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A R T I C L E I N F O A B S T R A C T

Editor: B. Grinstein The low-lying energy spectrum of the static-colour-source-anti-source system in a vacuum containing light and 
strange quarks is computed using lattice QCD for a range of different light quark masses. The resulting levels are 
described using a simple model Hamiltonian and the parameters in this model are extrapolated to the physical 
light-quark masses. In this framework, the QCD string tension is found to be 

√
𝜎 = 445(3)stat (6)sys MeV.

1. Introduction

The energy levels of a static quark anti-quark pair 𝑉𝑛(𝑟) as a function 
of the interquark distance 𝑟 probe Quantum Chromodynamics (QCD) 
at all scales. For very small distances 𝑟 ≲ 0.1 fm the potential can be 
computed by perturbation theory. At large distances the behaviour of 
the potential depends on the matter content. In pure-gauge theory at 
large separations, the potential can be modelled by an effective bosonic 
string. With dynamical quarks, the ground-state potential 𝑉0(𝑟) flattens 
at large 𝑟 due to the formation of a pair of static-light mesons (“light” 
refers here to the dynamical quarks). It was noted already in [1] that 
“the ground state potential therefore be called a static quark potential 
or a static meson potential”. A first estimate of the distance where satu-
ration of the ground state potential sets in was provided in [2]. Later, a 
model for string breaking as a mixing phenomenon between a string 
and a two-meson state was formulated in Ref. [3], which predicted 
for lighter quark mass the energy gap becomes larger and the width 
of the mixing region also expands. First observations of string break-
ing were made in the three-dimensional [4] and four-dimensional [5,6]
SU(2) gauge-Higgs model with scalar matter fields. Evidence for string 
breaking in QCD with 𝑁f = 2 quark flavours was shown in [7] for a 
sea quark mass slightly below the strange quark mass corresponding 
to 𝑚𝜋 ≈ 650MeV. String breaking occurred for static-source separa-
tions of 𝑟𝑐 ≈ 1.25 fm. Our previous work [8] presented a computation 
of the three lowest potential energy levels in QCD with 𝑁f = 2 + 1

quark flavours at quark masses corresponding to 𝑚𝜋 ≈ 280MeV and 
𝑚𝐾 ≈ 460MeV. The computation was performed on the N200 gauge 

* Corresponding author.
E-mail address: knechtli@physik.uni-wuppertal.de (F. Knechtli).

ensemble generated by the CLS consortium [9]. We found two string 
breaking distances 𝑟𝑐 ≈ 1.22 fm and 𝑟𝑐𝑠

≈ 1.29 fm corresponding to the 
saturation of the potential levels by two static-light and two static-
strange meson levels, respectively.

This work extends the analysis of Ref. [8] to study the quark-mass 
dependence by including two additional gauge ensembles with the 
same lattice spacing 𝑎 ≈ 0.063 fm and with one ensemble at a lighter 
quark mass and one heavier ensemble, covering a range of pion masses 
𝑚𝜋 ∈ [200, 340]MeV. Ref. [8] showed the energy levels are modelled 
reliably by a simple three-state Hamiltonian with six parameters. One 
model parameter can be interpreted as a string tension. In this work we 
determine the quark-mass dependence of these model parameters. We 
introduce one more parameter in the model to include a curvature term 
proportional to 1∕𝑟 as seen in the Cornell potential [10]. We extrap-
olate values of the seven parameters to the physical point following a 
trajectory where the sum of the bare quark masses is kept constant and 
close to its physical value.

The string tension enters as a parameter into models describing the 
fragmentation of partons into hadrons [11–14]. The so called “Lund 
model” [15] is implemented to describe hadronisation in the “Pythi-
a” Monte-Carlo event generator [16]. In such models the string tension 
corresponds to a constant energy per unit length of the flux tube con-
taining the colour field of a quark and anti-quark pair. The result of the 
present work provides input from first principles which could be used 
to refine these models by adding information on the excited states, for 
example.
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Table 1
CLS ensembles [9,17] used in this work. 𝑁conf is the number of configurations on 
which fermionic observables were measured. 𝑁𝑊

conf
is the number of Wilson loop mea-

surements, binned into 𝑁conf bins. The third column gives the flow scale 𝑡0 [18] in 
lattice units. The lattice sizes are 𝑇 = 𝑁t𝑎 in time and 𝐿 = 𝑁s𝑎 in space. The last three 
columns list the pion mass, the kaon mass and the value of 𝑚𝜋𝐿 from [19].

label 𝑁
conf

𝑁𝑊
conf

𝑡0∕𝑎2 𝑁s 𝑁t 𝑚𝜋 [MeV] 𝑚𝐾 [MeV] 𝑚𝜋𝐿

N203 94 752 5.1433(74) 48 128 340 440 5.4
N200 104 1664 5.1590(76) 48 128 280 460 4.4
D200 209 1117 5.1802(78) 64 128 200 480 4.2

The paper is organised as follows. The methodology of the lattice 
calculation, closely following the techniques used in our earlier work, 
is reviewed in Sec. 2. Section 3 introduces the simple model describing 
the dependence of the lowest energy levels on the static-colour-source 
separation, including the addition of the 1∕𝑟 term. Having extracted the 
model parameters from the data at three values of the light quark mass, 
Section 4 establishes their dependence on the light quark dynamics and 
extrapolates to the physical quark-mass value. This is used to present 
the energy levels in the physical theory as the final result of the paper 
in Fig. 9. Our conclusions are presented in Section 5.

2. Methodology

To investigate the dependence of the static energies on quark mass, 
we extend our previous analysis to include three ensembles of gauge 
configurations generated by the CLS consortium [9,17]. These ensem-
bles include the dynamics of 𝑁f = 2 + 1 flavours of non-perturbatively 
O(𝑎) improved Wilson fermions [20] with a tree-level O(𝑎2) improved 
Lüscher–Weisz gauge action [21] and are described in Table 1. In 
addition to ensemble N200 analysed in Ref. [8], we consider one 
ensemble at a smaller value of the pion mass, D200 and one at a 
larger pion mass, N203. These ensembles have the same lattice spac-
ing 𝑎 = 0.0633(4)(6) fm (corresponding to an inverse bare gauge cou-
pling 6∕𝑔2

0
= 𝛽 = 3.55) [22]. The quark masses 𝑚up = 𝑚down = 𝑚𝑙 and 

𝑚strange = 𝑚𝑠 vary along a chiral trajectory with constant sum of the 
bare quark masses. The bare quark masses were chosen such that the 
chiral trajectory approximately passes through the physical point [19]. 
Since the bare parameters corresponding to the physical point are only 
determined after completing the analysis of the trajectory, some dis-
crepancy can remain. For the ensembles considered in this work, these 
quark mass mistunings have been computed in [19,22]. We are con-
fident the effects these mistunings have on our analysis are small and 
subsequently neglect them. We introduce the quark-mass parameter,

𝜇𝑙 =
3𝑚2

𝜋

𝑚2
𝜋 + 2𝑚2

𝐾

, (1)

where 𝑚𝜋 , 𝑚𝐾 are the pion and kaon masses. We take these meson 
masses in lattice units from Ref. [19] to compute 𝜇𝑙 . To leading-order 
in chiral perturbation theory 𝜇𝑙 ≈

3𝑚𝑙

2𝑚𝑙+𝑚𝑠
and so along a trajectory 

which holds the sum of the quark masses 2𝑚𝑙 + 𝑚𝑠 fixed, 𝜇𝑙 is pro-
portional to the light quark mass 𝑚𝑙 . At the 𝑁f = 3 flavour-symmetric 
point 𝜇𝑙 = 1 holds. For physical quark masses and correcting for isospin-
breaking effects, 𝑚𝜋 = 134.8MeV, 𝑚𝐾 = 494.2MeV [19] and conse-
quently 𝜇phys

𝑙
= 0.1076. To mitigate against topological freezing, open 

boundary conditions in time [23] are used. Reweighting factors [24] are 
included in the analysis of observables to modify the action to the ap-
propriate one. Statistical uncertainties are determined by the Γ-method 
[25,26]. There are no measurable autocorrelations in our data and we 
do not add a tail to the autocorrelation function.

We compute the allowed energies of a system comprising a static 
quark at spatial position 𝑥⃗ and a static anti-quark at position 𝑦 as a func-
tion of separation ⃗𝑟 = 𝑦− 𝑥⃗. The calculation involves the computation of 
a matrix of time-correlation functions 𝐶(𝑟, 𝑡) between states created by a 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
2 ×

√
2 × 2 × +

√
2 ×

√
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Fig. 1. Schematic representation of the string breaking mixing matrix.

flux tube operator or states consisting of a static meson and anti-meson 
pair with isopin zero. In a theory with degenerate dynamical up and 
down light quarks and a strange-quark, two sets of mesons are formed 
by combining a static source with either a light or strange quark, giving 
the static-light or static-strange mesons. 𝐶(𝑟, 𝑡), the relevant matrix cor-
relation function needed to study this spectrum is shown schematically 
in Fig. 1. Explicit expressions for the interpolation operators of string 
and two-meson states are given in [8].

All gauge links in the interpolating operators are smeared using 
HYP2 parameters [27–31] 𝛼1 = 1.0, 𝛼2 = 1.0, 𝛼3 = 0.5. For the string 
operators, 15 and 20 levels of spatial HYP smearing with parameters 
𝛼2 = 0.6, 𝛼3 = 0.3 [31] are used. To increase spatial resolution of the 
energies in the string breaking regions we use on- and off-axis distances 
𝑟. For off-axis displacements, gauge-link paths which follow the straight 
line connecting the static source and anti-source as closely as possible 
are constructed [32], using the Bresenham algorithm [33]. Following 
this closest path significantly enhances the overlap between creation 
operator and physical string states.

Two distinct computational techniques to compute quark propaga-
tors (represented by the wiggly lines in Fig. 1) are needed. We refer 
to propagators starting and terminating on the same time slice 𝑡𝑠 = 𝑡𝑓
as “relative”, while quark propagators with 𝑡𝑠 ≠ 𝑡𝑓 are called “fixed”. 
Evaluation of quark line diagrams uses the stochastic LapH method 
[34], based on the distillation quark-smearing technique [35]. Distil-
lation projects the quark fields on a time-slice into the space spanned 
by the lowest 𝑁𝑣 eigenmodes of the three-dimensional gauge-covariant 
Laplace operator, constructed from stout-smeared gauge-links [36] with 
parameters 𝜌 = 0.1, 𝑛𝜌 = 36. Propagators between distillation spaces 
are estimated using stochastic LapH, with the variance reduced by di-
lution [37–39]. Fixed quark propagators are evaluated on two source 
times 𝑡𝑠∕𝑎 = {32, 52} using full time and spin dilution with interlace-
8 LapH eigenvector dilution, denoted collectively by (TF, SF, LI8) 
[34]. Relative quark propagators are evaluated on all source times 
𝑡𝑠∕𝑎 ∈ {32, 33, … , 95} using interlace-8 time and full spin dilution with 
interlace-8 LapH eigenvector dilution, labelled (TI8,SF,LI8). A total of 
𝑆 ⋅𝐿 ⋅𝑁𝑟 ⋅ 𝑡𝑠 +𝑆 ⋅𝑇 ⋅𝐿 ⋅𝑁𝑟 (fixed+relative) solutions of the Dirac equa-
tion (inversions) are required per gauge configuration for each quark 
flavour. Here 𝑁𝑟 denotes the number of random vectors in the space 
defined by the dilution projectors. For our choice of dilution schemes 
the number of inversions per quark flavour is 4 ⋅ 8 ⋅𝑁𝑟 ⋅ 2 + 4 ⋅ 8 ⋅ 8 ⋅𝑁𝑟

(fixed+relative). These parameters are summarised in Table 2. Note 
correlation functions for off-axis static source separations are easy to 
compute using relative and fixed quark propagators, unlike the off-axis 
gauge-link paths.
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Table 2
The number of Laplacian eigenmodes 𝑁𝑣 spanning the distillation space and 
the inversion costs for all ensembles used in this calculation. For each type of 
quark line and flavour, the number of stochastic vectors in the space defined 
by the dilution projectors and the corresponding total number of inversions is 
given. The source times and the dilution schemes employed are specified in the 
text.

light strange

𝑁𝑣 Type 𝑁𝑟 𝑛inv 𝑁𝑟 𝑛inv

N203 192 fixed 5 320 2 128
relative 2 512 1 256

N200 192 fixed 5 320 2 128
relative 2 512 1 256

D200 448 fixed 7 448 2 128
relative 3 768 1 256

Fig. 2. Effective masses of the static-light (bottom) and static-strange (top) 
mesons on the ensemble D200. The horizontal bands indicate the time intervals 
used and energies obtained from a single exponential fit to the corresponding 
correlators.

We start by extracting energies of the static-light meson 𝐸𝑄̄𝑙 and 
static-strange mesons 𝐸𝑄̄𝑠. The thresholds for the avoided level cross-
ings of string breaking are given by twice these energies. When an 
energy level reaches one of these thresholds, the state formed by a me-
son anti-meson pair becomes energetically more favourable. The static-
light and static-strange energies are obtained from single exponential 
correlated fits to the time-correlation function 𝐶𝑄̄𝑙(𝑡) and 𝐶𝑄̄𝑠(𝑡) of a 
static-light meson and a static-strange meson respectively. For all en-
sembles fits are carried out in the time interval [15, 21] in lattice units. 
Fig. 2 shows the effective masses 𝑎𝑀eff (𝑡 + 𝑎∕2) = ln[𝐶(𝑡)∕𝐶(𝑡 + 𝑎)]

(points) as a function of 𝑡∕𝑎 for ensemble D200. The top and bottom 
panels show the static-strange and static-light mesons respectively. Hor-
izontal bands indicate the values of 𝑎𝐸𝑄̄𝑙 and 𝑎𝐸𝑄̄𝑠 extracted from the 
correlator fits extending over the fitted time range.

For each fixed inter-quark separation 𝑟 = |𝑟| we solve a generalized 
eigenvalue problem (GEVP) using the correlation matrix of Fig. 1

𝐶(𝑡)𝑣𝑛(𝑡, 𝑡0) = 𝜆𝑛(𝑡, 𝑡0)𝐶(𝑡0)𝑣𝑛(𝑡, 𝑡0) , (2)

to extract the potential energies for 𝑛 = 0, 1, 2 and 𝑡 > 𝑡0. We fix 𝑡0 = 5𝑎

for all ensembles. To ensure numerical stability of the analysis we first 
prune [40–42] the correlation matrix from size 4 × 4 down to 3 × 3, 
replacing 𝐶(𝑡) with

𝐶 (3)(𝑡) = 𝑈̄†𝐶̄(𝑡0)
−1∕2𝐶(𝑡)𝐶̄(𝑡0)

−1∕2𝑈̄ . (3)

Fig. 3. Examples of effective masses of the ratios Eq. (5) on the ensemble D200 
at two distances as indicated in the plots. The horizontal bands correspond to 
the energies 𝑉𝑛(𝑟) −2𝐸𝑄̄𝑙 , 𝑛 = 0, 1, 2 extracted from exponential fits to the ratios 
and extend over the fitted time interval.

𝑈̄ contains the three most significant eigenvectors at 𝑡0+𝑎. The bar in 𝑈̄
and 𝐶̄(𝑡0) indicates these matrices are determined on the average over 
gauge configurations. Then we solve the GEVP in Eq. (2) at time 𝑡 = 𝑡𝑑 =

10𝑎, which is fixed for all the ensembles. Using the three eigenvectors 
𝑣𝑖(𝑡0, 𝑡𝑑 ), 𝑖 = 0, 1, 2 we project to a single correlation function (“fixed 
GEVP”) by computing

𝐶̂𝑖𝑗 (𝑡) =
(
𝑣𝑖(𝑡0, 𝑡𝑑 ),𝐶

(3)(𝑡)𝑣𝑗 (𝑡0, 𝑡𝑑 )
)
, (4)

where the parentheses denote the inner product over the components 
of the eigenvectors. The statistical precision of our analysis is improved 
by exploiting the beneficial covariance between 𝐶̂ and the static-light 
meson correlator 𝐶𝑄̄𝑙(𝑡). The correlation function ratios

𝑅𝑛(𝑡) =
𝐶̂𝑛𝑛(𝑡)

𝐶2

𝑄̄𝑙
(𝑡)

, (5)

for 𝑛 = 0, 1, 2 are then computed and fits to a single exponential with 
time dependence exp(−𝑡(𝑉𝑛 − 2𝐸𝑄̄𝑙)) are performed. In these ratios, 
energy levels become renormalised by the subtraction of twice the di-
vergent static-light energy since the additive self-energy contribution 
of the static-quarks exactly cancels. The fit ranges [𝑡min∕𝑎, 𝑡max∕𝑎] are 
carefully chosen in each case by inspection. Any remaining systematic 
uncertainty mainly comes from 𝑡min∕𝑎 dependence and we choose val-
ues of 𝑡min∕𝑎 such that these effects are within the limits of statistical 
precision. Finally we set 𝑡max = 𝑡min + 6𝑎. Fig. 3 shows examples of ef-
fective masses 𝑎𝐸eff (𝑡 + 𝑎∕2) = ln[𝑅𝑛(𝑡)∕𝑅𝑛(𝑡 + 𝑎)] for 𝑛 = 0, 1, 2 for two 
on-axis inter-quark separations 𝑟 = 15𝑎 and 𝑟 = 19𝑎 on the ensemble 
D200. Note the effective masses derived from ratios in Eq. (5) can ap-
proach their plateau values from below. The bands indicate the energy 
values from the exponential fits of 𝑅𝑛 and extend over the fitted time 
ranges. The distance 15𝑎 (bottom plot in Fig. 3) is the smallest distance 
down to which we can reliably determine the excited states. The separa-
tion 19𝑎 (top plot in Fig. 3) is in the middle of the first string-breaking 
region where the ground state and first excited state potential levels 
would cross. Notice all three energy levels are very close at 𝑟 = 19𝑎, 
and yet the GEVP is able to disentangle the three levels very efficiently.

Fig. 4 shows the three lowest potential energy levels 𝑎(𝑉𝑛 − 2𝐸𝑄̄𝑙)

in lattice units as a function of the distance 𝑟∕𝑎 in the region where 
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Fig. 4. The energy levels extracted from the GEVP analysis for separations in the range 𝑟∕𝑎 ∈ [17, 22] for the three ensembles described in Table 1. The data include 
off-axis separations. The bands indicate the energies extracted from a fit of data to the seven-parameter model of Eq. (6).

Table 3
Distance ranges [𝑟1(𝑛)∕𝑎 , 𝑟2(𝑛)∕𝑎]

used for the 7-parameter model fits 
to ground (𝑛 = 0), first (𝑛 = 1) and 
second excited state (𝑛 = 2).

id 𝑛 = 0 𝑛 = 1 𝑛 = 2

N203 [4,24] [11,24] [11,24]

N200 [4,24] [11,24] [11,24]

D200 [4,27] [15,27] [15,27]

string breaking occurs for each of the three ensembles described in Ta-
ble 1. Along our trajectory of decreasing light quark mass and increasing 
strange quark mass the energy gap between the first and second string 
breaking increases. In order to have a better resolution of the avoided 
level crossings we include off-axis distances. Some fluctuations in the 
size of the statistical errors can be seen especially for the off-axis dis-
tances. For on-axis distances we profit from self-averaging due to the 
cubic symmetry.

3. Model

The model used in Ref. [8] is extended to fit the data at smaller 
separations by the inclusion of a Cornell 1∕𝑟 term. The three-state model 
Hamiltonian becomes

𝐻(𝑟) =

⎛⎜⎜⎜⎝

𝑉 (𝑟)
√
2𝑔𝑙 𝑔𝑠√

2𝑔𝑙 𝐸̂1 0

𝑔𝑠 0 𝐸̂2

⎞⎟⎟⎟⎠
, 𝑉 (𝑟) = 𝑉0 + 𝜎𝑟+ 𝛾∕𝑟 . (6)

After introducing a parameter 𝛾 for the 1∕𝑟 term, the new model has 
seven parameters, labelled {𝐸̂1, 𝐸̂2, 𝑔𝑙, 𝑔𝑠, 𝜎, 𝑉0, 𝛾}. The diagonal entries 
in Eq. (6), 𝑉 (𝑟), 𝐸̂1, 𝐸̂2 are the asymptotic energy levels for 𝑟 → ∞

up to O(𝑟−1). When there are 𝑁𝑙 degenerate light flavours in the mix-
ing matrix elements between string and two-meson states of the model 
Hamiltonian, a flavour factor 

√
𝑁𝑙 multiplies the mixing coefficient 𝑔𝑙 , 

in analogy to the corresponding flavour factor in Fig. 1. For 𝑁𝑙 = 2 the 

factor 
√
2 in the three-state model Hamiltonian Eq. (6) can be derived 

from a four-state Hamiltonian with non-degenerate up and down quarks 
by taking the limit of degenerate light quarks.

The dependence of the three eigenvalues 𝑒𝑛(𝑟), 𝑛 = 0, 1, 2 of the 
model Hamiltonian Eq. (6) on the distance 𝑟 is fitted to the three 
lowest potential energy levels 𝑉𝑛(𝑟) determined from the data. These 
levels are normalised by subtracting twice the energy of the static-light 
meson 2𝐸𝑄̄𝑙 . Hence the fitted eigenvalues inherit this normalisation, 
which removes the divergent self-energy contribution from the tempo-

ral static-quark lines. The model fit parameters in Eq. (6) are obtained 
by minimisation of the correlated 𝜒2,

𝜒2
corr

=

2∑
𝑛,𝑚=0

𝑟2(𝑛)∑
𝑟=𝑟1(𝑛)

𝑟2(𝑚)∑
𝑟′=𝑟1(𝑚)

(
𝑉𝑛(𝑟) − 2𝐸𝑄̄𝑙 − 𝑒𝑛(𝑟)

)
𝐶̄−1

(
𝑉𝑚(𝑟

′) − 2𝐸𝑄̄𝑙 − 𝑒𝑚(𝑟
′)
)
,

(7)

where 𝐶̄−1 is the inverse of the covariance matrix for the potential lev-
els 𝑉𝑛. The matrix 𝐶̄ is determined by the Γ-method. For each pair of 
potential levels we compute the squared statistical errors of their sum 
and their difference. The covariance between two levels is obtained 
from the difference of these two squared errors. In order to obtain a 
positive matrix we switch off the autocorrelations between the poten-
tial levels when computing 𝐶̄ . The distance ranges [𝑟1(𝑛), 𝑟2(𝑛)] used to 
fit potential levels 𝑉𝑛 on individual ensembles are given in Table 3. The 
minimal distance for the ground state 𝑉0 is set to 4𝑎 in order to be sen-
sitive to the Cornell 1∕𝑟-term. For the first and second excited states, 𝑉1

and 𝑉2 respectively, the minimal distance is chosen so the energy gap 
to the ground state is smaller than 2𝑚𝜋 . By this choice we avoid fitting 
our excited state levels at too small distances where there could be un-
resolved intermediate energy levels in our analysis. For ensembles N200 
and N203 we set the maximal distance for the fit equal to 𝐿∕2. Poten-
tial values at distances larger than 𝐿∕2 suffer from finite volume effects 
and are not considered. We impose a cut on the covariance matrix 𝐶 of 
the potential levels using a singular value decomposition. Eigenvalues 
of 𝐶 less than 10−4 times the maximal eigenvalue are removed from 
the inverse covariance which we denote by 𝐶̄−1 in Eq. (7). We investi-
gated the dependence of the fit parameters on this cut parameter and 
found this a reasonable choice; cuts of 10−5 or 10−3 times the maximal 
eigenvalues give consistent results.

In Fig. 4 the bands show the seven-parameter model fits to Eq. (6)
for each of the three ensembles analyzed in this work and including 
statistical errors. We see that the model describes our data very well in 
the region where string breaking happens.

4. Mass dependence and physical point

With three ensembles generated with different light and strange 
quark masses, the mass dependence of the model and its parameters can 
be investigated and an extrapolation to the physical values of the quark 
masses attempted. To begin, the difference between the static-light and 
static-strange meson masses was determined and a linear extrapolation 
to the physical light quark mass performed. The result of this extrapola-
tion can be seen in Fig. 5. The subtraction removes the divergent static 
source energy, yielding a splitting with a well-defined continuum limit. 
We performed a fit to a simple model assuming linear dependence of 
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Fig. 5. Dependence of the mass difference between the static-light and static-
strange meson masses on the light-quark mass parameter 𝜇𝑙 of Eq. (1).

Fig. 6. Dependence of the mixing parameters, 𝑔𝑙 and 𝑔𝑠 on the light-quark mass 
parameter, 𝜇𝑙 of Eq. (1). The vertical line indicates the physical light-quark 
mass ratio.

this splitting on the light-quark mass parameter, 𝜇𝑙 away from the three-
flavour symmetric point corresponding to 𝜇𝑙 = 1. The data clearly shows 
agreement with this simple behaviour. Extrapolation to 𝜇phys

𝑙
yields √

𝑡0(𝐸𝑄̄𝑠 −𝐸𝑄̄𝑙) = 0.054(2) which gives 𝐸𝑄̄𝑠 −𝐸𝑄̄𝑙 = 74(3)stat (1)sysMeV

using 
√

𝑡0 = 0.1443(7)(13) fm [22]. This compares with the experimen-
tally determined value of the mass difference, averaged over isospin for 
the 𝐵𝑠 and 𝐵 mesons of 87.42(14) MeV [43]. The discrepancy is most 
likely due to finite heavy-quark-mass effects, neglected in this calcula-
tion. Other possible effects include finite-lattice-spacing artefacts and 
systematic uncertainty in the light- and strange-quark mass determina-
tions.

The two mixing parameters, 𝑔𝑙 and 𝑔𝑠 of Eq. (6) determined at 
the three light-quark values are displayed in Fig. 6. Without a robust 
prediction from theory, their light-quark mass dependence was again 
modelled assuming a simple linear behaviour, cf. [44] with the two 
straight-lines constrained to a common value at the flavour-symmetric 
point, corresponding to 𝜇𝑙 = 1. For this fit, 𝜒2∕𝑛df = 16.8 and some 
tension between the data and the model is seen close to the three-
degenerate-flavour point. In the absence of a more detailed model for 

Fig. 7. Light-quark mass-dependence of the coefficient of the dimensionless 
1∕𝑟 Cornell potential term from fits to the model of Eq. (6). The vertical line 
indicates the physical light-quark mass ratio.

this mass dependence, the phenomenon was not investigated further. 
As seen clearly in this figure however, the two mixing parameters, 𝑔𝑙

and 𝑔𝑠 differ by a factor of almost two for physical values of the quark 
masses. Assuming linear behaviour yields extrapolated values of 𝑔𝑙,𝑠 at 
the physical light-quark mass ratio of

𝑔𝑙

√
𝑡0 = 0.0256(3), 𝑔𝑙 = 35.0 (5)stat (3)sysMeV

𝑔𝑠

√
𝑡0 = 0.0134(4), 𝑔𝑠 = 18.3 (6)stat (2)sysMeV. (8)

Fig. 7 shows the light-quark mass dependence of the coefficient 𝛾

weighting the 1∕𝑟 term in 𝑉 (𝑟) modelling the gluonic flux-tube in 
Eq. (6). |𝛾| is plotted for clarity. Significant mass dependence in this 
term is observed and the value extrapolated to the physical point is 
found to be

𝛾phys = −0.434(11). (9)

The uncertainty is purely statistical as there is no scale dependence 
on this dimensionless parameter. Understanding the mass dependence 
in detail would require closer study of the transition from the short-
distance behaviour of the static potential into the string-breaking region 
and is beyond the scope of this first study.

The dependence of the string tension on 𝜇𝑙 is seen in Fig. 8, along 
with two simple models to describe this behaviour and extrapolate to 
the physical point. The simplest model asserts no dependence of 𝜎 on 
𝜇𝑙 while the second model assumes linear dependence. The change in 𝜎
over the full range of 𝜇𝑙 is seen to be mild and is only a few percent from 
the three-flavour symmetric theory to the physical point. The mass de-
pendence is not described very well by either model and the statistical 
uncertainties at the physical point from the two fits do not capture the 
discrepancy between the models. Using the linear model to give a cen-
tral value at the physical point but assigning a systematic uncertainty 
from the difference between the extrapolated values in the two models 
yields

𝜎𝑡0 = 0.1061(7)(20),
√

𝜎 = 445(3)stat (6)sysMeV, (10)

where the uncertainty quoted includes both statistical and extrapolation 
uncertainties from our determination of 𝜎𝑡0 combined in quadrature 
with the scale-setting uncertainty from 

√
𝑡0 = 0.1443(7)(13) fm [22]. 

Table 4 shows the correlations between the model parameters after ex-
trapolating to the physical quark masses. Some parameters are seen to 
be strongly correlated, in particular the three coefficients in 𝑉 (𝑟) have 
high statistical correlations, including a pair with a correlation of 92%. 
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Table 4
Summary of the model parameters of Eq. (6) after extrapolation to the physical quark masses. The 
left-hand table shows the normalised correlation coefficients between all parameters. Their values 
and statistical uncertainty are given in the right table.

𝐸̂2 𝑔𝑙 𝑔𝑠 𝜎 𝑉0 𝛾

𝐸̂1 0.12 0.23 -0.02 -0.01 -0.01 0.10
𝐸̂2 0.05 -0.11 0.09 0.07 -0.07
𝑔𝑙 0.29 0.04 -0.07 0.04
𝑔𝑠 0.06 -0.13 0.13
𝜎 -0.92 0.70
𝑉0 -0.85

Parameter Best Fit

𝐸̂1

√
𝑡0 0.0034(3)

𝐸̂2

√
𝑡0 0.1005(7)

𝑔𝑙

√
𝑡0 0.0256(3)

𝑔𝑠

√
𝑡0 0.0134(4)

𝜎𝑡0 0.1061(7)
𝑉0

√
𝑡0 -0.835(7)

𝛾 -0.434(11)

Fig. 8. Dependence of the string tension on the light and strange quark masses. 
𝜇𝑙 , the dimensionless light quark mass parameter is defined in Eq. (1). The 
two bands indicate extrapolating fits using constant or linear dependence. The 
physical value of the mass ratio, 𝜇phys

𝑙
is indicated by the vertical dashed line.

The right table in Table 4 lists the model parameters with their statisti-
cal errors after linear extrapolations in 𝜇𝑙 (best fit) to the physical quark 
masses.

Using the model with parameters extrapolated to the physical point, 
the dependence of the energy spectrum of the static source-anti-source 
system on source separation in the presence of physical up, down and 
strange quarks can be computed and is presented in Fig. 9. The zero 
of the potential is fixed by subtracting twice the energy of the static-
light system, which makes the ground-state energy at large separations 
vanish asymptotically. The excited states are not displayed at short sep-
arations, where the basis of operators may not couple efficiently to 
possible multi-meson states and so the determination of the spectrum 
in this range for this calculation is uncertain.

The string-breaking distances, 𝑟⋆
𝑙
and 𝑟⋆

𝑠 are indicated by two ver-
tical bands in Fig. 9. These distances are derived from the model by 
determining the static source-sink separation where 𝑉 (𝑟) is equal to the 
asymptotic energy of two static-light (for 𝑟⋆

𝑙
) or static-strange (for 𝑟⋆

𝑠 ) 
mesons. This yields

𝑟⋆
𝑙
= 8.39(3)

√
𝑡0 = 1.211(7)stat (11)sys fm,

𝑟⋆
𝑠 = 9.26(2)

√
𝑡0 = 1.336(7)stat (12)sys fm. (11)

Again, the values quoted in physical units include estimates of the un-
certainties arising both from limits to the statistical precision of our 
calculation and systematic uncertainty from setting the physical scale.

5. Conclusions

This paper extends the analysis of Ref. [8] to investigate the light-
quark mass dependence of the potential energy of a system of a static 
colour-anti-colour source pair. The three lowest energy levels in the re-
sulting spectrum are determined up to the scale where mixing between 
states resembling a gluon string and two static-light or static-strange 
mesons is largest. A robust determination is achieved by computing cor-
relations within a suitable variational basis of interpolating fields and 
solving the resulting generalised eigenvalue problem. A simple model 
of the spectrum is presented, starting from the Cornell potential and 
allowing mixing with the asymptotic static-meson states.

Using the new data from calculations with different light-quark 
masses, an extrapolation of the model parameters to the physical quark 
mass values is performed, enabling us to predict the physical potential 
in QCD with dynamical light and strange quarks and to give a simple 
parameterisation of this potential and its excitations. Perhaps the most 
studied parameter is the string tension where the value determined 
in this work is seen in Eq. (10). In comparison, the string tension in 
pure-gauge theory is in the range 𝜎𝑡0 ∈ [0.143, 0.159]. These values are 
computed using data on the deconfining temperature 𝑇𝑐∕𝜎 compiled 
in [45] combined with 𝑇𝑐𝑟0 from [45] and 𝑟0∕

√
𝑡0 from [46]. These 

results are almost 40% higher than this work for 𝑁f = 2 + 1 QCD. A re-
cent determination in 𝑁f = 2 + 1 + 1 QCD [47] gives 

√
𝜎 = 467(7) MeV

or 482(7) MeV depending on the type of Cornell fits to the ground state 
potential used for distances below 1 fm. This shows there are important 
physical effects in the string tension generated by the phenomenon of 
string breaking.

Our data for the three lowest energy levels of the static potential can 
be well fitted assuming the simple model in Eq. (6). Other phenomeno-
logical models [48] could motivate further investigations.
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Fig. 9. The energy spectrum of the static source-anti-source system from the model of Eq. (6) with parameters extrapolated in light-quark mass to the physical point. 
The grey region denotes the energy regime where two-pion creation operators would be needed for a robust determination of higher-lying states. The breaking 
distances 𝑟⋆

𝑙
and 𝑟⋆

𝑠
computed in the model are indicated by the two vertical bands.
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