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Superconductor Vortex Spectrum Including Fermi Arc States in
Time-Reversal Symmetric Weyl Semimetals
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Using semiclassics to surmount the hurdle of bulk-surface inseparability, we derive the superconductor
vortex spectrum in nonmagnetic Weyl semimetals and show that it stems from the Berry phase of orbits
made of Fermi arcs on opposite surfaces and bulk chiral modes. Tilting the vortex transmutes it between
bosonic, fermionic, and supersymmetric, produces periodic peaks in the density of states that signify novel
nonlocal Majorana modes, and yields a thickness-independent spectrum at magic “magic angles.” We
propose (Nb,Ta)P as candidate materials and tunneling spectroscopy as the ideal experiment.
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Superconductor vortices are fundamentally quantum
mechanical entities with discrete energy levels whose
structure encodes properties of the parent superconductor
and the normal metal. For instance, an ordinary Fermi gas
and conventional superconductivity lead to a gapped vortex
spectrum [1] while vortices in two dimensional (2D)
spinless p + ip superconductors [2] and s-wave super-
conductors that descend from a 2D Dirac fermion [3] host
zero energy states known as Majorana modes (MMs). MMs
are exotic states that equate a particle with its antiparticle.
They harbor diverse potential applications ranging from
topological quantum computing [4—-10] and topological
order [11] to supersymmetry (SUSY) [12-16], quantum
chaos, and holographic blackholes [17,18]. In condensed
matter, they invariably appear as topologically protected
zero energy bound states in topological defects such as
superconductor vortices and domain walls [2,3,5-7,10,19-
31]. In recent years, the discovery of MMs in Fe-based
superconductors with tunable band topology [22,32-44]
and the observation of superconductivity in several topo-
logical semimetals [45-69] have motivated an urgent quest
to theoretically determine the vortex spectrum given an
arbitrary normal metal.

This pursuit hits a roadblock with gapless topological
matter such as Weyl semimetals (WSMs) [70-88]. In the
bulk, WSMs host accidental band crossings or Weyl nodes
(WNs) that enjoy topological protection and spawn various
topological responses [89-108]. WNs carry an intrinsic
chirality or handedness, and are constrained to appear in
pairs of opposite chirality [100]. Moreover, in time-reversal
(7") symmetric WSMs (TWSMs), each WN has a Kramer’s
partner of the same chirality which leads to quadruplets of
WNs. The surface of a WSM hosts Fermi arcs (FAs) that
connect the surface projections of pairs of WNs of opposite
chirality [77-86,109—127], resembling a broken segment of
a 2D Fermi surface but forming a closed loop with a FA on
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the opposite surface of a finite slab. The penetration depth
of a FA into the bulk depends strongly on the surface mo-
mentum and diverges at the WN projections, thus making
the surface inseparable from the bulk. Consequently, the
Fermi “surface” of WSMs consists of FAs on the surface of
the material and bulk Fermi points at the WNs (or Fermi
pockets around WNs not at the Fermi level). Such a
Fermiology is beyond a purely surface or purely bulk
theory; yet, a basic physical question remains, What is the
spectrum of a superconductor vortex in a WSM?
General vortex spectrum.—We answer this question
using a powerful semiclassical approach that surmounts
that above limitation. We restrict to TWSMs, since they
generically host a weak pairing instability towards a gapped
superconductor; WSMs that lack 7 either lack a pairing
instability or yield unconventional nodal or finite-momen-
tum pairing [128—131]. For arbitrary pairing symmetry that
yields a full gap when uniform, we propose the spectrum
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where [, is of order the total length of FAs on opposite
surfaces that form a closed loop, A is the pairing amplitude
far from the vortex, &£ is the superconductor coherence
length, and n € Z. Additionally, ®5 is the net phase
acquired by a wave packet traversing the bulk. In the
simplest case where FAs on opposite surfaces connect the
same pairs of WNs as depicted in Fig. 1, &3 = AK - R,
with AK connecting these nodes in momentum space and
R, connecting opposite ends of the vortex in real space.
Henceforth, we parameterize R, = (a,X + a,§ +2)L.=
(a, +Z)L,, where L, is the slab thickness and Z is the
surface normal. Next, @y is the total Berry phase of a
“classical” path defined by the FAs on both surfaces that
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ignores their bulk penetration. Finally, the penetration
effectively reduces the thickness to L, —2d, where d is
the average penetration depth of the FAs in a region of size
O(&7") around the surface projections of the Weyl nodes.
This induces a quantum correction

(I)szdAKJ_‘aJ_ (2)
where AK, = AKX + AK,y. Thus, Eq. (1) predicts a
generically nondegenerate, discrete spectrum with equally
spaced energy levels, while the zero-point energy is
determined by the Berry phase of the FAs, WN locations,
sample thickness, and vortex orientation. The spectrum is
generically gapped, contrary to a naive bulk approach that
predicts a generically gapless spectrum [132].

Equation (1) is inspired by results in Refs. [19,133], and
[132]. Reference [133] showed that quasiparticle dynamics
in inhomogeneous superconductors can be faithfully cap-
tured by quantizing the semiclassical action for wave
packets traveling in closed orbits in real space. The action,
which appears as a phase in the relevant path integral, was
shown to consist of three terms: (i) a Bohr-Sommerfeld
phase § Kk, - dr for the classical orbit, (ii) a Berry phase
due to rotation of the Nambu spinor, and (iii) a z phase if a
unit vortex is encircled. Within a complementary momen-
tum-space picture, Ref. [19] proved that a smooth 2D Fermi
surface in the normal state and arbitrary pairing symmetry
that produces a full gap when superconductivity is
uniform yield a superconductor vortex spectrum e} =
i(Ao/flps)[}’l + % + ((I)FS/Q’][)] for ll:sf > 1, where lFS
and ®rg are the Fermi surface perimeter and Berry phase,
respectively. The normal state is assumed to be 7 sym-
metric, which leads to a pair of Fermi surfaces with
opposite Berry phases in the normal state that produce
particle-hole conjugate eigenstates inside the vortex.

To propose Eq. (1) for a TWSM, we first note that the
Bohr-Sommerfeld phase, 7 phase from the vortex, and the
Nambu-Berry phase contribute shifts proportional to n,
1/2, and ®rg /27, respectively in €,. Then, we recall that a
WN with chirality y = 41 produces a chiral MM in the
vortex core with chirality yw, where w = %1 is the winding
number of the vortex [132]. Thus, for w = 1, a right- (left-)
handed WN produces a chiral MM inside the vortex with
upward (downward) group velocity. For a smooth vortex,
defined by |AKE|> 1, these chiral modes allow wave
packets to travel between FAs on opposite surfaces without
scattering. The smoothness also ensures that a wave packet
on the surface travels along a single FA without scattering
into other FAs. Thus, the semiclassical orbit naturally
involves travel along a FA on the top surface, tunneling
through the bulk via a downward chiral MM, FA traversal
on the bottom surface followed by tunneling up the bulk via
an upward chiral MM. Since a TWSM contains quadruplets
of WNs and an even number of FAs on each surface related
by 7, such orbits appear in 7 -related pairs but with
opposite energies in the vortex to preserve overall par-
ticle-hole symmetry. This picture inspires the generaliza-
tion of ®pg to Dy = Oy + Oy — Dy, the total phase
acquired by a wave packet traversing a closed orbit in
mixed real and momentum space, as depicted in Fig. 1.

A peculiar situation occurs when @, /27 equals a half-
integer. Then, Eq. (1) predicts a gapless vortex with a pair
of zero modes that can always be decomposed into a pair of
MMs in a suitable basis [134]. These MMs are highly
nonlocal as they are composed of mixed real- and momen-
tum-space orbits. They are not protected by symmetry;
rather, they appear at a series of critical points as @, is
varied. These critical points separate trivial and topological
phases of the vortex, which behaves as a OD supercon-
ductor with a Z, topological classification [135]. The MMs
decouple at criticality by definition and, when probed via
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FIG. 1.

Schematic picture. (a) k-space illustration of a minimal TWSM. Red (blue) spheres at =K' (+K?) denote right- (left-)handed

WNss, red (blue) discs denote their projections onto the surface Brillouin zone, and black curves are FAs. (b) Real space illustration of the
vortex (grey tube) and the semiclassical orbit (green curve). The classical bulk path parallels the tube axis, but quantum tunneling causes
deviations near the surface. (c) Semiclassical orbits in mixed real (z) and momentum (&, ky) space. Each orbit is a closed loop consisting
of bulk chiral modes tied to a pair of WNs interspersed by FAs that connect their surface projections.
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an STM whose tip metal has doubly degenerate bands,
contribute separately to the tunneling conductance. Thus,
the peak height in the dI/dV spectrum must be twice that of
topological MMs [136,137], 2 x 2¢%/h = 4e?/h, while the
regions between critical tilts must contain quantized pla-
teaus separated by 4e?/h in the I-V characteristics.

Now, pairs of MMs separate gapped superconductors
differing in fermion parity [138]. Thus, the vortex is
fermionic with odd fermion parity on the topological side
of criticality, and bosonic on the trivial. Naturally, the
critical vortex is impartial to bosonic or fermionic statistics
and therefore exhibits SUSY—a mysterious and elusive
symmetry between bosons and fermions first proposed in
the standard model and more recently, in certain condensed
matter systems [12-16,139,140] (see Ref. [134] for
details). Remarkably, vortices here can be tuned between
bosonic, fermionic, and supersymmetric by varying @
which, we show below, can be accomplished by simply
tilting the magnetic field that threads the vortex. While
disorder, the Zeeman effect and other perturbations can
modify the critical tilt angles, SUSY will persist at
criticality as it is purely a property of the critical vortex
and oblivious to how criticality was achieved.

In general, the vortex also contains purely bulk
states that do not involve the FAs. First, WNs at the
Fermi level will produce modes Ei (n),n,q3)=
:I:\/Zh(vlnl +U2”2)A0/§+(7J3h(]3)2, where nl,ZEZZO,
ny +n, > 1, gz is the momentum along the vortex axis
measured relative to the WN and (v, v,,v3) are the
canonical Weyl speeds. These modes are nonchiral

and lie above the bulk gap E, = ./2AvA/&, where

v =min(v,,). Clearly, E, > ¢ if Iga& > \/AgS/hv ~ 1,
assuming the standard Ginzburg-Landau relation
Ay ~ hv/E. Since Ipy ~ |AK | | < |AK|, the smooth vortex
limit of |AK&| > 1 is consistent with nonchiral bulk modes
from undoped WNs being at parametrically higher
energies.

Second, the bulk can also contain Fermi pockets. In the
weak-pairing, smooth vortex limit, these pockets give rise
to the spectrum Ep (1, qs) = £[Ao/Eles(q3)[{n +5+
[®gs(g3)/Prs(g3)]} withn € Z > 0. Trivial Fermi pockets
that do not enclose band crossings have ®gg(g3) #
47 V g5 and contribute only nonchiral modes. In contrast,
Fermi surfaces enclosing WNs have ®@pg = —7 at g3 =0
(relative to the WN) and contribute a single n = 0 chiral
MM that combines with the FAs to form the states
described in Eq. (1), while the n # 0 modes are nonchiral.
For both types of Fermi pockets, the energy scale of the
nonchiral modes [Ag/¢lgs(q.)] < € if Igg 2 Ipa. However,
these modes can be easily distinguished from those defined
in Eq. (1) by tilting the vortex, as we discuss shortly.

Finally, the normal state bulk can contain other point or
line band crossings too which can invalidate various aspects
of our results. For instance, vortices in Dirac semimetals
contain a pair of counterpropagating modes for each Dirac

node [141-143], which can hybridize and ruin the semi-
classical picture. We ignore crossings beyond unit WNs
because they rely on crystalline symmetries while our focus
is on generic band structures with only 7 symmetry
[144-146].

Numerical vortex spectrum.—We now support our gen-
eral claims of Eq. (1) with numerics on an orthorhombic
lattice model of a TWSM detailed in [134]. Given the
Bloch Hamiltonian Hj(k,k,) in the normal state, the
corresponding Bogoliubov-deGennes Hamiltonian for a
unit vortex along (a,, ay, 1) can be written as

HO(k’ kz)

B A(or )e~O0rL) 3
C N A(5ry )etor) ®)

_HO(kv kz)

where ér, = (x —a,z,y — a,z), ©(dr, ) is the polar angle
of ér, and A(dr, ) = Agtanh (|6r |/€). Direct numerical
verification of Eq. (1) involves diagonalizing H, in real
space. However, the lack of translation invariance in every
direction limits us to relatively small & which causes
departure from semiclassics for modest values of n. We
bypass this limitation by tilting the vortex and comparing
the locations of the zero modes with the predictions of
Eq. (1). This way, we always probe the lowest few energy
levels, which conform better to the semiclassical analysis.
While this method allows a careful examination of the
Berry phase terms and reveals various striking phenomena,
€ is verifiable only up to its order of magnitude.

Figure 2(a) shows the FAs and WNs in a minimal
TWSM with four WNs located at =K' and +K>. We
chose parameters such that all nodes are at different k, and
|AK,| < |AK,| where AK = K' — K*. Figure 2(b) shows
the vortex spectrum for a finite slab when a vortex, initially
along 7, is tilted separately towards the x and the y axis.
Tilting towards the positive y axis (a, =0, a, >0)
produces numerous level crossings, which is consistent
with @5 = (AK,a, + AK,)L, changing by many multi-
ples of 2z as a, varies. In contrast, the spectrum varies
weakly when the vortex is tilted towards the x axis, which is
consistent with @ = AKa,L, varying negligibly with a,
since AK, itself is small. In Fig. 2(c), we plot the wave
functions of a pair of levels with equal and opposite
energies in (k,, k,, z) space. The levels, which are related
by particle-hole symmetry of the superconductor, are
clearly localized around semiclassical orbits related by
7. This confirms the picture that motivated Eq. (1), namely,
that the vortex spectrum follows from quantizing semi-
classical orbits in mixed real and momentum space, and
that semiclassical orbits related by 7 turn into pairs of
particle-hole conjugate quantum eigenstates. In [134], we
use the zero mode locations to extract AK|, . and ®g and
find remarkable agreement with expectations.

Tilting the vortex.—Besides simplifying the numerics,
tilting the vortex leads to striking qualitative phenomena.
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FIG. 2. Vortex spectrum for a tight-binding lattice model with unit interatomic spacing and O(1) hoppings (see Ref. [134] for details).
(a) Normal state band structure showing four bulk WNs (red and blue spheres), all at different k,, and surface FAs connecting them. The
four nodes lie on the green plane, which is clearly not parallel to the surface. (b) Vortex spectrum of a L, x L, X L, = 23 x 23 x 34
system as the vortex is tilted separately towards the x axis and the y axis by tan~' a; (i = x, y). (c) Net probability density of the two
lowest energy wave functions in (k.. k., z) space at a, = 1.25, marked “X” in (b), obtained by Fourier transforming the 3D real space
wave functions with respect to x, y. We choose the band parameter # = 1.2 which yields AKede — {0.029,0.428,0.181} x 2z, and
superconducting parameters Ay = 0.50, £ = 2.0, which yield e = A/&lgs ~ 0.04 comparable to the scale of level spacings in (b).

First, since L, enters Eq. (1) only through ®p, the spectrum
becomes L, independent when the vortex is tilted to a
“magic angle” such that AK R, even though the semi-
classical orbit still involves travel across the bulk.
Moreover, we expect peaks in the density of states,
D(E) =3, ,6(E - E}), whenever E; = 0. Noting that
@ does not depend on the vortex orientation, D(0) peaks
whenever AK | -a, (L, —2d) equals a half-integer. Thus,
the tilt parameters for two successive peaks obey
j j 2r

AK, [} —a?™] = (4)
Thus, the peaks are periodic in @ with a period Aa gove-
rned by the WN locations through AK |, and the effective
thickness, L, — 2d. Specifically, Aa=[2z/(L,-2d)AK,],
where AK, is the component of AK | in the tilt direction.
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FIG. 3. Suitably normalized density of states D(0) and specific
heat C at different temperatures versus a,. Zero modes in the
spectrum lead to sharp peaks in D(0) at periodic intervals of a,,
Aa, = [2n/(L, — 2d)AK,], and induce oscillations in C at low T
that get smeared out at high 7. We approximate D(E) =
7' Im>", [E — E, —il']~" with T = 0.0075.

These peaks will induce characteristic oscillations with
period Aa in transport and thermodynamic quantities at
temperatures below the minigap, T < ¢/kp. For instance,
the specific heat C = kg Y., [(E;f/ksT)sech(E; /kzT)|?
will have oscillations with a “split-peak™ structure (Fig. 3).
Similarly, a scanning tunneling microscope (STM) should
find zero bias peaks in the differential conductance, dI/dV, at
periodic tilts with a peak height of 4e?/h. These oscillations
can be used to distinguish the semiclassical modes depicted in
Fig. 1 from nonchiral vortex modes generated by bulk Fermi
pockets. The latter are expected to produce only quantitative
variations due to the anisotropy of the Fermi pockets, but no
oscillations or L, dependence besides finite-size effects.

The magic angle and oscillations are reminiscent of
quantum oscillations due to FAs in WSMs [126,127,147].
There, a magnetic field B induces cyclotron orbits involv-
ing surface FAs and bulk chiral modes, D(0) has periodic
peaks in 1/B, and L, enters the oscillation phase as an
optical path length. Thus, at the quantum level, the discre-
tization predicted by Eq. (1) is analogous to Landau levels
rather than finite size quantization. Indeed, if the latter was
at play, Eq. (1) in the thermodynamic limit should have
yielded the gapless bulk spectrum described in Ref. [132]
where FAs are irrelevant. It clearly does not, which can be
attributed to the infinite penetration of the FAs into the bulk
that forbids ignoring them even in this limit.

Application to (Nb,Ta)P.—NbP and TaP are TWSMs in
which superconductivity induced at high pressure survives
upon quenching to ambient pressure [51,62]. Super-
conductivity has also been reported in TaP directly at
ambient pressure [69]. Both materials have 24 Weyl nodes
interrelated by C, symmetry of a face-centered tetragonal
lattice with conventional unit cell lattice constants ayyp =
0.3334nm, cnpp=1.1376nm and ap,p=0.3318nm,
ctap = 1.1363 nm  [148], and connected by 12 pairs
of surface FAs. Although nonuniversal surface details

156402-4



PHYSICAL REVIEW LETTERS 130, 156402 (2023)

strongly modify the FAs and lead to nontopological gapless
surface states from trivial Fermi surfaces [83,149], a
smooth superconductor vortex tilted in a general direction
is expected to produce 12 pairs of 7 -related semiclassical
orbits and hence, a superposition of 12 different oscillations
frequencies in dI/dV. On the other hand, tilting in the yz
plane ensures that only orbits with nonzero AK, cause
oscillations. If FAs connect surface projections of the
nearest nodes of the same family, then AK, =0 for all
six orbits that involve WNs separated by the yz plane, while
C3 and 7 symmetries ensure that the six orbits that cross
the xz plane will result in precisely two frequencies: one
from WNs with AKLNbP = 1.0198 x (27/anpp )y for NbP
and AK' 1, = 0.9618 X (27/ar,p)§ for TaP, and another
from WNs with AK3 ,p = 0.5406 x (27/cxpp)§  and
AK? 1.p = 0.5486 x (27/cr,p)y. Discernible oscillations
require T Se/kp = Ag/Elppkp ~T./Elgs. Using T, ~
4K [51,62], E~4nm [58] and Iy ~ 10 nm~! gives
T <£0.1 K, which may be within reach of current STM
experiments. Note that ¢ is of the same order as the vortex
minigap in typical type-II superconductors, and STM can
comfortably probe vortex modes in the latter including zero
bias conductance peaks from MMs [22,33-38,150].

In summary, we have calculated the superconductor
vortex spectrum in TWSMs including contributions from
the surface FAs. While a naive bulk calculation for a
general vortex orientation suggests a gapless spectrum
consisting of a chiral mode corresponding to each WN,
we found that the low-energy spectrum is gapped in
general, and determined by the Berry phase of semi-
classical orbits composed of the chiral modes and surface
FAs. Such a spectrum is expected to produce a myriad of
striking phenomena upon tilting the vortex. For instance,
the vortex will alternate between bosonic and fermionic as
it is tilted, while the critical points separating the two types
of vortices exhibit SUSY and harbor unusual nonlocal
MMs. Experimentally, we predict characteristic oscillations
in the specific heat and periodic, 4¢?/h-quantized peaks in
the differential tunneling conductance as a function of
vortex tilt. At a certain tilt, dubbed the “magic angle,” the
spectrum becomes independent of the slab thickness. We
propose NbP and TaP as candidate materials and tunneling
spectroscopy as the best experimental approach for study-
ing this physics.
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