge-link paths.
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Table 2

The number of Laplacian eigenmodes N, spanning the distillation space and
the inversion costs for all ensembles used in this calculation. For each type of
quark line and flavour, the number of stochastic vectors in the space defined
by the dilution projectors and the corresponding total number of inversions is
given. The source times and the dilution schemes employed are specified in the
text.

light strange
N, Type N, Miny N, Miny
N203 192 fixed 5 320 2 128
relative 2 512 1 256
N200 192 fixed 5 320 2 128
relative 2 512 1 256
D200 448 fixed 7 448 2 128
relative 3 768 1 256
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Fig. 2. Effective masses of the static-light (bottom) and static-strange (top)
mesons on the ensemble D200. The horizontal bands indicate the time intervals
used and energies obtained from a single exponential fit to the corresponding
correlators.

We start by extracting energies of the static-light meson Ey, and
static-strange mesons Eg. The thresholds for the avoided level cross-
ings of string breaking are given by twice these energies. When an
energy level reaches one of these thresholds, the state formed by a me-
son anti-meson pair becomes energetically more favourable. The static-
light and static-strange energies are obtained from single exponential
correlated fits to the time-correlation function Cg,(#) and Cp (1) of a
static-light meson and a static-strange meson respectively. For all en-
sembles fits are carried out in the time interval [15,21] in lattice units.
Fig. 2 shows the effective masses aM;(f + a/2) = In[C(¢)/C(t + a)]
(points) as a function of 7/a for ensemble D200. The top and bottom
panels show the static-strange and static-light mesons respectively. Hor-
izontal bands indicate the values of aEp, and aEj, extracted from the
correlator fits extending over the fitted time range.

For each fixed inter-quark separation r = || we solve a generalized
eigenvalue problem (GEVP) using the correlation matrix of Fig. 1

C)v,(t,ty) = A,(t,15) Cty) v,(1,1y), 2)

to extract the potential energies for n =0,1,2 and ¢ > t,. We fix 1y = 5a
for all ensembles. To ensure numerical stability of the analysis we first
prune [40-42] the correlation matrix from size 4 X 4 down to 3 X 3,
replacing C(¢) with

CO(n)=U0TCy) 2C()Cty) /0. )
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Fig. 3. Examples of effective masses of the ratios Eq. (5) on the ensemble D200
at two distances as indicated in the plots. The horizontal bands correspond to
the energies V,,(r) —2Ep;, n =0, 1,2 extracted from exponential fits to the ratios
and extend over the fitted time interval.

U contains the three most significant eigenvectors at #,+a. The bar in U
and C(f,) indicates these matrices are determined on the average over
gauge configurations. Then we solve the GEVP in Eq. (2) attime t =1, =
10a, which is fixed for all the ensembles. Using the three eigenvectors
v;(tg,t4), i =0,1,2 we project to a single correlation function (“fixed
GEVP”) by computing

G (1) = (vitg. 1), CPDw;(tg.10)) » €))

where the parentheses denote the inner product over the components
of the eigenvectors. The statistical precision of our analysis is improved
by exploiting the beneficial covariance between C and the static-light
meson correlator Cp, (7). The correlation function ratios
¢ (1)
R,m= 20, ®)
Cz (1)
ol

for n=0,1,2 are then computed and fits to a single exponential with
time dependence exp(—#(V, — 2Ep,)) are performed. In these ratios,
energy levels become renormalised by the subtraction of twice the di-
vergent static-light energy since the additive self-energy contribution
of the static-quarks exactly cancels. The fit ranges [,;,/a, ;max/@] are
carefully chosen in each case by inspection. Any remaining systematic
uncertainty mainly comes from ¢_;, /a dependence and we choose val-
ues of ¢, /a such that these effects are within the limits of statistical
precision. Finally we set 7, =, + 6a. Fig. 3 shows examples of ef-
fective masses aE ¢ (t +a/2) =In[R,(1)/R,(t + a)] for n =0, 1,2 for two
on-axis inter-quark separations r = 154 and r = 19a on the ensemble
D200. Note the effective masses derived from ratios in Eq. (5) can ap-
proach their plateau values from below. The bands indicate the energy
values from the exponential fits of R, and extend over the fitted time
ranges. The distance 15a (bottom plot in Fig. 3) is the smallest distance
down to which we can reliably determine the excited states. The separa-
tion 19a (top plot in Fig. 3) is in the middle of the first string-breaking
region where the ground state and first excited state potential levels
would cross. Notice all three energy levels are very close at r = 19a,
and yet the GEVP is able to disentangle the three levels very efficiently.

Fig. 4 shows the three lowest potential energy levels a(V, — 2Ep))
in lattice units as a function of the distance r/a in the region where
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Fig. 4. The energy levels extracted from the GEVP analysis for separations in the range r/a € [17,22] for the three ensembles described in Table 1. The data include
off-axis separations. The bands indicate the energies extracted from a fit of data to the seven-parameter model of Eq. (6).

Table 3

Distance ranges [r;(n)/a,r,(n)/al
used for the 7-parameter model fits
to ground (n = 0), first (n = 1) and
second excited state (n =2).

id n=0 n=1 n=2

N203 [4,24] [11,24] [11,24]
N200 [4,24] [11,24] [11,24]
D200 [4,27] [15,27] [15,27]

string breaking occurs for each of the three ensembles described in Ta-
ble 1. Along our trajectory of decreasing light quark mass and increasing
strange quark mass the energy gap between the first and second string
breaking increases. In order to have a better resolution of the avoided
level crossings we include off-axis distances. Some fluctuations in the
size of the statistical errors can be seen especially for the off-axis dis-
tances. For on-axis distances we profit from self-averaging due to the
cubic symmetry.

3. Model

The model used in Ref. [8] is extended to fit the data at smaller
separations by the inclusion of a Cornell 1/r term. The three-state model
Hamiltonian becomes

V) Vg e
H=|v2g E 0
8s 0 EZ

,V(r)=l70+ar+y/r. 6)

After introducing a parameter y for the 1/r term, the new model has
seven parameters, labelled {El s Ez, g,8 0, 170, 7 }. The diagonal entries
in Eq. (6), V), El, E2 are the asymptotic energy levels for r — o
up to O(r1). When there are N ; degenerate light flavours in the mix-
ing matrix elements between string and two-meson states of the model
Hamiltonian, a flavour factor \/ﬁ, multiplies the mixing coefficient g;,
in analogy to the corresponding flavour factor in Fig. 1. For N; =2 the

factor y/2 in the three-state model Hamiltonian Eq. (6) can be derived
from a four-state Hamiltonian with non-degenerate up and down quarks
by taking the limit of degenerate light quarks.

The dependence of the three eigenvalues e,(r),n = 0,1,2 of the
model Hamiltonian Eq. (6) on the distance r is fitted to the three
lowest potential energy levels V,(r) determined from the data. These
levels are normalised by subtracting twice the energy of the static-light
meson 2Ep,. Hence the fitted eigenvalues inherit this normalisation,
which removes the divergent self-energy contribution from the tempo-

ral static-quark lines. The model fit parameters in Eq. (6) are obtained
by minimisation of the correlated 2,

2 ry(n)  ry(m)

L=, 2 D (Vn(’)—zE@—en(r>)C_"l<Vm(r’)—2E@—em(r’)),

n.m=0r=ry(n) r'=r(m)
)

where C~! is the inverse of the covariance matrix for the potential lev-
els V. The matrix C is determined by the I'-method. For each pair of
potential levels we compute the squared statistical errors of their sum
and their difference. The covariance between two levels is obtained
from the difference of these two squared errors. In order to obtain a
positive matrix we switch off the autocorrelations between the poten-
tial levels when computing C. The distance ranges [r 1(n),ry(n)] used to
fit potential levels V, on individual ensembles are given in Table 3. The
minimal distance for the ground state V}, is set to 4a in order to be sen-
sitive to the Cornell 1/r-term. For the first and second excited states, V;
and V, respectively, the minimal distance is chosen so the energy gap
to the ground state is smaller than 2m, . By this choice we avoid fitting
our excited state levels at too small distances where there could be un-
resolved intermediate energy levels in our analysis. For ensembles N200
and N203 we set the maximal distance for the fit equal to L/2. Poten-
tial values at distances larger than L /2 suffer from finite volume effects
and are not considered. We impose a cut on the covariance matrix C of
the potential levels using a singular value decomposition. Eigenvalues
of C less than 10~ times the maximal eigenvalue are removed from
the inverse covariance which we denote by C~! in Eq. (7). We investi-
gated the dependence of the fit parameters on this cut parameter and
found this a reasonable choice; cuts of 1075 or 1073 times the maximal
eigenvalues give consistent results.

In Fig. 4 the bands show the seven-parameter model fits to Eq. (6)
for each of the three ensembles analyzed in this work and including
statistical errors. We see that the model describes our data very well in
the region where string breaking happens.

4. Mass dependence and physical point

With three ensembles generated with different light and strange
quark masses, the mass dependence of the model and its parameters can
be investigated and an extrapolation to the physical values of the quark
masses attempted. To begin, the difference between the static-light and
static-strange meson masses was determined and a linear extrapolation
to the physical light quark mass performed. The result of this extrapola-
tion can be seen in Fig. 5. The subtraction removes the divergent static
source energy, yielding a splitting with a well-defined continuum limit.
We performed a fit to a simple model assuming linear dependence of
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Fig. 5. Dependence of the mass difference between the static-light and static-
strange meson masses on the light-quark mass parameter y, of Eq. (1).
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Fig. 6. Dependence of the mixing parameters, g, and g, on the light-quark mass
parameter, y; of Eq. (1). The vertical line indicates the physical light-quark
mass ratio.

this splitting on the light-quark mass parameter, 4, away from the three-
flavour symmetric point corresponding to y; = 1. The data clearly shows

agreement with this simple behaviour. Extrapolation to yfhys yields

\/Q(EQS — Ep;) =0.054(2) which gives Eg; — Eg; = 7T4(3)ga (1)gys MeV
using \/t_ =0.1443(7)(13) fm [22]. This compares with the experimen-
tally determined value of the mass difference, averaged over isospin for
the B, and B mesons of 87.42(14) MeV [43]. The discrepancy is most
likely due to finite heavy-quark-mass effects, neglected in this calcula-
tion. Other possible effects include finite-lattice-spacing artefacts and
systematic uncertainty in the light- and strange-quark mass determina-
tions.

The two mixing parameters, g; and g, of Eq. (6) determined at
the three light-quark values are displayed in Fig. 6. Without a robust
prediction from theory, their light-quark mass dependence was again
modelled assuming a simple linear behaviour, cf. [44] with the two
straight-lines constrained to a common value at the flavour-symmetric
point, corresponding to y; = 1. For this fit, y?/ny = 16.8 and some
tension between the data and the model is seen close to the three-
degenerate-flavour point. In the absence of a more detailed model for
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Fig. 7. Light-quark mass-dependence of the coefficient of the dimensionless
1/r Cornell potential term from fits to the model of Eq. (6). The vertical line
indicates the physical light-quark mass ratio.

this mass dependence, the phenomenon was not investigated further.
As seen clearly in this figure however, the two mixing parameters, g;
and g, differ by a factor of almost two for physical values of the quark
masses. Assuming linear behaviour yields extrapolated values of g; ; at
the physical light-quark mass ratio of

g\/1o = 0.0256(3),
2,1/1o =0.0134(4),

g =350 (S)Stm(3)Sys MeV
85 = 18.3(6)55(2)5ys MeV. 8

Fig. 7 shows the light-quark mass dependence of the coefficient y
weighting the 1/r term in V() modelling the gluonic flux-tube in
Eq. (6). |y| is plotted for clarity. Significant mass dependence in this
term is observed and the value extrapolated to the physical point is
found to be

yPYS = —0.434(11). 9)

The uncertainty is purely statistical as there is no scale dependence
on this dimensionless parameter. Understanding the mass dependence
in detail would require closer study of the transition from the short-
distance behaviour of the static potential into the string-breaking region
and is beyond the scope of this first study.

The dependence of the string tension on y; is seen in Fig. 8, along
with two simple models to describe this behaviour and extrapolate to
the physical point. The simplest model asserts no dependence of ¢ on
u; while the second model assumes linear dependence. The change in ¢
over the full range of 4, is seen to be mild and is only a few percent from
the three-flavour symmetric theory to the physical point. The mass de-
pendence is not described very well by either model and the statistical
uncertainties at the physical point from the two fits do not capture the
discrepancy between the models. Using the linear model to give a cen-
tral value at the physical point but assigning a systematic uncertainty
from the difference between the extrapolated values in the two models
yields

019 =0.1061(7)(20), /o =445(3);14,(6),ys MeV, (10)

where the uncertainty quoted includes both statistical and extrapolation
uncertainties from our determination of o7, combined in quadrature
with the scale-setting uncertainty from \/t_ = 0.1443(7)(13) fm [22].
Table 4 shows the correlations between the model parameters after ex-
trapolating to the physical quark masses. Some parameters are seen to
be strongly correlated, in particular the three coefficients in V () have
high statistical correlations, including a pair with a correlation of 92%.
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Table 4

Physics Letters B 854 (2024) 138754

Summary of the model parameters of Eq. (6) after extrapolation to the physical quark masses. The
left-hand table shows the normalised correlation coefficients between all parameters. Their values
and statistical uncertainty are given in the right table.
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Fig. 8. Dependence of the string tension on the light and strange quark masses.
#;, the dimensionless light quark mass parameter is defined in Eq. (1). The
two bands indicate extrapolating fits using constant or linear dependence. The

physical value of the mass ratio, ,ufhys is indicated by the vertical dashed line.

The right table in Table 4 lists the model parameters with their statisti-
cal errors after linear extrapolations in y; (best fit) to the physical quark
masses.

Using the model with parameters extrapolated to the physical point,

the dependence of the energy spectrum of the static source-anti-source
system on source separation in the presence of physical up, down and
strange quarks can be computed and is presented in Fig. 9. The zero
of the potential is fixed by subtracting twice the energy of the static-
light system, which makes the ground-state energy at large separations
vanish asymptotically. The excited states are not displayed at short sep-
arations, where the basis of operators may not couple efficiently to
possible multi-meson states and so the determination of the spectrum
in this range for this calculation is uncertain.
The string-breaking distances, r/* and r} are indicated by two ver-
tical bands in Fig. 9. These distances are derived from the model by
determining the static source-sink separation where V' (r) is equal to the
asymptotic energy of two static-light (for r;*) or static-strange (for r¥)
mesons. This yields

rF =8.3903)/1 = 1.211(7)g (11)gy fm,
rF=9.26(2)\/ty = 1.336(7)5 (12)y, fm. (1)

Again, the values quoted in physical units include estimates of the un-
certainties arising both from limits to the statistical precision of our
calculation and systematic uncertainty from setting the physical scale.

¥ -0.434(11)

5. Conclusions

This paper extends the analysis of Ref. [8] to investigate the light-
quark mass dependence of the potential energy of a system of a static
colour-anti-colour source pair. The three lowest energy levels in the re-
sulting spectrum are determined up to the scale where mixing between
states resembling a gluon string and two static-light or static-strange
mesons is largest. A robust determination is achieved by computing cor-
relations within a suitable variational basis of interpolating fields and
solving the resulting generalised eigenvalue problem. A simple model
of the spectrum is presented, starting from the Cornell potential and
allowing mixing with the asymptotic static-meson states.

Using the new data from calculations with different light-quark
masses, an extrapolation of the model parameters to the physical quark
mass values is performed, enabling us to predict the physical potential
in QCD with dynamical light and strange quarks and to give a simple
parameterisation of this potential and its excitations. Perhaps the most
studied parameter is the string tension where the value determined
in this work is seen in Eq. (10). In comparison, the string tension in
pure-gauge theory is in the range o, € [0.143,0.159]. These values are
computed using data on the deconfining temperature 7, /o compiled
in [45] combined with T,ry from [45] and ry/ \/6 from [46]. These
results are almost 40% higher than this work for Ny =2 +1 QCD. A re-
cent determination in Ny =2+ 141 QCD [47] gives \/_ =467(7)MeV
or 482(7)MeV depending on the type of Cornell fits to the ground state
potential used for distances below 1 fm. This shows there are important
physical effects in the string tension generated by the phenomenon of
string breaking.

Our data for the three lowest energy levels of the static potential can
be well fitted assuming the simple model in Eq. (6). Other phenomeno-
logical models [48] could motivate further investigations.
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