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Abstract

We study higher uniformity properties of the Möbius function `, the von Mangoldt function Λ, and the divisor

functions 3: on short intervals (-, - + �] with - \+Y f � f -1−Y for a fixed constant 0 f \ < 1 and any Y > 0.

More precisely, letting Λ♯ and 3
♯
:

be suitable approximants of Λ and 3: and `♯ = 0, we show for instance that, for

any nilsequence � (6(=)�), we have∑
-<=f-+�

( 5 (=) − 5 ♯ (=))� (6(=)�) j � log−� -

when \ = 5/8 and 5 ∈ {Λ, `, 3:} or \ = 1/3 and 5 = 32.

As a consequence, we show that the short interval Gowers norms ∥ 5 − 5 ♯ ∥*ĩ (-,-+� ] are also asymptotically

small for any fixed B for these choices of 5 , \. As applications, we prove an asymptotic formula for the number of

solutions to linear equations in primes in short intervals, and show that multiple ergodic averages along primes in

short intervals converge in !2.

Our innovations include the use of multi-parameter nilsequence equidistribution theorems to control type � � sums,

and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type

�2 sums.
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1. Introduction

In this paper we shall study correlations of arithmetic functions 5 : N → C with arbitrary nilsequences

= ↦→ � (6(=)�) in short intervals. For simplicity, we will restrict attention to the following model

examples of functions 5 :

• The Möbius function `(=), defined to equal (−1) 9 when = is the product of 9 distinct primes, and

0 otherwise.

• The von Mangoldt function Λ(=), defined to equal log ? when = is a power ? 9 of a prime ? for

some 9 g 1, and 0 otherwise.

• The : th divisor function 3: (=), defined to equal the number of representations of = as the product

= = =1 · · · =: of : natural numbers, where : g 2 is fixed. (In particular, all implied constants in

our asymptotic notation are understood to depend on : .)

By a “nilsequence”, we mean a function of the form = ↦→ � (6(=)�), where�/� is a filtered nilmanifold

and � : �/� → C is a Lipschitz function. The precise definitions of these terms will be given in

Section 2.3, but a simple example of a nilsequence to keep in mind for now is � (6(=)�) = 4(U=3) for

some real number U, some natural number 3 g 0, and with 4(\) := 42c8\ .

When 5 is non-negative and � (6(=)�) is “major arc” in some sense (e.g., if � (6(=)�) = 4(U=B)
with U very close to a rational 0/@ with small denominator @), there is actually correlation between 5

and � (6(=)�), but we shall deal with this by first subtracting off a suitable approximation 5 ♯ from 5 .

In the case of the Möbius function `, we may set `♯ = 0. On the other hand, the functions Λ, 3: are

non-negative and one therefore needs to construct non-trivial approximants Λ♯, 3
♯
:

to such functions
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before one can expect to obtain discorrelation; we shall choose

Λ
♯ (=) :=

%(')
i(%(')) 1(=,% (') )=1, where %(F) :=

∏
?<F

?, ' := exp((log -)1/10) (1.1)

and

3
♯
:
(=) :=

∑
<f'2ġ−2

ġ
< |=

%< (log =), where ': := - [ and [ = 1
10: (1.2)

and the polynomials %< (C) (which have degree : − 1) are given by the formula

%< (C) :=

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ
=1 · · ·=ġ−1=<

(
C − log(=1 · · · = 9':− 9:

)
) :− 9−1

(: − 9 − 1)! log:− 9−1 ':
. (1.3)

We will discuss these choices of approximants more in Section 3.1 (which can be read independently

of the rest of the paper), but let us already here note that the approximants lead to type � sums and are

thus easier to handle than the original functions, and that the choice of the parameter ' in Λ♯ allows

for an arbitrary power of log saving in (1.6) below. Moreover, the approximants are nonnegative, which

is helpful for some applications (in particular in the proof of Theorem 1.5 below). For future use, we

record the fact that our correlation estimates for 3: − 3♯: work for 3
♯
:

defined as in (1.2) with any fixed

0 < [ f 1
10: , as long as we allow implied constants to depend on [.

For technical reasons, it can be beneficial to consider “maximal discorrelation” estimates. Loosely

following Robert and Sargos [58] we adopt the convention1 that, for an interval �,

�����
∑
=∈�∩Z

5 (=)
�����
∗

:= sup
%¢�∩Z

�����
∑
=∈%

5 (=)
����� , (1.4)

where % ranges over all arithmetic progressions in � ∩ Z.

Now we are ready to state our main theorem2.

Theorem 1.1 (Discorrelation estimate). Let - g 3, - \+Y f � f -1−Y for some 0 < \ < 1 and Y > 0,

and let X ∈ (0, 1). Let �/� be a filtered nilmanifold of some degree 3 and dimension �, and complexity

at most 1/X, and let � : �/� → C be a Lipschitz function of norm at most 1/X.

(i) If \ = 5/8, then for all � > 0,

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
`(=)� (6(=)�)

�����
∗

j�,Y,3,� X−$Ě,Ā (1)� log−� - (1.5)

(ii) If \ = 5/8, then for all � > 0,

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
(Λ(=) − Λ

♯ (=))� (6(=)�)
�����
∗

j�,Y,3,� X−$Ě,Ā (1)� log−� -. (1.6)

1Strictly speaking, this is an abuse of notation, since the expression | ∑Ĥ∈ą∩Z 5 (=) |∗ depends not only on the value of the sum
∑

Ĥ∈ą∩Z 5 (=) ,
but also on the individual summands 5 (=) and the range � ∩Z. In particular, we caution that

∑
Ĥ∈ą∩Z 5 (=) =

∑
ģ∈Ć∩Z 6 (<) does not necessarily

imply that | ∑Ĥ∈ą∩Z 5 (=) |∗ = | ∑ģ∈Ć∩Z 6 (<) |∗.
2For definitions of undefined terms such as “filtered nilmanifold” and Poly(Z → �) , see Definitions 2.6 and 2.5 below. For our conventions for

asymptotic notation such as j, see Section 1.4.
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(iii) Let : g 2. Set \ = 1/3 for : = 2, \ = 5/9 for : = 3, and \ = 5/8 for : g 4. Then

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
(3: (=) − 3♯: (=))� (6(=)�)

�����
∗

jY,3,� X−$Ě,Ā (1)�-−2ġ,Ě,Ā Y (1.7)

for some constant 2:,3,� > 0 depending only on :, 3, �.

(iv) If \ = 3/5, then

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
`(=)� (6(=)�)

�����
∗

jY,3,� X−$Ě,Ā (1)� log−1/4 -. (1.8)

(v) Let : g 4. If \ = 3/5, then

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
(3: (=) − 3♯: (=))� (6(=)�)

�����
∗

jY,3,� X−$Ě,Ā (1)� log
3
4
:−1 -. (1.9)

The dependency of the implied constants on � in (1.5) and (1.6) is ineffective due to the possible

existence of Siegel zeros. All the other implied constants are effective.

Remark 1.2. One could extend the theorem to cover the range -1−Y f � f - without difficulty;

however, this is not the most interesting regime and there are some places in the proof where the

restriction to � f -1−Y is convenient. In the cases of (1.5), (1.8), the result for - \+Y f � f -1−Y

directly implies the result for -1−Y f � f - by splitting long sums into shorter ones. In the cases

of (1.6), (1.7), (1.9), it turns out that there is some flexibility in the choice of the approximant (one can

certainly vary ' in (1.1) or ': in (1.2) by a multiplicative factor ≍ 1), and then one can make a similar

splitting argument. We leave the details to the interested reader.

In applications 3, �, X will often be fixed; however, the fact that the constants here depend in a

polynomial fashion on X will be useful for induction purposes.

Note that polynomial phases � (6(=)�) = 4(%(=)), with % : Z → R a polynomial of degree 3, are a

special case of nilsequences — in this case the filtered nilmanifold is the unit circleR/Z (withR = (R, +)
being the filtered nilpotent group with R8 = R for 8 f 3 and R8 = {0} for 8 > 3) and � (U) = 4(U) for all

U ∈ R/Z. In particular the results of Theorem 1.1 hold for polynomial phases, that is, with �/� = R/Z,

� = 1, and with � (6(=)�) replaced with 4(%(=)). Before moving on, let us for the convenience of the

reader state the following corollary of our theorem in the polynomial phase case.

Corollary 1.3 (Discorrelation of ` and Λ with polynomial phases in short intervals). Let - g 3 and let

- \+Y f � f -1−Y for some 0 < \ < 1 and Y > 0. Let 3 g 1 and let % : Z → R be any polynomial of

degree 3.

(i) If \ = 5/8, then, for all � > 0,

�����
∑

-<=f-+�
`(=)4(%(=))

����� j3,�,Y
�

log� -

(ii) If \ = 5/8 and � > 0, we have

�����
∑

-<=f-+�
Λ(=)4(%(=))

����� f �

log� -
,
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unless there exists 1 f @ f (log -)$Ě,ý,ÿ (1) such that one has the “major arc” property

max
1f 9f3

� 9 ∥@U 9 ∥R/Z f (log -)$Ě,ý,ÿ (1) , (1.10)

where U 9 is the degree 9 coefficient of the polynomial = ↦→ %(= + -) and ∥H∥R/Z denotes the

distance from H to the nearest integer(s).

(iii) If \ = 3/5, then �����
∑

-<=f-+�
`(=)4(%(=))

����� j3,Y
�

log1/10 -
.

The claims (i) and (iii) are immediate from Theorem 1.1, but (ii) requires a short argument, provided

in Section 10. One could state an analogous result in the case of 3: (with the same exponents as in

Theorem 1.1).

Let us now discuss the literature on the topic, starting with results concerning the Möbius function.

A discorrelation estimate such as Theorem 1.1(i) with arbitrary � (6(=)�) was previously only known

in case of long intervals due to the work of Green and the third author [18, Theorem 1.1]. Namely, they

have shown that

sup
6∈Poly(Z→�)

�����
∑
=f-

`(=)� (6(=)�)
����� j�,�/�,� - log−� - (1.11)

for any - g 2, � > 0, filtered nilmanifold �/�, and Lipschitz function � : �/� → C. This result of

Green and the third author is a vast generalization of a classical result of Davenport [6], which states that

sup
U∈R

�����
∑
=f-

`(=)4(−U=)
����� j� - log−� -, (1.12)

and of the Siegel–Walfisz theorem (see e.g. [37, Corollary 5.29]), which states that

max
0,@∈N

��� ∑
=f-

==0 (@)

`(=)
��� j� - log−� -. (1.13)

As is well known, the bounds of $�(- log−� -) here cannot be improved unconditionally with current

technology, due to the possible existence of Siegel zeroes (unless one subtracts a correction term to

account for the contribution of such zero; see [61, Theorem 2.7]).

On the other hand, for short intervals there has been a lot of activity in the special case of polynomial

phase twists.

Theorem 1.1(i) was previously only known in the linear phase case when � (6(=)�) = 4(U=) for any

U ∈ R by work of Zhan [64]. More precisely Zhan [64, Theorem 5] established that

sup
U∈R

�����
∑

-<=f-+�
`(=)4(−U=)

����� j�,Y � log−� - (1.14)

whenever -5/8+Y f � f - and � g 1. Hence Theorem 1.1(i) can be seen as a vast extension of Zhan’s

work.

Concerning higher degree polynomials, the most recent result is due to the first two authors [49,

Theorem 1.4] giving, for any polynomial %(=) of degree f 3,∑
-<=f-+�

`(=)4(−%(=)) j�,3,Y � log−� - (1.15)
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for all � > 0 and -2/3+Y f � f - . In particular a special case of Theorem 1.1(i) (recorded here as

Corollary 1.3(i)) supersedes this result by showing it with the exponent 2/3 lowered to 5/8.

All the previous results mentioned so far for the Möbius function exist also for the von Mangoldt

function as long as � (6(=)�) or 4(−%(=)) is “minor arc” in certain sense (for results corresponding

to (1.11), (1.12), (1.13), (1.14) and (1.15) see respectively [18, Section 7], [37, Theorem 13.6], [37,

Corollary 5.29], [64, Theorems 2–3], and [49, Theorem 1.1]). It is very likely that with our choice of

approximant these arguments also extend to cover major arc cases and maximal correlations, although

we will not detail this here as such claims follow in any case from Theorem 1.1.

Theorem 1.1(iv) generalizes (albeit with a slightly weaker logarithmic saving) a result of the first and

fourth authors [50, Theorem 1.5] that gave, for 0 < � < 1/3,

sup
U∈R

�����
∑

-<=f-+�
`(=)4(−U=)

����� j�,Y � log−� - (1.16)

in the regime - g � g -3/5+Y (actually [50, Remark 5.2] allows one to enlarge the range of � to

0 < � < 1).

The literature on correlations between 3: and Fourier or higher order phases is sparse. A variant of

the long interval case (1.11) (with a weaker error term) follows from work of Matthiesen [51, Theorem

6.1].

Furthermore, it should be possible to adapt the existing results on polynomial correlations of Λ(=)
also to the case of 3: (=), but with power savings. More precisely, one should be able to follow the

approach of Zhan [64] to obtain discorrelation with linear phases 4(U=) for - g � g -5/8+Y (for

: = 2 one can replace 5/8 by 1/2 and for : = 3 one can replace 5/8 by 3/5) and the work of the first

two authors [49] to obtain discorrelation with polynomial phases for - g � g -2/3+Y (for : = 2 one

can replace 2/3 by 1/2). We omit the details of these extensions of [64, 49] as they follow from our

Theorem 1.1.

We note that in the case : = 2 the exponent 1/3 in Theorem 1.1(iii) matches the classical Voronoi

exponent for the error term in long sums of the divisor function without any twist, and the result seems

to be new even in the case of linear phases.

In the most major arc case � (6(=)�) = 1, shorter intervals can be reached than in Theorem 1.1; see

Theorem 3.1 below. Furthermore if one only wants discorrelation in almost all intervals, for instance by

seeking to bound

∫ 2-

-
sup

6∈Poly(Z→�)

�����
∑

G<=fG+�
( 5 (=) − 5 ♯ (=))� (6(=)�)

�����
∗

3G,

much shorter intervals can be reached with aid of additional ideas. We will return to this question and

its applications in a follow-up paper [46].

Remark 1.4. It should be clear to experts from an inspection of our arguments that the methods used in

this paper could also treat other arithmetic functions with similar structure to `, Λ, or 3: . For instance,

all of the results for the Möbius function ` here have counterparts for the Liouville function _; the

results for the von Mangoldt function Λ have counterparts (with somewhat different normalizations)

for the indicator function 1P of the primes P, and the results for 32 have counterparts for the function

A2 (=) :=
∑
0,1∈Z:02+12== 1 counting the number of representations of = as the sum of two squares. We

sketch the modifications needed to establish these variants in Appendix A. We also conjecture that the

methods can be extended to treat the indicator function 1( of the set ( := {02 + 12 : 0, 1 ∈ Z} of sums

of two squares, or the indicator 1(ā of - [-smooth numbers, although in those two cases a technical

difficulty arises that the construction of a sufficiently accurate approximant to these indicator functions

is non-trivial. Again, see Appendix A for further discussion.
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On the other hand, our arguments do not seem to easily extend to the Fourier coefficients _ 5 (=) of

holomorphic cusp forms. The coefficients _ 5 (=) are analogous to 32 (=) in many ways (though with

vanishing approximant _
♯
5
= 0), and it is reasonable to conjecture parallel results for these two functions.

For instance, in [10] it was established that

sup
U

�����
∑

-<=f-+�
_ 5 (=)4(U=)

����� j �-−2ÿ

for -2/5+Y f � f - . See also [25] for a result with general nilsequences but long intervals. Unfor-

tunately, the methods we use in this paper rely heavily on the convolution structure of the functions

involved and do not obviously extend to give results for _ 5 .

1.1. Gowers uniformity in short intervals

Just as discorrelation estimates with polynomial phases are important for applications of the circle

method, discorrelation estimates with nilsequences are important in higher order Fourier analysis due

to the connection with the Gowers uniformity norms that we next discuss.

For any non-negative integer B g 1, and any function 5 : Z → C with finite support, define the

(unnormalized) Gowers uniformity norm

∥ 5 ∥*ĩ (Z) :=
©­
«

∑
G,ℎ1 ,...,ℎĩ∈Z

∏
l∈{0,1}ĩ

C |l | 5 (G + l1ℎ1 + · · · + lBℎB)ª®¬
1/2ĩ

where l = (l1, . . . , lB), |l | := l1 + · · · +lB , and C : I ↦→ I is the complex conjugation map. Then for

any interval (-, - + �] with � g 1 and any 5 : Z → C (not necessarily of finite support), define the

Gowers uniformity norm over (-, - + �] by

∥ 5 ∥*ĩ (-,-+� ] := ∥ 5 1(-,-+� ] ∥*ĩ (Z)/∥1(-,-+� ] ∥*ĩ (Z) (1.17)

where 1(-,-+� ] : Z → C is the indicator function of (-, - + �].
Using the inverse theorem for Gowers norms (see Proposition 9.4) we can deduce the following

theorem from Theorem 1.1 and a construction of pseudorandom majorants in Section 9.

Theorem 1.5 (Gowers uniformity estimate). Let - \+Y f � f -1−Y for some fixed 0 < \ < 1 and

Y > 0. Let B g 1 be a fixed integer. Also denote ΛF (=) := ,
i (, ) 1(=,, )=1, where , :=

∏
?fF ? and -

is large enough in terms of F.

(i) If \ = 5/8, then

∥Λ − ΛF ∥*ĩ (-,-+� ] = >F→∞ (1), (1.18)

and for any 1 f 0 f , with (0,,) = 1 we have





i(,)
,

Λ(, · +0) − 1






*ĩ (-,-+� ]

= >F→∞ (1). (1.19)

(ii) Let : g 2. Set \ = 1/3 for : = 2, \ = 5/9 for : = 3, and \ = 3/5 for : g 4. Then

∥3: − 3♯: ∥*ĩ (-,-+� ] = >(log:−1 -), (1.20)
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and for any, ′ satisfying, | , ′ | , +F, and for any 1 f 0 f , ′ with (0,, ′) = 1 we have

∥3: (, ′ · +0) − 3♯
:
(, ′ · +0)∥*ĩ (-,-+� ] = >F→∞

((
i(, ′)
, ′

) :−1

log:−1 -

)
. (1.21)

(iii) If \ = 3/5, then

∥`∥*ĩ (-,-+� ] = >(1). (1.22)

In all these estimates the >(1) notation is with respect to the limit - → ∞ (holding B, Y, : fixed).

Remarks.

• The model ΛF with F fixed is simple to work with and arises in various applications of Gowers

uniformity (e.g. to ergodic theory). This also motivates our choice of the Λ♯ model in (1.1)

(although that is defined with a larger value of F to produce better error terms).

• Since the bounds in this theorem (unlike in Theorem 1.1) are qualitative in nature, it should be

possible to use Heath-Brown’s trick from [29] to extend the range of � from - \+Y f � f -1−Y

to - \ f � f -1−Y . Also the range -1−Y f � f - could be covered, as in Remark 1.2. We leave

the details to the interested reader.

• In the case B = 2, we obtain significantly stronger estimates thanks to the polynomial nature of the

*2 inverse theorem. Specifically, when \ = 5/8 + Y, we have

∥`∥*2 (-,-+-Ă ] , ∥Λ − Λ
♯∥*2 (-,-+-Ă ] j�,Y log−� -

for all � > 0 and

∥3: ∥*2 (-,-+-Ă ] jY -
−2ġ Y (1.23)

for some 2: > 0, with (1.23) also holding when (:, \) = (3, 5/9), (2, 1/3), and finally

∥`∥*2 (-,-+-Ă ] jY log−1/20 -

when \ = 3/5. All of these follow directly by combining Theorem 1.1 for 3 = 1 (that is, for

Fourier phases in place of nilsequences) with the polynomial form of the *2 inverse theorem,

which states that if 5 : [#] → C is 1-bounded and ∥ 5 ∥*2 [# ] g X for some X > 0, then

|∑=f# 5 (=)4(U=) |∗ k X4# for some U ∈ R. This form of the inverse theorem follows directly

from the Fourier representation of the *2 [#] norm and Parseval’s theorem, where the Gowers

norm*2 [#] is defined analogously as in (1.17).

1.2. Applications

1.2.1. Polynomial phases

We already stated Corollary 1.3 concerning polynomial phases. But let us here mention that in a

recent work of Kanigowski–Lemańczyk–Radziwiłł [39] on the prime number theorem for analytic skew

products, a key analytic input ([39, Theorem 9.1]) was that Corollary 1.3(ii) holds for � = -2/3−[ (with

a weaker error term of >[→0 (�)), thus going just beyond the range of validity of [49, Theorem 1.1].

Corollary 1.3 allows taking [ < 1/24 with strongly logarithmic savings for the error terms. Similar

remarks apply to the recent work of Kanigowski [38].

1.2.2. An application to ergodic theory

In a seminal work, Host and Kra [32] showed that, for any measure-preserving system (-,X, `, )), any

bounded functions 51, . . . , 5: : - → C, and any intervals �# whose lengths tend to infinity as # → ∞,
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the multiple ergodic averages

1

|�# |
∑
=∈�Ċ

51 ()=G) · · · 5: () :=G)

converge in !2 (`) as # → ∞. Since this work, it has therefore become a natural and active question to

determine for which sequences of intervals (�# )# and weights F : N → C we have the !2-convergence

of

1

|�# |
∑
=∈�Ċ

F(=) 51 ()=G) · · · 5: () :=G)

as # → ∞. The case of �# = [1, #] and with the weight being the primes, that is F(=) = 1P (=), was

settled in the works of Frantzikinakis–Host–Kra [13] and Wooley–Ziegler [63] (the results of [13] in

the cases : g 4 were originally conditional on the Gowers uniformity of the von Mangoldt function).

Analogous results also exist for weights F supported on a sequence given by a Hardy field [12]

or random sequences [14]; see also [42] for related results concerning correlation sequences = ↦→∫
-
51 ()=G) · · · 5: () :=G) 3`(G). As an application of Theorem 1.5, we can extend the result on prime

weights to short collections of intervals (�# )# .

Theorem 1.6 (Multiple ergodic averages over primes in short intervals). Let : g 1, Y > 0 and

^ ∈ [5/8+Y, 1−Y]. Let ℎ1, . . . , ℎ: be distinct positive integers. Let (-,X, `, )) be a measure-preserving

system. Let 51, . . . , 5: : - → C be bounded and measurable. Then the multiple ergodic averages

E#<?f#+# Ą 51 ()ℎ1 ?G) · · · 5: ()ℎġ ?G)

converge in !2 (`).

The results of [13] and [63] correspond to the case ^ = 1 . According to the best of our knowledge,

Theorem 1.6 is the first result of its kind with ^ < 1.

1.2.3. Linear equations in short intervals

The work of Green and the third author [17] on linear equations in primes (together with [18], [21])

provides for any finite complexity systems of linear forms (k1, . . . , kC ) : Z3 → ZC an asymptotic

formula for

∑
n∈ ∩ZĚ

C∏
8=1

Λ(k8 (n)), (1.24)

whenever  ¢ [−-, -]3 is a convex body containing a positive proportion of the whole cube [−-, -]3 ,

that is, vol( ) k -3 . One may ask if one can establish similar results when  is a smaller region in

[−-, -]3 , of volume≍ - \3 with \ < 1. Note that for a single linear form, this boils down to asymptotics

for primes in short intervals (where the exponent \ = 7/12 from [33], [29] is the best one known). Using

Theorem 1.5, we can indeed give asymptotics for (1.24) in small regions.

Theorem 1.7 (Generalized Hardy–Littlewood conjecture in small boxes for finite complexity systems).

Let - g 3 and -5/8+Y f � f -1−Y for some fixed Y > 0. Let 3, C, ! g 1. Let « = (k1, . . . , kC ) be a

system of affine-linear forms, where each k8 : Z3 → Z has the form k8 (x) = ¤k8 · x+k8 (0) with ¤k8 ∈ Z3

and k8 (0) ∈ Z satisfying | ¤k8 | f ! and |k8 (0) | f !- . Suppose that ¤k8 and ¤k 9 are linearly independent
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whenever 8 ≠ 9 . Let  ¢ (-, - + �]3 be a convex body. Then

∑
n∈ ∩ZĚ

C∏
8=1

Λ(k8 (n)) = V∞
∏
?

V? + >C ,3,! (�3), (1.25)

where Λ is extended as 0 to the nonpositive integers and the Archimedean factor is given by

V∞ = vol( ∩ «
−1 (RC>0))

and the local factors are given by

V? = E
n∈ (Z/?Z)Ě

C∏
8=1

?

? − 1
1kğ (n)≠0.

Remark 1.8. From Theorem 1.5 and the proof method of Theorem 1.7, one can also deduce similar

correlation results when in (1.25) one replaces Λ with ` or 3: (with the value of \ as in Theorem 1.5,

and with no main term in the case of `, and a different local product in the case of 3:). More specifically,

under the assumption of Theorem 1.7, we have

∑
n∈ ∩ZĚ

C∏
8=1

`(k8 (n)) = >C ,3,! (�3), (1.26)

and, for a positive integer : ,

∑
n∈ ∩ZĚ

C∏
8=1

3: (k8 (n)) = V∞
∏
?

V? + >C ,3,! (�3 logC (:−1) -),

where 3: is extended as 0 to the nonpositive integers and the Archimedean factor is given by

V∞ =

∫
 

C∏
8=1

log:−1
+ k8 (x)
(: − 1)! 3x = $C ,3,! (�3 logC (:−1) -),

and the local factors are given by

V? =

E
n∈ZĚ

Ħ

∏C
8=1 3:, ? (k8 (n))∏C

8=1 E<∈ZĦ3:, ? (<)
= E

n∈ZĚ
Ħ

C∏
8=1

( ? − 1

?

) :−1

3:, ? (k8 (n)).

Here log+ H := log max(H, 1), Z? is the ?-adics (with the usual Haar probability measure),

3:, ? (<) =
(
: − 1 + E? (<)

: − 1

)
,

and E? (<) is the number of times ? divides <. These local factors are natural extensions of the ones

defined in [47, Remark 1.2] in the special case of two linear forms k1 (=) = =, k2 (=) = = + ℎ.

We have the following immediate corollary to Theorem 1.7.

Corollary 1.9 (Linear equations in primes in short intervals). Let - g 3 and -5/8+Y f � f -1−Y for

some fixed Y > 0. Let 3, C, ! g 1. Let « = (k1, . . . , kC ) : Z3 → ZC be a system of affine-linear forms,

where each k8 has the form k8 (x) = ¤k8 · x + k8 (0) with ¤k8 ∈ Z3 and k8 (0) ∈ Z satisfying | ¤k8 | f ! and

|k8 (0) | f !- . Suppose that ¤k8 and ¤k 9 are linearly independent whenever 8 ≠ 9 . Suppose that, for every
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prime ?, the system of equations «(n) = 0 is solvable with n ∈ ((Z/?Z) \ {0})3 . Then the number of

solutions to «(n) = 0 with n ∈ (P ∩ (-, - + �])3 is

k
vol((-, - + �]3 ∩ «−1 (RC

>0
))

log3 -
+ >3,C ,!

(
�3

log3 -

)
.

Thus, for example, for any Y > 0 and any large enough odd # there is a solution to

?1 + ?2 + ?3 = #, ?1, ?2, ?3, 2?1 − ?2 ∈ P

with ?8 ∈ [#/3− #5/8+Y , #/3 + #5/8+Y]. Without the condition 2?1 − ?2 ∈ P, this is due to Zhan [64].

The exponent 5/8 in Zhan’s result has been improved using sieve methods (see e.g. [3]) and more

recently using the transference principle [43]. It would probably be possible to use a sieve method also

to improve on Corollary 1.9; it would suffice to find a suitable minorant function for Λ(=) that has

positive average and is Gowers uniform in shorter intervals. Such a minorant could be constructed with

our arithmetic information using Harman’s sieve method [24], but we do not do so here.

1.3. Methods of proof

We now describe (in somewhat informal terms) the general strategy of proof of our main theorems,

although for various technical reasons the actual rigorous proof will not quite follow the intuitive plan

that is outlined here.

To prove Theorem 1.1, the first step, which is standard, is to apply Heath–Brown’s identity

(Lemma 2.16) together with a combinatorial lemma regarding subsums of a finite number of non-

negative reals summing to one (Lemma 2.20) to decompose `,Λ, 3: (up to small errors) into three

standard types of sums:

(�) Type � sums, which are roughly of the form U ∗ 1 = U ∗ 31 for some arithmetic function U : N → C

supported on some interval [1, �� ] that is not too large, and with U bounded in an !2 averaged

sense.

(�2) Type �2 sums, which are roughly of the form U ∗ 32 for some arithmetic function U : N → C

supported on some interval [1, ��2 ] that is not too large, and with U bounded in an !2 averaged

sense.

(� �) Type � � sums, which are roughly of the form U ∗ V for some arithmetic functions U, V : N → C

with U supported on some interval [�−
� � , �

+
� � ] that is neither too long nor too close to 1 or - , and

with U, V bounded in an !2 averaged sense.

This decomposition is detailed in Section 4. The precise ranges of parameters �� , ��2 , �
−
� � , �

+
� � that

arise in this decomposition depend on the choice of \ (and, in the case of 3: for small : , on the value

of :); this is encoded in the combinatorial lemma given here as Lemma 2.20.

The treatment of these types of sums (in Theorem 4.2) depends on the behavior of the nilsequence

� (6(=)�), in particular whether it is “major arc” or “minor arc”. This splitting into different behaviors

will be done somewhat differently for different types of sums.

In case of type � and type �2 sums, one can use the equidistribution theory of nilmanifolds to

essentially reduce to two cases, the major arc case in which the nilsequence � (6(=)�) behaves like (or

“pretends to be”) the constant function 1 (or some other function of small period), and the minor arc case

in which � has mean zero and 6(=)� is highly equidistributed in the nilmanifold �/�. The contribution

of type � and type �2 major arc sums can be treated by standard methods, namely an application of

Perron’s formula and mean value theorems for Dirichlet series; see Section 3.

The contribution of type � minor arc sums can be treated by a slight modification of the arguments

in [18], which are based on the “quantitative Leibman theorem” (Theorem 2.7 below) that characterizes

when a nilsequence is equidistributed, as well as a classical lemma of Vinogradov (Lemma 2.3 below)
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that characterizes when a polynomial modulo 1 is equidistributed. (Actually it will be convenient to

rely primarily on a corollary of Lemma 2.3 that asserts that if typical dilates of a polynomial are

equidistributed modulo 1, then the polynomial itself is equidistributed modulo 1: see Corollary 2.4

below.)

Our treatment of type �2 minor arc sums is more novel. A model case is that of treating the 32-type

correlation ∑
-<=f-+�

32 (=)� (6(=)�).

From the definition of the divisor function 32, we can expand this sum as a double sum∑
=,<:-<=<f-+�

� (6(=<)�). (1.27)

We are not able to obtain non-trivial estimates on such sums in the regime � f -1/3. However,

when � g -1/3+Y , it turns out by elementary geometry of numbers that the hyperbola neighborhood

{(=, <) ∈ Z2 : - < =< f - + �} may be partitioned3 into arithmetic progressions % ¢ Z2 that mostly

have non-trivial length; see Theorem 8.1 for a precise statement. This decomposition lets us efficiently

decompose the sum (1.27) into short sums of the form∑
(=,<) ∈%

� (6(=<)�)

that turn out to exhibit cancellation for most progressions % in the type �2 minor arc case, mainly

thanks to the quantitative Leibman theorem (Theorem 2.7) and a corollary of the Vinogradov lemma

(Corollary 2.4); see Section 8.

It remains to handle the contribution of type � � sums, which are of the form∑
-<=f-+�

U ∗ V(=)� (6(=)�)

which we can expand as ∑
�−
ąąf0f�+ąą

U(0)
∑

-/0<1f-/0+�/0
V(1)� (6(01)�). (1.28)

To treat these sums, we can use a Fourier decomposition and the equidistribution theory of

nilmanifolds to reduce (roughly speaking) to treating the following three special cases of these sums:

• Type � � major arc sums that are essentially of the form∑
-<=f-+�

U ∗ V(=)=8)

for some real number ) = -$ (1) of polynomial size (one can also consider generalizations of such

sums when the =8) factor is twisted by an additional Dirichlet character j of bounded conductor).

• Abelian Type � � minor arc sums in which � (6(=)�) = 4(%(=)) is a polynomial phase that does

not “pretend” to be a character =8) (or more generally j(=)=8) for some Dirichlet character j of

bounded conductor) in the sense that the Taylor coefficients of 4(%(=)) around - do not align with

the corresponding coefficients of such characters.

3This partition is reminiscent of the classical Hardy–Littlewood partition of the unit circle into major and minor arcs, except that we are partitioning

(a neighborhood of) a hyperbola rather than a circle.
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• Non-abelian Type � � minor arc sums, in which 6(=)� is highly equidistributed in a nilmanifold

�/� arising from a non-abelian nilpotent group �, and � exhibits non-trivial oscillation in the

direction of the center / (�) of � (which one can reduce to be one-dimensional).

One can treat the contribution of the type � � major arc sums by applying Perron’s formula and

Dirichlet polynomial estimates of Baker–Harman–Pintz [4] in the regime, so long as one actually has a

suitable triple convolution (with one of the subfactors having well-controlled correlations with =8) ); see

Lemma 3.5. As already implicitly observed by Zhan [64], this case can be treated (with favorable choices

of parameters) for any of the three functions `,Λ, 3: in the case \ = 5/8. As observed in [50], in the

case of the Möbius function `, it is possible to lower \ to 3/5 and still obtain triple convolution structure

after removing a small exceptional error term from ` (which is responsible for the final discorrelation

bounds not saving arbitrary powers of log -); see Lemma 4.5.

It remains to treat the contribution of non-abelian and abelian type � � minor arc sums. It turns out

that we will be able to establish good estimates for such sums (1.28) in the regime

- Y
-

�
j �−

� � < �+
� � j -−Y�.

In this regime, the inner intervals (-/0, -/0 + �/0] in (1.28) have non-negligible length (at least - Y),

and furthermore they exhibit non-trivial overlap with each other ((-/0, -/0 + �/0] will essentially be

identical to (-/0′, -/0′ + �/0′] whenever 0′ =
(
1 +$

(
-−Y �

-

) )
0).

As a consequence, many of the dilated nilsequences 1 ↦→ � (6(01)�) appearing in (1.28) will cor-

relate with the same portion of the sequence V. To handle this situation we introduce a nilsequence

version of the large sieve inequality in Proposition 2.15, which we establish with the aid of the equidis-

tribution theory for nilsequences, as well as Goursat’s lemma. The upshot of this large sieve inequality

is that for many nearby pairs 0′, 0 there is an algebraic relation between the sequences 1 ↦→ 6(01) and

1 ↦→ 6(0′1), namely that one has an identity of the form

6(0′·) = Y00′6(0·)W00′

where Y00′ : Z → � is a “smooth” polynomial map and W00′ : Z → � is a “rational” polynomial map;

see (6.7) for a precise statement. This can be viewed as an assertion that the map 6 is “approximately

dilation-invariant” in some weak sense. This turns out to imply a non-trivial lack of two-dimensional

equidistribution for the map

(0, 0′, 1, 1′) ↦→ (6(01)�, 6(01′)�, 6(0′1)�, 6(0′1′)�)

which is incompatible with the non-abelian nature of� thanks to a commutator argument of Furstenberg

and Weiss [15]; see Section 6. This resolves the non-abelian case. In the abelian case, one can replace

the maps 6 by the ordinary polynomials %, and one can then proceed by adapting the arguments by the

first two authors in [49] to show that 4(%(=)) necessarily “pretends” to be like a character =8) , which

resolves the abelian type � � minor arc case. Combining all these cases yields Theorem 1.1.

1.3.1. The result on Gowers norms

The proof of Theorem 1.5 (in Section 9) requires in addition to Theorem 1.1 and the inverse theorem

for the Gowers norms also a construction of pseudorandom majorants for (,-tricked versions of) Λ

and 3: over short intervals (-, - + �]. By this we mean functions a1, a2 that majorize the functions

Λ, 3: (after ,-tricking and suitable normalization), and such that a8 − 1 restricted to (-, - + �] is

Gowers uniform. In the case of long intervals (that is, � = -), the existence of such majorants is well

known from works of Green and the third author [16] and Matthiesen [52]. Fortunately, it turns out

that the structure of these well-known majorants as type I sums of small “level” enables us to show that

they work as majorants also over short intervals (-, - + �]; see Lemmas 9.5 and 9.6. These lemmas
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combined with the implementation of the ,-trick (which in the case of 3: requires additionally two

simple lemmas, namely Lemmas 9.8 and 9.9) leads to the proof of Theorem 1.5.

Remark 1.10. In this remark we discuss the obstructions to improving the value of \ in the various

components of Theorem 1.1. In most of these results, the primary obstruction arises (roughly speaking)

from portions of `, Λ, or 3: that look something like

1(-Ă1 ,2-Ă1 ] ∗ · · · ∗ 1(-Ăģ ,2-Ăģ ] (1.29)

for various tuples (U1, . . . , U<) of positive real numbers that add up to 1. More specifically:

(a) For the \ = 5/8 results in Theorem 1.1(i)–(iii), the primary obstruction arises from convolu-

tions (1.29) with (U1, . . . , U<) equal to (1/4, 1/4, 1/4, 1/4), when correlated against characters

=8) with ) ≍ -$ (1) , as this lies just outside the reach of our twisted major arc type � and type � �

estimates when \ goes below 5/8. This obstruction was already implicitly observed by Zhan [64].

(b) For the \ = 3/5 result in Theorem 1.1(iv), the primary obstruction are convolutions (1.29) with

(U1, . . . , U<) equal to (2/5, 1/5, 1/5, 1/5) or (1/5, 1/5, 1/5, 1/5, 1/5), when correlated against

“minor arc” nilsequences, such as 4(U=) for some minor arc U. Such convolutions become just out

of reach of our type �, type � �, and type �2 estimates when \ goes below 3/5. This obstruction was

already observed in [50].

(c) For the \ = 1/3 result in Theorem 1.1(iii), the primary obstruction is of a different nature from

the preceding cases: it is that our treatment of minor arcs in this case relies crucially on the ability

to partition the neighborhood of a hyperbola into arithmetic progressions (see Theorem 8.1), and

this partition is no longer available in any useful form once \ goes below 1/3.

(d) For the \ = 5/9 result in Theorem 1.1(iii), the primary obstruction arises from convolutions (1.29)

with (U1, . . . , U<) equal to (1/3, 1/3, 1/3), when correlated against minor arc nilsequences, for

reasons similar to those in the previous case (c).

1.4. Notation

The parameter - should be thought of as being large.

We use. j / ,. = $ (/), or / k . to denote the estimate |. | f �/ for some constant�. If we wish

to permit this constant to depend (possibly ineffectively) on one or more parameters we shall indicate

this by appropriate subscripts, thus for instance $ Y,�(/) denotes a quantity bounded in magnitude by

�Y,�/ for some quantity�Y,� depending only on Y, �. We write. ≍ / for. j / j . . When working

with 3: , all implied constants are permitted to depend on : . We also write H ∼ . to denote the assertion

. < H f 2. .

If G is a real number (resp. an element of R/Z), we write 4(G) := 42c8G and let ∥G∥R/Z denote the

distance of G to the nearest integer (resp. zero).

We use 1� to denote the indicator of an event � , thus 1� equals 1 when � is true and 0 otherwise. If

( is a set, we write 1( for the indicator function 1( (=) := 1=∈( .

Unless otherwise specified, all sums range over natural number values, except for sums over ? which

are understood to range over primes. We use 3 |= to denote the assertion that 3 divides =, (=, <) to

denote the greatest common divisor of = and <, = = 0 (@) to denote the assertion that = and 0 have

the same residue mod @, and 5 ∗ 6(=) :=
∑
3 |= 5 (3)6(=/3) to denote the Dirichlet convolution of two

arithmetic functions 5 , 6 : N → C.

The height of a rational number 0/1 with 0, 1 coprime is defined as max( |0 |, |1 |).
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2. Basic tools

2.1. Total variation

The notion of maximal summation defined in (1.4) interacts well with the notion of total variation,

which we now define.

Definition 2.1 (Total variation). Given any function 5 : % → C on an arithmetic progression %, the

total variation norm ∥ 5 ∥TV(%) is defined by the formula

∥ 5 ∥TV(%) := sup
=∈%

| 5 (=) | + sup
=1<· · ·<=ġ

:−1∑
9=1

| 5 (= 9+1) − 5 (= 9 ) |

where the second supremum ranges over all increasing finite sequences =1 < · · · < =: in % and all

: g 1. We remark that in this finitary setting one can simply take =1, . . . , =: to be the elements of % in

increasing order, if one wishes. We adopt the convention that ∥ 5 ∥TV(%) = 0 when % is empty. For any

natural number @ g 1, we also define

∥ 5 ∥TV(%;@) :=
∑

0∈Z/@Z
∥ 5 ∥TV(%∩(0+@Z) ) .

Informally, if 5 is bounded in TV(%; @) norm, then 5 does not vary much on each residue class

modulo @ in %. From the fundamental theorem of calculus we see that if 5 : � → C is a continuously

differentiable function then

∥ 5 ∥TV(%) j sup
C∈�

| 5 (C) | +
∫
�
| 5 ′ (C) | 3C (2.1)

for all arithmetic progressions % in �. Also, from the identity 01−0′1′ = (0−0′)1+(1−1′)0′ we see that

∥ 5 6∥TV(%;@) j ∥ 5 ∥TV(%;@) ∥6∥TV(%;@) (2.2)

for any functions 5 , 6 : % → C defined on an arithmetic progression, and any @ g 1.

We can now record some basic properties of maximal summation:

Lemma 2.2 (Basic properties of maximal sums).

(i) (Triangle inequalities) For any subprogression %′ of an arithmetic progression %, and any 5 : % →
C we have �����

∑
=∈%

5 (=)1%′ (=)
�����
∗

=

�����
∑
=∈%′

5 (=)
�����
∗

f
�����
∑
=∈%

5 (=)
�����
∗

and �����
∑
=∈%

5 (=)
����� f

�����
∑
=∈%

5 (=)
�����
∗

f
∑
=∈%

| 5 (=) |.

If % can be partitioned into two subprogressions as % = %1 ⊎ %2, then

�����
∑
=∈%

5 (=)
�����
∗

f
�����
∑
=∈%1

5 (=)
�����
∗

+
�����
∑
=∈%2

5 (=)
�����
∗

. (2.3)

Finally, the map 5 ↦→ |∑=∈% 5 (=) |∗ is a seminorm.
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(ii) (Local stability) If G0 ∈ R, � > 0, and 5 : Z → C, then�����
∑

G0<=fG0+�
5 (=)

�����
∗

f 2

�

∫ G0+�/2

G0−�/2

�����
∑

G<=fG+�
5 (=)

�����
∗

3G.

(iii) (Summation by parts) Let % be an arithmetic progression, and let 5 , 6 : % → C be functions. Then

we have �����
∑
=∈%

5 (=)6(=)
�����
∗

f ∥6∥TV(%)

�����
∑
=∈%

5 (=)
�����
∗

(2.4)

and more generally �����
∑
=∈%

5 (=)6(=)
�����
∗

f ∥6∥TV(%;@)

�����
∑
=∈%

5 (=)
�����
∗

(2.5)

for any @ g 1.

Proof. The claims (i) all follow easily the triangle inequality and the observation that the intersection

of two arithmetic progressions is again an arithmetic progression; for instance, (2.3) follows from the

observation that any subprogression %′ of % is partitioned into subprogressions %′ ∩ %1, %
′ ∩ %2 of

%1, %2 respectively. To prove (ii), we observe from (i) that for any 0 < C < �/2 we have

�����
∑

G0<=fG0+�
5 (=)

�����
∗

f

������
∑

G0<=fG0+�/2
5 (=)

������
∗

+

������
∑

G0+�/2<=fG0+�
5 (=)

������
∗

f
�����

∑
G0−C<=fG0−C+�

5 (=)
�����
∗

+
�����

∑
G0+C<=fG0+C+�

5 (=)
�����
∗

and the claim then follows by averaging in C.

To prove the first claim (2.4) of (iii), it will suffice by the monotonicity properties of total variation

and maximal sums to show that�����
∑
=∈%′

5 (=)6(=)
����� f ∥6∥TV(%′ )

�����
∑
=∈%′

5 (=)
�����
∗

(2.6)

for all subprogressions %′ of %. Clearly we may assume %′ is non-empty. If we order the elements of %′

as =1 < =2 < · · · < =: , then from summation by parts we have

∑
=∈%′

5 (=)6(=) =
:−1∑
9=1

(6(= 9 ) − 6(= 9+1))
9∑
8=1

5 (=8) + 6(=:)
:∑
8=1

5 (=8).

Since each segment {=1, . . . , = 9 } of %′ is again a subprogression of %′, we have from the triangle

inequality that

�����
∑
=∈%′

5 (=)6(=)
����� f

:−1∑
9=1

|6(= 9 ) − 6(= 9+1) |
�����
∑
=∈%′

5 (=)
�����
∗

+ |6(=:) |
�����
∑
=∈%′

5 (=)
�����
∗

and the claim (2.6) now follows from Definition 2.1. Thus (2.4) holds. To prove the second claim (2.5),

partition % into subprogressions %∩ (0+@Z), apply (2.4) to each subprogression, and sum using (i). □
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2.2. Vinogradov lemma

If % : Z → R/Z is a polynomial of degree 3, and � is an interval of length |� | g 1, we define the

smoothness norm

∥%∥�∞ (� ) := sup
0f 9f3

sup
=∈�

|� | 9 ∥m 9
1
%(=)∥R/Z

where m1 is the difference operator m1%(=) := %(=) − %(= − 1). We remark that this definition deviates

very slightly from that in [19, Definition 2.7]; in particular, we allow the index 9 to equal zero and we

allow = to range over � rather than being set to the origin. We use the same notation ∥%∥�∞ (� ) for a

polynomial % : Z → R after reducing its coefficients modulo 1.

The following lemma asserts, roughly speaking, that a polynomial % is (somewhat) equidistributed

unless it is smooth.

Lemma 2.3 (Vinogradov lemma). Let 0 < Y, X < 1/2, 3 g 0, and let % : Z → R/Z be a polynomial of

degree at most 3. Let � be an interval of length |� | g 1, and suppose that

∥%(=)∥R/Z f Y

for at least X |� | integers = ∈ �. Then either X j3 Y, or else one has

∥@%∥�∞ (� ) j3 X
−$Ě (1)Y

for some integer 1 f @ j3 X
−$Ě (1) .

Proof. By applying a translation, we may assume that � takes the form (0, #] for some # g 1. We may

also assume Y f X/2, since we are clearly done otherwise. We may now invoke [19, Lemma 4.5] to

conclude that there exists 1 f @ j3 X
−$Ě (1)Y such that

sup
1f 9f3

sup
=∈�

|� | 9 ∥@m 9
1
%(=)∥R/Z j3 X

−$Ě (1)Y. (2.7)

This is almost what we want, except that we have to also control the 9 = 0 contribution. But

from hypothesis we have at least one =0 ∈ � such that ∥%(=0)∥R/Z f Y, and from (2.7) we have

∥@m1%(=)∥R/Z j3 X
−$Ě (1) |� |−1Y for all = ∈ �. From the triangle inequality we then conclude that

∥@%(=)∥R/Z j3 X
−$Ě (1)Y

for all = ∈ �, and the claim follows. □

The following handy corollary of Lemma 2.3 asserts, roughly speaking, that if many dilates of a

polynomial are smooth, then the polynomial itself is smooth.

Corollary 2.4 (Concatenating dilated smoothness). Let 0 < X < 1/2, 3 g 0, and let % : Z → R/Z be a

polynomial of degree at most 3. Let � g 1, let � be an interval with |� | g 2�, and suppose that

∥%(0·)∥�∞ ( 1
ė � )

f 1

X
(2.8)

for at least X� integers 0 in [�, 2�], where 1
0 � := { C0 : C ∈ �} is the dilate of � by 1

0 . Then either

|� | j3 X
−$Ě (1) �, or else one has

∥@%∥�∞ (� ) j3 X
−$Ě (1)

for some integer 1 f @ j3 X
−$Ě (1) .
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Proof. We allow all implied constants to depend on 3. We may assume that |� | g �X−�� for a large

constant � depending on 3, as the claim is immediate otherwise.

We now claim that for each 0 f 9 f 3 that there exists a decomposition

% = % 9 +& 9 (2.9)

where % 9 : Z → R/Z is a polynomial of degree at most 3 with

∥@ 9% 9 ∥�∞ (� ) j X−$ (1) (2.10)

for some 1 f @ 9 j X−$ (1) , and & 9 : Z → R/Z is a polynomial of degree at most 9 . For 9 = 3 one can

simply set %3 = 0 and &3 = %. Now suppose by downward induction that 0 f 9 < 3 and the claim has

already been proven for 9 + 1. From (2.10) (for % 9+1) we have

∥@ 9+1% 9+1∥�∞ (� ) j X−$ (1) .

Routine Taylor expansion then gives

∥@ 9+1% 9+1 (0·)∥�∞ ( 1
ė � )

j X−$ (1)

for all 0 ∈ [�, 2�], thus by (2.8) and the triangle inequality we have

∥@ 9+1& 9+1 (0·)∥�∞ ( 1
ė � )

j X−$ (1)

for g X� choices of 0 ∈ [�, 2�].
Now write& 9+1 (=) = U 9+1

( =
9+1

)
+& 9 (=) where& 9 is of degree at most 9 . Taking 9+1-fold derivatives,

we see that

∥0 9+1@ 9+1U 9+1∥R/Z j X−$ (1) (�/|� |) 9+1

for g X� choices of 0 ∈ [�, 2�]. Applying Lemma 2.3 to the polynomial 0 → 0 9+1@ 9+1U 9+1 (and

recalling that |� |/� g �X−� for a suitably large � by assumption), we conclude that there is 1 f @ j
X$ (1) such that

∥@(·) 9+1@ 9+1U 9+1∥�∞ ( [�,2�] ) j X−$ (1) (�/|� |) 9+1

and hence on taking 9 + 1-fold derivatives

∥( 9 + 1)!@@ 9+1U 9+1∥R/Z j X−$ (1) |� |− 9−1.

If one then sets @ 9 := ( 9 +1)!@@ 9+1 and % 9 (=) := % 9+1 (=)+U 9+1

( =
9+1

)
, we obtain the decomposition (2.9),

and (2.10) follows from the triangle inequality. This closes the induction. Applying the claim with 9 = 0,

we obtain the corollary. □

2.3. Equidistribution on nilmanifolds

We now recall some of the basic notation and results from [19] concerning equidistribution of polynomial

maps on nilmanifolds.

Definition 2.5 (Filtered group). Let 3 g 1. A filtered group is a group � (which we express in

multiplicative notation � = (�, ·) unless explicitly indicated otherwise) equipped with a filtration

�• = (�8)∞8=0
of nested groups � g �0 g �1 g . . . such that [�8 , � 9 ] f �8+ 9 for all 8, 9 g 0. We say

that this group has degree at most 3 if �8 is trivial for all 8 > 3. Given a filtered group of degree at most

3, a polynomial map 6 : Z → � from Z to � is a map of the form 6(=) = 606
(Ĥ1)
1

. . . 6
(ĤĚ)
3

where 68 ∈ �8
for all 0 f 8 f 3; the collection of such maps will be denoted Poly(Z → �).
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The well-known Lazard–Leibman theorem (see e.g., [19, Proposition 6.2]) asserts that Poly(Z → �)
is a group under pointwise multiplication; also, from [19, Corollary 6.8] we see that if 6 : Z → � is a

polynomial map then so is = ↦→ 6(0= + 1) for any integers 0, 1.

If � is a simply connected nilpotent Lie group, we write log� for the Lie algebra. From the

Baker–Campbell–Hausdorff formula4 (see e.g. [22, Theorem 3.3]) we see that the exponential map

exp: log� → � is a homeomorphism and hence has an inverse log : � → log�.

Definition 2.6 (Filtered nilmanifolds). Let 3, � g 1 and 0 < X < 1. A filtered nilmanifold �/� of

degree at most 3, dimension �, and complexity at most 1/X consists of the following data:

• A filtered simply connected nilpotent Lie group � of dimension � equipped with a filtration

�• = (�8)∞8=0
of degree at most 3, with�0 = �1 = � and all�8 closed connected subgroups of�.

• A lattice (i.e., a discrete cocompact subgroup �) of �, with the property that �8 := � ∩ �8 is a

lattice of �8 for all 8 g 0.

• A linear basis -1, . . . , -� (which we call a Mal’cev basis) of log�.

Furthermore we assume the following axioms:

(i) For all 1 f 8, 9 f � we have [-8 , - 9 ] =
∑
8, 9<:f� 28 9:-: for some rational numbers 28 9: of height

at most 1/X.
(ii) For all 0 f 8 f 3, the vector space �8 is spanned by the - 9 with � − dim�8 < 9 f �.

(iii) We have � = {exp(=1-1) · · · exp(=�-�) : =1, . . . , =� ∈ Z}.

It is easy to see that �/� has the structure of a smooth compact �-dimensional manifold, which we

equip with a probability Haar measure 3`�/�. We define the metric 3� on � to be the largest right-

invariant metric such that 3� (exp(C1-1) · · · exp(C�-�), 1) f sup1f8f� |C8 | for all C1, . . . , C� ∈ R. We

then define a metric 3�/� on �/� by the formula 3�/� (G, H) := inf6�=G,ℎ�=H 3� (6, ℎ). The Lipschitz

norm of a function � : �/� → C is defined to be the quantity

sup
G∈�/�

|� (G) | + sup
G,H∈�/�:G≠H

|� (G) − � (H) |
3�/� (G, H)

.

A horizontal character [ associated to a filtered nilmanifold is a continuous homomorphism [ : � →
R that maps � to the integers.

An element W of � is said to be "-rational for some " g 1 if one has WA ∈ � for some natural

number 1 f A f " . A subnilmanifold �′/�′ of �/� (thus �′ is a closed connected subgroup of �

with �′
8

:= �′
8 ∩ � cocompact in �′

8 for all 8) is said to be "-rational if each element - ′
1
, . . . , - ′

dim�′

of the Mal’cev basis associated to � is a linear combination of the -8 with all coefficients rational of

height at most " .

A rational subgroup �′ of complexity at most 1/X is a closed connected subgroup of � with the

property that log�′ admits a linear basis consisting of dim�′ vectors of the form
∑�
8=1 08-8 , where

each 08 is a rational of height at most 1/X.

It is easy to see that every horizontal character takes the form [(6) = _(log 6) for some linear

functional _ : log� → R that annihilates log[�,�] and maps log � to the integers. From this one can

verify that the number of horizontal characters of Lipschitz norm at most 1/X is at most$3,� (X−$Ě,Ā (1) ).
From several applications of Baker–Campbell–Hausdorff formula we see that if� has degree at most

3 and W1, W2 ∈ � are "-rational, then W1W2 is $3 ("$Ě (1) )-rational.

We have the following basic dichotomy between equidistribution and smoothness:

Theorem 2.7 (Quantitative Leibman theorem). Let 0 < X < 1/2, let 3, � g 1, let � be an interval

with |� | g 1, and let �/� be a filtered nilmanifold of degree at most 3, dimension at most �, and

4The reader may consult [48, Appendix B] for more details on the use of the Baker–Campbell–Hausdorff formula in the context of quantitative

nilmanifold theory.
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complexity at most 1/X. Let � : �/� → C be Lipschitz of norm at most 1/X and of mean zero (i.e.,∫
�/� � 3`�/� = 0). Suppose that 6 : Z → � is a polynomial map with

���∑
=∈�

� (6(=)�)
���∗ g X |� |.

Then there exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm $3,� (X−$Ě,Ā (1) )
such that

∥[ ◦ 6∥�∞ (� ) j3,� X−$Ě,Ā (1) .

Proof. By applying a translation we may assume � = (0, #] for some # g 1. The claim now follows

from [59, Theorem 3.5]. □

Let �/� be a filtered nilmanifold of dimension � and complexity at most 1/X, and let �′ be a

rational subgroup of complexity at most 1/X. In [19, Proposition A.10] it is shown that �′/�′ can be

equipped with the structure of a filtered nilmanifold of complexity$3,� (X−$Ě,Ā (1) ), where �′ := �∩�′,
�′
8

:= �8 ∩ �′, and the metrics 3� , 3�′ are comparable on �′ up to factors of $3,� (X−$Ě,Ā (1) ); one

can view �′/�′ as a subnilmanifold of �/�.

One can easily verify from basic linear algebra and the Baker–Campbell–Hausdorff formula that the

following groups are rational subgroups of � of complexity $3,� (X−$Ě,Ā (1) ):

• The groups �8 in the filtration for 0 f 8 f 3.

• The kernel ker [ of any horizontal character [ of Lipschitz norm $3,� (X−$Ě,Ā (1) ).
• The center / (�) = {exp(-) : - ∈ log�; [-,. ] = 0 ∀. ∈ log�} of �.

• The intersection �′ ∩ �′′ or commutator [�′, �′′] of two rational subgroups �′, �′′ of � of

complexity $3,� (X−$Ě,Ā (1) ).
• The product �′# of two rational subgroups �′, # of � of complexity $3,� (X−$Ě,Ā (1) ), with #

normal.

We can quotient out a filtered nilmanifold by a normal subgroup to obtain another filtered nilmanifold,

with polynomial control on complexity:

Lemma 2.8 (Quotienting by a normal subgroup). Let �/� be a filtered nilmanifold of degree at most

3, dimension � and complexity at most 1/X. Let # be a normal rational subgroup of � of complexity at

most 1/X, and let c : � ↦→ �/# be the quotient map. Then c(�)/c(�) can be given the structure of a

filtered nilmanifold of degree at most 3, dimension � − dim # , and complexity $3,� (X−$Ě,Ā (1) ), such

that

3c (�) (c(6), c(ℎ)) ≍3,� X−$Ě,Ā (1) inf
=∈N

3� (6, =ℎ) (2.11)

for any 6, ℎ ∈ �.

Proof. We allow all implied constants to depend on 3, �. Let c̃ : log� → log�/log # ≡ log(�/#) be

the quotient map of log� by the Lie algebra ideal log # , then c ◦ exp = exp ◦c̃. For each 0 f 8 f 3, the

vectors c̃(- 9 ) for � − dim�8 < 9 f � span the linear subspace c̃(log�8) of log(�/#), and the linear

relations between those vectors are are generated by $ (1) equations with coefficients rational of height

$ (X−$ (1) ). From this and linear algebra we may find a basis -̃1, . . . , -̃dim(�/# ) of log(�/#) such that

for each 0 f 8 f 3, c̃(log�8) is the span of -̃ 9 for dim(�/#) − dim c̃(log�8) < 9 f dim(�/#), and

each -̃ 9 is a linear combination of the c̃(-1), . . . , c̃(-�) with coefficients rational of height$ (X−$ (1) ).
Meanwhile, c(�) is generated by c(-1), . . . , c(-�). From this and the Baker–Campbell–Hausdorff

formula we see that the basis -̃1, . . . , -̃dim(�/# ) is a $ (X−$ (1) )-rational weak basis for c(�)/c(�) in

the sense of [19, Definition A.7]. Applying [19, Proposition A.9] to this weak basis, we obtain a Mal’cev

basis that gives c(�)/c(�) the structure of a filtered nilmanifold with the stated degree, dimension, and
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complexity. It remains to establish the bound (2.11). By right translation invariance we can take 6 to be

the identity. For the upper bound, it suffices (since c is #-invariant) to show that

3c (�) (1, c(ℎ)) j X−$ (1)3� (1, ℎ),

but this follows from the fact that c̃ : log� → c̃(log�) has operator norm $ (X−$ (1) ) when using the

-1, . . . , -� basis for log� and the -̃1, . . . , -̃dim(�/# ) basis for c̃(log�) to define norms.

Now we need to establish the lower bound. By [19, Lemma A.4] it suffices to show that

∥. ∥ k X−$ (1) inf
. ′∈ c̃−1 (. )

∥. ′∥

for any . ∈ c̃(log�), where again we use the norm given by the -1, . . . , -� basis for log� and the

-̃1, . . . , -̃dim(�/# ) . But this is easily verified for each. = -̃8 , and the claim then follows by linearity. □

A central frequency is a continuous homomorphism b : / (�) → R which maps / (�) ∩ � to the

integers Z (that is to say, a horizontal character on / (�), or a Fourier character of the central torus

/ (�)/(/ (�) ∩ �)). A function � : �/� → C is said to oscillate with central frequency b if one has the

identity

� (IG) = 4(b (I))� (G)

for all G ∈ �/� and I ∈ / (�). As with horizontal characters, the number of central frequencies b of

Lipschitz norm at most 1/X is $3,� (X−$Ě,Ā (1) ). If b is such a central frequency, one can readily verify

that the kernel ker b is a rational normal subgroup of � of complexity $3,� (X−$Ě,Ā (1) ).
We have the following convenient decomposition5 (cf., [19, Lemma 3.7]):

Proposition 2.9 (Central Fourier approximation). Let 3, � g 1 and 0 < X < 1. Let �/� be a filtered

nilmanifold of degree at most 3, dimension �, and complexity at most 1/X. Let � : �/� → C be a

Lipschitz function of norm at most 1/X. Then we can decompose

� =

∑
b

�b +$ (X)

where b ranges over central frequencies of Lipschitz norm at most $3,� (X−$Ě,Ā (1) ), and each �b has

Lipschitz norm $3,� (X−$Ě,Ā (1) ) and oscillates with central frequency b. Furthermore, if � has mean

zero, then so do all of the �b .

Proof. We allow all implied constants to depend on 3, �. Since / (�)/(/ (�) ∩�) is an abelian filtered

nilmanifold of complexity $ (X−$ (1) ), it can be identified with a torus R</Z<, where < = $ (1) and

the metric on / (�) is comparable to the metric on R< up to factors of $ (X−$ (1) ); the identification

of log / (�) with R< induces a logarithm map log : / (�) → R< and an exponential map exp: R< →
/ (�). Central frequencies b can then be identified with elements : b of Z<, with b (I) = : b · log(I) for

any I ∈ / (�).
Let i : R< → R be a fixed bump function (depending only on <) that equals 1 at the origin, and let

' > 1 be a parameter to be chosen later. For any central frequency b, we set

�b (G) := i(: b /')
∫
Rģ/Zģ

� (IG)4(−b (I)) 3I

where 3I is Haar probability measure on the torus R</Z<, which acts centrally on �/� in the obvious

fashion. It is easy to see that �b has Lipschitz norm$ (X−$ (1) ), oscillates with central frequency b, and

5The decomposition in [19] uses the action of the vertical group�Ě (which is a subgroup of the center / (�)) rather than the entire center, but

the arguments are otherwise nearly identical. One can think of Proposition 2.9 as a slight refinement of [19, Lemma 3.7], in that the components

exhibit central oscillation rather than merely vertical oscillation.



22 Forum of Mathematics, Pi

vanishes unless b has Lipschitz norm $ (X−$ (1)'$ (1) ); also, if � has mean zero, then so do all of the

�b . From the Fourier inversion formula we have

i(: b /') =
∫
Rģ

î(H)4(: b · H/') 3H =
∫
Rģ

î(H)4(b (exp(H/'))) 3H,

where î(H) :=
∫
Rģ i(Z)4(−Z · H) 3Z , as well as the Fourier inversion formula on the torus,

∑
b

�b (G) =
∫
Rģ

î(H)� (exp(H/')G) 3H.

On the other hand, from the Lipschitz nature of � we have

� (exp(H/')G) = � (G) +$ (X−$ (1) |H |/').

Since î is rapidly decreasing and has total integral 1, we obtain

� =

∑
b

�b +$ (X−$ (1)/'),

and the claim follows by choosing ' = $ (X−$ (1) ) suitably. □

Next we shall recall a fundamental factorization theorem for polynomial sequences. Before we can

state it, we need to define a few notions.

Definition 2.10 (Smoothness, total equidistribution, rationality). Let �/� be a filtered nilmanifold,

6 ∈ Poly(Z → �) be a polynomial sequence, � ¢ R be an interval of length |� | g 1, and " > 0.

(i) We say that 6 is (", �)-smooth if one has

3� (6(=), 1�) f "; 3� (6(=), 6(= − 1)) f "/|� |

for all = ∈ �.
(ii) We say that 6 is totally 1/"-equidistributed in �/� on � if one has����� 1

|% |
∑
=∈%

� (6(=)�) −
∫
�/�

�

����� f 1

"
∥�∥Lip

whenever � : �/� → C is Lipschitz and % is an arithmetic progression in � of cardinality at least

|� |/" .

(iii) We say that 6 is "-rational if there exists 1 f A f " such that 6(=)A ∈ � for all = ∈ Z.

From Taylor expansion and the Baker–Campbell–Hausdorff formula it is not difficult to see that if

�/� has degree at most 3 and 6 is "-rational, then the map = ↦→ 6(=)� is @-periodic for some period

1 f @ j3 "
$Ě (1) .

Lemma 2.11. Let 3, � g 1 and 0 < X < 1. Let �/� be a filtered nilmanifold of degree at most 3,

dimension �, and complexity at most 1/X. Let 6 ∈ Poly(Z → �), and let � be an interval with |� | g 1.

Suppose that

∥[ ◦ 6∥�∞ (� ) f 1/X (2.12)

for some non-trivial horizontal character [ : � → R/Z of Lipschitz norm at most 1/X. Then there is a

decomposition 6 = Y6′W into polynomial maps Y, 6′, W ∈ Poly(Z → �) such that

(i) Y is (X−$Ě,Ā (1) , �)-smooth;
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(ii) 6′ takes values in �′ = ker [;

(iii) W is X−$Ě,Ā (1) -rational.

Proof. This is a slight variant of [19, Lemma 7.9], the main difference being that our hypothesis (2.12)

involves [ ◦ 6 rather than [ ◦ 62 (where 62 is the nonlinear part of 6). The argument in the proof of [19,

Lemma 7.9] can be modified in an obvious manner as follows. By translation we may assume that

� = [1, |� |]. Let k : � → R� be the Mal’cev coordinate map. Suppose that

k(6(=)) = C0 +
(
=

1

)
C1 +

(
=

2

)
C2 + · · · +

(
=

3

)
C3

for some C0, C1, · · · , C3 ∈ R� with k−1 (C8) ∈ �8 . Our assumption on ∥[ ◦ 6∥�∞ (� ) implies that for some

: ∈ Z� with |: | f X−1, we have

∥: · C8 ∥R/Z j X−$Ě,Ā (1)/|� |

for each 1 f 8 f 3. Choose D8 ∈ R� with k−1 (D8) ∈ �8 , such that

: · D8 ∈ Z, |C8 − D8 | j X−$Ě,Ā (1)/|� |.

Then choose E8 ∈ R� with k−1 (E8) ∈ �8 , all of whose coordinates are rationals over some denominator

j X−$Ě,Ā (1) , such that

: · D8 = : · E8

for each 1 f 8 f 3. Define Y, W by

k(Y(=)) = C0 +
3∑
8=1

(
=

8

)
(C8 − D8), k(W(=)) =

3∑
8=1

(
=

8

)
E8 ,

and then define 6′ by

6′ (=) = Y(=)−16(=)W(=)−1.

One can verify that they satisfy the desired properties. □

Theorem 2.12 (Factorization theorem). Let 3, � g 1 and 0 < X < 1. Let �/� be a filtered nilmanifold

of degree at most 3, dimension �, and complexity at most 1/X. Let 6 ∈ Poly(Z → �) and � > 0,

and let � be an interval with |� | g 1. Then there exists an integer 1/X f " j�,�,3 X
−$ý,Ā,Ě (1) and a

decomposition 6 = Y6′W into polynomial maps Y, 6′, W ∈ Poly(Z → �) such that

(i) Y is (", �)-smooth;

(ii) There is an "-rational subnilmanifold �′/�′ of �/� such that 6′ takes values in �′ and is totally

1/"�-equidistributed on � in �′/�′, and more generally in �′/�′′ whenever �′′ is a subgroup of

�′ of index at most "�; and

(iii) W is "-rational.

Proof. See [19, Theorem 1.19] (after rounding � to integer endpoints and translating to be of the form

[1, #]). The additional requirement in (ii) that one has equidistribution in the larger nilmanifolds�′/�′′

is not stated in [19, Theorem 1.19] but follows easily from the proof, the point being that if a sequence

6′ ∈ Poly(Z → �′) fails to be totally 1/"�-equidistributed in�′/�′′, then one has ∥[◦6′∥�∞ (� ) j3,�

"$Ě,Ā (�) for some non-trivial horizontal character [ on �′/�′′ of Lipschitz norm $3,� ("$Ě,Ā (�) ),
which on multiplying [ by the index of �′′ in �′ also gives ∥[′ ◦ 6′∥�∞ (� ) j3,� "$Ě,Ā (�) for some

non-trivial horizontal character [′ on �′/�′ of Lipschitz norm $3,� ("$Ě,Ā (�) ). As a consequence,

one can replace all occurrences of �′/�′ in the proof of [19, Theorem 1.19] with �′/�′′ with only

negligible changes to the arguments. □
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We will also need a multidimensional version of this theorem.

Theorem 2.13 (Multidimensional factorization theorem). Let C, 3, � g 1 and 0 < X < 1. Let �/� be a

filtered nilmanifold of degree at most 3, dimension�, and complexity at most 1/X. Let 6 ∈ Poly(ZC → �)
and � > 0, and let �1, . . . , �C intervals with |�1 |, . . . , |�C | g �X−� , for some � that is sufficiently

large depending on C, 3, �, �. Then there exists an integer 1/X f " j�,�,3,C X
−$ý,Ā,Ě,Ī (1) and a

decomposition 6 = Y6′W into polynomial maps Y, 6′, W ∈ Poly(ZC → �) such that

(i) Y is (", �1×· · ·× �C )-smooth, in the sense that 3� (Y(=), 1�) f " and 3� (Y(=+48), 1�) f "/|�8 |
for all = ∈ �1 × · · · × �C and 8 = 1, . . . , C, where 41, . . . , 4C are the standard basis of Z3;

(ii) There is an "-rational subnilmanifold �′/�′ of �/� such that 6′ takes values in �′ and is totally

1/"�-equidistributed in �′/�′, and more generally in �′/�′′ whenever �′′ is a subgroup of �′

of index at most "�, in the sense that����� 1

|%1 × · · · × %C |
∑

=∈%1×···×%Ī
� (6′ (=)�) −

∫
�′/�′′

�

����� f 1

"
∥�∥Lip

whenever � : �/� → C is Lipschitz and for each 8 = 1, . . . , C, %8 is an arithmetic progression in

�8 of cardinality at least |�8 |/"; and

(iii) W is "-rational, in the sense that there exists 1 f A f " such that 6(=)A ∈ � for all = ∈ ZC .

Proof. This follows from [19, Theorem 10.2], after implementing the corrections in [20], and the

modifications indicated in the proof of Theorem 2.12. □

As a first application of Theorem 2.12, we can obtain a criterion for correlation between nilsequences

with a non-trivial central frequency:

Proposition 2.14 (Correlation criterion). Let 3, � g 1 and 0 < X < 1. Let�/� be a filtered nilmanifold

of degree at most 3, dimension �, and complexity at most 1/X, whose center / (�) is one-dimensional.

Let 61, 62 ∈ Poly(Z → �), let � be an interval with |� | g 1, and let � : �/� → C be Lipschitz of norm

at most 1/X and having a non-zero central frequency b. Suppose that one has the correlation�����
∑
=∈�

� (61 (=)�)� (62 (=)�)
�����
∗

g X |� |.

Then at least one of the following holds:

(i) There exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm $3,� (X−$Ě,Ā (1) )
such that ∥[ ◦ 68 ∥�∞ (� ) j3,� X−$Ě,Ā (1) for some 8 ∈ {1, 2}.

(ii) There exists a factorization

62 = Y(q ◦ 61)W

where Y is ($3,� (X−$Ě,Ā (1) ), �)-smooth, q : � → � is a Lie group automorphism whose

associated Lie algebra isomorphism log q : log� → log� has matrix coefficients that are

all rational of height $3,� (X−$Ě,Ā (1) ) in the Mal’cev basis -1, . . . , -� of log�, and W is

$3,� (X−$Ě,Ā (1) )-rational.

Proof. We allow all implied constants to depend on 3, �. The product of the filtered nilmanifold �/�
with itself is again a filtered nilmanifold (�×�)/(�×�), with the obvious filtration (�×�)8 := �8×�8
and Mal’cev basis (-8 , 0), (0, -8), 8 = 1, . . . , �. This product filtered nilmanifold has degree at most 3,

dimension 2�, and complexity at most $ (X−$ (1) ). The pair (61, 62) can be then viewed as an element

of Poly(Z → � × �). If we let � ¹ � : (� × �)/(� × �) → C be the function

� ¹ � (G1, G2) := � (G1)� (G2)
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then � is Lipschitz with norm $ (X−$ (1) ) and one has

�����
∑
=∈�

� ¹ � ((61, 62) (=) (� × �))
�����
∗

g X |� |. (2.13)

Let � > 1 be sufficiently large depending on 3, �. Applying Theorem 2.12 to (61, 62) (with X replaced

by X�) we can find X−� f " j� X
−$ý (1) and a factorization

(61, 62) = (Y1, Y2) (6′1, 6′2) (W1, W2) (2.14)

where Y1, 6
′
1
, W1 ∈ Poly(Z → �1), Y2, 6

′
2
, W2 ∈ Poly(Z → �2) such that

(i) (Y1, Y2) is (", �)-smooth;

(ii) There is an "-rational subnilmanifold �′/�′ of (� × �)/(� × �) such that (6′
1
, 6′

2
) takes values

in �′ and is totally 1/"�-equidistributed in �′/�′′ for any subgroup �′′ of �′ of index at most

"�; and

(iii) (W1, W2) is "-rational.

We caution that �′ is a subgroup of � × � rather than �. From (2.13) we thus have

�����
∑
=∈�

� ¹ � ((Y1, Y2) (=) (6′1, 6′2) (=) (W1, W2) (=) (� × �))
�����
∗

g X |� |.

Since (W1, W2) is "-rational, it is $ ("$ (1) )-periodic, and then by the pigeonhole principle (and

Lemma 2.2(i)) we can thus find "-rational (W0
1
, W0

2
) ∈ � × � such that

�����
∑
=∈�

� ¹ � ((Y1, Y2) (=) (6′1, 6′2) (=) (W0
1 , W

0
2) (� × �))

�����
∗

k "−$ (1) |� |.

By shifting W0
1
, W0

2
by elements of � if necessary we may assume that they lie at distance $ ("$ (1) )

from the identity. If we partition � into subintervals � of length ≍ "−� |� | for some large constant �,

we see from the pigeonhole principle (and Lemma 2.2(i)) that we can find one such � for which

�����
∑
=∈�

� ¹ � ((Y1, Y2) (=) (6′1, 6′2) (=) (W0
1 , W

0
2) (� × �))

�����
∗

k "−$ (1) |� |.

As (Y1, Y2) is (", �)-smooth, it fluctuates by $ ("1−� ) on � and stays a distance $ (") from the

identity, hence by the Lipschitz nature of � ¹ � we conclude (for � = $ (1) large enough) that there

exists (Y0
1
, Y0

2
) ∈ � × � at distance $ (") from the identity such that

�����
∑
=∈�

� ¹ � ((Y0
1, Y

0
2) (6

′
1, 6

′
2) (=) (W0

1 , W
0
2) (� × �))

�����
∗

k "−$ (1) |� |.

Allowing implied constants to depend on �, we conclude that

�����
∑
=∈�

� ¹ � ((Y0
1, Y

0
2) (6

′
1, 6

′
2) (=) (W0

1 , W
0
2) (� × �))

�����
∗

k "−$ (1) |� |.
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From the Baker–Campbell–Hausdorff formula and the "-rationality of (W0
1
, W0

2
), we see that

(W0
1
, W0

2
) (� × �) (W0

1
, W0

2
)−1 can be covered by $ ("$ (1) ) cosets of � × �, and conversely. Thus if we set

�
′′ := �′ ∩ (� × �) ∩ (W0

1 , W
0
2) (� × �) (W0

1 , W
0
2)

−1

then �′ ∩ (� × �) can be covered by $ ("$ (1) ) cosets of �′′, thus �′′ is a subgroup of �′ ∩ (� × �) of

index $ ("$ (1) ) such that

�
′′ (W0

1 , W
0
2) ¢ (W0

1 , W
0
2) (� × �). (2.15)

Indeed, one can take �′′ to be the intersection of �′ ∩ (� × �) and (W0
1
, W0

2
) (� × �) (W0

1
, W0

2
)−1. One can

then write the above claim as �����
∑
=∈�

�′ ((6′1, 6′2) (=)�′′)
�����
∗

k "−$ (1) |� |

where �′ : �′/�′′ → C is defined by

�′ ((6′1, 6′2)�′′) := � (Y0
16

′
1W

0
1�)� (Y

0
26

′
2W

0
2�)

for any (6′
1
, 6′

2
) ∈ �′, with the inclusion (2.15) ensuring that this function is well-defined. Since �

is Lipschitz with norm 1/X f " , and Y0
1
, W0

1
, Y0

2
, W0

2
are at distance $ ("$ (1) ) from the identity, this

function is Lipschitz with norm $ ("$ (1) ), hence by total equidistribution of (6′
1
, 6′

2
) we conclude (for

� large enough) that ����
∫
�′/�′′

�′
���� k "−$ (1) . (2.16)

Suppose that the slice � := {6 ∈ � : (6, 1) ∈ �′} is non-trivial. This is a non-trivial closed connected

subgroup of �; by considering the final non-trivial element of the series �, [�,�], [[�,�], �], . . . ,
we conclude that � contains a non-trivial closed connected central subgroup of �. Since / (�) is

one-dimensional, we conclude that � contains / (�). In particular, �′ contains / (�) × {1}.
Since � has central frequency b, we see that

�′ ((I, 1) (61, 62)) = 4(b · I)�′ (61, 62)

for all I ∈ / (�). By invariance of Haar measure, this implies that∫
�′/�′′

�′
= 4(b · I)

∫
�′/�′′

�′.

Since b is non-trivial, this implies that
∫
�′/�′′ �

′ = 0, contradicting (2.16). Thus the slice {6 ∈ � :

(6, 1) ∈ �′} is trivial. Similarly the slice {6 ∈ � : (1, 6) ∈ �′} is trivial.

Now suppose that the projection  := {61 ∈ � : (61, 62) ∈ �′ for some 62 ∈ �} is not all of �. This

is a proper closed connected subgroup of � with

log = {- ∈ log� : (-,. ) ∈ log�′ for some . ∈ log�};

thus log is the projection of log�′ to log�. Since log�′ is "$ (1) -rational, log is also. Hence there

exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm $ ("$ (1) ) that annihilates  ,

so in particular [(6′
1
(=)) = 0 for all =. From (2.14) we then have

[(61 (=)) = [(Y1 (=)) + [(W1 (=)).
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Since W1 is "-rational, "[(W1 (=)) = 0. Thus if we replace [ by "[ we have

[(61 (=)) = [(Y1 (=)).

Since (Y1, Y2) is (", �) smooth we thus conclude that

∥[ ◦ 61∥�∞ (� ) j "$ (1)

and we are in conclusion (i) of the proposition. Thus we may assume that the projection {61 ∈ � :

(61, 62) ∈ �′ for some 62 ∈ �} is all of �. Similarly we may assume that {62 ∈ � : (61, 62) ∈
�′ for some 61 ∈ �} is all of �.

Applying Goursat’s lemma, we now conclude that �′ takes the form

�′
= {(61, q(61)) : 61 ∈ �}

for some group automorphism q : � → �. Since�′ is a$ ("$ (1) )-rational subgroup of� ×�, qmust

be a Lie group automorphism whose associated Lie algebra automorphism log q : log� → log� has

coefficients that are rational of height$ ("$ (1) ) in the Mal’cev basis. Since (6′
1
(=), 6′

2
(=)) takes values

in �′, we have

6′2 (=) = q(6′1 (=))

and hence by (2.14) and some rearranging

62 (=) = Y2 (=)q(Y1 (=))−1q(61 (=))q(W1 (=))−1W2 (=).

It is then routine to verify that conclusion (ii) of the proposition holds. □

As a consequence of this criterion, we can establish the following large sieve inequality for

nilsequences, which is a more quantitative variant of the one in [48, Proposition 4.11].

Proposition 2.15 (Large sieve). Let 3, � g 1 and 0 < X < 1. Let �/� be a filtered nilmanifold of

degree at most 3, dimension �, and complexity at most 1/X, whose center / (�) is one-dimensional. Let

61, . . . , 6 ∈ Poly(Z → �), let � be an interval with |� | g 1, and let � : �/� → C be Lipschitz of norm

at most 1/X and having a non-zero central frequency b. Suppose that there is a function 5 : Z → C with∑
=∈� | 5 (=) |2 f 1

X |� | such that �����
∑
=∈�

5 (=)� (68 (=)�)
�����
∗

g X |� | (2.17)

for all 8 = 1, . . . ,  . Then at least one of the following holds:

(i) There exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm $3,� (X−$Ě,Ā (1) )
such that ∥[ ◦ 68 ∥�∞ (� ) j3,� X−$Ě,Ā (1) for k3,� X$Ě,Ā (1) values of 8 = 1, . . . ,  .

(ii) For k3,� X$Ě,Ā (1) 2 pairs (8, 9) ∈ {1, . . . ,  }2, there exists a factorization

68 = Y8 96 9W8 9

where Y8 9 is ($3,� (X−$Ě,Ā (1) ), �)-smooth and W8 9 is $3,� (X−$Ě,Ā (1) )-rational.

Proof. We allow implied constants to depend on 3, �. From (2.17) one can find progressions %8 ¢ �

for 8 = 1, . . . ,  such that �����
∑
=∈�

5 (=)1%ğ (=)� (68 (=)�)
����� g X |� |
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and thus �����
 ∑
8=1

\8

∑
=∈�

5 (=)1%ğ (=)� (68 (=)�)
����� g X |� |

for some complex numbers \8 with |\8 | f 1. By interchanging the sums and applying Cauchy–Schwarz,

we have �����
 ∑
8=1

\8

∑
=∈�

5 (=)1%ğ (=)� (68 (=)�)
�����
2

f 1

X
|� |

∑
=∈�

�����
 ∑
8=1

\81%ğ (=)� (68 (=)�)
�����
2

and thus

∑
=∈�

�����
 ∑
8=1

\81%ğ (=)� (68 (=)�)
�����
2

g X3 2 |� |.

From the triangle inequality we have

∑
=∈�

�����
 ∑
8=1

\81%ğ (=)� (68 (=)�)
�����
2

f
∑

1f8, 9f 

�����
∑
=∈�

� (68 (=)�)� (6 9 (=)�)
�����
∗

and thus ∑
1f8, 9f 

�����
∑
=∈�

� (68 (=)�)� (6 9 (=)�)
�����
∗

g X3 2 |� |.

The inner sum is $ (X−2 |� |), thus we have�����
∑
=∈�

� (68 (=)�)� (6 9 (=)�)
�����
∗

k X$ (1) |� |

for k X$ (1) 2 pairs (8, 9) ∈ {1, . . . ,  }2. For each such pair, we apply Proposition 2.14. If conclusion

(i) of that proposition holds for k X$ (1) 2 pairs (8, 9), then by the pigeonhole principle (noting that

there are only $ (X−$ (1) ) choices for [) we obtain conclusion (i) of the current proposition. Thus we

may assume that conclusion (ii) of Proposition 2.14 holds for k X$ (1) 2 pairs (8, 9) ∈ {1, . . . ,  }2,

thus we have

68 = Y8 9q8 9 (6 9 )W8 9

for all such pairs (8, 9), where Y8 9 is ($ (X−$ (1) ), �)-smooth, W8 9 is$ (X−$ (1) )-rational, and q8 9 : � → �

is a Lie group automorphism whose associated Lie algebra isomorphism log q : log� → log� has

matrix coefficients that are all rational of height$ (X−$ (1) ) in the Mal’cev basis -1, . . . , -� of log�. The

total number of choices for q8 9 is$ (X−$ (1) ), so by the pigeonhole principle we may assume that q8 9 = q

is independent of 8, 9 . By Cauchy–Schwarz, we may thus find k X$ (1) 3 triples (8, 8′, 9) ∈ {1, . . . ,  }3

such that

68 = Y8 9q(6 9 )W8 9 ; 68′ = Y8′ 9q(6 9 )W8′ 9

where Y8 9 , Y8′ 9 , W8 9 , W8′ 9 are as above. This implies that

68 = Y8 9Y
−1
8′ 968′W

−1
8′ 9W8 9 .

Pigeonholing in 9 and relabeling 8, 8′ as 8, 9 , we obtain conclusion (ii) of the current proposition. □



Forum of Mathematics, Pi 29

2.4. Combinatorial lemmas

The following lemma is a standard consequence of Heath-Brown’s identity.

Lemma 2.16. Let - g 2, and let ! ∈ N be fixed. We may find a collection F of (log -)$ (1) functions

5 : N → R, such that

Λ(=) =
∑
5 ∈F

5 (=)

for each -/2 f = f 4- , and each 5 ∈ F takes the form

5 = 0 (1) ∗ · · · ∗ 0 (ℓ )

for some ℓ f 2!, where 0 (8) is supported on (#8 , 2#8] for some #8 g 1/2, and each 0 (8) (=) is

either 1(#ğ ,2#ğ ] (=), (log =)1(#ğ ,2#ğ ] (=), or `(=)1(#ğ ,2#ğ ] . Moreover, #1#2 · · · #ℓ ≍ - , and #8 j
-1/! for each 8 with 0 (8) (=) = `(=)1(#ğ ,2#ğ ] (=). The same statement holds for ` in place of Λ (but

(log =)1(#ğ ,2#ğ ] (=) does not appear).

Proof. Using Heath-Brown’s identity (see [37, (13.37), (13.38)] with  = ! and I = (2-)1/!), we have

Λ(=) =
∑

1f 9f!
(−1) 9−1

(
!

9

) ∑
<1 ,...,< Ġf(2-)1/Ĉ

`(<1) · · · `(< 9 )
∑

<1 · · ·< Ġ=1 · · ·= Ġ==

log =1

and

`(=) =
∑

1f 9f!
(−1) 9−1

(
!

9

) ∑
<1 ,...,< Ġf(2-)1/Ĉ

`(<1) · · · `(< 9 )
∑

<1 · · ·< Ġ=1 · · ·= Ġ−1==

1.

The conclusion follows after dyadic division of the ranges of variables. □

The following Shiu’s bound [60, Theorem 1] will be used multiple times to control sums of divisor

functions in short intervals in arithmetic progressions.

Lemma 2.17. Let � g 1 and Y > 0 be fixed. Let - g � g - Y and 1 f @ f �1−Y . Let 5 be a non-

negative multiplicative function such that 5 (?ℓ) f �ℓ for every prime power ?ℓ and 5 (=) j2 =
2 for

every 2 > 0. Then, for any integer 0 coprime to @, we have

∑
-<=f-+�
=≡0 (mod @)

5 (=) j �

i(@) log -
exp

( ∑
?f2-
?∤@

5 (?)
?

)
.

For proving Theorem 1.1(iv)–(v), we need a more flexible combinatorial decomposition of the

multiplicative functions `, 3: , where we introduce an extra variable ? ∈ (%,&] in the factorization.

Before stating this, let us quickly prove a lemma that will in particular allow us to write, for % < & f
-1/(log log-)2

,

1(=,∏Č<Ħfč ?)=1 =

∑
3 | (=,∏Č<Ħfč ?)

3f-ÿ

`(3) + acceptable error

in our sums. This can be seen as a simple version of the fundamental lemma of the sieve that is sufficient

to our needs.
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Lemma 2.18. Let :, A g 1 and Y > 0 be fixed. Let - g � g - Y and - g � g & > % g 2. Then, for

any � g 1,

∑
-<<=f-+�

? |< =⇒ ?∈ (%,&]
<>�

3: (<=)A j� �
(log -)2:Ĩ4ÿ

exp(� log�
log& )

. (2.18)

Proof. Write ℓ = <= and note that since < > �, we have ¬(ℓ) g log�
log& . Hence the left hand side

of (2.18) is

f
∑

-<ℓf-+�
¬(ℓ )g log Ā

logč

32 (ℓ)3: (ℓ)A f 4−�
log Ā
logč

∑
-<ℓf-+�

4�¬(ℓ )32 (ℓ)3: (ℓ)A j� �
(log -)2:Ĩ4ÿ

exp(� log�
log& )

by Lemma 2.17. □

Now we state the lemma allowing us to introduce an extra variable ? ∈ (%,&] in the factorization.

It is a slight variant of [50, Lemma 3.1] (see also [50, Remark 3.2]).

Lemma 2.19. Let Y > 0 and : g 1 be fixed. Let - g 3, - Y f � f - , and let 2 f % < & f
-1/(log log-)2

. Write P(%,&) =
∏
%<?f& ?. Let 5 be any multiplicative function satisfying | 5 (=) | f

3: (=). Then for any sequence {l=} with |l= | f 1, we have

∑
-<=f-+�

(=,P(%,&) )>1

5 (=)l= =
∑

-<?A=f-+�
%<?f&
Af-ÿ/2

0A 5 (?) 5 (=)l?A= +$
(
� (log -)4:

%
+ �

exp((log log -)2)

)
,

where {0A } is an explicit sequence satisfying |0A | f 3:+1 (A).

Proof. This is very similar to [50, Remark 3.2] but for completeness we provide the proof in a somewhat

simpler form.

By Ramaré’s identity

5 (=)l=1(=,P(%,&) )>1 =

∑
%<?f&

∑
?<==

5 (?<)l?<
l (%,&] (?<)

(2.19)

where l (%,&] (<) is the number of distinct prime divisors of < on (%,&]; this identity follows directly

since the number of representations = = ?< with % < ? f & is l (%,&] (=).
We write< uniquely as< = <1<2 with<1 having all of its prime factors from (%,&] and<2 having

no prime factors from that interval. Summing over = and then spotting the condition (<2,P(%,&)) = 1

using Möbius inversion, we see that

∑
-<=f-+�

(=,P(%,&) )>1

5 (=)l= =
∑

%<?f&

∑
-/?f<1<2f(-+� )/?
?′ |<1=⇒?′∈ (%,&]
(<2 ,P(%,&) )=1

5 (?<1<2)
l (%,&] (?<1)

l<1<2 ?

=

∑
%<?f&

∑
-/?f<13<2f(-+� )/?

3 | P (%,&)
?′ |<1=⇒?′∈ (%,&]

`(3) 5 (?<13<2)
l (%,&] (?<1)

l<13<2 ? . (2.20)
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Let us show that we can restrict the summation to 3<1 f - Y/2. Writing < = 3<1 and = = ?<2, we

see that by Lemma 2.18 with � = 4/Y the contribution of 3<1 > -
Y/2 is bounded by

f
∑

-<<=f-+�
? |< =⇒ ?∈ (%,&]

<>-ÿ/2

32 (<)32 (=)3: (<=) f
∑

-<<=f-+�
? |< =⇒ ?∈ (%,&]

<>-ÿ/2

32: (<=)3 j �

exp((log log -)2)
.

Furthermore, since in (2.20) all prime factors of ?3<1 are from (%,&], we have

5 (?<13<2) = 5 (?) 5 (3<1) 5 (<2) and l (%,&] (?<1) = l (%,&] (<1) + 1 (2.21)

unless there exists a prime @ ∈ (%,&] such that @2 | ?<13<2 =: ℓ. Applying Lemma 2.17, the error

introduced by making the changes (2.21) to (2.20) is

j
∑

%<@f&

∑
-<ℓf-+�

@2 |ℓ

34 (ℓ)3: (ℓ) j
∑

%<@f&

�

@2
(log -)4:−1 j �

%
(log -)4:−1.

Thus (2.20) equals

∑
-f?<13<2f-+�
?′ |3<1=⇒?′∈ (%,&]
%<?f&,3<1f-ÿ/2

`(3) 5 (?) 5 (3<1) 5 (<2)
l (%,&] (<1) + 1

l<13<2 ? +$
(

�

exp((log log -)2)
+ �
%
(log -)4:−1

)
,

and the claim follows with

0A := 5 (A)1? |A =⇒ ?∈ (%,&]
∑
A=3<1

`(3)
l (%,&] (<1) + 1

,

□

The following combinatorial lemma will be used to arrange each component arising from Lemma 2.16

into a desired form, such as a type � sum, a type � � sum, or a type �2 sum.

Lemma 2.20. Let U1, . . . , U: be nonnegative real numbers with
∑:
8=1 U8 = 1 and let 1

3
f \ f 1. For

any � ¢ {1, . . . , :}, write U� :=
∑
8∈� U8 . Consider the following statements:

(�) One has U8 g 1 − \ for some 1 f 8 f : .

(�
maj

2
) One has U{8, 9 } g 1 − \ for some 1 f 8 < 9 f : .

(�2) One has U{8, 9 } g 3
2
(1 − \) for some 1 f 8 < 9 f : .

(� �maj) There exists a partition {1, . . . , :} = �⊎�⊎�′ such that 2\−1 f U� f 4\−2 and |U�−U� ′ | f 2\−1.

(� �min) There exists a partition {1, . . . , :} = � ⊎ �′ such that |U� − U� ′ | f 2\ − 1 (or equivalently,

U� , U� ′ ∈ [1 − \, \]; or equivalently, U� ∈ [1 − \, \]).

Then the following claims hold.

(i) Suppose that \ = 5/8. Then at least one of (�) or (� �maj) holds.

(ii) Suppose that \ g 3/5. Then at least one of (�), (�2), or (� �min) holds.

(iii) Suppose that \ = 7/12. Then at least one of (�), (�
maj

2
), or (� �maj) holds.

(iv) Suppose that : = 5 and \ = 11/20. Then at least one of (�
maj

2
) or (� �maj) holds.

(v) Suppose that : ∈ {3, 4} and \ g 1/2. Then (�
maj

2
) holds.

(vi) Suppose that : = 3 and \ g 5/9 or : = 2 and \ g 1/3. Then (�2) holds.
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Remark 2.21. The different conclusions (�), (�
maj

2
), (�2), (� �maj), (� �min) in Lemma 2.20 correspond to

different types of sums that behave well on intervals (-, - + �] with � much larger than - \ :

• Exponents obeying (�) correspond to “type � sums” which behave well for both major and minor

arc correlations.

• Exponents obeying (�
maj

2
) correspond to “type �2 sums” which behave well for major arc

correlations.

• Exponents obeying (�2) correspond to “type �2 sums” which behave well for both major and minor

arc correlations.

• Exponents obeying (� �maj) correspond to “type � � sums” which behave well for major arc

correlations.

• Exponents obeying (� �min) correspond to “type � � sums” which behave well for minor arc corre-

lations, or for major arc correlations when one can extract a medium-sized prime factor from the

sum.

Proof. We first handle the easy case (vi). If : = 2 and \ g 1/3, then 3
2
(1 − \) f 1 and (�2) follows

simply by taking {8, 9} = {1, 2}. If : = 3 and \ g 5
9
, then 3

2
(1 − \) f 2

3
and (�2) follows by noting that

the sum of the two largest of the reals U1, U2, U3 is necessarily at least 2
3
.

Now we prove (v). If : = 4 and \ g 1/2, then by the pigeonhole principle one of U{1,2} , U{3,4} is at

least 1
2
g 1 − \, and we obtain (�

maj

2
) in this case. The case : = 3 follows similarly, with some room to

spare.

In a similar spirit in case (iv), when : = 5 and \ = 11
20

, then one of the U8 must be at most 1
5
; without

loss of generality U5 f 1
5
. Since 1 − \ = 9

20
, we obtain (�

maj

2
) except when U{1,2} , U{3,4} f 9

20
, which by∑5

8=1 U8 = 1 forces U{3,4} , U{1,2} g 1 − 9
20

− 1
5
= 7

20
. Thus |U{1,2} − U{3,4} | f 9

20
− 7

20
= 1

10
= 2\ − 1.

Also we have

U5 = 1 − U1,2 − U3,4 g 1 − 9

20
− 9

20
=

1

10
= 2\ − 1

and

U5 f 1

5
= 4\ − 2

and so we obtain (� �maj) in this case. This establishes (iv).

In the remaining cases (i)–(iii) we assume, without loss of generality, that

U1 g U2 g · · · g U: .

In case (ii) when \ g 3/5 we obtain (�) unless U 9 < 1 − \ for each 9 and (�2) unless U{8, 9 } <
3
2
(1 − \) f \ for any distinct 8, 9 . But if U{8, 9 } ∈ [1 − \, \] for some distinct 8, 9 , then we have (� �min).

Hence we can assume that U8, 9 < 1 − \ for any distinct 8, 9 . In particular, for any 9 ≠ 1 we have

U 9 f
U1 + U 9

2
f 1 − \

2
f 2\ − 1.

Consequently there must be an index A ∈ {3, . . . , :} such that U1 + ∑A
9=2 U 9 ∈ [1 − \, \], and hence

(� �min) holds.

Let us now consider (i). Now \ = 5/8 and we obtain (�) unless U 9 < 3/8 for every 9 (and in particular

we can assume that : g 3). Note that 2\−1 = 1/4 in this case. If now U3 > 1/4, then U1, U2 ∈ [1/4, 3/8]
and we have (� �maj) with � = {1}, �′ = {2}, and � = {3, . . . , :}.

On the other hand, if U3 f 1/4, we set �0 = {1} and �′
0
= {2, . . . , A} with A g 2 the greatest integer

such that U� ′
0
< U�0

. Then necessarily |U�0
−U� ′

0
| f 1/4 = 2\−1. Furthermore U� ′

0
+U�0

f 2 ·U1 f 3/4.

If also U� ′
0
+ U�0

g 1/2 then we have (� �maj) with � = �0, �
′ = �′

0
, and � = {1, . . . , :} \ (�0 ∪ �′

0
).
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Otherwise we add indices 9 g A + 1 one by one to �0 or �′
0

depending on whether U�0
< U� ′

0
or not. We

continue this process until U�0
+ U� ′

0
∈ [1/2, 3/4], and we again obtain (� �maj).

Let us finally turn to (iii). Now \ = 7/12 and 2\ − 1 = 1/6. We obtain (�
maj

2
) unless U{8, 9 } < 1 − \ =

5/12 for any distinct 8, 9 . In particular we can assume that U1 + U2 + U3 + U4 < 5/6 < 1 and thus : g 5.

If U5 > 1/6, then U{2,3} , U{1,4} ∈ [1/3, 5/12]. Consequently 1−U{1,4} −U{2,3} ∈ [1/6, 1/3] and we

obtain (� �maj) with � = {1, 4}, �′ = {2, 3}, and � = {1, . . . , :} \ {1, 2, 3, 4}.
On the other hand if U5 f 2\ − 1 = 1/6, we can argue similarly to case (i): We set �0 = {1, 2} and

�′
0
= {3, . . . , A} with A g 4 the greatest integer such that U� ′

0
f U�0

. Then necessarily |U�0
− U� ′

0
| f

1/6 = 2\ − 1. Furthermore U�0
+ U� ′

0
f 2U1,2 f 5/6. If also U�0

+ U� ′
0
g 2/3 then we have (� �maj) with

� = �0 and �′ = �′
0
. Otherwise we add indices 9 g A + 1 one by one to �0 or �′

0
depending on whether

U�0
< U� ′

0
or not. We continue this process until U�0

+U� ′
0
∈ [2/3, 5/6], and we again obtain (� �maj). □

Remark 2.22. The following counterexamples, with Y small, show that \ in the various components of

Lemma 2.20 cannot be decreased (apart from the : = 3 case of (v)):

• \ = 5/8 − Y, (U1, . . . , U:) = (1/4, 1/4, 1/4, 1/4);
• \ = 3/5 − Y, (U1, . . . , U:) ∈ {(2/5, 1/5, 1/5, 1/5), (1/5, 1/5, 1/5, 1/5, 1/5)};
• \ = 7/12 − Y, (U1, . . . , U:) = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6);
• \ = 11/20 − Y, (U1, . . . , U:) = (1/5, 1/5, 1/5, 1/5, 1/5);
• \ = 1/2 − Y, (U1, . . . , U:) = (1/4, 1/4, 1/4, 1/4);
• \ = 5/9 − Y, (U1, . . . , U:) = (1/3, 1/3, 1/3);
• \ = 1/3 − Y, (U1, . . . , U:) = (U, 1 − U) for any U ∈ (0, 1).

3. Major arc estimates

In the proof of Theorem 1.1 we shall use Theorem 4.2 below to reduce to “major arc” cases where

more-or-less � (6(=)�) = 1 (or � (6(=)�) = =8C in case of type � � sums). The purpose of this section

is to establish the following estimates corresponding to the case � (6(=)�) = 1 as well as an auxiliary

result (Lemma 3.5 below) on trilinear sums in case � (6(=)�) = =8C .

Theorem 3.1 (Major arc estimate). Let - g 3 and - \+Y f � f -1−Y for some 0 < \ < 1 and Y > 0.

(i) (Huxley type estimates) Set \ = 7/12. Then, for all � > 0,�����
∑

-<=f-+�
`(=)

�����
∗

j�,Y
�

log� -

and �����
∑

-<=f-+�
(Λ(=) − Λ

♯ (=))
�����
∗

j�,Y
�

log� -
.

(ii) Let : g 2. Set \ = 1/3 for : = 2, \ = 1/2 for : = 3, 4, \ = 11/20 for : = 5, and \ = 7/12 for

: g 6. Then �����
∑

-<=f-+�
(3: (=) − 3♯: (=))

�����
∗

jY
�

-2ġ
+ �

- Y/1000

for some constant 2: > 0 depending only on : .

We remark that if we replace the maximal sums | · |∗ here by the ordinary sums | · |, then the

\ = 7/12 case of Theorem 3.1 can also be extracted after some computation from the work of

Ramachandra [56] (see in particular Remarks 4, 5 of that paper), with a pseudopolynomial gain
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$ (exp(−2(log -)1/3/(log log -)1/3)), while the cases : = 4, 5 of Theorem 3.1(ii) follow from [23,

(4.23)]) and [27]. Here we will provide the proofs from our viewpoint. It may be possible to improve

the error terms in (i) to be pseudopolynomial in nature even for the maximal sums, if one adjusts the

approximants `♯,Λ♯ to take into account the possibility of a Siegel zero, in the spirit of [61, Proposition

2.2].

For the \ = 7/12 result, the primary obstruction arises from convolutions (1.29) with (U1, . . . , U<)
equal to (1/6, 1/6, 1/6, 1/6, 1/6, 1/6), as this lies just outside the reach of our untwisted major arc type

� and type � � estimates when \ goes below 7/12 (cf., the third item of Remark 2.22). This obstruction

has long been known; see e.g., [29]. Note that this obstruction does not arise for : < 6, which explains

the fact that better exponents than 7/12 are available for 32, 33, 34, 35. The corresponding obstructions

can be found in the other items of Remark 2.22.

It would probably be possible to obtain Theorem 3.1(ii) for \ = 131/416 ≈ 0.315 when : = 2

and for \ = 43/96 ≈ 0.448 when : = 3 — corresponding to the progress in the Dirichlet divisor

problem [34, 41] — but we do not attempt to compute this here (it requires checking that the arguments

in the literature, when adapted to the Dirichlet divisor problem in an arithmetic progression, give a

polynomial dependence on the common difference of the arithmetic progression, and it also does not

directly improve the exponents in Theorem 1.1).

Let us now explain the strategy of the proof of Theorem 3.1. Let 5 ∈ {`,Λ, 3:}. By adjusting the

implied constants, it suffices to show the claims with

�����
∑

-<=f-+�
( 5 (=) − 5 ♯ (=))

�����
∗

replaced by max
0,@∈N

��������
∑

-<=f-+�
=≡0 (mod @)

( 5 (=) − 5 ♯ (=))

��������
.

In the cases 5 = `,Λ we take �′ := -/log20� - and in the case 5 = 3: we take �′ := -1−1/100: . We

use the triangle inequality to write��������
1

�

∑
-<=f-+�
=≡0 (mod @)

( 5 (=) − 5 ♯ (=))

��������
f

��������
1

�

∑
-<=f-+�
=≡0 (mod @)

5 (=) − 1

�′

∑
-<=f-+�′
=≡0 (mod @)

5 (=)

��������

+

��������
1

�′

∑
-<=f-+�′
=≡0 (mod @)

( 5 (=) − 5 ♯ (=))

��������
+

��������
1

�

∑
-<=f-+�
=≡0 (mod @)

5 ♯ (=) − 1

�′

∑
-<=f-+�′
=≡0 (mod @)

5 ♯ (=)

��������
.

(3.1)

Then we show that each of the three differences on the right-hand side is small. Let us next state the

required results.

To attack the second difference in (3.1), we show in Section 3.1 that Theorem 3.1 holds in long

intervals.

Proposition 3.2 (Long intervals). Let - g �2 g 2.

(i) Let � > 0 and6 -/log� - f �2 f - . Then

max
0,@∈N

��������
∑

-<=f-+�2

=≡0 (mod @)

`(=)

��������
j�

�2

log� -
. (3.2)

6Actually, thanks to Lemma 2.2(i), it would suffice to consider the case �2 = - here.
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and

max
0,@∈N

��������
∑

-<=f-+�2

=≡0 (mod @)

(Λ(=) − Λ
♯ (=))

��������
j�

�2

log� -
. (3.3)

(ii) Let : g 2 and -1− 1
50ġ f �2 f - . Then

max
0,@∈N

��������
∑

-<=f-+�2

=≡0 (mod @)

(3: (=) − 3♯: (=))

��������
j

�2
2

-
log:−2 -. (3.4)

Furthermore, using the definitions of our approximants Λ♯ (=) and 3
♯
:
(=) as type � sums, it will be

straightforward to show that the third difference on the right of (3.1) is small; in Section 3.2 we shall

show the following.

Lemma 3.3 (Long and short averages of approximant). Let - g �2 g �1 g -1/4 g 2.

(i) One has

max
0,@∈N

��������
1

�1

∑
-<=f-+�1

=≡0 (mod @)

Λ
♯ (=) − 1

�2

∑
-<=f-+�2

=≡0 (mod @)

Λ
♯ (=)

��������
j exp(−(log -)1/10). (3.5)

(ii) Let : g 2. Then

max
0,@∈N

��������
1

�1

∑
-<=f-+�1

=≡0 (mod @)

3
♯
:
(=) − 1

�2

∑
-<=f-+�2

=≡0 (mod @)

3
♯
:
(=)

��������
j 1

-1/100
+ �2

-
log:−2 -. (3.6)

Our ability to handle the first difference in (3.1) is what determines the exponent \. Concerning the

first difference we prove the following proposition in Section 3.4.

Proposition 3.4 (Long and short averages of arithmetic function).

(i) Let -/log20� - g �2 g �1 g -7/12+Y . Then

max
0,@∈N

��������
1

�1

∑
-<=f-+�1

=≡0 (mod @)

Λ(=) − 1

�2

∑
-<=f-+�2

=≡0 (mod @)

Λ(=)

��������
j�,Y

1

log� -

and

max
0,@∈N

��������
1

�1

∑
-<=f-+�1

=≡0 (mod @)

`(=)

��������
j�,Y

1

log� -
.
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(ii) Let : g 2. Set \ = 1/3 for : = 2, \ = 1/2 for : = 3, 4, \ = 11/20 for : = 5, and \ = 7/12 for

: g 6. There exists 2: > 0 such that if -1−1/(100: ) g �2 g �1 g - \+Y , then

max
0,@∈N

��������
1

�1

∑
-<=f-+�1

=≡0 (mod @)

3: (=) −
1

�2

∑
-<=f-+�2

=≡0 (mod @)

3: (=)

��������
jY,:

1

-2ġ
+ 1

- Y/1000

Theorem 3.1 now follows from (3.1) together with Propositions 3.4 and 3.2 and Lemma 3.3.

The case : = 2 of Proposition 3.4(ii) can be treated using classical methods on the Dirichlet divisor

problem. In : g 3 cases of Proposition 3.4(ii), we write 3: (=) =
∑
==<1 · · ·<ġ

1, split < 9 into dyadic

intervals < 9 ∼ " 9 ≍ -UĠ and classify resulting dyadic sums using Lemma 2.20(iii). On the other hand

in case of Proposition 3.4(i) we first use Heath-Brown’s identity and then Lemma 2.20(iii) to classify

the resulting sums.

For trilinear sums satisfying (� �maj) from Lemma 2.20 we shall deduce in Section 3.3 the following

consequence of the work of Baker, Harman and Pintz [4]. Part (ii) of the lemma will be used in handling

certain type � � sums in Section 4.

Lemma 3.5. Let 1/2 f \ < 1 and Y > 0. Let also , f - Y/200 and - \+Y f �1 f �2 f -/,4. Let

!, "1, "2 g 1 be such that " 9 = -
UĠ and !"1"2 ≍ - . Let 0<1

, 1<2
, Eℓ be bounded by 3�

2
for some

� g 1.

Assume that 0, @ ∈ N, \ ∈ {11/20, 7/12, 3/5, 5/8} and that U1, U2 > 0 obey the bounds

|U1 − U2 | f 2\ − 1 + Y

100
and 1 − U1 − U2 f 4\ − 2 + Y

100
.

(i) If

max
A | (0,@)

max
j (mod

ħ
(ė,ħ) )

sup

,f |C | f Ĕē4

Ą1

������
∑
ℓ∼!/A

EℓA j(ℓ)
ℓ1/2+8C

������ j�
(!/A)1/2

,1/3 , (3.7)

then

��� 1

�1

∑
-<<1<2ℓf-+�1
< Ġ∼" Ġ ,ℓ∼!

<1<2ℓ≡0 (mod @)

0<1
1<2

Eℓ −
1

�2

∑
-<<1<2ℓf-+�2
< Ġ∼" Ġ ,ℓ∼!

<1<2ℓ≡0 (mod @)

0<1
1<2

Eℓ

��� j 33 (@)
log$ÿ (1) -

,1/3 .

(ii) If

max
A | (0,@)

max
j (mod

ħ
(ė,ħ) )

sup

|C | f Ĕē4

Ą1

������
∑
ℓ∼!/A

EℓA j(ℓ)
ℓ1/2+8C

������ j�
(!/A)1/2

,1/3 , (3.8)

then

��� 1

�1

∑
-<<1<2ℓf-+�1
< Ġ∼" Ġ ,ℓ∼!

<1<2ℓ≡0 (mod @)

0<1
1<2

Eℓ

��� j 33 (@)
log$ÿ (1) -

,1/3 .

For sums satisfying (�
maj

2
) from Lemma 2.20 we shall use standard methods to deduce in Section 3.3

the following lemma.
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Lemma 3.6. Let \ ∈ [1/2, 1) and Y > 0. Let , f - Y/4 and let - \+Y f �1 f �2 f -/,4. Let

!, "1, "2 g 1 be such that " 9 = -UĠ and !"1"2 ≍ - . Let Eℓ be bounded by 3�
2
(ℓ). Assume that

0, @ ∈ N and

U1 + U2 g 1 − \. (3.9)

Then

��� 1

�1

∑
-<<1<2ℓf-+�1

< Ġ∼-ĂĠ

<1<2ℓ≡0 (mod @)

Eℓ −
1

�2

∑
-<<1<2ℓf-+�2

< Ġ∼-ĂĠ

<1<2ℓ≡0 (mod @)

Eℓ

��� j 33 (@)
log$ÿ (1) -

,1/6 .

3.1. Proof of Proposition 3.2

The bound (3.2) follows immediately from the Siegel–Walfisz theorem (1.13) and the triangle inequality.

Before turning to the proof of (3.3), let us discuss the choice of Λ♯. The prime number theorem with

classical error term (see, e.g., [54, Theorem 6.9]) gives∑
=f-

Λ(=) = - +$ (- exp(−2
√

log -)), (3.10)

so that if one is interested only in the correlation of Λ(=) with a constant function, one can select the

simple approximant 1. However, this is not sufficient even for the maximal correlation with the constant

function. There is some flexibility7 in how to select the approximant, but (following [61]) we use the

Cramér–Granville model (1.1), which has the benefits of being a nonnegative model function and one

that is known to be pseudorandom (which will be helpful in Section 9).

Proof of (3.3). It suffices to show that, for any 0, @ ∈ N and any �2 ∈ [-/log� -, -], we have��������
∑

-<=f-+�2

=≡0 (mod @)

(Λ(=) − Λ
♯ (=))

��������
j �2

log� -
.

We can clearly assume that @ < ' and (0, @) = 1.

Let � = exp((log -)3/5). By the fundamental lemma of the sieve (see e.g. [37, Fundamental Lemma

6.3 with H = �, I = ', and ^ = 1]), there exist real numbers _+3 ∈ [−1, 1] such that, for any � g 2,

@ < ', and 0 ∈ N with (0, @) = 1, we have

∑
-<=f-+�
==0 (@)

Λ
♯ (=) f %(')

i(%('))
∑
3f�
3 |% (')

_+3

∑
-<=f-+�
==0 (@)
3 |=

1

=

∏
?<'

(
1 − 1

?

)−1 ∑
3f�
3 |% (')
(3,@)=1

_+3
�

3@
+$ (� log ')

=
�

i(@)

(
1 +$

(
exp

(
− log�

log '

)))
+$ (� log '),

7For instance, a Fourier-analytic approximant Λq (=) :=
∑

ħfč
Ć (ħ)ęħ (Ĥ)

č (ħ) is used in [28], where 2ħ (=) :=
∑

1fėfħ:(ė,ħ)=1 4 (0=/@) denotes

the Ramanujan sum. Another option is to use a truncated convolution sum, Λq (=) := −∑
Ě |Ĥ,ĚfĎ ` (3) log 3, following e.g. [37, §19.2].
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and also by the fundamental lemma we have a lower bound of the same shape. Hence, for � g - Y we

have

∑
-<=f-+�
==0 (@)

Λ
♯ (=) = �

i(@) +$ Y (� exp(−(log -)1/2)), (3.11)

so (3.3) follows by the Siegel–Walfisz theorem and the triangle inequality. □

Remark 3.7. One could improve the error term in (3.3) by adjusting the approximant Λ♯ to account for

a potential Siegel zero; see for instance [37, Theorem 5.27] or [61, Proposition 2.2]. However, we will

not do so here.

Before turning to the proof of (3.4) let us discuss the construction of the approximant 3
♯
:

which is a

somewhat non-trivial task. The classical Dirichlet hyperbola method gives the asymptotic∑
=f-

==0 (@)

3: (=) = -%:,0,@ (log -) +$@,Y (-1−1/:+Y) (3.12)

for any fixed 0, @, any Y > 0, and some explicit polynomial %:,0,@ of degree : − 1 with coefficients

depending only on :, 0, @. Better error terms are known here; see e.g., [36, Section 13].

From (3.12), the triangle inequality, and Taylor expansion one has

∑
-<=f-+�
==0 (@)

3: (=) = �
(
%:,0,@ (log -) + %′

:,0,@ (log -) +$@,Y
(
-1−1/:+Y

�
+ �

-1−Y

))

for any Y > 0 whenever 2 f � f - .

Hence we have to choose the approximant 3
♯
:

to also obey estimates such as

∑
-f=<-+�
==0 (@)

3
♯
:
(=) = �

(
%:,0,@ (log -) + %′

:,0,@ (log -) +$ Y (-−^ġ + �- Y−1)
)

(3.13)

for some ^: > 0, with exactly the same choice of polynomial %:,0,@ .

The delta method of Duke, Friedlander and Iwaniec [9] can be used to build an approximant of

a Fourier-analytic nature, basically by isolating the major arc components of 3: ; see [35], [5], [55],

and [47, Proposition 4.2] for relevant calculations in this direction. However, the approximant that is

(implicitly) constructed in these papers is very complicated, and somewhat difficult to deal with for our

purposes (for instance, it is not evident whether it is non-negative).

The simpler approximant

3: (=, �) := �1−:
∑
< |=
<f=ý

3:−1 (<)

was recently proposed by Andrade and Smith [1] for various choices of parameter 0 < � < 1.

Unfortunately the polynomial %:,0,@,�(log -) associated to this approximant usually only agrees with

%:,0,@ (log -) to leading order (see [1, Theorem 2.1]), and so with this approximant one cannot hope to

get polynomial saving like in our Theorem 1.1(iii).

Our approximant (1.2) with %< (C) as in (1.3) can be seen as a more complicated variant of the

Andrade–Smith approximant. Note that the constraint < f '2:−2
:

in (1.2) is redundant, as %< vanishes

for < > '2:−2
:

. Note also that (by adjusting the value of 2:,3,� in Theorem 1.1) one could take ': to
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be any sufficiently small power of - , and that, for any = j - ,

3
♯
:
(=) =

∑
<f'2ġ−2

ġ
< |=

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ
=1 · · ·=ġ−1=<

(
log = − log(=1 · · · = 9':− 9:

)
) :− 9−1

(: − 9 − 1)! log:− 9−1 ':

j
∑
< |=

3:−1 (<) = 3: (=)

(3.14)

Recall we chose ': = -
1

10ġ in (1.2). The motivation for our approximant 3
♯
:

can be seen by noting

that, sorting a factorization = = =1 · · · =: into terms =1, . . . , = 9 f ': and terms = 9+1, . . . , =: > ': , we

get the generalized Dirichlet hyperbola identity

3: (=) =
:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

∑
= Ġ+1 ,...,=ġ−1>'ġ

Ĥ
Ĥ1 ...Ĥġ−1

>'ġ

1=1 · · ·=ġ−1 |=. (3.15)

The polynomials %< (C) are chosen to match with the contribution from the sum over = 9+1, . . . , =:−1 as

can be seen from the proof of (3.4) that we now give.

Proof of (3.4). It suffices to show that, for any : g 2, any 0, @ ∈ N, and any �2 ∈ [-1−1/(50: ) , -], we

have ��������
∑

-<=f-+�2

=≡0 (mod @)

(3: (=) − 3♯: (=))

��������
j

�2
2

-
log:−2 -.

Since 3: (=) = $ Y (=Y), we can clearly assume that @ f -
1

40ġ . Using (3.15) we obtain

∑
-<=f-+�2

=≡0 (mod @)

3: (=) =
∑

0ğ (mod @)
01 · · ·0ġ≡0 (mod @)

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

=ğ≡0ğ (mod @)

∑
= Ġ+1 ,...,=ġ−1>'ġ

Ĕ
Ĥ1 · · ·Ĥġ−1

>'ġ

=ğ≡0ğ (mod @)

(
�2

@=1 · · · =:−1

+$ (1)
)

+$
©­­­­­«

∑
=1 ,...,= Ġf'ġ

∑
= Ġ+1 ,...,=ġ−1>'ġ

Ĕ+Ą2
Ĥ1 · · ·Ĥġ−1

>'ġ>
Ĕ

Ĥ1 · · ·Ĥġ−1

(
�2

=1 · · · =:−1

+ 1

)ª®®®®®¬
.

Let us consider the two error terms. The first error term contributes, using the inequality 1 <

-/(':=1 · · · =:−1),

j
∑

0ġ (mod @)

∑
=1 ,...,=ġ−1f-

-

':=1 · · · =:−1

j @
-

':
log:−1 - j

�2
2

-
log:−2 -
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since @ f -
1

40ġ , ': = -
1

10ġ , and �2 g -1− 1
50ġ . The second error term contributes, using =1 · · · =:−1 ≍

-/': and Shiu’s bound (Lemma 2.17),

j
∑

=1 ,...,=ġ−1f2-
Ĕ
Ďġ
<=1 · · ·=ġ−1f

Ĕ+Ą2
Ďġ

':�2

-
=
':�2

-

∑
Ĕ
Ďġ
<=<

Ĕ+Ą2
Ďġ

3:−1 (=) j
�2

2

-
log:−2 -.

Hence ∑
-<=f-+�2

=≡0 (mod @)

3: (=)

=
�2

@

∑
0ğ (mod @)

01 · · ·0ġ≡0 (mod @)

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

=ğ≡0ğ (mod @)

1

=1 · · · = 9

∑
= Ġ+1 ,...,=ġ−1>'ġ

Ĕ
Ĥ1 · · ·Ĥġ−1

>'ġ

=ğ≡0ğ (mod @)

1

= 9+1 · · · =:−1

+$
(
�2

2

-
log:−2 -

)
.

(3.16)

For any � g � g 1, we have

∑
�<=<�

=≡0 (mod @)

1

=
=

1

@

∫ �

�

1

C
3C +$

(
1

�

)
.

Applying this : − 1 − 9 times, we see that8

∑
= Ġ+1 ,...,=ġ−1>'ġ

Ĕ
Ĥ1 · · ·Ĥġ−1

>'ġ

=ğ≡0ğ (mod @)

1

= 9+1 · · · =:−1

=
1

@:−1− 9

∫
C Ġ+1 ,...,Cġ−1>'ġ

C Ġ+1 · · ·Cġ−1f Ĕ
Ĥ1 · · ·ĤĠ Ďġ

3C 9+1 · · · 3C:−1

C 9+1 . . . C:−1

+$
(
(log -):−1− 9−1

@:−1− 9−1
· 1

':

)

=
1

@:−1− 9

log:− 9−1 -

=1 · · ·= Ġ'
ġ− Ġ
ġ

(: − 9 − 1)! +$
(
(log -):− 9−2

@:− 9−2
· 1

':

)
.

(3.17)

Since ': = -
1

10ġ , @ f -
1

40ġ , and �2 g -1− 1
50ġ , the error term contributes to (3.16)

j �2

@

:−1∑
9=0

∑
0 Ġ+1 ,...,0ġ (mod @)

∑
=1 ,...,= Ġf'ġ

1

=1 · · · = 9
· (log -):− 9−2

@:− 9−2
· 1

':

j �2

@

:−1∑
9=0

@:− 9 (log -) 9 · (log -):− 9−2

@:− 9−2
· 1

':
j

�2
2

-
log:−2 -.

8To obtain the second equality we use the classical formula
∫
Į1 ,...,ĮĚg0:Į1+···+ĮĚfĈ 1 3G1 . . . 3GĚ = ĈĚ

Ě!
for the volume of a simplex (easily

proven by induction on 3 and the Fubini–Tonelli theorem combined with the change of variables Gğ = log
Īğ+ Ġ
Ď for 8 = 1, . . . , : − 9 − 1).
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Hence (3.16) and (3.17) give

∑
-<=f-+�2

=≡0 (mod @)

3: (=) =
�2

@:− 9

∑
0ğ (mod @)

01 · · ·0ġ≡0 (mod @)

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

=ğ≡0ğ (mod @)

log:− 9−1 -

=1 · · ·= Ġ'
ġ− Ġ
ġ

(: − 9 − 1)!=1 · · · = 9

+$
(
�2

2

-
log:−2 -

)
.

On the other hand, by definition,

∑
-<=f-+�2

=≡0 (mod @)

3
♯
:
(=)

=

∑
0ğ (mod @)

01 · · ·0ġ≡0 (mod @)

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

=ğ≡0ğ (mod @)

log:− 9−1 -

=1 · · ·= Ġ'
ġ− Ġ
ġ

+$
(
�2

- log:− 9−2 -
)

(: − 9 − 1)! log:− 9−1 ':

·
∑

'ġ<= Ġ+1 ,...,=ġ−1f'2
ġ

=ğ≡0ğ (mod @)

(
�2

@=1 · · · =:−1

+$ (1)
)

=
�2

@

∑
0ğ (mod @)

01 · · ·0ġ≡0 (mod @)

:−1∑
9=0

(
:

9

) ∑
=1 ,...,= Ġf'ġ

=ğ≡0ğ (mod @)

log:− 9−1 -

=1 · · ·= Ġ'
ġ− Ġ
ġ

(: − 9 − 1)! log:− 9−1 ':

∑
'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ
=ğ≡0ğ (mod @)

1

=1 · · · =:−1

+$
©­­«

∑
0ġ (mod @)

:−1∑
9=0

∑
=1 ,...,= Ġf'ġ

�2

- log -

∑
'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ

(
�2

@=1 · · · =:−1

+ 1

)ª®®¬
+$

©­­
«

∑
0ġ (mod @)

:−1∑
9=0

∑
=1 ,...,= Ġf'ġ

∑
'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ

1
ª®®
¬
.

The error terms contribute

j
�2

2

-
log:−2 - + @ �2

- log -
'

2(:−1)
:

+ @'2(:−1)
:

j
�2

2

-
log:−2 - + @-1/2

and in the main term

1

log:− 9−1 ':

∑
'ġ<= Ġ+1 ,...,=ġ−1f'2

ġ
=ğ≡0ğ (mod @)

1

= 9+1 · · · =:−1

=

(
1

@
+$

(
1

':

)) :− 9−1

.

The claim follows since ': = -
1

10ġ and @ f -
1

40ġ . □
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3.2. Proof of Lemma 3.3

Note first that the claims are trivial unless @ f -1/80. For part (ii), note that, for 9 = 1, 2,

1

� 9

∑
-<=f-+� Ġ

=≡0 (mod @)

3
♯
:
(=)

=
1

� 9

∑
1,2 (mod @)
12≡0 (mod @)

∑
<f-

2ġ−2
10ġ

<≡1 (mod @)

(
%< (log -) +$

(
3:−1 (<)

� 9

- log -

)) ∑
-/<<=f(-+� Ġ )/<
=≡2 (mod @)

1

=
1

� 9

∑
1,2 (mod @)
12≡0 (mod @)

∑
<f-

ġ−1
5ġ

<≡1 (mod @)

(
%< (log -) +$

(
3:−1 (<)

� 9

- log -

)) (
� 9

<@
+$ (1)

)

=

∑
1,2 (mod @)
12≡0 (mod @)

∑
<f-

ġ−1
5ġ

<≡1 (mod @)

%< (log -)
<@

+$
(
� 9 log:−2 -

-
+ @-

1/5

� 9

)
.

The claim follows by subtracting this for 9 = 1, 2. Part (i) follows directly from (3.11) applied with

� ∈ {�1, �2} and the triangle inequality.

3.3. Proof of Lemmas 3.5 and 3.6

We first make a standard reduction to studying averages of Dirichlet polynomials.

Lemma 3.8. Let , f -1/100. Let |0= | f 32 (=)� for some � g 1 and let �(B, j) :=∑
21-<=f22- 0=j(=)=−B for some fixed 22 > 21 > 0. Let -1/2 f �1 f �2 f -/,4 and (0, @) = 1.

(i) One has

��� 1

�1

∑
-<=f-+�1

=≡0 (mod @)

0= −
1

�2

∑
-<=f-+�2

=≡0 (mod @)

0=

��� j log$ÿ (1) -

,2

+ log -

-1/2 max
Ĕ
Ą1

f)f Ĕē4

Ą1

1

i(@)
∑

j (mod @)

-/�1

)

∫
,f |C | f)

|�( 1
2
+ 8C, j) | 3C.

(ii) One has

��� 1

�1

∑
-<=f-+�1

=≡0 (mod @)

0=

��� j log$ÿ (1) -

,2

+ log -

-1/2 max
Ĕ
Ą1

f)f Ĕē4

Ą1

1

i(@)
∑

j (mod @)

-/�1

)

∫
|C | f)

|�( 1
2
+ 8C, j) | 3C.
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Proof. Let us first consider part (i). We begin by using the orthogonality of characters and Perron’s

formula (see e.g. [54, Corollary 5.3]) to get that, for 9 = 1, 2,

1

� 9

∑
-<=f-+� Ġ

=≡0 (mod @)

0= =
1

i(@)� 9

∑
j (mod @)

j(0)
∫ Ĕē4

ĄĠ

− Ĕē4

ĄĠ

�( 1
2
+ 8C, j)

(- + � 9 )1/2+8C − -1/2+8C

1
2
+ 8C

3C

+$
(
log$ÿ (1) -

,4

)
.

The “main term” comes from (only j0 contributes to actual main terms)

1

i(@)� 9

∑
j (mod @)

j(0)
∫ ,

−,
�( 1

2
+ 8C, j)

(- + � 9 )1/2+8C − -1/2+8C

1
2
+ 8C

3C

=
1

i(@)
∑

j (mod @)
j(0)

∫ ,

−,
�( 1

2
+ 8C, j)-−1/2+8C3C +$

(
� 9,

2

-
log$ÿ (1) -

)
.

The error term is $ (log$ÿ (1) -/,2) while the main term is independent of 9 . Hence

��� 1

�1

∑
-<=f-+�1

=≡0 (mod @)

0= −
1

�2

∑
-<=f-+�2

=≡0 (mod @)

0=

��� j log$ÿ (1) -

,2

+
2∑
9=1

1

i(@)� 9

∑
j (mod @)

∫
,f |C | f Ĕē4

ĄĠ

���( 1
2
+ 8C, j)

��
����� (- + � 9 )1/2+8C − -1/2+8C

1
2
+ 8C

����� 3C

Since | (-+� Ġ )1/2+ğĪ−-1/2+ğĪ

1/2+8C | j min{� 9-−1/2, -1/2/(1 + |C |)}, the second line contributes

j
2∑
9=1

1

i(@)� 9

∑
j (mod @)

� 9

-1/2

∫
,f |C | f Ĕ

ĄĠ

|�( 1
2
+ 8C, j) |3C

+
2∑
9=1

1

i(@)� 9

∑
j (mod @)

∫
Ĕ
ĄĠ

f |C | f Ĕē4

ĄĠ

|�( 1
2
+ 8C, j) | -

1/2

1 + |C | 3C.

Splitting the second integral dyadically, we see that this is

j log -

-1/2

2∑
9=1

max
Ĕ
ĄĠ

f)f Ĕē4

ĄĠ

1

i(@)
∑

j (mod @)

-/� 9
)

∫
,f |C | f)

|�( 1
2
+ 8C, j) | 3C.

Since �2 g �1, the contribution of the part with 9 = 1 is larger than the contribution of the part with

9 = 2. Hence part (i) follows.

Part (ii) follows similarly, except there is no need to handle a main term separately. □

Proof of Lemma 3.5. By Shiu’s bound (Lemma 2.17) we can clearly assume that @ f ,1/2 f - Y/400.

Let us consider, for 9 = 1, 2,

1

� 9

∑
-<<1<2ℓf-+� Ġ

<1<2ℓ≡0 (mod @)
< Ġ∼" Ġ ,ℓ∼!

0<1
1<2

Eℓ .
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We first split the sums according to A1 = (<1, @), A2 = (<2, @/A1) and A3 = (ℓ, @/(A1A2)), writing

< 9 = A 9<
′
9 and ℓ = A3ℓ

′. Then <′
1
<′

2
ℓ′A1A2A3 ≡ 0 (mod

@
A1A2A3

A1A2A3) and necessarily A1A2A3 = (0, @).
We have

1

� 9

∑
-<<1<2ℓf-+� Ġ

<1<2ℓ≡0 (mod @)
< Ġ∼" Ġ ,ℓ∼!

0<1
1<2

Eℓ

=

∑
A1A2A3=(0,@)

1

� 9

∑
-/(A1A2A3 )<<′

1
<′

2
ℓ′f(-+� Ġ )/(A1A2A3 )

<′
1
<′

2
ℓ′≡ ė

Ĩ1Ĩ2Ĩ3
(mod

ħ
Ĩ1Ĩ2Ĩ3

)
(<′

1
,@/A1 )=(<′

2
,@/(A1A2 ) )=(ℓ′ ,@/(A1A2A3 ) )=1

<′
Ġ∼" Ġ/A Ġ ,ℓ′∼!/A3

0<′
1
A11<′

2
A2Eℓ′A3 .

Part (i) follows from Lemma 3.8 (with -/(0, @), � 9/(0, @), @/(0, @), and 0/(0, @) in place of - , � 9 ,

@, and 0) if, for any ) ∈ [-/�1, -,
4/�1] and any A1A2A3 = (0, @) and any j (mod @/(0, @)), one has

∫
,f |C | f)

��� ∑
<′

1
∼"1/A1

(<1 ,@/A1 )=1

0<′
1
A1 j(<′

1
)

<
′1/2+8C
1

∑
<′

2
∼"2/A2

(<′
2
,@/(A1A2 ) )=1

1<′
2
A2 j(<′

2
)

<
′1/2+8C
2

∑
ℓ′∼!/A3

(ℓ′ ,@/(A1A2A3 ) )=1

Eℓ′A3 j(ℓ′)
ℓ′1/2+8C

��� 3C

j log$ÿ (1) -

,1/3
)

-/�1

(
-

(0, @)

)1/2
.

But, using the assumption (3.7), this follows from a slight variant of [4, Lemma 9] with 6 = 1 in cases

\ ∈ {7/12, 3/5, 5/8} and with 6 = 2 in case \ = 11/20 (alternatively see [24, Lemma 7.3]). The idea in

the proofs of these lemmas is to first split the integral to level sets according to the absolute values of

the three Dirichlet polynomials appearing, and then to apply appropriate mean and large value results

individually for the three Dirichlet polynomials to obtain upper bounds for the sizes of the level sets.

Combining these upper bounds using case-by-case study and Hölder’s inequality leads to the lemmas.

Part (ii) follows similarly. □

In fact, one can establish Lemma 3.5 for \ ∈ [7/12, 5/8] by using [4, Lemma 9] with 6 = 1, and for

\ ∈ [11/20, 9/16] by using [4, Lemma 9] with 6 = 2 (see [24, end of Section 7.2]), but we shall not

need this more general result.

Proof of Lemma 3.6. By Shiu’s bound (Lemma 2.17) we can assume that @ f ,1/6. Notice first that if

for either 8 = 1 or 8 = 2, we have \ + Y − (1 − U8) g Y, then we can obtain the claim by simply moving

the sum over <8 inside. Hence we can assume that U1, U2 < 1 − \.
Arguing as in proof of Lemma 3.5 and doing a dyadic splitting it suffices to show that, for any

) ∈ [,, -,4/�1] and any A1A2A3 = (0, @),

1

i( @
(0,@) )

∑
j (mod

ħ
(ė,ħ) )

∫ 2)

)

��� ∑
<1∼"1/A1
(<1 ,@/A1 )=1

j(<1)
<

1/2+8C
1

∑
<2∼"2/A2

(<2 ,@/(A1A2 ) )=1

j(<2)
<

1/2+8C
2

∑
ℓ∼!/A3

(ℓ,@/(A1A2A3 ) )=1

j(ℓ)EℓA3
ℓ1/2+8C

��� 3C
(3.18)

j log$ (1) -

,1/6 max

{
)

-/�1

, 1

} (
-

(0, @)

)1/2
.
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By the fourth moment estimate for Dirichlet !-functions we have (see [24, Lemma 10.11]), for any

",) g 2 and 3 | (0, @),

∑
j (mod

ħ
(ė,ħ) )

∫ 2)

)

�����
∑
<∼"

(<,@/3)=1

j(<)
<1/2+8C

�����
4

3C j
∑

j (mod
ħ
Ě )

∫ 2)

)

�����
∑
<∼"

j(<)
<1/2+8C

�����
4

3C

j
(
@3) + @"

2

)3

)
log$ (1) (")).

Hence, using also Hölder and the mean value theorem (see e.g. [37, Theorem 9.12 with : = @ and

& = 1]), the left-hand side of (3.18) is

j log$ (1) -

(
@2) + -2U1

)3

)1/4 (
@2) + -2U2

)3

)1/4 (
) + -1−U1−U2

@

)1/2

j @ log$ (1) -

(
) + )1/2-1/2−U1/2−U2/2 + -U1/2 + -U2/2 + -1/2−U1/2

)1/2 + -1/2−U2/2

)1/2 + -1/2

)3/2

)
.

One can see that this is always at most the right-hand side of (3.18) by considering each term separately

— depending on the term, the worst case is either ) = , or ) = -/�1. □

3.4. Proof of Proposition 3.4

Let us first show the : = 2 case of Proposition 3.4(ii). It follows from classical arguments leading to the

exponent 1/3 + Y in the Dirichlet divisor problem (see e.g. [62, Section I.6.4]). For completeness, we

provide the proof here. By a trivial bound we can assume that @ f - Y/4.

First note that

1

� 9

∑
-<=f-+� Ġ

=≡0 (mod @)

32 (=) =
2

� 9

∑
-<<=f-+� Ġ

<f-1/2
<=≡0 (mod @)

1 +$
(

1

� 9

∑
<∈ (-1/2 , (-+� Ġ )1/2 ]

∑
-/<<=f(-+� Ġ )/<
<=≡0 (mod @)

1

)
.

The error term contributes

j 1

� 9
·
(
� 9

-1/2 + 1

)
·
(
� 9

-1/2 + 1

)
j

� 9

-
+ 1

� 9
.

Hence it suffices to show that, for any " ∈ [1/2, -1/2], we have

1

�1

∑
-<<=f-+�1

<∼"
<=≡0 (mod @)

1 =
1

�2

∑
-<<=f-+�2

<∼"
<=≡0 (mod @)

1 +$
(

1

- Y/5

)
.
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Now, for 9 = 1, 2,

∑
-<<=f-+� Ġ

<∼"
<=≡0 (mod @)

1 =

∑
0f1,2<@

12≡0 (mod @)

∑
<∼"

<≡1 (mod @)

( ∑
1f=f Ĕ+ĄĠ

ģ
=≡2 (mod @)

1 −
∑

1f=f Ĕ
ģ

=≡2 (mod @)

1

)

=

∑
0f1,2<@

12≡0 (mod @)

∑
<∼"

<≡1 (mod @)

(⌊
- + � 9
<@

− 2

@

⌋
−

⌊
-

<@
− 2

@

⌋)

=

∑
0f1,2<@

12≡0 (mod @)

∑
<∼"

<≡1 (mod @)

(
� 9

<@
+

(
1

2
−

{
- + � 9
<@

− 2

@

})
−

(
1

2
−

{
-

<@
− 2

@

}))
.

Hence it suffices to show that, for 9 = 1, 2 and b ∈ {-/@, (- + � 9 )/@},

∑
0f1,2<@

12≡0 (mod @)

∑
<∼"

<≡1 (mod @)

(
1

2
−

{
b

<
− 2

@

})
= $

(
� 9

- Y/5

)
. (3.19)

The left-hand side is trivially $ (@") = $ (- Y/4") and so (3.19) is immediate in case " f � 9/- Y/2,

and so we can concentrate on showing (3.19) for 9 and " for which " > � 9/- Y/2.

For any  g 1 we have the Fourier expansion (see e.g. [62, Section I.6.4])

1

2
− {H} =

∑
:≠0

E:4(:H) +$ (1/ ) with E: j min{1/:,  /:2}.

Taking  9 = "- Y/2/� 9 (which is g 1) and writing < = 1 + A@, it suffices to show that, for 9 = 1, 2

and b ∈ {-/@, (- + � 9 )/@},

∑
|: |>0

min

{
1

:
,
"- Y/2/� 9

:2

} ������
∑

("−1)/@<Af(2"−1)/@
4(:b/(1 + A@))

������ = $ (-−Y/2� 9/@2).

The second derivative of the phase has size ≍ :-@/"3, so that by van der Corput’s exponential sum

bound (see e.g. [62, Theorem 5 in Section I.6.3] or [37, Corollary 8.13]), the left-hand side is

j
∑

0< |: | f"-ÿ/2/� Ġ

1

:

((
:-@

"3

)1/2
"

@
+

(
"3

:-@

)1/2)

+
∑

|: |>"-ÿ/2/� Ġ

"- Y/2/� 9
:2

((
:-@

"3

)1/2
"

@
+

(
"3

:-@

)1/2)

j -1/2+Y/4

�
1/2
9 @1/2

+ "3/2

@1/2-1/2 .

This is j -−Y/2� 9/@2 since �2 g �1 g -1/3+Y , @ f - Y/4, and " f -1/2. This establishes the : = 2

case of Proposition 3.4.
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The cases : = 3, 4 of Proposition 3.4(ii) follow from dyadic splitting, Lemma 2.20(v), and Lemma 3.6

with , = min{- 1
400ġ , - Y/4}, so we can concentrate on Proposition 3.4(i) and cases : g 5 of Proposi-

tion 3.4(ii). To apply Lemma 3.5 we need parts (i) and (ii) of the following lemma (part (iii) will be

used in the proof of Lemma 4.5 below):

Lemma 3.9 (Dirichlet polynomial bounds). Let 0 f )0 f - and U ∈ (0, 1].

(i) There exists X = X(U) such that, for any character j of modulus @ f -U/2 and any ! ∈ [-U, -],

sup
)0f |C | f-

sup
�¢[!,2! ]

�����
∑
ℓ∈�

j(ℓ)
ℓ1/2+8C

����� jU !
1/2-−X + !1/2 log -

()0 + 1)1/2 .

(ii) For any � > 0, any 1 f A f - , and any character j of modulus @ f log� - , one has

sup
|C | f-

sup
�¢[-Ă ,2-Ă ]

�����
∑
ℓ∈�

`(Aℓ)j(ℓ)
ℓ1/2+8C

����� jU,�
-U/2

log� -
.

(iii) Let Y > 0. For any � > 0, any % ∈ [exp((log -)2/3+Y), -2] and any character j of modulus

@ f log� - ,

sup
)0f |C | f-

sup
�¢[%,2% ]

�����
∑
?∈�

j(?)
?1/2+8C

����� jY,�
%1/2

)0

+ %1/2

log� -
.

Proof. Parts (ii) and (iii) follow by standard contour integration arguments, using the known zero-free

region for ! (B, j) (see e.g., [44, Lemma 2] for a similar argument without the character).

Let us concentrate on part (i). By partial summation, splitting into residue classes 0 (mod @) and

writing ℓ = <@ + 0, it suffices to show that, for any 0 ∈ {1, . . . , @} and |C | ∈ [)0, -], we have

∑
<∈ 1

ħ �

4
( C
2c

log(<@ + 0)
)
j !

-−X

@
+ ! log -

@()0 + 1)1/2 . (3.20)

The ath derivative of the phase 6(<) = C
2c log(<@ + 0) satisfies

|6 (a) (<) |<
a

a!
≍a |C |

for any a g 1. We apply the Weyl bound in the form of [37, Theorem 8.4]. When )0 f |C | f !/@, we

use [37, Theorem 8.4] with : = 2, obtaining

∑
<∈ 1

ħ �

4
( C
2c

log(<@ + 0)
)
j

(
|C |

!2/@2
+ 1

|C |

)1/2
!

@
log - j !1/2

@1/2 log - + ! log -

@()0 + 1)1/2 .

Recalling that @ f !1/2, the bound (3.20) follows with X = U/5.
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On the other hand, when !/@ < |C | f - , we use [37, Theorem 8.4] with : = + 2
U + 2,, obtaining

∑
<∈ 1

ħ �

4
( C
2c

log(<@ + 0)
)
jU

(
|C |

(!/@):
+ 1

|C |

) 4

ġ2ġ !

@
log -

jU

(
-

(!1/2):
+ 1

!1/2

) 4

ġ2ġ !

@
log -

jU
!

1− 2

ġ2ġ

@
log -

(3.21)

and (3.20) follows. □

Let us now get back to the proof of Proposition 3.4(ii). Recall that we can assume that : g 5.

The claim follows trivially unless @ f min{-22ġ , - Y/900}. We can request that 2: f 1
4000: . By dyadic

splitting it suffices to show that, for any # 9 ∈ [1/2, -] with #1 · · · #: ≍ - , one has

max
0,@∈N

@f-1/(2000ġ)

����������
1

�1

∑
-<=1 · · ·=ġf-+�1

=ğ∼#ğ
=1 · · ·=ġ≡0 (mod @)

1 − 1

�2

∑
-<=1 · · ·=ġf-+�2

=ğ∼#ğ
=1 · · ·=ġ≡0 (mod @)

1

����������
j 1

-22ġ
+ 1

- Y/800
. (3.22)

We can find U1, . . . , U: ∈ [0, 1] with U1 + · · · + U: = 1 such that #8 ≍ -Uğ for each 8 = 1, . . . , : .

In case : = 5 and \ = 11/20 we start by applying Lemma 2.20(iv). In case (�maj

2
) holds we

apply Lemma 3.6 with , = min{- Y/4, -82ġ } to obtain (3.22). In case (� �maj) holds we wish to apply

Lemma 3.5. In order to do this, we need to show that (3.7) holds with

E< =

∑
<=

∏
ğ∈ą <ğ

<ğ∼#ğ

1 (3.23)

and, = min{- Y/200, -202ġ } for any ! ≍ ∏
8∈� #8 . Now there exists 80 ∈ � such that U80 g (2\−1)/: =

1
10: . We have (using 3 (A)3 |� |−1 (<) j ,1/100)

������
∑
ℓ∼!/A

EℓA j(ℓ)
ℓ1/2+8C

������ f
∑
A=A1A2

∑
Ĉ

2Ĩ2Ĕ
Ăğ0

<<f 2Ĉ

Ĩ2Ĕ
Ăğ0

3 |� |−1 (<)
<1/2

���������
∑

<ğ0
∼-Ăğ0 /A1

<ğ0
∼!/(<A )

j(<80 )
<

1/2+8C
80

���������
j

(
!

-Uğ0

)1/2
,1/100 max

A=A1A2

1

A
1/2
2

max
H∼-Ăğ0 /A1

������
∑

-
Ăğ0 /A1<<fH

j(<)
<1/2+8C

������ .

Hence (3.7) follows for (3.23) if we show that

max
A1A2 |@

j (mod
ħ

(ė,ħ) )

sup

,f |C | f Ĕē4

Ą1

max
H∼-Ăğ0 /A1

������
∑

-
Ăğ0 /A1<<fH

j(<)
<1/2+8C

������ j
(-Uğ0 /A1)1/2

,1/3+1/100
, (3.24)
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Note that -Uğ0 /A1 g -
1

10ġ −22ġ g -
1

20ġ . We apply Lemma 3.9(i) with )0 = , . Taking 2: f X( 1
20: )/30

we obtain that the left-hand-side of (3.24) is

j
(
-Uğ0

A1

)1/2
· log -

,1/2 j (-Uğ0 /A1)1/2

,1/3+1/100
.

Hence (3.22) follows from Lemma 3.5. The case : g 6 and \ = 7/12 follows similarly using

Lemma 2.20(iii).

A similar method allows us to establish Proposition 3.4(i). We start by applying Heath-Brown’s

identity (Lemma 2.16) with ! = +2/Y,, writing #8 = -
Uğ . Then we apply Lemma 2.20(iii) to these U8 .

In case (� �maj) holds we argue as above but with , = log� - for some large � > 0. On the other

hand, in case U80 g 1 − \ − Y/2 for some 80, we write " = 1
#ğ0

∏ℓ
9=1 # 9 and move the summation over

=80 ∼ -Uğ0 inside. Then it suffices to show in this case that, for any � g 1,

max
0,@∈N

∑
"<<f2ℓ"

3ℓ−1 (<)

������������
1

�1

∑
-/<<=ğ0 f(-+�1 )/<

=ğ0∼#ğ0
=ğ0<≡0 (mod @)

0=ğ0 −
1

�2

∑
-/<<=ğ0 f(-+�2 )/<

=ğ0∼#ğ0
=ğ0<≡0 (mod @)

0=ğ0

������������
j 1

(log -)�

for 0=ğ0 = 1(#ğ0
,2#ğ0

] (=80 ) and 0=ğ0 = 1(#ğ0
,2#ğ0

] (=80 ) log =80 . But here �2/" g �1/" g - Y/2, so the

claim is easy to establish.

In the remaining case (�maj

2
) holds and U8 , U 9 > Y/2. Thus the corresponding coefficients from Heath-

Brown’s identity are either 1(#ğ ,2#ğ ] (=) or (log =)1(#ğ ,2#ğ ] (=) and the claim follows from Lemma 3.6

(and partial summation if needed).

3.5. Major arc estimates with restricted prime factorization

When proving Theorem 1.1(iv)–(v) we need the following quick consequence of Theorem 3.1. One

could obtain stronger results, but this is sufficient for our needs.

Corollary 3.10. Let - g 3 and -7/12+Y f � f -1−Y for some Y > 0. Let 2 f % < & f -1/(log log-)2

and write P(%,&) = ∏
%<?f& ?.

(i) For all � > 0,

�����
∑

-<=f-+�
1(=,P(%,&) )>1`(=)

�����
∗

j�,Y
�

log� -
+ � (log -)4

%
.

(ii) Let : g 2. For all � > 0,

�����
∑

-<=f-+�
1(=,P(%,&) )>1 (3: (=) − 3♯: (=))

�����
∗

j�,Y
�

log� -
+ � (log -)4:

%
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Proof. Let us first show (i). By Lemma 2.19 it suffices to show that����������
∑

-<?A=f-+�
%<?f&
Af-ÿ/2

0A `(=)

����������

∗

j�,Y
�

log� -

whenever |0A | f 32 (A). By the triangle inequality and Theorem 3.1 the left-hand side is

j
∑

%<?f&

∑
Af-ÿ/2

32 (A)

������
∑

-/(?A )<=f(-+� )/(?A )
`(=)

������
∗

j�,Y

∑
%<?f&

∑
Af-ÿ/2

32 (A)
�

?A (log -)�+3
j �

log� -
.

Let us now turn to (ii). By Theorem 3.1 and the triangle inequality it suffices to show the claim with

1(=,P(%,&) )>1 replaced by 1(=,P(%,&) )=1. Hence by Möbius inversion we need to show that������
∑

-<=f-+�

∑
3 | (=,P(%,&) )

`(3) (3: (=) − 3♯: (=))

������
∗

j�
�

log� -
. (3.25)

Write � := min{- Y/2000, -2ġ/2}. Since 3
♯
:
(<) j 3: (<) (see (3.14)), the contribution of 3 > � to the

left-hand side of (3.25) is by Lemma 2.18 at most

j
∑

-<3=f-+�
3>�

3 | P (%,&)

3: (3=) j�
�

log� -
.

On the other hand, the contribution of 3 f � to the left-hand side of (3.25) is by the triangle inequality

and Theorem 3.1 ��������
∑

-<=f-+�

∑
3f�

3 | P (%,&)

`(3)1=≡0 (mod 3) (3: (=) − 3♯: (=))

��������

∗

j
∑
3f�

�����
∑

-<=f-+�
(3: (=) − 3♯: (=))

�����
∗

jY
�

- Y/2000
+ �

-2ġ/2
.

□

4. Reduction to type �, type � �, and type �2 estimates

To complement the major arc estimates in Theorem 3.1, we will establish later in the paper some “inverse

theorems” that provide discorrelation between an arithmetic function 5 and a nilsequence � (6(=)�)
assuming that 5 is of9 “type �”, “type � �”, or “type �2”, and the nilsequence is “minor arc” in a suitable

sense. To make this precise, we give some definitions:

9Informally, we use type �ġ to refer to expressions resembling U ∗ 3ġ for some arithmetic function U supported on a relatively short range, with

the classical type � sums corresponding to the case : = 1, and type � � sums to refer to convolutions U ∗ V where both U and V are supported away

from 1.



Forum of Mathematics, Pi 51

Definition 4.1 (Type �, � �, �2 sums). Let 0 < X < 1 and �� , �
−
� � , �

+
� � , ��2 g 1.

(i) (Type � sum) A (X, �� ) type � sum is an arithmetic function of the form 5 = U ∗ V, where U is

supported in [1, �� ], and one has the bounds

∑
=f�

|U(=) |2 f 1

X
� (4.1)

and

∥V∥TV(N;@) f
1

X
(4.2)

for all � g 1 and some 1 f @ f 1
X .

(ii) (Type � � sum) A (X, �−
� � , �

+
� � ) type � � sum is an arithmetic function of the form 5 = U ∗ V, where

U is supported on [�−
� � , �

+
� � ], and one has the bound (4.1) and the bounds

∑
=f�

|V(=) |2 f 1

X
� and

∑
=f�

|V(=) |4 f 1

X2
� (4.3)

for all �, � g 1. (The type � � sums become vacuous if �−
� � > �+

� � .)

(iii) (Type �2 sum) A (X, ��2 ) type �2 sum is an arithmetic function of the form 5 = U ∗ V1 ∗ V2, where

U is supported on [1, ��2 ] and obeys the bound (4.1) for all � g 1, and V1, V2 obey the bound (4.2)

for some 1 f @ f 1
X .

We now state the inverse theorems we will establish here.

Theorem 4.2 (Inverse theorems). Let 3, � g 1, 2 f � f - , 0 < X < 1
log- , let �/� be a filtered

nilmanifold of degree at most 3, dimension at most �, and complexity at most 1/X. Let � : �/� → C

be Lipschitz of norm at most 1/X and mean zero. Let 5 : N → C be an arithmetic function such that�����
∑

-<=f-+�
5 (=)� (6(=)�)

�����
∗

g X�. (4.4)

for some polynomial map 6 : Z → �.

(i) (Type � inverse theorem) If 5 is a (X, �� ) type � sum for some �� g 1, then either

� j3,� X−$Ě,Ā (1) ��

or else there exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm

$3,� (X−$Ě,Ā (1) ) such that

∥[ ◦ 6∥�∞ (-,-+� ] j3,� X−$Ě,Ā (1) .

(ii) (Type � � inverse theorem, non-abelian case) If 5 is a (X, �−
� � , �

+
� � ) type � � sum for some �+

� � g
�−
� � g 1, � is non-abelian with one-dimensional center, and � oscillates with a non-zero central

frequency b of Lipschitz norm at most 1/X, then either

� j3,� X−$Ě,Ā (1) max(�+
� � , -/�−

� � )

or else there exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm

$3,� (X−$Ě,Ā (1) ) such that

∥[ ◦ 6∥�∞ (-,-+� ] j3,� X−$Ě,Ā (1) . (4.5)
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(iii) (Type � � inverse theorem, abelian case) If 5 is a (X, �−
� � , �

+
� � ) type � � sum for some �+

� � g �−
� � g 1

and � (6(=)�) = 4(%(=)) for some polynomial % : Z → R of degree at most 3, then either

� j3 X
−$Ě (1) max(�+

� � , -/�−
� � )

or else there exists a real number ) j3 X
−$Ě (1) (-/�)3+1 such that

∥4(%(=))=−8) ∥TV( (-,-+� ]∩Z;@) j3 X
−$Ě (1)

for some 1 f @ j3 X
−$Ě (1) .

(iv) (Type �2 inverse theorem) If 5 is a (X, ��2 ) type �2 sum for some ��2 g 1, then either

� j3,� X−$Ě,Ā (1)-1/3�2/3
�2

(4.6)

or else there exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm

$3,� (X−$Ě,Ā (1) ) such that

∥[ ◦ 6∥�∞ (-,-+� ] j3,� X−$Ě,Ā (1) .

In this section we show how Theorem 4.2, when combined with the major arc estimates in

Theorem 3.1, gives Theorem 1.1.

4.1. Combinatorial decompositions

We start by describing the combinatorial decompositions that allow us to reduce sums involving `,Λ, 3:
to type �, type � �, and type �2 sums. Lemma 4.3 will be used to prove (1.5) and (1.6), Lemma 4.4 will

be used to prove (1.7), and Lemma 4.5 will be used to prove (1.8) and (1.9).

The model function Λ♯ is not quite a type � sum, but we can approximate it well by the type I sum10

Λ
♯
� (=) :=

%(')
i(%('))

∑
3f-Ă/2

3 | (=,% (') )

`(3). (4.7)

Indeed by (1.1), Möbius inversion and Lemma 2.18 we have

∑
-<=f-+�

|Λ♯� (=) − Λ
♯ (=) | f %(')

i(%('))
∑

-<3=f-+�
3>-Ă/2
3 |% (')

1 j � exp(−(log -)1/20). (4.8)

In practice, this bound allows us to substitute Λ♯ with the type � sum Λ
♯
� with negligible cost.

Lemma 4.3 (Combinatorial decompositions of `,Λ, and Λ
♯
� ). Let - \+Y f � f - for \ = 5/8 and

some fixed Y > 0. For each 6 ∈ {`,Λ,Λ♯� }, we may find a collection F of $ ((log -)$ (1) ) functions

5 : N → R such that

6(=) =
∑
5 ∈F

5 (=)

for each -/2 f = f 4- , and each component 5 ∈ F satisfies one of the following:

(i) 5 is a (log−$ (1) -,$ (- \ )) type � sum;

10One could alternatively use a type � approximant coming from the V-sieve, using the fundamental lemma of the sieve (see e.g. [37, Lemma

6.3]) but the simper approximant Λ
q
ą is sufficient for us.
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(ii) 5 is a (log−$ (1) -,$ (- (3\−1)/2)) type �2 sum.

(iii) 5 is a (log−$ (1) -, �−
� � , �

+
� � ) type � � sum for some -1−\ j �−

� � f �+
� � j - \ , and it obeys the

bound

sup
(-/� ) (log-)50ýf |) | f-ý

�����
∑

-<=f-+�
5 (=)=8)

�����
∗

j� � log−� - (4.9)

for all sufficiently large � g 1.

Lemma 4.4 (Combinatorial decompositions of 3: and 3
♯
:
). Let : g 2. Let - \+Y f � f - for \ = \:

and some fixed Y > 0, where \2 = 1/3, \3 = 5/9, and \: = 5/8 for : g 4. For each 6 ∈ {3: , 3♯:}, we

may find a collection F of $ ((log -)$ (1) ) functions 5 : N → R such that

6(=) =
∑
5 ∈F

5 (=)

for each -/2 f = f 4- , and each component 5 ∈ F satisfies one of the following:

(i) 5 is a (log−$ (1) -,$ (- \ )) type � sum;

(ii) 5 is a (log−$ (1) -,$ (- (3\−1)/2)) type �2 sum.

(iii) 5 is a (log−$ (1) -, �−
� � , �

+
� � ) type � � sum for some -1−\ j �−

� � f �+
� � j - \ and it obeys the

bound

sup
(-/� )-2ęf |) | f-ý

�����
∑

-<=f-+�
5 (=)=8)

�����
∗

j�,: �-
−2 (4.10)

for all � > 0, where 2 = 2:,� > 0 is a sufficiently small constant.

Lemma 4.5 (Flexible combinatorial decompositions of `, 3: , and 3
♯
:
). Let -3/5+Y f � f - for some

fixed Y > 0, let exp((log G)2/3+Y) f % f & f -1/(log log-)2

, and write P(%,&) = ∏
%<?f& ?. We can

find a collection F of functions, where |F | = $ ((log -)$ (1) ), such that for any sequence {l=} with

|l= | f 1,

∑
-<=f-+�

1(=,P(%,&) )>1`(=)l= =
∑
5 ∈F

∑
-<=f-+�

5 (=)l= +$
(
� log4 -

%
+ �

exp((log log -)2)

)
.

Moreover, each component 5 ∈ F satisfies one of the following:

(i) 5 is a (log−$ (1) -, -3/5+Y/10) type � sum;

(ii) 5 is a (log−$ (1) -, -2/5+Y/10) type �2 sum.

(iii) 5 is a (log−$ (1) -, -2/5−Y/10, -3/5+Y/10) type � � sum and it obeys the bound

sup
(-/� ) (log-)20ýf |) | f-ý

�����
∑

-<=f-+�
5 (=)=8)

�����
∗

j� � log−� - (4.11)

for all sufficiently large � > 0.

Similarly, for fixed : g 2 we can find a collection F of functions, where |F | = $ ((log -)$ (1) ), such

that for any sequence {l=} with |l= | f 1,

∑
-<=f-+�

3: (=)l=1(=,P(%,&) )>1 =

∑
5 ∈F

∑
-<=f-+�

5 (=)l= +$
(
� log4: -

%
+ �

exp((log log -)2)

)
.
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Moreover, each component 5 ∈ F is one of (i), (ii), or (iii) above, and a similar decomposition holds

also with 3
♯
:

in place of 3: .

We will prove Lemmas 4.3, 4.4 and 4.5 by first decomposing the relevant functions into certain

Dirichlet convolutions (using Lemma 2.16 in the proof of Lemma 4.3 and Lemma 2.19 in the proof of

Lemma 4.5). We then use Lemma 2.20 to arrange each convolution into either type �, type � �, or type �2
sums. In the case of type � � sums, Lemma 2.20 also allows us to arrange them into a triple convolution

for which Lemma 3.5 is applicable.

Remark 4.6. Let us briefly discuss the type � � conditions such as (4.9), concentrating on the case of

the von Mangoldt function.

One may observe from the proof of Theorem 1.1(ii) below that if our major arc estimate

(Theorem 3.1(i)) held, for any ) f -$ (1) , with (Λ(=) − Λ♯ (=))=8) in place of Λ(=) − Λ♯ (=), we

could prove Theorem 1.1(ii) without the need to impose in Lemma 4.3 the condition (4.9) concerning

type � � sums.

Unfortunately, with current knowledge, one cannot obtain such a twisted version of Theorem 3.1, at

least not in the whole range -7/12+Y f � f -1−Y . However, inserting special cases of our type � and

type �2 estimates into Section 3, it would be possible to obtain such a twisted variant in the relevant range

-5/8+Y f � f -1−Y . If we did this, we would not need to impose the condition (4.9). However, we

found it more natural to work out the major arc estimates first using existing methods without needing

to appeal to the more involved �2 case.

Proof of Lemma 4.3. The function Λ
♯
� is clearly a (log−$ (1) -,$ (- \ )) type � sum by definition (4.7).

For Λ and `, we apply Lemma 2.16 with ! = 10. Each component 5 ∈ F takes the form

5 = 0 (1) ∗ · · · ∗ 0 (ℓ ) (4.12)

for some ℓ f 20, where each 0 (8) is supported on (#8 , 2#8] for some #8 g 1/2, and each 0 (8) (=) is either

1(#ğ ,2#ğ ] (=), (log =)1(#ğ ,2#ğ ] (=), or `(=)1(#ğ ,2#ğ ] (=). Moreover, #1#2 · · · #ℓ ≍ - , and #8 f -1/10 for

each 8 with 0 (8) (=) = `(=)1(#ğ ,2#ğ ] (=).
We can find U1, . . . , Uℓ ∈ [0, 1] with

∑ℓ
8=1 U8 = 1, such that #8 ≍ -Uğ for each 8. If U8 > 1/10 for

some 8, then 0 (8) (=) is either 1(#ğ ,2#ğ ] (=) or (log =)1(#ğ ,2#ğ ] (=), and hence ∥0 (8) ∥TV(N) j log - .

Since \ = 5/8 g 3/5, we may apply Lemma 2.20(i), (ii) to conclude that either (�) holds, or (�2)

holds, or both (� �min) and (� �maj) hold.

First consider the case (�) holds, i.e. U8 g 1 − \ for some 8. Since U8 > 1/10, ∥0 (8) ∥TV(N) j log - ,

and (4.12) is a (log−$ (1) -,$ (- \ )) type � sum of the form U ∗ V with V = 0 (8) and U = 0 (1) ∗ · · · ∗
0 (8−1) ∗ 0 (8+1) ∗ · · · ∗ 0 (: ) .

Henceforth we may assume that U8 < 1 − \ for each 8. Next consider the case (�2) holds. Then

U8 + U 9 g 3
2
(1 − \) for some 8 < 9 . Since U8 , U 9 f 1 − \, this implies that U8 , U 9 > 1/10 and thus

∥0 (8) ∥TV(N) , ∥0 ( 9 ) ∥TV(N) j log - . Hence (4.12) is a (log−$ (1) -,$ (- (3\−1)/2)) type �2 sum of the

form 5 = U ∗ V1 ∗ V2, with V1 = 0 (8) , V2 = 0 ( 9 ) .
Finally consider the case when both (� �min) and (� �maj) hold. Let {1, . . . , ℓ} = � ⊎ �′ be the partition

from (� �min), so that U� , U� ′ ∈ [1 − \, \]. Then (4.12) is a (log−$ (1) -, �−
� � , �

+
� � ) type � � sum of the

form 5 = U ∗ V, where U (resp. V) is the convolution of those 0 (8) with 8 ∈ � (resp. 8 ∈ �′), and

-1−\ j �−
� � f �+

� � j - \ .

It remains to establish the bound (4.9). For any subinterval (-1, -1 +�1] ¢ (-, - +�], any residue

class 0 (mod @), any fixed � > 0, and any (-/�) (log -)50� f |) | f -�, we need to show that

��� ∑
-1<=f-1+�1

=≡0 (mod @)

5 (=)=8)
��� j� � log−� -.
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We may assume that � is sufficiently large,�1 g � (log -)−2� and @ f (log -)2�. Let now {1, . . . , ℓ} =
� ⊎ � ⊎ �′ be the partition from (� �maj), so that

2\ − 1 f U� f 4\ − 2, |U� − U� ′ | f 2\ − 1.

Let {0′<1
}, {1′<2

}, {E′ℓ } be the convolution of those 0 (8) with 8 ∈ �, 8 ∈ �′, 8 ∈ �, respectively. Note

that they are supported on <1 ≍ -
UĆ

1
, <2 ≍ -

UĆ′
1

, ℓ ≍ -
Uą
1

, respectively. Thus, after dyadic division of

the ranges of <1, <2, ℓ, we need to show that��� ∑
-1<<1<2ℓ<-1+�1
<1∼"1 ,<2∼"2 ,ℓ∼!
<1<2ℓ≡0 (mod @)

0′<1
<8)1 1

′
<2
<8)2 E

′
ℓℓ
8)

��� j� � log−� -

for "1 ≍ -
UĆ

1
, "2 ≍ -

UĆ′
1

, ! ≍ -
Uą
1

. In view of Lemma 3.5(ii) applied with, = (log -)10� and Eℓ =

E′ℓℓ
8) , it suffices to verify the hypothesis (3.8). There exists 80 ∈ � such that U80 g (2\ − 1)/20 = 1/80.

Now (3.8) follows if we show that

max
A | (0,@)

max
j (mod

ħ
(ė,ħ) )

sup

|C | f Ĕ1 (log Ĕ)40ý

Ą1

��� ∑
<≍-Ăğ0 /A

0 (80 ) (<A)j(<)
<1/2+8 (C−) )

��� j�
(-Uğ0 /A)1/2

(log -)10�
.

Since 0 (80 ) is either 1, log, or ` on its support, this follows from Lemma 3.9 applied with )0 =

(log -)45�. □

Proof of Lemma 4.4. The function 3
♯
:

is clearly a (log−$ (1) -,$ (- \ )) type � sum by definition (1.2).

On the other hand 3: can be decomposed into a sum of log: - terms, each of which takes the form

5 = 1(#1 ,2#1 ] ∗ · · · ∗ 1(#ġ ,2#ġ ]

for some #8 g 1/2 with #1#2 · · · #: ≍ - . The : g 4 case of the lemma then follows in a similar way

as Lemma 4.3, with the only difference being that Lemma 3.5 is now applied with, = -102 instead of

a power of log - .

In the case : = 2 and \ = 1/3, 5 is clearly a (log−$ (1) -, 1) type �2 sum. In the case : = 3 and

\ = 5/9, at least one of the #8’s (say #3) is j -1/3. Hence 5 is a (log−$ (1) -,$ (-1/3)) type �2 sum

of the form 5 = U ∗ V1 ∗ V2, with U = 1(#3 ,2#3 ] and V 9 = 1(# Ġ ,2# Ġ ] (=) for 9 = 1, 2. □

Proof of Lemma 4.5. Let us first outline the proof for `. We first apply Lemma 2.19 and then Heath-

Brown’s identity (Lemma 2.16) with ! = 10 to `(=) on the right-hand side; note that we now have extra

flexibility with the ? variable. We obtain a collection of functions F , where each 5 ∈ F takes the form

5 = 0 (0) ∗ 0 (1) ∗ · · · ∗ 0 (ℓ )

for some ℓ f 21, where each 0 (8) is supported on (#8 , 2#8] for some #8 g 1/2, with

%/2 f #0 f &, #1 f - Y/30, #0#1 · · · #ℓ ≍ -.

(Here 0 (0) comes from the ? variable, 0 (1) comes from the A variable, and 0 (2) ∗ · · · ∗ 0 (ℓ ) comes from

applying Heath-Brown’s identity to `(=).) Moreover, 0 (0) (=) = 1= prime1(#0 ,2#0 ] (=), 0 (1) is divisor-

bounded, and for each 8 g 2, 0 (8) (=) is either 1(#ğ ,2#ğ ] (=) or `(=)1(#ğ ,2#ğ ] (=), and #8 f -1/10 for each

8 with 0 (8) = `(=)1(#ğ ,2#ğ ] (=).
We can find U1, . . . , Uℓ ∈ [0, 1] with

∑ℓ
8=1 U8 = 1, such that -Uğ−Y/20 f #8 j -Uğ for each 1 f 8 f ℓ.

We may apply Lemma 2.20(ii) to conclude that either (�) holds, or (�2) holds, or (� �min) holds.
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As in the proof of Lemma 4.3, if (�) holds then 5 is a desired type � sum, if (�2) holds then 5 is a desired

type �2 sum, and if (� �min) holds then 5 is a desired type � � sum. It remains to establish the bound (4.11)

in the type � � case. Let {1, . . . , ℓ} = � ⊎ �′ be the partition from (� �min), so that |U� − U� ′ | f 1/5. In

view of Lemma 3.5(ii) with, = (log -)4�, it suffices to verify the hypothesis (3.8) for the sequence

Eℓ = 0
(0)
ℓ
ℓ8) = 1ℓ primeℓ

8) .

Since #0 k %, Lemma 3.9 implies that hypothesis (3.8) is satisfied when (log -)20�-/� f |) | f -�

as required.

The claim for 3: follows similarly.

In case 3
♯
:

we use Möbius inversion to write

∑
-<=f-+�

3
♯
:
(=)l=1(=,P(%,&) )>1 =

∑
-<=f-+�

3
♯
:
(=)l= −

∑
-<=f-+�

3
♯
:
(=)l=1(=,P(%,&) )=1

=

∑
-<=f-+�

3
♯
:
(=)l= −

∑
-<3=f-+�
3 | P (%,&)

`(3)3♯
:
(3=)l3=.

Now 3
♯
:
(=) is immediately a (log−$ (1) -, -3/5) type � sum by the definition (1.2). Using Lemma 2.18

we can truncate the last sum above to 3 f - Y/10 with an admissible error $ (�/exp((log log -)2/20))
and it remains to show that

5 (=) =
∑

3 | (=,P(%,&) )
3f-ÿ/10

`(3)3♯
:
(3=)

is also a (log−$ (1) -, -3/5) type � sum. But this follows easily from the definition (1.2) of 3
♯
:
. □

4.2. Deduction of Theorem 1.1

In this subsection we deduce Theorem 1.1 from Theorem 4.2. We focus on establishing (1.6). The other

estimates in Theorem 1.1 are established similarly and we mention the small differences at the end of

the section. In this section we allow all implied constants to depend on 3, �.

We induct on the dimension � of �/�. In view of the major arc estimates (Theorem 3.1), we

may assume that � has mean zero (after replacing � by � −
∫
�). In view of Proposition 2.9 with

X = log−� - , we may assume that � oscillates with a central frequency b : / (�) → R. If the center

/ (�) has dimension larger than 1, or b vanishes, then ker b has positive dimension and the conclusion

follows from induction hypothesis applied to �/ker b (via Lemma 2.8). Henceforth we assume that �

has one-dimensional center and that b is non-zero. (A zero-dimensional center is not possible since �

is nilpotent and non-trivial.)

Let - \+Y f � f -1−Y for \ = 5/8 and Y > 0. Redefining X, we see that, to prove (1.6), it suffices to

show the following claim: There exists a small 2 > 0 such that for any large � and X = log−� - , if �/�
has complexity at most X−2 and � has Lipschitz norm at most X−2, then we have

|
∑

-<=f-+�
(Λ(=) − Λ

♯ (=))� (6(=)�) |∗ f X�. (4.13)

Suppose that (4.13) fails, i.e.

|
∑

-<=f-+�
(Λ(=) − Λ

♯ (=))� (6(=)�) |∗ > X�. (4.14)
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By (4.8) and the triangle inequality, we then have

|
∑

-<=f-+�
(Λ(=) − Λ

♯
� (=))� (6(=)�) |

∗ k X�. (4.15)

By Lemma 4.3, for some component 5 ∈ F as in that lemma, one has the bound

|
∑

-<=f-+�
5 (=)� (6(=)�) |∗ k X$ (1)�. (4.16)

Consider first the case when 5 is a (log−$ (1) -, �−
� � , �

+
� � ) type � � sum with -1−\ j �−

� � f �+
� � j - \

obeying (4.9), and � is abelian, hence one-dimensional since � = / (�). Then we may identify �/�
with the standard circle R/Z (increasing the Lipschitz constants for �, b by $ (X−$ (1) ) if necessary)

and b with an element of Z of magnitude $ (X$ (1) ), and we can write

� (G) = 14(bG)

for some 1 = $ (X−$ (1) ) and all G ∈ R/Z. We can write b · 6(=)� = %(=) mod 1 for some polynomial

% : Z → R of degree at most 3, thus by (4.14), (4.16) we have

|
∑

-<=f-+�
5 (=)4(−%(=)) |∗ g X$ (1)� (4.17)

and

|
∑

-<=f-+�
(Λ(=) − Λ

♯ (=))4(−%(=)) |∗ g X$ (1)�. (4.18)

Theorem 4.2(iii) implies that there exists a real number ) j X−$ (1) (-/�)3+1 such that

∥4(%(=))=−8) ∥TV( (-,-+� ]∩Z;@) j X−$ (1) (4.19)

for some 1 f @ f X−$ (1) . By Lemma 2.2(iii), we thus obtain

�����
∑

-<=f-+�
5 (=)=−8)

�����
∗

k X$ (1)�. (4.20)

By (4.9), we must have |) | f X−$ (1)-/�, and thus by (2.1) we have

∥=8) ∥TV( (-,-+� ]∩Z;@) j X−$ (1) .

Hence by (4.19) and (2.2) we have

∥4(%(=))∥TV( (-,-+� ]∩Z;@) j X−$ (1) .

From (4.18) and Lemma 2.2(iii), we conclude that

|
∑

-<=f-+�
Λ(=) − Λ

♯ (=) |∗ k X$ (1)�.

But this contradicts the major arc estimates (Theorem 3.1(i)).

Hence in case 5 is a type � � sum we can assume that � is non-abelian with one-dimensional center.

We claim that in all the remaining cases arising from Lemma 4.3, Theorem 4.2 implies that there exists
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a non-trivial horizontal character [ : � → R/Z of Lipschitz norm X−$ (1) such that

∥[ ◦ 6∥�∞ (-,-+� ] k X−$ (1) . (4.21)

Indeed, in the case when 5 is a (log−$ (1) -, �� ) type � sum for some �� = $ (- \ ), the bound

� j (log -)$ (1) �� fails since � g - \+Y . Hence (4.21) follows from Theorem 4.2(i).

In the case when 5 is a (log−$ (1) -, ��2 ) type �2 sum for some ��2 = $ (- (3\−1)/2), the bound

� j (log -)$ (1)-1/3�2/3
�2

fails since � g - \+Y and -1/3�2/3
�2

= $ (- \ ). Hence (4.21) follows from

Theorem 4.2(iv).

In the case when 5 is a (log−$ (1) -, �−
� � , �

+
� � ) type � � sum for some -1−\ j �−

� � j �+
� � j - \ ,

we can assume that � is non-abelian with one-dimensional center as discussed above to meet the

assumption in Theorem 4.2(ii). The bound � j (log -)$ (1) max(�+
� � , -/�−

� � ) fails since � g - \+Y

and max(�+
� � , -/�−

� � ) j - \ , and thus (4.21) follows from Theorem 4.2(ii).

Now that we have (4.21), we can reduce the dimension (by passing to a proper subnilmanifold)

and apply the induction hypothesis to conclude the proof. By (4.21) and Lemma 2.11, we have a

decomposition 6 = Y6′W for some Y, 6′, W ∈ Poly(Z → �) such that

(i) Y is (X−$ (1) , (-, - + �])-smooth;

(ii) There is a X−$ (1) -rational proper subnilmanifold �′/�′ of �/� such that 6′ takes values in �′ (in

fact �′ = ker [); and

(iii) W is X−$ (1) -rational.

Let @ f X−$ (1) be the period of W�. Form a partition (-, - +�] = %1∪· · ·∪%A for some A f X−$ (1) ,
where each %8 is an arithmetic progression of modulus @ and 3� (Y(=), Y(=′)) f X4 whenever =, =′ ∈ %8
(which can be ensured by the smoothness of Y as long as |%8 | f X�� for some sufficiently large constant

�). By the triangle inequality in Lemma 2.2(i), we have

�����
∑

-<=f-+�
(Λ − Λ

♯) (=)� (6(=)�)
�����
∗

f
A∑
8=1

�����
∑
=∈%ğ

(Λ − Λ
♯) (=)� (6(=)�)

�����
∗

.

For each 8, fix any =8 ∈ %8 , and write W(=8)� = W8� for some W8 ∈ � which is rational of height

$ (X−$ (1) ). Let 68 ∈ Poly(Z → �) be the polynomial sequence defined by

68 (=) = W−1
8 6′ (=)W8 ,

which takes values in W−1
8 �

′W8 . Let �8 : �/� → C be the function defined by

�8 (G�) = � (Y(=8)W8G�).

For each = ∈ %8 we have

|� (6(=)�) − �8 (68 (=)�) | = |� (6(=)�) − � (Y(=8)6′ (=)W8�) |
f ∥�∥Lip · 3� (Y(=)6′ (=)W8 , Y(=8)6′ (=)W8)
= ∥�∥Lip · 3� (Y(=), Y(=8)) f X3.

It follows that

�����
∑

-<=f-+�
(Λ − Λ

♯) (=)� (6(=)�)
�����
∗

f
A∑
8=1

�����
∑
=∈%ğ

(Λ − Λ
♯) (=)�8 (68 (=)�)

�����
∗

+$ (X2�) (4.22)
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By Lemma 2.2(i) and the induction hypothesis, we have, for each 8 = 1, . . . , A ,

�����
∑
=∈%ğ

(Λ − Λ
♯) (=)�8 (68 (=)�)

�����
∗

f
�����

∑
-<=f-+�

(Λ − Λ
♯) (=)�8 (68 (=)�)

�����
∗

j X�� (4.23)

for any sufficiently large constant �. Combining this with (4.22) we obtain

�����
∑

-<=f-+�
(Λ − Λ

♯) (=)� (6(=)�)
�����
∗

j X2�,

contradicting our assumption (4.14). This completes the proof of (1.6).

The proof of (1.5) is completely similar (with the role of Λ♯ and Λ
♯
� both replaced by `♯ = 0). For

the estimate (1.7) involving 3: , one runs the argument above with X = -−2Y for some sufficiently small

constant 2 > 0, using Lemma 4.4, and with the role of Λ♯ and Λ
♯
� both replaced by 3

♯
:
.

Let us now turn to the estimate (1.8). We choose

% = exp((log G)2/3+Y) and & = G1/(log log G )2

(4.24)

and write P(%,&) = ∏
%<?f& ?. We first use Shiu’s bound (Lemma 2.17) to note that

∑
-<=f-+�

`(=)� (6(=)�) =
∑

-<=f-+�
1(=,P(%,&) )>1`(=)� (6(=)�) +$

(
�

log %

log&

)
.

Now one can repeat the previous arguments with X = log−� - and 1(=,P(%,&) )>1`(=) in place of Λ and

0 in place of Λ♯ and Λ
♯
� — this time we use Lemma 4.5 to replace 1(=,P(%,&) )>1`(=) by the approximant∑

5 ∈F 5 (=) and Corollary 3.10 gives the required major arc estimate for 1(=,P(%,&) )>1`(=).
The estimate (1.9) follows similarly, noting first that, with %,& as in (4.24) we have by Shiu’s bound

(Lemma 2.17)

∑
-<=f-+�

3: (=)� (6(=)�) =
∑

-<=f-+�
1(=,P(%,&) )>13: (=)� (6(=)�)

+$
(
� (log -):−1

(
log %

log&

) :)

and then arguing as for (1.8).

5. The type � case

In this section we establish the type � case (i) of Theorem 4.2, basically following the arguments in [18].

In this section we allow all implied constants to depend on 3, �.

Writing 5 = U ∗ V, we see from Lemma 2.2(i) that

�����
∑

-<=f-+�
5 (=)� (6(=)�)

�����
∗

f
∑
0f�ą

|U(0) |

������
∑

-/0<1f-/0+�/0
V(1)� (6(01)�)

������
∗

.
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By the pigeonhole principle (and the hypothesis X f 1
log- ), we can thus find a scale 1 f � f �� such that

∑
�<0f2�

|U(0) |

������
∑

-/0<1f-/0+�/0
V(1)� (6(01)�)

������
∗

k X$ (1)�

and hence by (4.1) and the Cauchy–Schwarz inequality

∑
�<0f2�

©­«
������

∑
-/0<1f-/0+�/0

V(1)� (6(01)�)

������
∗ª®¬

2

k X$ (1)�2/�.

From Lemma 2.2(iii) and (4.2) we conclude that

∑
�<0f2�

©­«
������

∑
-/0<1f-/0+�/0

� (6(01)�)

������
∗ª®¬

2

k X$ (1)�2/�. (5.1)

We may assume that � g �X−�� for some large constant � depending on 3, �, since otherwise we

have � f X−$ (1) �� and can conclude. Trivially������
∑

-/0<1f-/0+�/0
� (6(01)�)

������
∗

j X−1�/�

for all � < 0 f 2�, and hence by (5.1) we must have������
∑

-/0<1f-/0+�/0
� (6(01)�)

������
∗

k X$ (1)�/�

for k X$ (1) � choices of 0 ∈ (�, 2�]. For each such 0, we apply Theorem 2.7 to find a non-trivial

horizontal character [ : � → R/Z of Lipschitz norm $ (X−$ (1) ) such that

∥[ ◦ 6(0·)∥�∞ (-/0,-/0+�/0] j X−$ (1) . (5.2)

This character [ could initially depend on 0, but the number of possible choices for [ is $ (X−$ (1) ),
hence by the pigeonhole principle we may refine the set of 0 under consideration to make [ independent

of 0. The function [ ◦ 6 : Z → R/Z is a polynomial of degree at most 3, hence by Corollary 2.4 (and

the assumption � g �X−��) we have

∥@[ ◦ 6∥�∞ (-,-+� ] j X−$ (1)

for some 1 f @ j X−$ (1) . Replacing [ by @[, we obtain Theorem 4.2(i) as required.

Remark 5.1. It should also be possible to establish Theorem 4.2(i) using the variant of Theorem 2.12

given in [26, Theorem 3.6].

6. The non-abelian type � � case

In this section we establish the non-abelian type � � case (ii) of Theorem 4.2. Let

3, �, �, -, X, �/�, �, 5 , �−
� � , �

+
� � be as in that theorem. For the rest of this section we allow all constants
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to depend on 3, �. We will need several constants

1 < �1 < �2 < �3 < �4

depending on 3, �, with each �8 assumed to be sufficiently large depending on the preceding constants.

We first eliminate the role of U by a standard Cauchy–Schwarz argument. By Definition 4.1(ii), we

can write 5 = U ∗ V, where U is supported on [�−
� � , �

+
� � ], and one has the bounds (4.1), (4.3) for all

�, � g 1. From (4.4) we have �����
∑
=∈%

U ∗ V(=)� (6(=)�)
����� g X�

for some arithmetic progression % ¢ (-, - + �]. By the triangle inequality, we have�����
∑
=∈%

(U ∗ V) (=)� (6(=)�)
����� f

∑
�−
ąąf0f�+ąą

|U(0) |
�����

∑
1:01∈%

V(1)� (6(01)�)
����� .

By the pigeonhole principle and the hypothesis X f 1
log- , one can thus find �−

� � f � f �+
� � such that

∑
�<0f2�

|U(0) |
�����

∑
1:01∈%

V(1)� (6(01)�)
����� k X$ (1)�. (6.1)

We may assume that

X−�4
-

�
f � f X�4�, (6.2)

since otherwise the first conclusion of Theorem 4.2(ii) holds. Now by (6.1), the Cauchy–Schwarz

inequality, and (4.1)

∑
�<0f2�

�����
∑

1:01∈%
V(1)� (6(01)�)

�����
2

k X$ (1) �
2

�
. (6.3)

Next, we dispose of the large values of V. Namely, we now show that the contribution of those 1 for

which |V(1) | > X−�2 to the left-hand side is negligible. They contribute

j X−2
∑

�<0f2�

( ∑
1:01∈%

1 |V (1) |>X−ÿ2 |V(1) |
)2

j X2�2−2
∑

�<0f2�

( ∑
1:01∈%

|V(1) |2
)2

j X2�2−2
∑
11 ,12

|V(11) |2 |V(12) |2
∑

�<0f2�
011 ,012∈%

1 (6.4)

Since % ¦ (-, - + �], the inner sum can be non-empty only if 1 9 ≍ -/� and |11 − 12 | f �/� and in

this case it has size j �/(-/�) = ��/- . Using also the inequality |GH |2 f |G |4 + |H |4 and (4.3), we

see that (6.4) is

j X2�2−2
∑

11≍-/�
|V(11) |4

∑
12

|11−12 | f�/�

��

-
j X2�2−4�

2

�
.

From now on in this section we allow all implied constants to depend on �2. Write

Ṽ(1) := V(1)1 |V (1) |f X−ÿ2 = $ (X−$ (1) ).



62 Forum of Mathematics, Pi

By above and the triangle inequality, (6.3) holds with Ṽ(1) in place of V(1). Hence, by Markov’s

inequality, we see that, for �2 large enough, we have������
∑

-/0<1f(-+� )/0
Ṽ(1)� (6(01)�)

������
∗

k X$ (1)�/� (6.5)

for k X$ (1) � choices of 0 ∈ (�, 2�]. We cover (�, 2�] by$ (-/�) boundedly overlapping intervals of

the form ��′ := (�′, (1+ �
- )�′] with � f �′ f 2�. Note that these intervals are non-empty by the lower

bound on � in (6.2). By the pigeonhole principle, we see that for k X$ (1)-/� of these intervals, (6.5)

holds for k X$ (1) �
- � choices of 0 ∈ ��′ . For all such �′ and 0, the interval (-/0, (- + �)/0] is

contained in

��′ :=

((
1 − 10�

-

)
-

�′ ,

(
1 + 10�

-

)
-

�′

]
, (6.6)

hence ������
∑
1∈�ý′

Ṽ(1)� (6(01)�)

������
∗

k X$ (1)�/�

for k X$ (1) �
- � choices of 0 ∈ ��′ . We can now apply Proposition 2.15 and the pigeonhole principle to

reach one of two conclusions for k X$ (1)-/� of the intervals ��′ :

(i) There exists a non-trivial horizontal character [ : � → R/Z of Lipschitz norm $ (X−$ (1) ) such

that ∥[ ◦ 6(0·)∥�∞ (�ý′ ) j X−$ (1) for k X$ (1) |��′ | values of 0 ∈ ��′ .
(ii) For k X$ (1) |��′ |2 pairs (0, 0′) ∈ �2�′ , there exists a factorization

6(0′·) = Y00′6(0·)W00′ (6.7)

where Y00′ is ($ (X−$ (1) ), ��′ )-smooth and W00′ is $ (X−$ (1) )-rational.

Suppose first that conclusion (i) holds for k X$ (1)-/� of the intervals ��′ . By pigeonholing we

may make [ independent of �′, and then by collecting all the 0 we see that

∥[ ◦ 6(0·)∥�∞ ( (-/0, (-+� )/0] ) j X−$ (1)

for k X$ (1) � values of 0 with 0 ≍ �. Applying Corollary 2.4, we see that either � j X−$ (1) �, or else

there is another non-trivial horizontal character [′ : � → R/Z of Lipschitz norm $ (X−$ (1) ) such that

∥[′ ◦ 6∥�∞ ( (-,-+� ] ) j X−$ (1) .

In either case the conclusion of Theorem 4.2(ii) is satisfied.

Now suppose that conclusion (ii) holds for some �′ which we now fix (discarding the information

collected for all other choices of �′). We will formalize the argument that follows as a proposition, as

we will need this precise proposition also in our followup work [46].

Proposition 6.1 (Abstract non-abelian Type II inverse theorem). Let � g 1, 3, � g 1, 2 f �, � f - ,

0 < X < 1
log- , and let �/� be a filtered nilmanifold of degree at most 3, dimension at most �, and

complexity at most 1/X, with � non-abelian. Let 6 : Z → � be a polynomial map. Cover (�, 2�] by at

most �-/� intervals ��′ = (�′, (1 + �
- )�′) with � f �′ f 2�, with each point belonging to at most �

of these intervals. Suppose that for at least 1
� X

�-/� of the intervals ��′ , there exist at least 1
� X

� |��′ |2
pairs (0, 0′) ∈ �2�′ for which there exists a factorization

6(0′·) = Y00′6(0·)W00′
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where Y00′ is (�X−� , ��′ )-smooth and W00′ is �X−� -rational, with ��′ defined by (6.6).

Then either

� j3,�,� X
−$Ě,Ā,ÿ (1) max(�, -/�) (6.8)

or there exists a non-trivial horizontal character [ : � → R/Z having Lipschitz norm

$3,�,� (X−$Ě,Ā,ÿ (1) ) such that

∥[ ◦ 6∥�∞ (-,-+� ] j3,�,� X
−$Ě,Ā,ÿ (1) .

Indeed, applying this proposition (with a suitable choice of � = $ (1), and the other parameters

given their obvious values), the conclusion (6.8) is not compatible with (6.2) for �4 large enough, so we

obtain the desired conclusion (4.5).

It remains to establish the proposition. We allow all implied constants to depend on 3, �, �. We will

now proceed by analyzing the equidistribution properties of the four-parameter polynomial map

(0, 1, 0′, 1′) ↦→ (6(01), 6(01′), 6(0′1), 6(0′1′)).

The one-parameter equidistribution theorem in Theorem 2.12 is not directly applicable for this purpose.

Fortunately, we may apply the multi-parameter equidistribution theory in Theorem 2.13 instead. We

conclude that either

min( |��′ |, |��′ |) j�3
X−$ÿ3

(1) , (6.9)

or else there exists

X−�3 f " j X−$ÿ3
(1) (6.10)

and a factorization

(6(01), 6(01′), 6(0′1), 6(0′1′)) = Y(0, 0′, 1, 1′)6′ (0, 0′, 1, 1′)W(0, 0′, 1, 1′) (6.11)

where Y, 6̃, W ∈ Poly(Z4 → �4) are such that

(i) (Y smooth) For all (0, 0′, 1, 1′) ∈ ��′ × ��′ × ��′ × ��′ , we have the smoothness estimates

3� (Y(0, 0′, 1, 1′), 1) f "

3� (Y(0 + 1, 0′, 1, 1′), Y(0, 0′, 1, 1′)) f "/|��′ |
3� (Y(0, 0′ + 1, 1, 1′), Y(0, 0′, 1, 1′)) f "/|��′ |
3� (Y(0, 0′, 1 + 1, 1′), Y(0, 0′, 1, 1′)) f "/|��′ |
3� (Y(0, 0′, 1, 1′ + 1), Y(0, 0′, 1, 1′)) f "/|��′ |.

(ii) (6′ equidistributed) There is an "-rational subnilmanifold �′/�′ of �4/�4 such that 6′ takes

values in �′ and one has the total equidistribution property

��� ∑
(0,0′ ,1,1′ ) ∈%1×%2×%3×%4

� (6′ (0, 0′, 1, 1′)�′′)
��� f |��′ |2 |��′ |2

"�2
3

∥�∥Lip

for any arithmetic progressions %1, %2 ¢ ��′ , %3, %4 ¢ ��′ , any finite index subgroup �′′ of �′ of

index at most "�2
3 , and any Lipschitz function � : �′/�′′ → C of mean zero.

(iii) (W rational) There exists 1 f A f " such that WA (0, 0′, 1, 1′) ∈ �4 for all 0, 0′, 1, 1′ ∈ Z.

The alternative (6.9) of course implies (6.8), so we may assume we are in the opposite alternative.

Thus we may assume that we have a scale " and a factorization (6.11) with the claimed properties.
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We know that (6.7) holds for k "−$ (1) |��′ |2 pairs (0, 0′) ∈ �2�′ . By pigeonholing we may assume

there is a fixed 1 f A j "$ (1) such that W00′ (1)A ∈ � for all such pairs (0, 0′) and all 1, and also such

that WA (0, 0′, 1′, 1′) ∈ �4. This implies that there is some lattice �̃ independent of 0, 0′ that contains � as

an index $ (X−$ (1) ) subgroup, such that W00′ (1) ∈ �̃ for all such pairs (0, 0′), and W(0, 0′, 1, 1′) ∈ �̃4;

indeed, by [19, Lemma A.8(i), Lemma A.11(iii)], we could take �̃ to be generated by exp( 1
&′ -8) for the

Mal’cev basis -1, . . . , -� of �/�, and some &′ j "$ (1) . From (6.7) we then have

6(0′1)�̃ = Y00′ (1)6(01)�̃

for all such pairs (0, 0′) and all 1 ∈ Z. If we introduce the subinterval

�′�′ :=

(
-

�′ ,

(
1 + 1

"�3

�

-

)
-

�′

]

of ��′ , then from the smoothness of Y00′ we have

Y00′ (1′) = $� ("−�3+$ (1) )Y00′ (1) = $� ("$ (1) )

whenever 1, 1′ ∈ �′�′ , where $� (A) denotes an element of � at a distance $ (A) from the identity. This

implies that

(6(01)�̃, 6(01′)�̃, 6(0′1)�̃, 6(0′1′)�̃) ∈ ¬

where ¬ ¢ (�/�̃)4 consists of all quadruples of the form

(G, H, YG, ^YH) (6.12)

for some G, H ∈ �/� and Y, ^ ∈ � with Y = $� ("$ (1) ) and ^ = $� ("−�3+$ (1) ) (with appropriate

choices of implied constants). We conclude that∑
0,0′∈�ý′ ;1,1′∈� ′ý′

1¬ (6(01)�̃, 6(01′)�̃, 6(0′1)�̃, 6(0′1′)�̃) k "−$ (1) |��′ |2 |�′�′ |2.

Applying (6.11), we conclude that∑
0,0′∈�ý′ ;1,1′∈� ′ý′

1¬ (Y(0, 0′, 1, 1′)6′ (0, 0′, 1, 1′)�̃4) k "−$ (1) |��′ |2 |�′�′ |2.

By the pigeonhole principle, we can find intervals � ′�′ , �
′′
�′ in ��′ of length "−�3 ��′ such that∑

0∈� ′
ý′ ,0

′∈� ′′
ý′ ;1,1

′∈� ′
ý′

1¬ (Y(0, 0′, 1, 1′)6′ (0, 0′, 1, 1′)�̃4) k "−$ (1) |� ′�′ | |� ′′�′ | |�′�′ |2.

By the smoothness of Y we have

Y(0, 0′, 1, 1′) = $� ("−�3+$ (1) )Y(00, 0
′
0, 10, 10) = $� ("$ (1) )

where 00, 0
′
0
, 10 are the left endpoints of � ′�′ , �

′′
�′ , �

′
�′ respectively. Let i be a bump function11 supported

on ¬̃ that equals 1 on ¬, with Lipschitz norm $ ("$ (�3 ) ), where ¬̃ is defined similarly to ¬ in (6.12)

but with slightly larger choices of implied constants $ (1) in the definition of Y, ^. This implies that

1¬ (Y(0, 0′, 1, 1′)6′ (0, 0′, 1, 1′)�̃4) f i(Y(00, 0
′
0, 10, 10)6′ (0, 0′, 1, 1′)�̃4)

11Indeed, one could set i (G ) = max(1 −  dist(G,¬) , 0) for some  = $ ("ċ (ÿ3 ) ) .
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whenever 0 ∈ � ′�′ , 0
′ ∈ � ′′�′ ; 1, 1

′ ∈ �′�′ . Abbreviating Y0 := Y(00, 0
′
0
, 10, 10) = $� ("$ (1) ), we

conclude that ∑
0∈� ′

ý′ ,0
′∈� ′′

ý′ ;1,1
′∈� ′

ý′

i(Y06
′ (0, 0′, 1, 1′)�̃4) k "−$ (1) |� ′�′ | |� ′′�′ | |�′�′ |2.

Using the equidistribution properties of 6′, we conclude that∫
�′/(�′∩�̃4 )

i(Y0G) 3`�′/(�′∩�̃4 ) k "−$ (1) . (6.13)

We now use this bound to obtain control on the group �′. Let us introduce the slice

! := {6 ∈ � : (1, 1, 1, 6) ∈ �′}. (6.14)

This is a $ ("$ (1) )-rational subgroup of �. Suppose first that this group is non-trivial, then ! ∩ �′

contains a non-trivial element W = $� ("$ (1) ). For 0 f C f 1, the group element WC := exp(C log W) =
$� ("$ (1) ) is such that (1, 1, 1, WC ) lies in �′, and hence from (6.13) and invariance of Haar measure

we have ∫
�′/(�′∩�̃4 )

i(Y0 (1, 1, 1, WC )G) 3`�′/(�′∩�̃4 ) k "−$ (1) .

Integrating this and using the Fubini–Tonelli theorem, we have

∫
�′/(�′∩�̃4 )

∫ 1

0

i(Y0 (1, 1, 1, WC )G) 3C 3`�′/(�′∩�̃4 ) k "−$ (1) .

and thus by the pigeonhole principle there exists G ∈ (�/�)4 such that

∫ 1

0

i(Y0 (1, 1, 1, WC )G) 3C k "−$ (1) .

In particular, we have

Y0 (1, 1, 1, WC )G ∈ ¬̃ ¢ (�/�)4 (6.15)

for a set of C ∈ [0, 1] of measure k "−$ (1) . But if we let G1, G2, G3 be the first three components of Y0G,

we see from (6.12) that in order for (6.15) to hold, the fourth coordinate of Y0 (1, 1, 1, WC )G must take the

form ^YG2, where Y = $ ("$ (1) ) is such that G3 = YG1. Since the equation G3 = YG1 fixes Y to a double

coset of �̃, there are at most $ ("$ (1) ) choices for Y, and for each such choice, ^YG2 is confined to a

ball of radius $ ("−�3+$ (1) ); thus the fourth coordinate of Y0 (1, 1, 1, WC )G is confined to the union of

$ ("$ (1) ) balls of radius $ ("−�3+$ (1) ). Since W is non-trivial, C ∈ [0, 1] is thus confined to the union

of $ ("$ (1) ) intervals of radius $ ("−�3+$ (1) ). Thus the set of C ∈ [0, 1] obeying (6.15) has measure

at most $ ("−�3+$ (1) ), leading to a contradiction for �3 large enough. Thus ! must be trivial.

Now we apply a “Furstenberg–Weiss” argument [15] (see also the argument attributed to Serre in [57,

Lemma 3.3]). Consider the groups

!1 := {6 ∈ � : (1, 6′, 1, 6) ∈ �′ for some 6′ ∈ �}
!2 := {6 ∈ � : (1, 1, 6′, 6) ∈ �′ for some 6′ ∈ �}.

Taking logarithms, we have

log !1 := {- ∈ log� : (-, - ′, 0, -) ∈ log�′ for some - ′ ∈ log�}
log !2 := {- ∈ log� : (0, 0, - ′, -) ∈ log�′ for some - ′ ∈ log�},
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thus log !1, log !2 are projections of certain slices of log�′. Since�′ was a$ ("$ (1) )-rational subgroup

of �4, we conclude from linear algebra that !1, !2 are $ ("$ (1) )-rational subgroups of �; comparing

with (6.14), we also see that [!1, !2] ¢ !; since ! is trivial, [!1, !2] is trivial. Since � is non-abelian

by hypothesis, [�,�] is non-trivial; thus at least one of !1, !2 must be a proper subgroup of�. For sake

of discussion let us assume that !1 is a proper subgroup, as the other case is similar. Then there exists

a non-trivial horizontal character [4 : � → R/Z on �/�̃ of Lipschitz norm $ ("$ (1) ) that annihilates

!1, that is to say [4 (6) = 0 whenever (1, 6′, 1, 6) ∈ �′ for some 6′ ∈ �. Thus, the homomorphism

(1, 6′, 1, 6) ↦→ [4 (6) on 1 × � × 1 × � annihilates the restriction of �′ to this group, as well as

1×� × 1× 1. Taking logarithms, we obtain a linear functional on the Lie algebra 0× log� × 0× log�

(with all coefficients $ ("$ (1) ) in the Mal’cev basis) that annihilates the restriction of log�′ to this

Lie algebra, as well as to 0 × log� × 0 × 0; by composing with a suitable linear projection we can

then extend this linear functional to a linear functional on all of (log�)4 that annihilates all of log�′,
again with all coefficients $ ("$ (1) ). Undoing the logarithm, we may find (possibly trivial) additional

horizontal characters [1, [3 : � → R/Z on �/�̃ of Lipschitz norm $ ("$ (1) ) such that

[1 (61) + [3 (63) + [4 (64) = 0

for all (61, 62, 63, 64) ∈ �′. In particular, writing 6′ = (6′
1
, 6′

2
, 6′

3
, 6′

4
), we have

[1 (6′1 (0, 0′, 1, 1′)) + [3 (6′3 (0, 0′, 1, 1′)) + [4 (6′4 (0, 0′, 1, 1′)) = 0

for all 0, 0′, 1, 1′ ∈ Z. Applying the factorization (6.11), and noting that the horizontal characters

[1, [3, [4 annihilate the components of W, we conclude that

[1 (6(01)) + [3 (6(0′1)) + [4 (6(0′1′)) = Ỹ(0, 0′, 1, 1′) (6.16)

for all 0, 0′, 1, 1′ ∈ Z, where

Ỹ(0, 0′, 1, 1′) := [1 (Y1 (0, 0′, 1, 1′)) + [3 (Y3 (0, 0′, 1, 1′)) + [4 (Y4 (0, 0′, 1, 1′))

and Y1, Y2, Y3, Y4 are the components of Y. From the smoothness properties of Y, we see in particular that

∥Ỹ(0, 0′, 1, 1′ + 1) − Ỹ(0, 0′, 1, 1′)∥R/Z j "$ (1)/|��′ |

for 0, 0′ ∈ ��′ , 1, 1′ ∈ ��′ , and hence from (6.16)

∥[4 (6(0′ (1′ + 1))) − [4 (6(0′1′))∥R/Z j "$ (1)/|��′ |

whenever 0′ ∈ ��′ , 1′ ∈ ��′ . For any 0′ ∈ ��′ , the map 1′ ↦→ [4 (6(0′1′)) is a polynomial of degree at

most 3, so by Vinogradov’s lemma (Lemma 2.3), for each such 0′, we either have

|��′ | j "$ (1) ,

or else there exists 1 f @ j "$ (1) such that

∥@[4 (6(0′·))∥�∞ (�ý′ ) j "$ (1) . (6.17)

The former possibility is not compatible with (6.2) if �4 is large enough, so we may assume the

latter possibility (6.17) holds for all 0′ ∈ ��′ . Currently the quantity @ may depend on 0′, but by the

pigeonhole principle we may fix a @ so that (6.17) holds for k "−$ (1) |��′ | choices of 0′ ∈ ��′ .

Applying Corollary 2.4, we conclude that either

|��′ | j "$ (1) ,
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or else there exists 1 f @′ j "$ (1) such that

∥@′[4 ◦ 6∥�∞ ( [-,-+� ] ) j "$ (1) .

In either case we obtain one of the conclusions of Proposition 6.1. The proof of Theorem 4.2(ii) is now

complete.

7. The abelian type � � case

In this section we establish the abelian Type � � case (iii) of Theorem 4.2 using arguments from [49].

We shall need the following variant of [49, Proposition 2.2].

Proposition 7.1. Let X ∈ (0, 1/2), " g 2 and ! = -/" . Assume that � g X−� max(!, ") for some

sufficiently large constant � = � (:) > 0. Let U(ℓ), V(<) ∈ C. Let : ∈ N and let

6(=) =
:∑
9=1

a 9 (= − -) 9

be a polynomial of degree : with real coefficients a 9 . If

�����
∑
ℓ,<
<∼"

-<ℓ<f-+�

U(ℓ)V(<)4(6(ℓ<))
�����g X� ©­

«
1

!

∑
!/2<ℓf2!

|U(ℓ) |2ª®¬
1/2 (

1

"

∑
<∼"

|V(<) |4
)1/4

,

then there exists a positive integer @ f X−$ġ (1) such that

∥@( 9 a 9 + ( 9 + 1)-a 9+1)∥R/Z f X−$ġ (1) -

� 9+1

for all 1 f 9 f : , with the convention that a:+1 = 0.

Proof. This follows from the same argument as [49, Proposition 2.2]. The only difference is that we do

not assume that the coefficients U(ℓ) and V(<) are divisor bounded and due to this in the beginning of

the proof we do not estimate the sums
∑
!/2<ℓf2! |U(ℓ) |2 and

∑
<∼" |V(<) |4 with bounds for averages

of divisor functions but keep them as they are. □

Let us get back to the proof of Theorem 4.2(iii). We can assume that

max{�+
� � , -/�−

� � } j X$Ě (1)�

since otherwise the claim is immediate. Note that in particular � g X−$Ě (1)-1/2. By assumption and

dyadic splitting (noting that X < 1/log -)

�����
∑

G<ℓ<fG+ℎ
<∼"

ℓ<≡D (mod E)

U(ℓ)V(<)4(%(ℓ<))
����� g X2� (7.1)

for some (G, G + ℎ] ¦ (-, - +�], some " ∈ [-/�+
� � , -/�−

� � ], some polynomial %(G) of degree at most

3 and some D, E ∈ N with D f E. Before applying Proposition 7.1 we will show that (7.1) can hold only

if E j X−8 and ℎ k X8�. In order to show this, we give an upper bound for the left-hand side using the
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Cauchy–Schwarz inequality. Using also (4.1) and denoting ! = -/" , we obtain, using the inequality

|GH | f |G |2 + |H |2

X4�2 f
�����

∑
G<ℓ<fG+ℎ
<∼"

ℓ<≡D (mod E)

U(ℓ)V(<)4(%(ℓ<))
�����
2

j
∑

!/2<ℓf2!

|U(ℓ) |2 ·
∑

!/2<ℓf2!

( ∑
<∼"

G<ℓ<fG+ℎ
ℓ<≡D (mod E)

|V(<) |
)2

j !

X

∑
<1 ,<2∼"

|<1−<2 | f2ℎ/!
(< Ġ ,E) |D

|V(<1)V(<2) |
∑

!/2<ℓf2!
G<ℓ<1 ,ℓ<2<G+ℎ
ℓ< Ġ≡D (mod E)

1

j !

X

∑
<1 ,<2∼"

|<1−<2 | f2ℎ/!
(<2 ,E) |D

|V(<1) |2
(
1 + ℎ(<2, E)

"E

)
.

Writing 3 = (<2, E) and <′
2
= <2/3 and using (4.3) we obtain

X4�2 j !

X

∑
<1∼"

|V(<1) |2
(
ℎ

!
+ 1 +

∑
3 |D

∑
<′

2

|<1−3<′
2
| f2ℎ/!

ℎ3

"E

)

j ℎ"

X2
+ !"
X2

+ !"
X2

∑
3 |D

ℎ3

"E

(
ℎ

!3
+ 1

)

j ℎ"

X2
+ !"
X2

+ ℎ
232 (D)
EX2

+ ℎ!

X2E
· D2

i(D) .

Since !, " j X$ (1)� and !" j X$ (1)�2, this is a contradiction unless E j X−8 and ℎ k X8�.

From (7.1) together with (4.1) and (4.3) we have

�����
∑

G<ℓ<fG+ℎ
<∼"

ℓ<≡D (mod E)

U(ℓ)V(<)4(%(ℓ<))
����� g X9ℎ

©­
«

1

!

∑
!/2<ℓf2!

|U(ℓ) |2ª®
¬

1/2 (
1

"

∑
<∼"

|V(<) |4
)1/4

.

We can write, for some a 9 ∈ R,

%(=) =
3∑
9=0

a 9 (= − -) 9 .

We can assume that a0 = 0. Furthermore we can spot the condition ℓ< = D (mod E) using additive

characters, so that, for some A (mod E) we have�������
∑

G<ℓ<fG+ℎ
<∼"

U(ℓ)V(<)4
(
%(ℓ<) + Aℓ<

E

)������� g X
9ℎ

©­
«

1

!

∑
!/2<ℓf2!

|U(ℓ) |2ª®¬
1/2 (

1

"

∑
<∼"

|V(<) |4
)1/4

.
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Now we are in the position to apply Proposition 7.1 to the polynomial %(=) + A=/E. By multiplying

the resulting @ by E we see that the conclusion of the proposition holds also for the coefficients of %(=),
ignoring A=/E. Hence we get that there exists a positive integer @′ f X−$Ě (1) such that

∥@′ ( 9 a 9 + ( 9 + 1)-a 9+1)∥R/Z f X−$Ě (1) -

� 9+1

for all 1 f 9 f 3, with the convention that a3+1 = 0.

Next we use a variant of the argument in the treatment of type II sums in [49, Proof of Theorem 1.3

in Section 4]. We start by shifting each a 9 by (@′ 9)−10 9 for an appropriate 0 9 ∈ Z to get a′9 such that

|@′ ( 9 a′9 + ( 9 + 1)-a′9+1) | f X−$Ě (1) -

� 9+1
(7.2)

for all 1 f 9 f 3. Let

%1 (=) =
3∑
9=1

a′9 (= − -) 9 ,

so that

4(%(=)) = 4(%1 (=))4 ©­«
−

3∑
9=1

0 9

@′ 9
(= − -) 9ª®

¬
.

Choosing @ = @′3!, we see that 4(%(=) − %1 (=)) is constant in any arithmetic progression (mod @) and

thus

∥4(%(=) − %1 (=))∥TV( [-,-+� )∩Z;@) f @ j X−$Ě (1) (7.3)

By induction one can deduce from (7.2) that����a′9 − (−1) 9−1

9 - 9−1
a′1

���� f X−$Ě (1) 1

� 9
(7.4)

for all 1 f 9 f 3 + 1. In particular when 9 = 3 + 1 this gives

|a′1 | f X−$Ě (1) -3

�3+1
.

We set ) = 2c-a′
1
, so that

|) | f X−$Ě (1)
(
-

�

)3+1

. (7.5)

We write also

%2 (=) =
3∑
9=1

(−1) 9−1

9 - 9−1
a′1 (= − -) 9 =

)

2c

3∑
9=1

(−1) 9−1

9

(
= − -
-

) 9
.

By (7.4) we have that

∥4(%1 (=) − %2 (=))∥TV( [-,-+� )∩Z;@) f @X−$Ě (1) j X−$Ě (1) . (7.6)

By Taylor expansion, for any : g 0 and = ∈ (-, - + �],

log
=

-
= log

(
1 + = − -

-

)
=

3+:∑
9=1

(−1) 9−1

9

(
= − -
-

) 9
+$

((
�

-

)3+:+1
)
,
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so that, using (7.5),

%2 (=) =
)

2c
log

=

-
− )

2c

3+:∑
9=3+1

(−1) 9−1

9

(
= − -
-

) 9
+$

(
X−$Ě (1)

(
�

-

) :)
.

Hence

4(%2 (=))=−8) = -−8)4
©­«
− )

2c

3+:∑
9=3+1

(−1) 9−1

9

(
= − -
-

) 9ª®¬
+$

(
X−$Ě (1)

(
�

-

) :)
.

Taking : large enough in terms of \, this implies that

∥4(%2 (=))=−8) ∥TV( [-,-+� )∩Z;@) j X−$Ě (1) . (7.7)

Now the claim follows by combining (7.3), (7.6), and (7.7) utilizing (2.2).

8. The type �2 case

In this section we establish the type �2 case (iv) of Theorem 4.2. Our main tool will be the following

elementary partition12 of the hyperbolic neighborhood {(<, =) ∈ Z2 : < ∈ �; - < =< f - +�} into

arithmetic progressions, which is non-trivial when � is much larger than -1/3.

Theorem 8.1 (Partition of hyperbolic neighborhood). Let -, �, " g 1 be such that

-1/3 f � f - and " j -1/2,

and let � be a subinterval of (", 2"]. Then the set

{(<, =) ∈ Z2 : < ∈ �; - < =< f - + �} (8.1)

can be partitioned for any integer & obeying

"

�
f & f "

(�-)1/4 (8.2)

as

&⋃
@=1

⋃
0≍ Ĕ

ĉ2 @

(0,@)=1

⋃
%∈Pė,ħ

%

where for each pair 0, @ of coprime integers with 1 f @ f & and 0 ≍ -
"2 @, P0,@ is a family of$ ( "3

-&2@
)

arithmetic progressions % in (8.1), each of spacing (@,−0) and length at most
�&
" .

In particular, the cardinality of the set (8.1) does not exceed

j
∑

1f@f&

∑
0≍ Ĕ

ĉ2 @

"3

-&2@

�&

"
j �. (8.3)

12In this section only, (<, =) will denote the element of the lattice Z2 with coordinates <, =, rather than the greatest common divisor of < and

=. We hope that this collision of notation will not cause confusion.
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Proof of Theorem 8.1. For future reference, we note from (8.2) and -1/3 f � f - that

& f "

(�-)1/4 f "

-1/3 f "�1/2

-1/2 f ". (8.4)

Note that if (<, =) lies in (8.1) then< ≍ " and =< ≍ - , thus =
< ≍ -

"2 . By the Dirichlet approximation

theorem, we then have

=

<
∈

[
0

@
− 1

&@
,
0

@
+ 1

&@

]

for some 1 f @ f & and some 0 ≍ -
"2 @ coprime to @. If for any such 0, @ we define �0,@ to be the

portion of the interval [ 0@ − 1
&@ ,

0
@ + 1

&@ ] that is not contained in any other such interval �0′ ,@′ with

@′ < @, we see that the �0,@ are disjoint intervals, and that we can partition (8.1) into sets

{(<, =) ∈ Z2 : < ∈ �; =
<

∈ �0,@; - < =< f - + �} (8.5)

where 0, @ range over those coprime integers with

1 f @ f &;
0

@
≍ -

"2
. (8.6)

It then suffices to show that each such set (8.5) can be partitioned into$ ( "3

-&2@
) arithmetic progressions

% in Z2, each of spacing (@,−0) and length at most
�&
" .

Fix 0, @, and write � = �0,@ . It in fact suffices to show that the set (8.5) can be partitioned into

$ ( "3

-&2@
) arithmetic progressions % of spacing (@,−0) and arbitrary length, so long as we also show

that the total cardinality of (8.5) is $ ( �"2

-&@ ). This is because any such progression % can be partitioned

into $ ( "�&#% + 1) subprogressions of the same spacing (@,−0) and length at most
�&
" , and

∑
%

(
"

�&
#% + 1

)
j "

�&

�"2

-&@
+ "3

-&2@
j "3

-&2@
.

It remains to obtain such a partition. From Bezout’s theorem we see that for any integer 2, the set

{(<, =) ∈ Z2 : @= + 0< = 2} is an infinite arithmetic progression of spacing (@,−0). The intersection

of (8.5) with this set is

�2 :=

{(
<,
2 − 0<
@

)
: <,

2 − 0<
@

∈ Z;< ∈ �; 2

<@
− 0

@
∈ �; - < (2 − 0<)<

@
f - + �

}
. (8.7)

The constraints

< ∈ �; 2

<@
− 0

@
∈ �; - < (2 − 0<)<

@
f - + �

confine < to the union of at most two intervals in the real line, and hence the set �2 is the union of at

most two arithmetic progressions in Z2 of spacing (@,−0). It thus suffices to show that �2 is non-empty

for at most $ ( "3

-&2@
) choices of 2, and that

∑
2

#�2 j
�"2

-&@
. (8.8)
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We begin with the first claim. If (<, =) ∈ �2 then 2 = @= + 0< and =< = - +$ (�) and hence

22 − (@= − 0<)2
= (@= + 0<)2 − (@= − 0<)2

= 40@=< = 40@- +$ (0@�). (8.9)

On the other hand, we have

@= − 0< = <@

(
=

<
− 0

@

)
j <@

@&
j "

&
. (8.10)

We thus have

22
= 40@- +$ (0@�) +$

(
"2

&2

)
.

From (8.6), (8.2) we have

0@� j -

"2
@2� j "2

&2

-�&4

"4
j "2

&2

and thus

22
= 40@- +$

(
"2

&2

)
.

Also "2

&2 f "2 j - f 0@- . Thus on taking square roots we have

2 =
√

40@- +$
(

1
√
0@-

"2

&2

)

and hence by (8.6)

2 =
√

40@- +$
(
"3

-&2@

)

giving the first claim.

It remains to prove (8.8). We first consider the contribution of those 2 for which

2 =
√

40@- +$
(

1
√
0@-

0@� + 1

)
,

so the total number of possible 2 here is$ ( 1√
0@-

0@�+1). For a fixed such 2, we then have from (8.9) that

@= − 0< = $ (
√
0@�).

But once one fixes 2 = @=+0<, the residue class of @=−0< modulo @ and modulo 0 are both fixed, thus

by the Chinese remainder theorem @= − 0< is restricted to a single residue class modulo 0@. Thus the

number of possible values of @= − 0< is $ (
√
0@�
0@ + 1). The net contribution of this case to (8.8) is then

j
(

1
√
0@-

0@� + 1

) (√
0@�

0@
+ 1

)

which expands out to

j �3/2

-1/2 + 0
1/2@1/2�

-1/2 + �1/2

01/2@1/2 + 1.
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Using (8.6), this becomes

j �3/2

-1/2 + @�
"

+ �
1/2"

@-1/2 + 1.

Thus we need to show that

�3/2

-1/2 ,
@�

"
,
�1/2"

@-1/2 , 1 j �"2

-&@

which on using 1 f @ f & rearranges to

& j "

�1/4-1/4 ,
"

-1/3 ,
�1/2"

-1/2 ,
�1/2"

-1/2

and the claim now follows from (8.4).

Now we consider the contribution of the opposite case, in which |2−
√

40@- | exceeds a large multiple

of 1√
0@-

0@� + 1. Then |22 − 40@- | exceeds a large multiple of 0@�, so from (8.9) we have

22
= 40@- +$ ((@= − 0<)2)

and thus if we restrict to a dyadic range @= − 0< ∈ ±[�, 2�] for some 1 f � j "
& that is a power of

two (the upper bound coming from (8.10)) we have

2 =
√

40@- +$
(

1
√
0@-

�2

)
.

Thus for a fixed �, the total number of possible 2 here is $ ( 1√
0@-

�2) (note that we have already

excluded those 2 that lie within $ (1) of
√

40@-). On the other hand, once 2 is fixed, we see from (8.9)

that (@=−0<)2 is constrained to an interval of length$ (0@�). The quantity @=−0< is also constrained

to lie in ±[�, 2�] and to a single residue class modulo 0@, so the squares (@= − 0<)2 are separated by

k �0@ when @= − 0< is positive, and similarly when @= − 0< is negative. Thus the total number of

possible values of @= − 0< available is $ ( 0@��0@ + 1) = $ ( �� ), since from (8.2) one has �
� k �

"/& g 1.

Thus the total contribution of this case to (8.8) is

j
∑

1f�j ĉ
č

�=2 Ġ

�2

√
0@-

· �
�

j 1
√
0@-

�
"

&

which after applying (8.6) gives $ ( �"2

-&@ ) as required. □

Combining this with the pigeonhole principle we obtain

Corollary 8.2 (Pigeonholing on a hyperbola neighborhood). Let -, �, ",& g 1 be such that

-1/3 f � f -, " j -1/2, and
"

�
f & f "

(�-)1/4 ,

and let � be a subinterval of [", 2"].
Let %0 be an arithmetic progression in (-, - + �], and let V1, V2 : N → C be functions obeying the

bounds

∥V1∥TV(N;@0 ) , ∥V2∥TV(N;@0 ) f 1/X
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for some 1 f @0 f 1/X and some13 0 < X < 1/(log -). Let 5 : Z2 → C be a 1-bounded function such

that �������
∑
<∈�

∑
=

-<=<f-+�

V1 (<)V2 (=)1%0
(=<) 5 (=, <)

������� g X�. (8.11)

Then for k X$ (1) -&2

"2 pairs of coprime integers @, 0 with X$ (1)& j @ f & and 0 ≍ -
"2 @, one can find

an arithmetic progression % in (8.1) of spacing (@,−0) and length at most
�&
" such that

������
∑

(<,=) ∈%
5 (=, <)

������
∗

k X$ (1) �&

"
.

Here we extend the maximal sum notation (1.4) to sums over arithmetic progressions in Z2 in the obvious

fashion.

Proof. Let @′
0

be the spacing of %0. We first claim that @′
0
j X−10. Indeed, by Shiu’s bound (Lemma 2.17)

we have

∑
<∈�

∑
-<=<f-+�
=<≡1 (@′

0
)

1 f
∑

-<=f-+�
=≡1 (@′

0
)

32 (=) jY 32 (@′0)
(
(log -) �

@′
0

+ - Y
)
,

and if @′
0
k X−10 then this together with the triangle inequality contradicts our assumption (8.11). Now

we may assume that @′
0
j X−10.

By Lemma 2.2(iii), the left-hand side of (8.11) is bounded by

1

X

�������
∑
<∈�

©­­«
∑
=

-<=<f-+�

V2 (=)1%0
(=<) 5 (=, <)

ª®®¬

�������
∗

which by definition is equal to

1

X

�������
∑
<∈�

∑
=

-<=<f-+�

1%1
(<)V2 (=)1%0

(=<) 5 (=, <)

�������
for some arithmetic progression %1 ¢ �. Interchanging the = and < sums and using Lemma 2.2(iii)

again, we can bound this in turn by

1

X2

�������
∑
<∈�

∑
=

-<=<f-+�

1%1
(<)1%2

(=)1%0
(=<) 5 (=, <)

�������

13It is likely that with more effort the restriction on X can be increased up to 1, but that we will not need to do so here.
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for some arithmetic progression %2. From Theorem 8.1 and the triangle inequality, we have∑
<∈�

∑
=

-<=<f-+�

1%1
(<)1%2

(=)1%0
(=<) 5 (=, <)

j
&∑
@=1

∑
0≍ Ĕ

ĉ2 @

(0,@)=1

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
1%1

(<)1%2
(=)1%0

(=<) 5 (=, <)

������

and since the set {(<, =) ∈ % : < ∈ %1, = ∈ %2, =< ∈ %0} is the union of at most $ (X−$ (1) ) arithmetic

progressions in % (recalling that @′
0
j X−$ (1) ), we have

������
∑

(<,=) ∈%
1%1

(<)1%2
(=)1%0

(=<) 5 (=, <)

������ j X−$ (1)

������
∑

(<,=) ∈%
5 (=, <)

������
∗

.

We conclude that

&∑
@=1

∑
0≍ Ĕ

ĉ2 @

(0,@)=1

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
5 (=, <)

������
∗

k X$ (1)�. (8.12)

As 5 is 1-bounded, we have here

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
5 (=, <)

������
∗

f "3

-&2@

�&

"
=
"2�

-&@
; (8.13)

since the number of 0 associated to a fixed @ is $ (-@/"2), we conclude that, for any @ f &,

∑
0≍ Ĕ

ĉ2 @

(0,@)=1

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
5 (=, <)

������
∗

j �

&
.

Comparing this with (8.12), we conclude that

∑
0≍ Ĕ

ĉ2 @

(0,@)=1

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
5 (=, <)

������
∗

k X$ (1) �

&
(8.14)

for k X$ (1)& choices of 1 f @ f &. By dropping small values of @, we may restrict attention to those

@ with X$ (1)& j @ j &. For each such @, we combine (8.13) with (8.14) to conclude that

"3

-&2@
sup

%∈Pė,ħ

������
∑

(<,=) ∈%
5 (=, <)

������
∗

k "2

-@
X$ (1) �

&

for k X$ (1) -@
"2 k X$ (1) -&

"2 choices of 0, and the claim follows. □

We can now obtain a preliminary version of Theorem 4.2(iv) (which basically corresponds to the

case ��2 = 1, after some dyadic decomposition):



76 Forum of Mathematics, Pi

Proposition 8.3 (Preliminary type �2 inverse theorem). Let -, �, " g 1 be such that

-1/3 f � f - and " j -1/2,

and let � be a subinterval of (", 2"]. Let 0 < X < 1/(log -), let %0 be an arithmetic progression in

(-, - + �], and let V1, V2 : N → C be functions obeying the bounds

∥V1∥TV(N;@0 ) , ∥V2∥TV(N;@0 ) f 1/X

for some 1 f @0 f 1/X.
Let �/� be a filtered nilmanifold of degree 3, dimension �, and complexity at most 1/X for some

3, � g 1, and let � : �/� → C be a Lipschitz function of norm 1/X and mean zero, and 6 : Z → � a

polynomial map. Suppose that�������
∑
<∈�

∑
=

-<=<f-+�

V1 (<)V2 (=)1%0
(=<)� (6(=<)�)

������� g X�.
Then either

� j3,� X−$Ě,Ā (1)-1/3 (8.15)

or else there exists non-trivial horizontal character [ : � → R of Lipschitz norm$3,� (X−$Ě,Ā (1) ) such

that

∥[ ◦ 6∥�∞ (-,-+� ] j3,� X−$Ě,Ā (1) .

Proof. We allow all implied constants to depend on 3, �. We apply Corollary 8.2 with

& :=

⌊
"

(�-)1/4

⌋
.

This gives that for k X$ (1)-&2/"2 pairs 0, @ with @ = $ (&) and 0 = $ (-&/"2), we have�����
 ∑
:=1

� (6((=0 − :0) (<0 + :@))�)
�����
∗

k X$ (1) �&

"

for some integers =0, <0 and some 1 f  f �&
" .

Applying the quantitative Leibman equidistribution theorem (Theorem 2.7), we can find a non-trivial

horizontal character [ : � → R of Lipschitz norm $ (X−$ (1) ) such that

∥[ ◦ 6((=0 − ·0) (<0 + ·@))∥�∞ ( [�&/" ] ) j X−$ (1) . (8.16)

By pigeonholing we can make [ independent of 0, @, so that (8.16) holds for k X$ (1)-&2/"2 pairs

0, @ with @ = $ (&) and 0 = $ (-&/"2). Fix this choice of [. The map % = [ ◦ 6 : Z → R is a

polynomial of degree at most 3; say

%(=) = [ ◦ 6(=) =
∑

0f 9f3
U 9 (= − -) 9 .

Now suppose that (8.15) fails. We will show that

∥@0U 9 ∥R/Z j X−$ (1)�− 9 (8.17)

for some 1 f @0 j X−$ (1) and all 1 f 9 f 3.
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We use downward induction on 9 . Extracting out the top degree coefficient U3 of %, we see that

∥U3 (@0)3 ∥R/Z j X−$ (1) (�&/")−23 .

We apply the polynomial Vinogradov lemma (Lemma 2.3) twice. Since �&/" j X−$ (1)

implies (8.15), we must have

∥@0U3 ∥R/Z j X−$ (1) (�&/")−23&−3 (-&/"2)−3 = X−$ (1)�−23-−3&−43"43
= X−$ (1)�−3

for some 1 f @0 j X−$ (1) by choice of &. This proves (8.17) for 9 = 3.

For the induction step, let 1 f 90 < 3, and assume that (8.17) has already been proved for 9 ∈
{ 90 + 1, · · · , 3}. Then the polynomials = ↦→ @0U 9 (= − -) 9 has �∞ ((-, - + �])-norm j X−$ (1) for

9 ∈ { 90 + 1, · · · , 3}, and thus the polynomial & defined by

&(=) = @0

(
%(=) −

3∑
9= 90+1

U 9 (= − -) 9
)
= @0

∑
0f 9f 90

U 9 (= − -) 9

also satisfies the bound (8.16). By repeating the analysis above with inspecting the top degree coefficient

@0U 90 of & and applying twice the polynomial Vinogradov lemma, we deduce that

∥@1 · @0U 90 ∥R/Z j X−$ (1)�− 90

for some 1 f @1 j X−$ (1) . This completes the induction step after replacing @0 by @0@1.

Now that we have (8.17), it follows that @0% has �∞ ((-, - + �])-norm j X−$ (1) , and the claim

follows after replacing [ by @0[. □

Now we are ready to establish Theorem 4.2(iv) in full generality, using an argument similar to that

employed in Section 5. Let 3, �, �, -, X, �/�, �, 5 , ��2 be as in Theorem 4.2(iv). Henceforth we allow

implied constants to depend on 3, �. By Definition 4.1 we can write 5 = U∗V1∗V2 where U is supported

on [1, ��2 ] and obeys (4.1) for all �, and V1, V2 obey (4.2). From (4.4) we have

�������
∑

1f0f�ą2

U(0)
∑
<

∑
=

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�)

������� g X�

for some arithmetic progression %0 ¢ (-, - + �]. Applying a dyadic decomposition in the 0, <, =

variables, we may assume that U, V1, V2 are supported in (�, 2�], (", 2"], (#, 2#] for some 1 f � f
��2 and ", # g 1/2, at the cost of worsening the above bound to

��������
∑

0∈ (�,2�]
U(0)

∑
<∈ (",2" ]

∑
#<=f2#

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�)

��������
g X$ (1)� (8.18)

(here we use the hypothesis X f 1
log- ). By symmetry we may assume that " f # . We may also assume

that �"# ≍ - since the sum is empty otherwise; this implies in particular that " j (-/�)1/2. We

may also assume that

�/� g X−� (-/�)1/3 (8.19)
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for some large constant � (depending only on 3, �), since otherwise we have (4.6) after some algebra.

By (8.18), Cauchy–Schwarz, and the bound (4.1) we obtain

∑
0∈ (�,2�]

��������
∑

<∈ (",2" ]

∑
#<=f2#

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�)

��������

2

g X$ (1)�2/�. (8.20)

For each 0 ∈ (�, 2�], we see from the triangle inequality and (4.2) that∑
<∈ (",2" ]

∑
#<=f2#

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�)

j X−$ (1)
∑

<∈ (",2" ]

∑
=

-/0<=<f-/0+�/0

1

and hence by the bound (8.3)∑
<∈ (",2" ]

∑
=∈ (#,2# ]

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�) j X−$ (1)�/�.

Combining this with (8.20) implies that��������
∑

<∈ (",2" ]

∑
=∈ (#,2# ]

-/0<=<f-/0+�/0

V1 (<)V2 (=)1%0
(0=<)� (6(0=<)�)

��������
k X$ (1)�/�

for k X$ (1) � values of 0 ∈ (�, 2�]. Applying Proposition 8.3 (and (8.19)), we conclude that for each

such 0 there exists a non-trivial horizontal character [ : � → R of Lipschitz norm $ (X−$ (1) ) such that

∥[ ◦ 6(0·)∥�∞ (-/0,-/0+�/0] j X−$ (1) .

This [ currently is permitted to vary in 0, but there are only$ (X−$ (1) ) choices for [, so by the pigeonhole

principle we may assume without loss of generality that [ is independent of 0. Applying Corollary 2.4

(and (8.19)), we conclude that there exists 1 f @ j X−$ (1) such that

∥@[ ◦ 6∥�∞ (-,-+� ] j X−$ (1)

and the claim follows.

At this point we have proved all cases of Theorem 4.2 which are necessary for our main Theorem

(Theorem 1.1).

9. Controlling the Gowers uniformity norms

In order to deduce our Gowers uniformity result in short intervals (Theorem 1.5) from Theorem 1.1,

we wish to apply the inverse theorem for the Gowers norms to Λ − Λ♯, 3: − 3♯: , `. However, before

we can apply the inverse theorem, we need to show that the functions Λ − Λ♯, 3: − 3
♯
:

possess

pseudorandom majorants even when localized to short intervals. In the case of long intervals, the

existence of pseudorandom majorants for these functions follows from existing works [17], [52], and the

main purpose of this section is to show that these long interval majorants also work over short intervals

(-, - + - \ ].
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We begin by defining what we mean by pseudorandomness localized to a short range14.

Definition 9.1 (Pseudorandomness over short intervals). Let G, � g 1. Let � ∈ N and 0 < [ < 1. We

say that a function a : Z → Rg0 is (�, [)-pseudorandom at location G and scale � if the function

aG (=) := a(G +=) satisfies the following. Let k1, . . . , kC be affine-linear forms, where each k8 : Z3 → Z

has the form k8 (x) = ¤k8 · x + k8 (0), with ¤k8 ∈ Z3 and k8 (0) ∈ Z satisfying 3, C f �, | ¤k8 | f � and

|k8 (0) | f ��, and with ¤k8 and ¤k 9 linearly independent whenever 8 ≠ 9 . Then, for any convex body

 ¢ [−�, �]3 ,

�����
∑
n∈ 

aG (k1 (n)) · · · aG (kC (n)) − vol( )
����� f [�3 .

Remark 9.2. We note that the (�, [)-pseudorandomness of a at location G and scale � directly implies

the short interval Gowers uniformity bound ∥a − 1∥*Ā (G,G+� ] j� [1/2Ā , just by the definition of the

Gowers norm as a correlation along linear forms.

Our notion of pseudorandomness in the “long interval” case G = 0 differs from that of Green–Tao [17,

Section 6] in two ways. Firstly, we do not need to impose the correlation condition [17, Definition 6.3]

(making use of the later work of Dodos and Kanellopoulos [8]). Secondly, we work with pseudorandom

functions defined on the integers, as opposed to those defined on cyclic groups. The latter is only a

minor technical convenience, as then we do not need to extend majorants defined on the integers into

a cyclic group. The next lemma shows that the notion of pseudorandomness over the integers is very

closely related to pseudorandomness over a cyclic group.

Lemma 9.3. Let G, � g 1, � ∈ N, and 0 < [ < 1. Suppose that a : Z → Rg0 is (�, [)-pseudorandom

at location G and scale �. Then there exists a prime � < �′ j� � and a function ã : Z/�′Z → Rg0

such that a(G + =) f 2ã(=) for all = ∈ [0, �] (where [0, �] is embedded into Z/�′Z in the natural way)

and such that ã satisfies the following. Let k1, . . . , kC be affine-linear forms, where each k8 : Z3 → Z

has the form k8 (x) = ¤k8 · x + k8 (0), with ¤k8 ∈ Z3 and k8 (0) ∈ Z satisfying C f �, | ¤k8 | f �. Then

∑
n∈ (Z/�′Z)Ě

ã(k1 (n)) · · · ã(kC (n)) = (1 +$� ([)) (�′)3 , (9.1)

where the affine-linear forms k 9 : (Z/�′Z)3 → Z/�′Z are induced from their global counterparts in

the obvious way.

Proof. Let �′ ∈ [���, 2���] be a prime for large enough �� g 1. Take ã(=) = ( 1
2
+ 1

2
a(G +

=))1=∈[0,� ] + 1(�,�′ ) (=), extended to an �′-periodic function. Then the claim (9.1) follows from the

(�, [)-pseudorandomness of a at location G and scale � by splitting ã into its components. □

We then state the inverse theorem for unbounded functions that we are going to use.

Proposition 9.4 (An inverse theorem for pseudorandomly bounded functions). Let B ∈ N and 0 < [ < 1.

Let � be an interval of length g 2. Let 5 : � → C be a function, and suppose that the following hold.

• There exists a function a : � → Rg0 such that ∥a − 1∥*2ĩ (� ) f [ and | 5 (=) | f a(=).
• For any filtered (B − 1)-step nilmanifold �/� and any Lipschitz function � : �/� → C, we have

sup
6∈Poly(Z→�)

����� 1

|� |
∑
=∈�

5 (=)� (6(=)�)
����� j∥� ∥Lip ,�/� [.

14Strictly speaking, � does not need to be small in terms of G in Definition 9.1, but that is the regime we are most interested in.
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Then we have the Gowers uniformity estimate

∥ 5 ∥*ĩ (� ) = >B;[→0 (1).

Proof. Let � = (-, - + �], where without loss of generality - and � are integers. The desired result

follows from the work of Dodos and Kanellopoulos [8, Theorem 5.1] (which gives the inverse theorem

of [17, Proposition 10.1] under weaker hypotheses). Indeed, we can apply [8, Theorem 5.1] to the

function = ↦→ 5 (-+=) on [1, �], noting that the interval Gowers norm estimate ∥a−1∥*2ĩ (� ) = >[→0 (1)
is equivalent to the cyclic group Gowers norm estimate ∥ ã − 1∥*2ĩ (Z/# ′Z) = >[→0 (1) for all primes

# ′ ∈ [100B�, 200B�], where ã(=) is defined as a(- + =)1=∈[1,� ] for 0 f = < # ′ and extended

periodically to Z/# ′Z. □

The following lemma tells us that if a function has a pseudorandom majorant over a long interval,

and if the majorant is given by a type � sum, then it in fact has a pseudorandom majorant over short

intervals as well. This allows us to conveniently reduce the concept of pseudorandom majorants over

short intervals to that over long intervals.

Lemma 9.5 (Pseudorandomness over long intervals implies pseudorandomness over short intervals).

Let Y ∈ (0, 1), �, : ∈ N be fixed. Let � g 1 be large enough in terms of : and �. Let � ∈ [- Y , -/2]
and [ ∈ ((log -)−� , 1/2), with - g 3 large enough. Let a : Z → Rg0 be (�, [)-pseudorandom at

location 0 and scale �. Also let 1 f �, � f log - be integers.

Suppose that there is an exceptional set ÿ ¢ Z and a sequence _= such that

a(=) =
∑

3 |�=+�
3f-ÿ/(2Ā)

_3 for = ∉ ÿ,

|_= | f (log -):3 (=): for all =,

|a(=) | f (log -):3 (�= + �): for = ∈ ÿ.

(9.2)

Also suppose that ÿ is small in the sense that

|ÿ ∩ [H − 2��, H + 2��] | j �/(log -)4� for H ∈ {0, -} (9.3)

Then a is (�, 2[)-pseudorandom at location - and scale �.

Proof. By (9.2), we can write

a(=) = 1=∉ÿ

∑
3 |�=+�
3f-ÿ/(2Ā)

_3 +$ ((log -):3 (�= + �):1=∈ÿ)

=

∑
3 |�=+�
3f-ÿ/(2Ā)

_3 +$ ((log -):3 (�= + �):+11=∈ÿ).

Hence, for any convex body  ¢ [−�, �]3 and for G ∈ {0, -}, we can split the sum

∑
n∈ 

C∏
8=1

aG (k8 (n))

(where aG (=) := a(G + =)) as the main term

∑
41 ,...,4Īf-ÿ/(2Ā)

_41
· · · _4Ī

∑
n∈ 

C∏
8=1

14ğ |�(G+kğ (n) )+�. (9.4)
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and 2C − 1 error terms whose contribution is for some 9 f C bounded using (9.2) by

j (log -):C
∑
n∈ 

C∏
8=1

3 (�(G + k8 (n)) + �):+11G+kĠ (n) ∈ÿ. (9.5)

Now, using Cauchy–Schwarz, the inequality
∏C
8=1 G8 f ∑C

8=1 G
C
8 , (9.3), and Shiu’s bound

(Lemma 2.17), (9.5) is

j (log -):C
(∑
n∈ 

1G+kĠ (n) ∈ÿ

)1/2 (∑
n∈ 

C∏
8=1

3 (�(G + k8 (n)) + �)2(:+1)
)1/2

j (log -):C
(∑
n∈ 

1G+kĠ (n) ∈ÿ

)1/2 (∑
n∈ 

C∑
8=1

3 (�(G + k8 (n)) + �)2(:+1)C
)1/2

j �3 (log -):C−2� (log -)"Ā,ġ

for some constant "�,: g 1. If � is large enough in terms of � and : , this is j �3 (log -)−3�/2.

We lastly estimate the main term in (9.4). A lattice point counting argument as in [17, Appendix A]

gives us

∑
n∈ 

C∏
8=1

14ğ |�(G+kğ (n) )+� = U�,� (41, . . . , 4C )vol( ) +$ (�3−1)

for some U�,� (41, . . . , 4C ) ∈ [0, 1] independent of G and� (since the left-hand side is counting elements

of  in some shifted lattice qZ + a). Combining this with the estimates 41 · · · 4C f - Y/2 f �1/2 and

|_3 | j -> (1) , we see that

∑
n∈ 

C∏
8=1

aG (k8 (n)) =
∑

41 ,...,4Īf-ÿ/(2Ā)

_41
· · · _4ĪU�,� (41, . . . , 4C )vol( ) +$ (�3 (log -)−3�/2). (9.6)

Since the main term on the right-hand side of (9.6) is independent of G ∈ {0, -}, we see that

∑
n∈ 

C∏
8=1

a- (k8 (n)) =
∑
n∈ 

C∏
8=1

a0 (k8 (n)) +$ (�3 (log -)−3�/2).

Hence, using the assumption that a is (�, [)-pseudorandom at location 0 and scale �, a must also be

(�, 2[)-pseudorandom at location - and scale �. □

Lemma 9.5 leads to the existence pseudorandom majorants over short intervals for,-tricked versions

of our functions of interest. Let us recall that, for any F g 2,

ΛF (=) :=
,

i(,) 1(=,, )=1,

where , =
∏
?fF ?. We note for later use that in this notation our model function Λ♯ equals to Λ',

where ' = exp((log -)1/10).

Lemma 9.6 (Pseudorandom majorants over short intervals forΛ−ΛF , 3:−3♯:). Let Y > 0 and �, : ∈ N

be fixed. Let - g � g - Y g 2. Let 2 f F f F(-), where F(-) is a slowly growing function of - , and

denote, =
∏
?fF ?. Also let F f F̃ f exp((log -)1/10).
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1. There exists a constant �0 g 1 such that each of the functions

i(,)
,

Λ(,= + 1)/�0,
i(,)
,

ΛF̃ (,= + 1) (9.7)

for 1 f 1 f , with (1,,) = 1, is majorized on (-, - + �] by a (�, [)-pseudorandom function

at location - and scale � for some [ = >F→∞ (1). In fact, the latter of the two functions is

(�, [)-pseudorandom at location - and scale �.

2. Let , ′ be such that , | , ′ | , +F, . Suppose that � g -1/5+Y . There exists a constant �: g 1

such that each of the functions

(log -) i(,)
,

∏
Ff?f-

(
1 + :

?

)−1

3: (, ′= + 1)/�: ,

(log -) i(,)
,

∏
Ff?f-

(
1 + :

?

)−1

3
♯
:
(, ′= + 1)/�:

(9.8)

for 1 f 1 f , ′ with (1,, ′) = 1, is majorized on (-, - + �] by a (�, [)-pseudorandom function at

location - and scale � for some [ = >F→∞ (1).

Remark 9.7. Note that if ∥a1 − 1∥*Ā (G,G+� ] f [ and ∥a2 − 1∥*Ā (G,G+� ] f [, then by the triangle

inequality for the Gowers norms also ∥(a1+a2)/2−1∥*Ā (G,G+� ] f [. Hence, by Remark 9.2, Lemma 9.5

in particular provides us a majorant a for the difference of the two functions in (9.7) or (9.8) satisfying

∥a − 1∥*Ā (G,G+� ] = >F→∞ (1), allowing us to apply the inverse theorem (Proposition 9.4).

Proof. (1) Let us first consider the function
i (, )
, Λ(,=+1)/�0. Let '′ = -W with W > 0 small enough in

terms of Y, �. Let k be a smooth function supported on [−2, 2] with k(0) = −1 and
∫ ∞
0

|k′ (H) |2 3H = 1.

Define

Λ'′ ,k (=) := −(log '′)
∑
3 |=

`(3)k
(

log 3

log '′

)
.

Put

a1 (=) :=
i(,)
,

(log '′)−1
Λ'′ ,k (,= + 1)2 + 2(log -)1,=+1∈( ,

where ( is the set of perfect powers. Then

i(,)
,

Λ(,= + 1) f 2W−1a1 (=)

for -/2 f = f - , since,= + 1 being prime implies that,= + 1 has no divisors 1 < 3 f -2W .

From [17, Theorem D.3] we see that a1 is (�, >F→∞ (1))-pseudorandom at location 0 and scale

� (since the term 2(log -)1,=+1∈( has negligible contribution to the correlations that arise in the

definition of pseudorandomness). Moreover, a1 (=) can be expanded out as∑
3 |,=+1
3f-4Ā

_3 + 2(log -)1,=+1∈(

for some

|_= | j (log -)
∑

31 ,32g1
==[31 ,32 ]

1 j (log -)3 (=)2.
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Hence, by Lemma 9.5, a1 is (�, >F→∞ (1))-pseudorandom also at location - and scale � (since the set

ÿ := {= : ,= + 1 ∈ (} certainly obeys (9.3)).

For the case of
i (, )
, ΛF̃ (,= + 1), we can apply [61, Proposition 5.2] to directly deduce that this

function is (�, >F→∞ (1))-pseudorandom at location 0 and scale - . To prove the (�, >F→∞ (1))-
pseudorandomness of this function also at location - and scale �, we show that it is well-approximated

by a type � sum. By Möbius inversion,

i(,)
,

ΛF̃ (,= + 1) =
i(,)
,

∏
?fF̃

(
1 − 1

?

)−1 ∑
3 |,=+1
3 |% (F̃)

`(3),

and by Lemma 2.18 we have

∑
-<=f-+�

��� ∑
3 |,=+1
3 |% (F̃)
3g-ÿ/(2Ā)

`(3)
��� j �

(log -)24

exp( Y
2�

log-
log F̃

)
j � exp(−(log -)4/5),

say. Hence
i (, )
, ΛF̃ (,= + 1) = a(=) + [(=), where a is of the form of Lemma 9.5 and∑

-<=f-+� |[(=) | j � exp(−(log -)3/5), say. It suffices to show that a is (�, >F→∞ (1))-pseudorandom

at location - and scale �, and this follows from Lemma 9.5.

(2) Note that by (3.14) we have 3
♯
:
(=) j: 3: (=) for all = g 1, so by Lemma 9.5 it suffices to show

that the function

ℎ(=) := (log -) i(,)
,

∏
Ff?f-

(
1 + :

?

)−1

3: (, ′= + 1)/�′
:

is for some �′
: g 1 majorized by a (�, >F→∞ (1))-pseudorandom function at location 0 and scale �,

which is of the form (9.2) outside an exceptional set ÿ satisfying (9.3).

By [52, Proposition 9.4], for any - g 2 and 1 f = f 2�- , we have

ℎ(=) j a(=) + ℎ(=)1=∈ÿ,

where a is a certain (�, >-→∞ (1))-pseudorandom function at location 0 and scale - , and ÿ is defined

in [52, Section 7] as

ÿ = ÿ1 ∪ÿ2,

ÿ1 : =

{
= f 2�G : ∃ ? : E? (=) g max

{
2, �1

log log -

log ?

}}
.

ÿ2 : =



= f 2�- :

∏
?f-1/(log log Ĕ)3

?EĦ (=) g -W/log log-




Here �1 can be taken arbitrarily large, so we may assume that �1 > 8� for any given constant �. To

show that ÿ satisfies (9.3), it suffices to show that for 9 ∈ {1, 2} we have

|ÿ9 ∩ [- − 2��, - + 2��] | j �/(log -)4� , (9.9)

|ÿ9 ∩ [−2��, 2��] | j �/(log -)4� . (9.10)

Let us prove (9.9), the proof of (9.10) is similar but easier.
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We first prove (9.9) for 9 = 1. By splitting into shorter intervals if necessary, we may assume that

� f -1/3, say. Note that the number of = ∈ (-−2��, -+2��] satisfying E? (=) g max{2, �1
log log-

log ? }
for some ? is

j
∑

?< (log-)4ÿ

� exp(−�1 (log log -)) +
∑

(log-)4ÿf?f(4�� )1/2

�

?2

+
∑

(4�� )1/2<?f(2-)1/2

(⌊
- + 2��

?2

⌋
−

⌊
- − 2��

?2

⌋)

j � (log -)−4� +
∑

(4�� )1/2<?f(2-)1/2

(⌊
- + 2��

?2

⌋
−

⌊
- − 2��

?2

⌋)
,

since �1 > 8�.

We can trivially bound

∑
(4�� )1/2<?f� (log-)−4ÿ

(⌊
- + 2��

?2

⌋
−

⌊
- − 2��

?2

⌋)
j

∑
(4�� )1/2<?f� (log-)−4ÿ

1

j � (log -)−4� .

Next, we bound

∑
� (log-)4ÿ<?f(4�� )1/2

(⌊
- + 2��

?2

⌋
−

⌊
- − 2��

?2

⌋)
. (9.11)

Note that for any ? g � (log -)4� there is at most one multiple of ?2 in (- −2��, - +2��], so (9.11)

is at most |((� (log -)4� , (4��)1/2) |, where

((C1, C2) := {3 ∈ (C1, C2] : <32 ∈ [- − 2��, - + 2��] for some < ∈ N}

In [11, p. 221], it is proven for � g -1/5+Y that

|((� log -, 2
√
-) | j -1/5 log -,

so (9.11) is j � (log -)−4� .

Finally, we bound

∑
� (log-)−4ÿf?f� (log-)4ÿ

(⌊
- + 2��

?2

⌋
−

⌊
- − 2��

?2

⌋)

=

∑
� (log-)−4ÿf?f� (log-)4ÿ

(
4��

?2
−

{
- + 2��

?2

}
+

{
- − 2��

?2

})
. (9.12)

The first term in the sum gives a negligible contribution of j (log -)4� . Pick two 1-periodic smooth

functions,− ,,+ such that,− (C) f {C} f ,+ (C) for all C ∈ R and such that,± (C) differs from {C} only

in the region where ∥C∥R/Z f (log -)−8� , and ,± satisfy the derivative bounds supC | (,±) (ℓ ) (C) | j
(log -)8�ℓ for 1 f ℓ f 3. Then (9.12) is

f $
(
(log -)4�

)
+

∑
� (log-)−4ÿf?f� (log-)4ÿ

(
−,−

(
- + 2��

?2

)
+,+

(
- − 2��

?2

))
.
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By [45, Proposition 1.12(ii)] and the fact that for any D, ℎ g 0 we have {D + ℎ} − {D} = ℎ unless

∥D∥R/Z f ℎ, the main term here is

∫ � (log-)4ÿ

� (log-)−4ÿ

(
,+

(
- − 2��

C2

)
−,−

(
- + 2��

C2

))
3C

log C
+$ (� (log -)−4� )

j max
f∈{−1,+1}

∫ � (log-)4ÿ

� (log-)−4ÿ

(
4��

C2
+ 1∥ (-+2��f)/C2 ∥R/Zf(log-)−8ÿ

)
3C

log C
+ � (log -)−4�

j � (log -)−4� ,

since the condition ∥(- + 2��f)/C2∥R/Z f (log -)−8� for C ∈ [� (log -)−4� , � (log -)4� ] holds in a

union of intervals of total measure j � (log -)−4� .

Putting the above estimates together, we obtain (9.9) for 9 = 1.

Let us then prove (9.9) for 9 = 2. We thus bound the number of integers = ∈ � := (-−2��, -+2��]
that satisfy

∏
?f-1/(log log Ĕ)3 ?

EĦ (=) g -W/log log-. Writing E = -1/(log log-)3

, the number of such = ∈ � is

j
∑
01∈�

? |0 =⇒ ?>E
? |1 =⇒ ?fE
1g-Ā/log log Ĕ

1 f
∑
01∈�

? |0 =⇒ ?>E
? |1 =⇒ ?fE

(
1

-W/log log-

) 10ÿ (log log Ĕ)2
Ā log Ĕ

j 1

(log -)10�

∑
=∈�

6(=), (9.13)

where 6 is the completely multiplicative function for which

6(?) =
{

1 if ? > E;

?
10ÿ (log log Ĕ)2

Ā log Ĕ if ? f E.

Then Shiu’s bound (Lemma 2.17) implies that (9.13) is j �/(log -)4� . This proves (9.9) for 9 = 2.

Hence |ÿ| j �/(log -)4� , and in particular arguing as in the beginning of the proof of Lemma 9.5

we see that the fact that a is a (�, >-→∞ (1))-pseudorandom function at location 0 and scale - implies

that so is a(=) + ℎ(=)1=∈ÿ.

Hence it suffices to show that a(=) is of the form (9.2). The majorant a(=) is defined in [52, Section

7], for some W > 0 small enough in terms of �, : , as

a(=) :=
∑
D |=

3: (D)
+ (log log-)3 ,∑

^=4/W

+log( (log log-)3 )/log 2,∑
_=+log(^ )/log 2−2,

2:^1D∈* (_,^ )ℎW

(
=∏

? |D ?
EĦ (=)

)
, (9.14)

where

• * (_, ^), defined in [52, Section 7], is a set contained in [1, -10W1/2 ] and satisfying

D ∈ * (_, ^), D > 1 =⇒ l(D) g W^(_ + 3 − (log ^)/(log 2))
200

1 ∈ * (_, ^) =⇒ ^ = 4/W;

• ℎW (=) =
∑
ℓ |= (3: ∗ `) (ℓ)j

(
log ℓ

log-Ā

)
, where j : R → [0, 1] is some smooth function supported in

[−1, 1].

Therefore, in particular, in (9.14) we have

^ f (200/W) (l(D) + 1),
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so that

2:^ j 3 (D)"

for some constant " = ":,W g 1. Inserting the definition of ℎW into the definition of a, and setting

) = -10W1/2
, we see that for some |_D | j 3 (D):+" (log log -)$Ā,ġ (1) we have

a(=) =
∑
D |=
Df)

_D

∑
ℓ |=
ℓf-Ā

(3: ∗ `) (ℓ)1(ℓ,D)=1j

(
log ℓ

log -W

)
.

Writing 4 = ℓD, we see that for some |_′4 | j (log log -)$Ā,ġ (1)3 (4):+"+13:+1 (4) the function a is of

the form

a(=) =
∑
4 |=

4f-10Ā1/2+Ā

_′4 .

Taking W small enough in terms of �, : , this is of the form required in Lemma 9.5, so appealing to that

lemma we conclude that a is (�, >F→∞ (1))-pseudorandom at location - and scale �. □

We need two more lemmas before proving Theorem 1.5.

Lemma 9.8. Let � ∈ N be fixed. Let 1 f @ f �1/4 be an integer. Let - g � g 2, and let

5 : (-, - + �] → C be a function with | 5 (=) | j �1/2Ā+2

. Then we have

∥ 5 ∥*Ā (-,-+� ] f
1

@

∑
1f0f@

∥ 5@,0∥*Ā (-/@, (-+� )/@ ] +$ (�−1/2),

where 5@,0 (=) := 5 (@= + 0).

Proof. Denote by 10 (@) the indicator of the arithmetic progression 0 (mod @). Then, by the triangle

inequality for the Gowers norms, we have

∥ 5 ∥*Ā (-,-+� ] f
∑

1f0f@
∥ 5 10 (@) ∥*Ā (-,-+� ] .

The claim now follows by making a linear change of variables (=, h) = (@=′ + 0, @h′) in the definition

of ∥ 5 10 (@) ∥*Ā (-,-+� ] . □

Lemma 9.9. Let �, : ∈ N and Y > 0 be fixed, with Y > 0 small enough. Let - g � g - Y , and let

1 f @ f - Y
2

be an integer. Let 5 (=) = (log -)1−:3: (=). Then for 1 f 0 f @ with (0, @) = 1 we have

∥ 5@,0∥*Ā (-,-+� ] j
(
i(@)
@

) :−1

,

where 5@,0 (=) := 5 (@= + 0).
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Proof. Let 6@,0 (=) := 3: (@= + 0). By the definition of the interval Gowers norms and the fact that

∥1(-,-+� ] ∥2Ā

*Ā (Z) ≍ �
�+1, we have

∥6@,0∥2Ā

*Ā (-,-+� ] ≍
1

��+1

∑
=

∑
ℎ1 ,...,ℎĀ

∏
l∈{0,1}Ā

3: (@(= + l · h) + 0)1(-,-+� ] (= + l · h)

j 1

��+1

∑
-<=f-+�

∑
|ℎ1 | ,..., |ℎĀ | f2�

ℎğ distinct

∏
l∈{0,1}Ā

3: (@(= + l · h) + 0) + �−1/2.
(9.15)

We can upper bound the correlation of these multiplicative functions using Henriot’s bound [30, Theorem

3] (taking G → -, H → �, X → 2−�−2, &(=) → ∏
l∈{0,1}Ā (@(= + l · h) + 0) there), obtaining

1

�

∑
-<=f-+�

∏
l∈{0,1}Ā

3: (@(= + l · h) + 0)

j �D
∏
?f-

(
1 −

d& (?)
?

) ∏
l∈{0,1}Ā

∑
=f-

(=,D)=1

3: (=)d&Ĉ (=)
=

, (9.16)

where

&l (D) = @(D + l · h) + 0, & =

∏
l∈{0,1}Ā

&l ,

d% (=) = |{D (mod =) : %(D) ≡ 0 (mod =)}|,

D = D(h) = (−1)2Ā (2Ā−1)/2@22Ā−2Ā
∏
l≠l′

((l − l′) · h) =: (−1)2Ā−1

@22Ā−2ĀD′,

�D =

∏
? |D

©­­­­
«
1 +

∑
0fa1 ,...,a2Ā f1

(a1 ,...,a2Ā )≠(0,...,0)

3: (?a1 ) · · · 3: (?a2Ā )
|{= (mod ?2) : ?a Ġ | | &l Ġ (=) ∀ 9}|

?2

ª®®®®
¬

j
∏
? |D′

(
1 + $�,: (1)

?

)
,

wherel1, . . . , l2Ā is any ordering of {0, 1}� . In order to bound the various expressions above, note that

∏
?f-

(
1 −

d& (?)
?

)
j

∏
?f-
?∤D

(
1 − 2�

?

)
j (log -)−2Ā

∏
? |D′

(
1 + 2�

?

)
·
(
@

i(@)

)2Ā

and

∑
=f-

(=,D)=1

3: (=)d&Ĉ (=)
=

j
∏
?f-
?∤@

(
1 + :

?

)
j (log -):

(
i(@)
@

) :
.

We now conclude that (9.16) is

j (log -) (:−1) ·2Ā
(
i(@)
@

) (:−1) ·2Ā ∏
? |D′

(
1 + $�,: (1)

?

)
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By the inequality
∏:
8=1 G8 f

∑:
8=1 G

:
8 and an elementary upper bound for moments of =/i(=), we have

∑
|ℎ1 | ,..., |ℎĀ | f2�

ℎğ distinct

∏
? |D′ (h)

(
1 + $�,: (1)

?

)
j

∑
|ℎ1 | ,..., |ℎĀ | f2�

ℎğ distinct

∑
l∈{−1,0,1}Ā\{0}

∏
? |l ·h

(
1 + 1

?

)$Ā,ġ (1)
j �� .

The claim now follows by combining this with (9.15). □

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. (i) Let � be as in Theorem 1.5(i). By the triangle inequality for the Gowers

norms, to prove (1.18) it suffices to show that

∥Λ♯ − ΛF ∥*ĩ (-,-+� ] = >F→∞ (1). (9.17)

and

∥Λ − Λ
♯∥*ĩ (-,-+� ] = >-→∞ (1) (9.18)

The first claim (9.17) follows directly from Lemma 9.6 and Remark 9.2.

We are then left with proving (9.18) and (1.19). Let 1 f 1 f , ′ f log - be integers. For 5 = Λ−Λ♯,

by Theorem 1.1 for any G ∈ [-/(log -)�, - (log -)�],� (log -)−� f �′ f � and �/�, � as in that

theorem, we have

sup
6∈Poly(Z→�)

�����
∑

G<=fG+�′
5 (, ′= + 1)� (6(=)�)

�����

= sup
6∈Poly(Z→�)

��������
∑

, ′G+1<=f, ′ (G+�′ )+1
=≡1 (mod , ′ )

5 (=)� (6( = − 1
, ′ )�)

��������
j� �

′/(log -)�,

(9.19)

since there exists a polynomial sequence 6̃ : Z → � such that 6̃(=) = 6((= − 1)/, ′) for all = ≡ 1

(mod , ′).
Now (1.19) follows by combining the inverse theorem (Proposition 9.4) with the estimate (9.19),

Lemma 9.6, and Remark 9.7. Lastly, (1.18) follows from (1.19) and Lemma 9.8.

(ii) We then turn to the case 5 = 3: − 3♯: . Again, Theorem 1.1 gives us the bound (9.19). Together

with the inverse theorem (Proposition 9.4), Lemma 9.6 and Remark 9.7, this implies (1.21).

Let

ℎ(=) := (log -)1−: (3: (=) − 3♯: (=)).

Then, to prove (1.20), we must show that

∥ℎ∥*Ā (-,-+� ] = >-→∞ (1).
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Let ,̃ := ,F with F an integer tending to infinity slowly15. By Lemma 9.8, we have

∥ℎ∥*ĩ (-,-+� ] f
1

,̃

∑
1f0f,̃




ℎ,̃,0




*ĩ (-/,̃, (-+� )/,̃ ]

+$ (�−1/2)

=
1

,̃

∑
1f0f,̃

(0,,̃ ) |,ĭ−1




ℎ,̃,0




*ĩ (-/,̃, (-+� )/,̃ ]

+ 1

,̃

∑
1f0f,̃

(0,,̃ )∤,ĭ−1




ℎ,̃,0




*ĩ (-/,̃, (-+� )/,̃ ]

+$ (�−1/2).
(9.20)

The number of terms in the last sum is

j
∑
?fF

,̃

?F
j ,̃

2F
,

so by Lemma 9.9 the contribution of this sum is j 2−F/2, say. The first sum over 0 in (9.20) can further

be written as

∑
ℓ |,ĭ−1

3: (ℓ)
∑

1f0f,̃
(0,,̃ )=ℓ





 ℎ,̃,03: (ℓ)






*ĩ (-/,̃, (-+� )/,̃ ]

(9.21)

Since 3
♯
:
(<) j 3: (<), for (0, ,̃) = ℓ we have

(
,

i(,)

) :−1 ℎ,̃,0 (=)
3: (ℓ)

j
(
,

i(,)

) :−1

(log -)1−: 3: (,̃= + 0)
3: (ℓ)

=

(
,

i(,)

) :−1

(log -)1−:3:

(
,̃

ℓ
= + 0

ℓ

)
,

and since, | ,̃ℓ , by Lemma 9.6 and Mertens’s theorem this function is pseudorandomly majorized by

a (�, >-→∞ (1))-pseudorandom function at location 0 and scale �/,̃ . This combined with (9.19) (with

,̃/ℓ in place of, ′) and Proposition 9.4 yields





 ℎ,̃,03: (ℓ)






*Ā (-/,̃, (-+� )/,̃ ]

= >F→∞

((
i(,)
,

) :−1
)
, (9.22)

uniformly in 1 f 0 f ,̃ with (,̃, 0) = ℓ.

15Let us explain why we perform the,-trick for the divisor function with the modulus ,̃ :=,ĭ rather than with the modulus, . In order to

apply the inverse theorem, we wish to find a modulus, ′ such that ℎ (, ′= + 0) is pseudorandomly majorized for almost all 1 f 0 f , ′ . Since

|ℎ (,= + 0) | j 3ġ ( (, ′ , 0) )3ġ ( ē′
(ē′ ,ė) = +

ė
( (ē′ ,ė) ) ) , we want to show that this latter function is pseudorandomly majorized for almost all

1 f 0 f , ′ . By Lemma 9.6, we thus want that , | ē′
(ē′ ,ė) for almost all 1 f 0 f , . This property fails if , ′ = , but holds if , ′ = ,ĭ

with F → ∞.
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Now the bound (1.20) follows from (9.21), (9.22), and the estimate

∑
ℓ |,ĭ−1

3: (ℓ)
∑

1f0f,̃
(0,,̃ )=ℓ

(
i(,)
,

) :−1

j
∑

ℓ |,ĭ−1

3: (ℓ)
,̃

ℓ

(
i(,)
,

) :

j ,̃
∏
? |F

(
1 + :

?
+$

(
1

?2

)) (
i(,)
,

) :
j ,̃ .

(iii) This case follows directly from the inverse theorem (Proposition 9.4 with a = 1) and

Theorem 1.1(iv). □

10. Applications

In this section, we shall prove the applications stated in Section 1.

Proof of Corollary 1.3. Parts (i) and (iii) follow immediately from Theorem 1.1, as polynomial phases

are special cases of nilsequences. By Theorem 1.1 and the triangle inequality, the proof of part (ii)

reduces to proving that �����
∑

-<=f-+�
Λ
♯ (=)4(%(=))

����� k �

(log -)�

implies (1.10). Recalling from (4.8) that Λ♯ (=) = Λ
♯
� (=) + � (=), where Λ

♯
� is a ((log -)$ (1) , - Y)

type � sum and
∑
-<=f-+� |� (=) | j� � log−� - , the claim follows from the type � estimate in [49,

Proposition 2.1]. □

Proof of Theorem 1.6. First note that, since log ? = (1 + >(1)) log # for ? ∈ (#, # + # ^ ] and since the

contribution of higher prime powers is negligible, we have

E#<?f#+# Ą 51 ()ℎ1 ?G) · · · 5: ()ℎġ ?G) = E#<=f#+# ĄΛ(=) 51 ()ℎ1=G) · · · 5: ()ℎġ=G) + >#→∞ (1).
(10.1)

Hence, it suffices to show that the right-hand side of (10.1) converges in !2 (`).
Let F be a large parameter (which we will eventually send to infinity), and let, =

∏
?fF ?. Let

n (=) := Λ(=) − ΛF (=);

this is a function that has small Gowers norms over short intervals by Theorem 1.5.

We first claim that∫
-

��E#<=f#+# Ą n (=) 51 ()ℎ1=G) · · · 5: ()ℎġ=G)
��2 3`(G) = >F→∞ (1). (10.2)

Since the average over = in (10.2) is bounded, it is enough to show for all bounded 50 : - → C that∫
-
E#<=f#+# Ą n (=) 50 (G) 51 ()ℎ1=G) · · · 5: ()ℎġ=G) 3`(G) = >F→∞ (∥ 50∥!2 (`) ). (10.3)

To prove this, we first make the changes of variables =′ = = + # , G = )<H, with < arbitrary, and use

the )-invariance of ` to rewrite the left-hand side of (10.3) as∫
-
E<f# ĄE=′f# Ą n# (=′) 50 ()<H) 5 ()<+ℎ1=

′
)ℎ1# H) · · · 5 ()<+ℎġ=′)ℎġ# H) 3`(H), (10.4)
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where n# (=′) := n (=′ + #). Since 58 : - → C are bounded, we can appeal to the generalized von

Neumann theorem in the form of [13, Lemma 2] (after embedding [# ^ ] to Z/"Z for some " j # ^ )

to bound (10.4) as

j ∥n# ∥*ġ ( [# Ą ] ) ∥ 50∥!2 (`) = >F→∞ (∥ 50∥!2 (`) ),

where for the second estimate we used Theorem 1.5. Now (10.2) has been proved. Then let F′ > F. By

an argument identical to the proof of (10.2), but using in the end the fact that ∥ΛF −ΛF′ ∥*ġ [#,#+# Ą ] =
>F→∞ (1) (which follows from Theorem 1.5 and the triangle inequality, but could also be proved more

directly), we see that also∫
-

��E#<=f#+# Ą (ΛF (=) − ΛF′ (=)) 51 ()ℎ1=G) · · · 5: ()ℎġ=G)
��2 3`(G) = >F→∞ (1). (10.5)

Consider now

E#<=f#+# ĄΛF (=) 51 ()ℎ1=G) · · · 5: ()ℎġ=G).

This can be rewritten as

,

i(,)
∑

1f1f,
(1,, )=1

E#/,<=f(#+# Ą )/, 51 ()ℎ1 (,=+1)G) · · · 5: ()ℎġ (,=+1)G) + >#→∞ (1).

Since the sequence ((#/,, (# + # ^ )/,])# of intervals are translates of a Følner sequence, from [2,

Theorem 1.1] it follows that there exists qF,1 : - → C such that∫
-

���E#/,<=f(#+# Ą )/, 51 ()ℎ1 (,=+1)G) · · · 5: ()ℎġ (,=+1)G) − qF,1 (G)
���2 3`(G) = >#→∞,F (1).

Hence there exists also qF : - → C such that∫
-

��E#<=f#+# ĄΛF (=) 51 ()ℎ1=G) · · · 5: ()ℎġ=G) − qF (G)
��2 3`(G) = >#→∞,F (1). (10.6)

By (10.5), for F′ > F we have

∥qF − qF′ ∥!2 (`) = >F→∞ (1),

so the sequence (qF)F is Cauchy in !2 (`). Let q ∈ !2 (`) be its limit. Then, denoting

� (G) = E#<=f#+# ĄΛ(=) 51 ()ℎ1=G) · · · 5: ()ℎġ=G),

from the triangle inequality, (10.2) and (10.6), we have

∥� − q∥!2 (`) = ∥qF − q∥!2 (`) + >F→∞ (1) + >#→∞;F (1)
= >F→∞ (1) + >#→∞;F (1).

By sending #, F → ∞ with F tending to ∞ slowly enough, and recalling (10.1), this proves the claim

of Theorem 1.6, with the limit being q. □

For proving Theorem 1.7, we need the generalized von Neumann theorem, so we state here a version

of it that is suitable for us.

Lemma 10.1 (Generalized von Neumann theorem). Let Let B, 3, C, ! g 1 be fixed, and let � be large

enough in terms of B, 3, C, !. Let a be (�, >#→∞ (1))-pseudorandom at location 0 and scale # , and let
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51, . . . , 5C : Z → R satisfy | 58 (G) | f a(G) for all 8 ∈ [C] and G ∈ [#]. Let « = (k1, . . . , kC ) be a system

of affine-linear forms with integer coefficients in B-normal form such that all the linear coefficients

of k8 are bounded by ! in modulus and |k8 (0) | f �# . Let  ¢ [−#, #]3 be a convex body with

«( ) ¢ (0, #]3 . Suppose that for some X > 0 we have

min
1f8fC

∥ 58 ∥*ĩ+1 [# ] f X.

Then we have

∑
n∈ 

C∏
8=1

58 (k8 (n)) = >X→0 (#3).

Proof. Note that by Lemma 9.3 there exists a prime # ′ j # such that we have a majorant for 58 on the

cyclic group Z/# ′Z satisfying the (�, �, �)-linear forms condition of [17, Definition 6.2]. Then the

claim follows from [17, Proposition 7.1], observing that its proof only used the (�, �, �)-linear forms

condition of [17, Definition 6.2] and not the correlation condition. □

Proof of Theorem 1.7. Let F be a sufficiently slowly growing function of - , and let, =
∏
?fF ?. Let

N = (-, . . . , -) ∈ R3 . We can write  = N +  ′, where  ′ ¢ (0, �]3 is a convex body. Now the

sum (1.25) becomes

∑
n∈ ′∩ZĚ

C∏
8=1

Λ(k8 (n) + ¤k8 · N). (10.7)

Writing Λ = ΛF + (Λ − ΛF), this splits as the main term

∑
n∈ ′∩ZĚ

C∏
8=1

ΛF (k8 (n) + ¤k8 · N)

and 2C − 1 error terms

∑
n∈ ′∩ZĚ

C∏
8=1

Λ8 (k8 (n) + ¤k8 · N) (10.8)

where Λ8 ∈ {ΛF ,Λ − ΛF} and at least one Λ8 equals to Λ − ΛF . Following [17, Section 5] verbatim,

we see that the main term is

vol( ∩ «
−1 (RC>0))

∏
?

V? + >-→∞ (�3).

Following [17, Section 4], we may assume that the system of linear forms involved in (10.8) is in

B-normal form for some B j� 1.
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We make the change of variables n = ,m + b with b ∈ [0,,)3 in (10.8) and abbreviate "b,8 :=
¤k8 · b + k8 (0) to rewrite that sum as

∑
b∈[0,, )Ě

∑
m∈ZĚ

,m+b∈ ′

C∏
8=1

Λ8 (k8 (,m + b) + ¤k8 · N)

=

∑
b∈[0,, )Ě

∑
m∈ZĚ

,m+b∈ ′

C∏
8=1

Λ8 (, ¤k8 · m + ¤k8 · b + k8 (0)).

=

(
,

i(,)

) C ∑
b∈[0,, )Ě

("b,ğ ,, )=1 ∀8fC

∑
m∈ZĚ

m∈ ( ′−b)/,

∏
1f8fC

Λğ=Λ−Λĭ

(
i(,)
,

Λ(, ¤k8 · m + "b,8) − 1

)

+ >-→∞ (�3),

(10.9)

where the error term comes from the contribution of integers in the support of Λ that are not F-rough.

By Theorem 1.5(i), uniformly for integers 1 f " f - with (",,) = 1 we have

max
1f0f,
(0,, )=1





i(,)
,

Λ(, · +") − 1






*ĩ+1 [0,�/, ]

= >-→∞;B (1).

Moreover, by Lemma 9.6 the function
i (, )
, Λ(, · +") − 1 is majorized by a (�, >-→∞ (1))-

pseudorandom measure a" at location 0 and scale �/, for any fixed � g 1. Hence, applying the

generalized von Neumann theorem (Lemma 10.1, with a = 1
C

∑
8fC a"b,ğ ), we conclude that (10.9) is

j
(
,

i(,)

) C
·,3

(
i(,)
,

) C
· >-→∞

((
�

,

)3)
= >-→∞ (�3),

completing the proof. □

Proof of Corollary 1.9. This follows directly from Theorem 1.7, since the assumptions imply that

V? > 0 for all ?, and on the other hand V? = 1+$C ,3,! (1/?2) by [17, Lemmas 1.3 and 1.6], so we have∏
? V? > 0. □

A. Variants of the main result

In this appendix discuss in more detail the variants of the main results described in Remark 1.4.

A.1. Results for the Liouville function

It is an easy matter to replace the Möbius function ` by the Liouville function _ in our main results:

Proposition A.1. The results in Theorem 1.1(i), (iv) (and hence also Corollary 1.3(i), (iv)) continue to

hold if ` is replaced by _.

Proof. We illustrate the argument for the estimate (1.5), as the other estimates are proven similarly.

Under the hypotheses of Theorem 1.1(i), we wish to show that

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
_(=)� (6(=)�)

�����
∗

j�,Y,3,� X−$Ě,Ā (1)� log−� -.
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Writing _(=) = ∑
<f

√
2-:<2 |= `(=/<2) for = f 2- and using the triangle inequality, we can bound the

left-hand side by

∑
<f

√
2-

sup
6∈Poly(Z→�)

������
∑

-/<2<=f-/<2+�/<2

`(=)� (6(<2=)�)

������
∗

.

If < f - Y/10 (say), then by Theorem 1.1(i) (with -, �, 6 replaced by -/<2, �/<2, 6(<2·), and Y

reduced slightly) we have

sup
6∈Poly(Z→�)

������
∑

-/<2<=f-/<2+�/<2

`(=)� (6(<2=)�)

������
∗

j�,Y,3,� <
−2X−$Ě,Ā (1)� log−� -.

For - Y/10 < < j
√
- , we simply use the triangle inequality and the trivial bound |� (6(=)�) | f 1/X to

conclude

sup
6∈Poly(Z→�)

������
∑

-/<2<=f-/<2+�/<2

`(=)� (6(<2=)�)

������
∗

j 1

X

(
�

<2
+ 1

)
.

Summing in<, we obtain the claim after a brief calculation (since� is significantly larger than -1/2). □

A.2. Results for the indicator function of the primes

It is also easy to replace the von Mangoldt function Λ with the indicator function 1P of the primes P:

Proposition A.2. The results in Theorem 1.1(ii) (and hence also Corollary 1.3(ii)) continue to hold if

Λ is replaced by 1P , and Λ♯ (=) is replaced by 1
log =Λ

♯ (=).

Proof. From (1.6) and Lemma 2.2(iii) we have

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�

(
1

log =
Λ(=) − 1

log =
Λ
♯ (=)

)
� (6(=)�)

�����
∗

j�,Y,3,� X−$Ě,Ā (1)� log−� -

and so by the triangle inequality it will suffice to show that

∑
-<=f-+�

����1P (=) −
1

log =
Λ(=)

���� j� � log−� -.

But the summand is supported on prime powers ? 9 with 2 f 9 j log - and ? j
√
- , so there are at

most $ (
√
- log -) terms, each of which gives a contribution of $ (1). Since � is significantly larger

than -1/2, the claim follows. □

A.3. Results for the counting function of sums of two squares

It is a classical fact that the counting function

A2 (=) :=
∑
0,1∈Z
02+12==

1

can be factorized as A2 (=) = 4(1 ∗ j4) (=), where j4 is the non-principal Dirichlet character of modulus

4. This is formally very similar to the divisor function 32 (=) = (1 ∗ 1) (=). In this paper we use the
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Dirichlet hyperbola method to expand 32 (=) for - < = f - + � as

32 (=) =
∑

'2f=1f=/'2

=1 |=

1 +
∑
=1<'2

=1 |=

2

with '2 := -1/20, and approximate this function by the Type I sum

3
♯
2
(=) =

∑
'2f=1<'

2
2

=1 |=

log = − log '2
2

log '2

+
∑
=1<'2

=1 |=

2

(these are the : = 2 cases of (3.15), (1.2) respectively). In a similar vein, we can expand

A2 (=) =
∑

'2f=1f=/'2

=1 |=

4j4 (=1) +
∑
=1<'2

=1 |=

4(j4 (=1) + j4 (=/=1))

and then introduce the twisted Type I approximant

A
♯
2
(=) =

∑
'2f=1<'

2
2

=1 |=

4j4 (=1)
log = − log '2

2

log '2

+
∑
=1<'2

=1 |=

4(j4 (=1) + j4 (=/=1)).

We then have

Proposition A.3. The : = 2 results in Theorem 1.1(iii) continue to hold if 32, 3
♯
2

are replaced by A2, A
♯
2

respectively.

This proposition is established by repeating the arguments used to establish Theorem 1.1(iii), but

by inserting “twists” by the character j4 at various junctures. However, such twists are quite harmless

(for instance, since ∥j4∥TV(%;4) j 1 for any arithmetic progression %, Proposition 2.2(iii) allows one

to insert this character into maximal sum estimates without difficulty), and there is no difficulty in

modifying the arguments to accommodate this twist.

A.4. Potential result for the indicator function of the sums of two squares

Let ( = {=2 +<2 : =, < ∈ Z} be the set of numbers representable as sums of two squares. The Dirichlet

series for ( is equal to Z (B)1/2! (B, j4)1/2 times a holomorphic function near B = 1, and in particular

extends into the classical zero-free region after making a branch cut to the left of B = 1 on the real axis.

By a standard Perron formula calculation, one can then obtain asymptotics of the form

∑
=fG

1( (=) = G
�−1∑
9=0

� 9 log− 9−1/2 G +$�(G log−�−1/2 G)

for any � > 0 and some real constants � 9 which are in principle explicitly computable; see for instance [7,

Theorem 1.1] for a recent treatment (in significantly greater generality) using the Selberg–Delange

method. Similar calculations give asymptotics of the form

∑
=fG

==0 (@)

1( (=) = G
�−1∑
9=0

� 9 ,0,@ log− 9−1/2 G +$�(G log−�−1/2 G)
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for any fixed residue class 0 (@) and some further real constants � 9 ,0,@ . With further effort one can

also localize such estimates to intervals {- < = f - + �} with � not too small (e.g., � = -5/8+Y or

� = -7/12+Y).

This suggests the existence of an approximant 1
♯,�
(

for any given accuracy � > 0 that is well

approximated by Type I sums, and is such that one has the major arc estimate�����
∑

-<=f-+�
1( (=) − 1

♯,�
(

(=)
�����
∗

j� � log−� G

(cf. Theorem 3.1). For small �, it seems likely that one could construct 1
♯,�
(

by a variant of the Cramér–

Granville construction used to form Λ♯; but for large � it appears that the approximant is more difficult

to construct (for instance one may have to use Fourier-analytic methods such as the delta method).

However, once such an approximant is constructed, we conjecture that the methods of this paper will

produce analogues of Theorem 1.1(ii) (and hence also of Corollary 1.3(ii)) if Λ,Λ♯ are replaced by

1( , 1
♯,�′

(
respectively, with �′ sufficiently large depending on �. The main point is that a satisfactory

analogue of the Heath–Brown decompositions in Lemma 2.16 for 1( is known; see [59, Lemma 7.2].

We do not foresee any significant technical issues with the remaining portions of the argument,

though of course one would need to define the approximant 1
♯,�
(

more precisely before one could say

with certainty that the portions of the argument involving this approximant continue to be valid.

A.5. Potential result for the indicator function of smooth numbers

Let 0 < [ < 1
2
, let - be large, and let ([ denote the set of - [-smooth integers, that is to say those

numbers whose prime factors are all less than - [ . Let � g - \+Y with \ := 1
2
+ [. As is well known,

the density of ([ in [-, - + �] is asymptotic to the Dickman function d(1/[) evaluated at 1/[. We

conjecture that the methods of this paper can be used to establish a bound of the form

sup
6∈Poly(Z→�)

�����
∑

-<=f-+�
(1(ā (=) − d(1/[))� (6(=)�)

�����
∗

jY,3,�,[ X
−$Ě,Ā (1)� log−2 -

for some absolute constant 2 > 0 under the hypotheses of Theorem 1.1.

Indeed, a Heath–Brown type decomposition, involving only (1, G1/2−[ , G1/2) type II sums and a

(somewhat) small exceptional set, was constructed in [40, Lemma 11.5]; the exceptional set was only

shown to be small on long intervals such as [1, -] in that paper, but it is likely that one can show the set

to also be small on the shorter interval {- < = f - + �}.
There are however some further technical difficulties in implementing our methods here. The first

(and less serious) issue is that one would need to verify that the type II sums 5 (=) produced by [40,

Lemma 11.5] obey the bound (4.9); we believe that this is likely to be achievable after some computation.

The second and more significant difficulty is that one would need an approximant 1
♯
(ā

obeying a major

arc estimate of the shape �����
∑

-<=f-+�
1(ā (=) − 1

♯
(ā
(=)

�����
∗

j� � log−� -

for any � > 0 (possibly after removing a small exceptional set from ([), in the spirit of Theorem 3.1

and Corollary 3.10.

The constant d(1/[) is an obvious candidate for such an approximant, but unfortunately such an

estimate is only valid for small values of �; see [31, Theorem 1.8]. Thus, as in the previous discussion

for the indicator of the sums of two squares, a more complicated approximant is likely to be required; the
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functionΛ(G, H) appearing in [31, Theorem 1.8] will most likely become involved. See also [53] for some

recent estimates on the distribution of smooth numbers in short intervals or arithmetic progressions (in

a slightly different regime in which the - [ threshold for smoothness is replaced by a smaller quantity).
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