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Abstract

We study higher uniformity properties of the Mobius function u, the von Mangoldt function A, and the divisor
functions dy, on short intervals (X, X + H] with X?+¢ < H < X'~# for a fixed constant 0 < 6 < 1 and any & > 0.
More precisely, letting A¥ and d]i be suitable approximants of A and dj and ,uﬁ = 0, we show for instance that, for
any nilsequence F(g(n)TI'"), we have

D, (F) - FF@)F(g(mT) < Hlog " X

X<n<X+H

when 6 =5/8 and f € {A,u,di} or6=1/3 and f = d;.

As a consequence, we show that the short interval Gowers norms || f — f ﬂ”Us (x,x+H| are also asymptotically
small for any fixed s for these choices of f, 6. As applications, we prove an asymptotic formula for the number of
solutions to linear equations in primes in short intervals, and show that multiple ergodic averages along primes in
short intervals converge in L2.

Our innovations include the use of multi-parameter nilsequence equidistribution theorems to control type // sums,
and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type
I> sums.
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1. Introduction

In this paper we shall study correlations of arithmetic functions f: N — C with arbitrary nilsequences
n — F(g(n)') in short intervals. For simplicity, we will restrict attention to the following model
examples of functions f:

o The Mobius function u(n), defined to equal (—1)/ when 7 is the product of j distinct primes, and
0 otherwise.

* The von Mangoldt function A(n), defined to equal log p when n is a power p/ of a prime p for
some j > 1, and O otherwise.

* The k'™ divisor function dy (n), defined to equal the number of representations of 7 as the product
n = ny ---ny of k natural numbers, where k > 2 is fixed. (In particular, all implied constants in
our asymptotic notation are understood to depend on k.)

By a “nilsequence”, we mean a function of the form n +— F(g(n)I"), where G /T is a filtered nilmanifold
and F: G/T" — C is a Lipschitz function. The precise definitions of these terms will be given in
Section 2.3, but a simple example of a nilsequence to keep in mind for now is F(g(n)I") = e(an?) for
some real number «, some natural number d > 0, and with e(6) = €279,

When f is non-negative and F(g(n)I") is “major arc” in some sense (e.g., if F(g(n)[') = e(an®)
with a very close to a rational a/g with small denominator g), there is actually correlation between f
and F(g(n)"), but we shall deal with this by first subtracting off a suitable approximation f¥ from f.
In the case of the Mobius function u, we may set ,u‘i = 0. On the other hand, the functions A, dj. are

non-negative and one therefore needs to construct non-trivial approximants A¥, di to such functions
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before one can expect to obtain discorrelation; we shall choose

P(R)
Au(n) =—1 -1, Wwhere P(w) = p. R =exp((log X)) (1.1
S(P(R)) ") 11 e
and
di(n) = Z P,,(logn), where Ry = X" andn = ﬁ (1.2)
m< Rk
m|n

and the polynomials P,,(¢) (which have degree k — 1) are given by the formula

N k—j—-1
k—
(l —log(m .- 'I’lij j))
(k—j—1)ogk =" Ry

(1.3)

mo=yf) 2

J Ni,eeny nj<Rr<njii,..., nk—lSRi
ny---Ng-1=m

We will discuss these choices of approximants more in Section 3.1 (which can be read independently
of the rest of the paper), but let us already here note that the approximants lead to type I sums and are
thus easier to handle than the original functions, and that the choice of the parameter R in A¥ allows
for an arbitrary power of log saving in (1.6) below. Moreover, the approximants are nonnegative, which
is helpful for some applications (in particular in the proof of Theorem 1.5 below). For future use, we
record the fact that our correlation estimates for d; — dﬁ work for dz defined as in (1.2) with any fixed
0<np< ﬁ, as long as we allow implied constants to depend on 7.

For technical reasons, it can be beneficial to consider “maximal discorrelation” estimates. Loosely
following Robert and Sargos [58] we adopt the convention' that, for an interval /,

> fn > )

nelnz nepP

‘= sup P (14)
PcInz

where P ranges over all arithmetic progressions in / N Z.
Now we are ready to state our main theorem?.

Theorem 1.1 (Discorrelation estimate). Let X > 3, X9+ < H < Xl’gfor some(0 <6< 1lande >0,
and let 6 € (0,1). Let G /T be a filtered nilmanifold of some degree d and dimension D, and complexity
at most 1/8, and let F: G/T" — C be a Lipschitz function of norm at most 1/4.

(i) If 0 =5/8, then for all A > 0,

*

sup <asap 6 %P HIlog A X (1.5)

g€ePoly(Z—G)

> umF(g(mr)

X<n<X+H

(ii) If @ = 5/8, then for all A > 0,

DT (A = N @) F(emD)| <apap 6 %P DHlog X, (1.6)

X<n<X+H

sup
gePoly(Z—G)

IStrictly speaking, this is an abuse of notation, since the expression | }.,,c;~z f (1) |* depends not only on the value of the sum Y},,c;nz f (1),
but also on the individual summands f (n) and the range I NZ. In particular, we caution that }’,,c ;7 f(n) = 2, 7z & (m) does not necessarily
imply that | S yezez £ (1) |° = | Spme oz g (m)] .

2For definitions of undefined terms such as “filtered nilmanifold” and Poly(Z — G, see Definitions 2.6 and 2.5 below. For our conventions for
asymptotic notation such as <, see Section 1.4.
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(iii) Letk >2.Set0 =1/3fork=2,0=5/9 fork =3, and 6 =5/8 for k > 4. Then

sup DT (den) - dE () F((m)D)| <pap 6704P WX 0ars  (17)
8€POlY(Z—>G) |x<pn<X+H
for some constant ci q,p > 0 depending only on k,d, D.
(iv) If 0 = 3/5, then
sup Z u(MFgmT)| <pap 6 %42 DHlog™ 4 X (1.8)
gEPOly(ZHG) X<n<X+H

(v) Letk > 4. If6 = 3/5, then

*

sup
g€Poly(Z—G)

DU (di(m) = di(m)F(g(mD)| <e.ap 602 WHlogi X, (19)

X<n<X+H

The dependency of the implied constants on A in (1.5) and (1.6) is ineffective due to the possible
existence of Siegel zeros. All the other implied constants are effective.

Remark 1.2. One could extend the theorem to cover the range X'~¢ < H < X without difficulty;
however, this is not the most interesting regime and there are some places in the proof where the
restriction to H < X'~% is convenient. In the cases of (1.5), (1.8), the result for X?*¢ < H < Xx!-¢
directly implies the result for X'~¢ < H < X by splitting long sums into shorter ones. In the cases
of (1.6), (1.7), (1.9), it turns out that there is some flexibility in the choice of the approximant (one can
certainly vary R in (1.1) or Ry in (1.2) by a multiplicative factor < 1), and then one can make a similar
splitting argument. We leave the details to the interested reader.

In applications d, D, ¢ will often be fixed; however, the fact that the constants here depend in a
polynomial fashion on ¢ will be useful for induction purposes.

Note that polynomial phases F(g(n)[") = e(P(n)), with P: Z — R a polynomial of degree d, are a
special case of nilsequences — in this case the filtered nilmanifold is the unit circle R/Z (with R = (R, +)
being the filtered nilpotent group with R; = R fori < d and R; = {0} fori > d) and F(a) = e(«) for all
a@ € R/Z. In particular the results of Theorem 1.1 hold for polynomial phases, that is, with G/T" = R/Z,
D =1, and with F(g(n)T") replaced with e(P(n)). Before moving on, let us for the convenience of the
reader state the following corollary of our theorem in the polynomial phase case.

Corollary 1.3 (Discorrelation of ¢ and A with polynomial phases in short intervals). Let X > 3 and let
X% < H < X'"% forsome 0 < § < land & > 0. Let d > 1 and let P : Z — R be any polynomial of
degree d.

(i) If 8 =5/8, then, forall A > 0,

>0 ume(P(n)

X<n<X+H

<d,A, e

log” X
(it) If 0 =5/8 and A > 0, we have

H

<
log X

b}

Do Ame(P(n)

X<n<X+H
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unless there exists 1 < q < (log X)%4-4.=() such that one has the “major arc” property

max H’||qa;llz/z < (log X)Pdae) (1.10)
1<j<d

where a; is the degree j coefficient of the polynomial n — P(n + X) and ||y||lr/z denotes the
distance from y to the nearest integer(s).
(iii) If 6 = 3/5, then

H
D, Hme(PM)| <de —r
X<n<X+H log X

The claims (i) and (iii) are immediate from Theorem 1.1, but (ii) requires a short argument, provided
in Section 10. One could state an analogous result in the case of d; (with the same exponents as in
Theorem 1.1).

Let us now discuss the literature on the topic, starting with results concerning the Mobius function.
A discorrelation estimate such as Theorem 1.1(i) with arbitrary F(g(n)I") was previously only known
in case of long intervals due to the work of Green and the third author [18, Theorem 1.1]. Namely, they
have shown that

sup <A,G/T,F X]Og_AX (1.11D)

gePoly(Z—G)

> umF(g(m)

n<X

for any X > 2, A > 0, filtered nilmanifold G/T", and Lipschitz function F: G/T" — C. This result of
Green and the third author is a vast generalization of a classical result of Davenport [6], which states that

Z p(n)e(—an)| <4 Xlog " X, (1.12)

n<X

sup
acR

and of the Siegel-Walfisz theorem (see e.g. [37, Corollary 5.29]), which states that

max > ,J(n)|<<AX1og*A X. (1.13)
n<X
nta (@)

As is well known, the bounds of O 4 (X log™* X) here cannot be improved unconditionally with current
technology, due to the possible existence of Siegel zeroes (unless one subtracts a correction term to
account for the contribution of such zero; see [61, Theorem 2.7]).

On the other hand, for short intervals there has been a lot of activity in the special case of polynomial
phase twists.

Theorem 1.1(i) was previously only known in the linear phase case when F(g(n)I") = e(an) for any
a € R by work of Zhan [64]. More precisely Zhan [64, Theorem 5] established that

u(n)e(—an)| <40 Hlog™ X (1.14)

X<n<X+H

sup
acR

whenever X>/8+¢ < H < X and A > 1. Hence Theorem 1.1(i) can be seen as a vast extension of Zhan’s
work.

Concerning higher degree polynomials, the most recent result is due to the first two authors [49,
Theorem 1.4] giving, for any polynomial P(n) of degree < d,

Z p(n)e(=P(n)) <aq.s Hlog™* X (1.15)
X<n<X+H
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forall A > 0 and X2*** < H < X.In particular a special case of Theorem 1.1(i) (recorded here as
Corollary 1.3(i)) supersedes this result by showing it with the exponent 2/3 lowered to 5/8.

All the previous results mentioned so far for the Mobius function exist also for the von Mangoldt
function as long as F(g(n)I') or e(—P(n)) is “minor arc” in certain sense (for results corresponding
to (1.11), (1.12), (1.13), (1.14) and (1.15) see respectively [18, Section 7], [37, Theorem 13.6], [37,
Corollary 5.29], [64, Theorems 2-3], and [49, Theorem 1.1]). It is very likely that with our choice of
approximant these arguments also extend to cover major arc cases and maximal correlations, although
we will not detail this here as such claims follow in any case from Theorem 1.1.

Theorem 1.1(iv) generalizes (albeit with a slightly weaker logarithmic saving) a result of the first and
fourth authors [50, Theorem 1.5] that gave, for 0 < A < 1/3,

p(n)e(—an)| <4« Hlog ™" X (1.16)

X<n<X+H

sup
a€eR

in the regime X > H > X3/°*¢ (actually [50, Remark 5.2] allows one to enlarge the range of A to
0<A<].

The literature on correlations between dy and Fourier or higher order phases is sparse. A variant of
the long interval case (1.11) (with a weaker error term) follows from work of Matthiesen [51, Theorem
6.1].

Furthermore, it should be possible to adapt the existing results on polynomial correlations of A(n)
also to the case of di(n), but with power savings. More precisely, one should be able to follow the
approach of Zhan [64] to obtain discorrelation with linear phases e(an) for X > H > X°/8+¢ (for
k = 2 one can replace 5/8 by 1/2 and for k = 3 one can replace 5/8 by 3/5) and the work of the first
two authors [49] to obtain discorrelation with polynomial phases for X > H > X?/3*# (for k = 2 one
can replace 2/3 by 1/2). We omit the details of these extensions of [64, 49] as they follow from our
Theorem 1.1.

We note that in the case k = 2 the exponent 1/3 in Theorem 1.1(iii) matches the classical Voronoi
exponent for the error term in long sums of the divisor function without any twist, and the result seems
to be new even in the case of linear phases.

In the most major arc case F'(g(n)I") = 1, shorter intervals can be reached than in Theorem 1.1; see
Theorem 3.1 below. Furthermore if one only wants discorrelation in almost all intervals, for instance by
seeking to bound

*

Do (f) = A F(emD)| dx,

x<n<x+H

2X
/ sup
X  gePoly(Z—G)

much shorter intervals can be reached with aid of additional ideas. We will return to this question and
its applications in a follow-up paper [46].

Remark 1.4. It should be clear to experts from an inspection of our arguments that the methods used in
this paper could also treat other arithmetic functions with similar structure to u, A, or dy. For instance,
all of the results for the Mobius function u here have counterparts for the Liouville function A; the
results for the von Mangoldt function A have counterparts (with somewhat different normalizations)
for the indicator function 1p of the primes P, and the results for d> have counterparts for the function
r2(n) = X, pez:a2+b2=n 1 counting the number of representations of n as the sum of two squares. We
sketch the modifications needed to establish these variants in Appendix A. We also conjecture that the
methods can be extended to treat the indicator function 1 of the set S = {a® + b? : a,b € Z} of sums
of two squares, or the indicator 1 Sy of X7-smooth numbers, although in those two cases a technical
difficulty arises that the construction of a sufficiently accurate approximant to these indicator functions
is non-trivial. Again, see Appendix A for further discussion.
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On the other hand, our arguments do not seem to easily extend to the Fourier coefficients A s (n) of
holomorphic cusp forms. The coeflicients A¢(n) are analogous to d(n) in many ways (though with
vanishing approximant /15 = 0), and it is reasonable to conjecture parallel results for these two functions.
For instance, in [10] it was established that

Z Ar(n)e(an)| < HX

X<n<X+H

sup
a

for X2/°*¢ < H < X. See also [25] for a result with general nilsequences but long intervals. Unfor-
tunately, the methods we use in this paper rely heavily on the convolution structure of the functions
involved and do not obviously extend to give results for A 5.

1.1. Gowers uniformity in short intervals

Just as discorrelation estimates with polynomial phases are important for applications of the circle
method, discorrelation estimates with nilsequences are important in higher order Fourier analysis due
to the connection with the Gowers uniformity norms that we next discuss.

For any non-negative integer s > 1, and any function f: Z — C with finite support, define the
(unnormalized) Gowers uniformity norm

125
Ifllusz) = Z 1_[ Cllf(x+wihy +- -+ wshy)
x,h,..., hs€Z we{0,1}s
where w = (w1, .. .,ws), |W| == w] +---+w, and C: z > 7 is the complex conjugation map. Then for

any interval (X, X + H] with H > 1 and any f: Z — C (not necessarily of finite support), define the
Gowers uniformity norm over (X, X + H] by

1A llos x x+m] = 1 x xem1lus @) /1 (x x+H1] lUs (2) (1.17)

where 1(x x+u): Z — Cis the indicator function of (X, X + H].
Using the inverse theorem for Gowers norms (see Proposition 9.4) we can deduce the following
theorem from Theorem 1.1 and a construction of pseudorandom majorants in Section 9.

Theorem 1.5 (Gowers uniformity estimate). Let X% < H < X'~ for some fixed 0 < 0 < 1 and
e > 0. Let s > 1 be a fixed integer. Also denote A, (n) := %hmw)zl, where W :=[],<,, p and X
is large enough in terms of w.

(i) If 0 =5/8, then
IA = Awllus (x.x+H] = Ow—oo(1), (1.18)
and for any 1 < a < W with (a, W) = 1 we have

HMA(W -4a) — 1

7 = 0yoo(1). (1.19)

US (X, X+H]

(ii) Letk > 2. Set 0 =1/3 fork =2,0=5/9 for k =3, and 0 = 3/5 for k > 4. Then

ldi — d llus (x x+m) = 0(log™! X), (1.20)
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and for any W’ satisfying W | W | W1 and for any 1 < a < W’ with (a, W’) = 1 we have

N\ k=1
204 )) log=1 x| . (1.21)

lde (W’ - +a) = d (W’ - +a) s (x.xH] = Owoseo (( =

(iii) If6 = 3/5, then
lullos (x,x+m) = 0(1). (1.22)

In all these estimates the o(1) notation is with respect to the limit X — oo (holding s, €, k fixed).
Remarks.

* The model A,, with w fixed is simple to work with and arises in various applications of Gowers
uniformity (e.g. to ergodic theory). This also motivates our choice of the A¥ model in (1.1)
(although that is defined with a larger value of w to produce better error terms).

* Since the bounds in this theorem (unlike in Theorem 1.1) are qualitative in nature, it should be
possible to use Heath-Brown’s trick from [29] to extend the range of H from X%+¢ < H < X'=¢
to XY < H < X'~2. Also the range X!'=% < H < X could be covered, as in Remark 1.2. We leave
the details to the interested reader.

* In the case s = 2, we obtain significantly stronger estimates thanks to the polynomial nature of the
U? inverse theorem. Specifically, when 6 = 5/8 + &, we have

itlloe . xexers 1A = Afllpe (x xexe) <a,e log™ X

for all A > 0 and

lldklloz x xaxo) <e X™4° (1.23)

for some c; > 0, with (1.23) also holding when (&, 8) = (3,5/9), (2, 1/3), and finally

latlloe x xexe) <o log /20 X

when 6 = 3/5. All of these follow directly by combining Theorem 1.1 for d = 1 (that is, for
Fourier phases in place of nilsequences) with the polynomial form of the U? inverse theorem,
which states that if f : [N] — C is 1-bounded and ||f[2(ny; = ¢ for some 6 > 0, then
| Y<n f(n)e(an)|” > 6*N for some @ € R. This form of the inverse theorem follows directly
from the Fourier representation of the U?[N] norm and Parseval’s theorem, where the Gowers
norm U2[N] is defined analogously as in (1.17).

1.2. Applications

1.2.1. Polynomial phases

We already stated Corollary 1.3 concerning polynomial phases. But let us here mention that in a
recent work of Kanigowski-Lemanczyk—Radziwilt [39] on the prime number theorem for analytic skew
products, a key analytic input ([39, Theorem 9.1]) was that Corollary 1.3(ii) holds for H = X?/3~7 (with
a weaker error term of 0,,_,0(H)), thus going just beyond the range of validity of [49, Theorem 1.1].
Corollary 1.3 allows taking n < 1/24 with strongly logarithmic savings for the error terms. Similar
remarks apply to the recent work of Kanigowski [38].

1.2.2. An application to ergodic theory
In a seminal work, Host and Kra [32] showed that, for any measure-preserving system (X, X, i, T), any
bounded functions fi,..., fr : X — C, and any intervals Iy whose lengths tend to infinity as N — oo,
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the multiple ergodic averages

Tt 3 AT T

nelyn

converge in L?(u) as N — oo. Since this work, it has therefore become a natural and active question to
determine for which sequences of intervals (Iy)y and weights w : N — C we have the L?-convergence
of

S ) (T - (T

lIn| £ 7

as N — oo. The case of Iy = [1, N] and with the weight being the primes, that is w(n) = 1p(n), was
settled in the works of Frantzikinakis—Host—Kra [13] and Wooley—Ziegler [63] (the results of [13] in
the cases k > 4 were originally conditional on the Gowers uniformity of the von Mangoldt function).
Analogous results also exist for weights w supported on a sequence given by a Hardy field [12]
or random sequences [14]; see also [42] for related results concerning correlation sequences n
fx fi(T"x) - -+ fr (T*"x) du(x). As an application of Theorem 1.5, we can extend the result on prime
weights to short collections of intervals (In)n .

Theorem 1.6 (Multiple ergodic averages over primes in short intervals). Let k > 1, &€ > 0 and
k € [5/8+¢&,1—¢]. Let hy, . .., hy be distinct positive integers. Let (X, X, u, T) be a measure-preserving
system. Let fi, ..., fx : X — C be bounded and measurable. Then the multiple ergodic averages

En<p<N+n«fi (T"Px) .. .fk(ThkPx)

converge in L*(p).

The results of [13] and [63] correspond to the case k = 1 . According to the best of our knowledge,
Theorem 1.6 is the first result of its kind with x < 1.

1.2.3. Linear equations in short intervals

The work of Green and the third author [17] on linear equations in primes (together with [18], [21])
provides for any finite complexity systems of linear forms (¥1,...,¥;) : Z¢ — Z' an asymptotic
formula for

> | [away, (1.24)

neknzd i=1

whenever K c [-X, X]¢ is a convex body containing a positive proportion of the whole cube [-X, X]¢,
that is, vol(K) > X¢. One may ask if one can establish similar results when K is a smaller region in
[-X, X] 4 of volume < X?9 with @ < 1. Note that for a single linear form, this boils down to asymptotics
for primes in short intervals (where the exponent 6 = 7/12 from [33], [29] is the best one known). Using
Theorem 1.5, we can indeed give asymptotics for (1.24) in small regions.

Theorem 1.7 (Generalized Hardy-Littlewood conjecture in small boxes for finite complexity systems).
Let X > 3 and X°/3¢ < H < X'~% for some fixed ¢ > 0. Let d,t,L > 1. Let ¥ = (Y1, ...,y;) be a
system of affine-linear forms, where each yr; = Z¢ — Z has the form y;(X) = i; - X+, (0) with y; € Z¢
and ;(0) € Z satisfying |y;| < L and |;(0)| < LX. Suppose that y; and  ; are linearly independent
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wheneveri # j. Let K ¢ (X, X + H]¢ be a convex body. Then

Z HA(wl(n))_ﬁw nﬁp+0,dL(H ), (1.25)

nekKnzd i=

where A is extended as 0 to the nonpositive integers and the Archimedean factor is given by
Beo = vol(K N ¥~H(RL,))

and the local factors are given by

t

14
Bp = Ene(z/pz)e H Fldff(n)#O-
i=1

Remark 1.8. From Theorem 1.5 and the proof method of Theorem 1.7, one can also deduce similar
correlation results when in (1.25) one replaces A with u or dj (with the value of 8 as in Theorem 1.5,
and with no main term in the case of y, and a different local product in the case of d ). More specifically,
under the assumption of Theorem 1.7, we have

O [ rwim) =ora (8, (1.26)

neknzd i=1

and, for a positive integer k,

> [Tt = e [0+ ocaa 011081 0,

neknz4 i=l1
where dy, is extended as O to the nonpositive integers and the Archimedean factor is given by

logh 'yi(x) dyt(k=1)
/]_[ o = Onan(Hlog 1 X),

and the local factors are given by

Eneza [Tic) dic.p (i (m))

t

> i=1 B p— 1\k-1

ﬁ = L =E dl | _— dk, (¢(n))'
P H§:1 EmeZpdk,p(m) nezp =1 ( p ) PATL

Here log, y := logmax(y, 1), Z, is the p-adics (with the usual Haar probability measure),

dyp(m) = (k -1+ vp(m))’

k-1

and v, (m) is the number of times p divides m. These local factors are natural extensions of the ones
defined in [47, Remark 1.2] in the special case of two linear forms | (n) = n,y¥y(n) = n+ h.

We have the following immediate corollary to Theorem 1.7.

Corollary 1.9 (Linear equations in primes in short intervals). Let X > 3 and X°/3*¢ < H < X'~ for
some fixed € > 0. Let d,t,L > 1. Let ¥ = (Y1, ...,¥;) : Z¢ — Z' be a system of affine-linear forms,
where each y; has the form Wi (x) = z,bl X+ ;(0) wzth yi € 24 and y;(0) € Z satisfying |y;| < L and
i (0)| < LX. Suppose that yi; and  ; are linearly independent wheneveri # j. Suppose that, for every
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prime p, the system of equations ¥(n) = 0 is solvable with n € ((Z/pZ) \ {0})¥. Then the number of
solutions to W(n) =0 withn € (PN (X, X + H))% is

>

vol((X, X + H]“ n ¥~ (R.)) H4
+ od l,L ( ) .

log? X log? X

Thus, for example, for any € > 0 and any large enough odd N there is a solution to
pr+p2+p3=N, p1,p2p3,2pi—-pr€P

with p; € [N/3 — N3/8+2 N /3 + N>/3+¢]. Without the condition 2p| — p, € P, this is due to Zhan [64].
The exponent 5/8 in Zhan’s result has been improved using sieve methods (see e.g. [3]) and more
recently using the transference principle [43]. It would probably be possible to use a sieve method also
to improve on Corollary 1.9; it would suffice to find a suitable minorant function for A(n) that has
positive average and is Gowers uniform in shorter intervals. Such a minorant could be constructed with
our arithmetic information using Harman’s sieve method [24], but we do not do so here.

1.3. Methods of proof

We now describe (in somewhat informal terms) the general strategy of proof of our main theorems,
although for various technical reasons the actual rigorous proof will not quite follow the intuitive plan
that is outlined here.

To prove Theorem 1.1, the first step, which is standard, is to apply Heath—Brown’s identity
(Lemma 2.16) together with a combinatorial lemma regarding subsums of a finite number of non-
negative reals summing to one (Lemma 2.20) to decompose u, A, di (up to small errors) into three
standard types of sums:

(I) Type I sums, which are roughly of the form a * 1 = @ * d; for some arithmetic functiona: N — C
supported on some interval [1, A;] that is not too large, and with o bounded in an L? averaged
sense.

(I2) Type I sums, which are roughly of the form a * d, for some arithmetic function a: N — C
supported on some interval [1, A,] that is not too large, and with @ bounded in an L? averaged
sense.

(1) Type II sums, which are roughly of the form « * 8 for some arithmetic functions @, 8: N — C
with a supported on some interval [A},, A7,] that is neither too long nor too close to 1 or X, and
with a, 8 bounded in an L? averaged sense.

This decomposition is detailed in Section 4. The precise ranges of parameters Ay, Aj,, A}, A}, that
arise in this decomposition depend on the choice of 8 (and, in the case of dj for small k, on the value
of k); this is encoded in the combinatorial lemma given here as Lemma 2.20.

The treatment of these types of sums (in Theorem 4.2) depends on the behavior of the nilsequence
F(g(n)T), in particular whether it is “major arc” or “minor arc”. This splitting into different behaviors
will be done somewhat differently for different types of sums.

In case of type I and type I, sums, one can use the equidistribution theory of nilmanifolds to
essentially reduce to two cases, the major arc case in which the nilsequence F(g(n)T") behaves like (or
“pretends to be”) the constant function 1 (or some other function of small period), and the minor arc case
in which F has mean zero and g(n)I" is highly equidistributed in the nilmanifold G /I". The contribution
of type I and type I major arc sums can be treated by standard methods, namely an application of
Perron’s formula and mean value theorems for Dirichlet series; see Section 3.

The contribution of type / minor arc sums can be treated by a slight modification of the arguments
in [18], which are based on the “quantitative Leibman theorem” (Theorem 2.7 below) that characterizes
when a nilsequence is equidistributed, as well as a classical lemma of Vinogradov (Lemma 2.3 below)
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that characterizes when a polynomial modulo 1 is equidistributed. (Actually it will be convenient to
rely primarily on a corollary of Lemma 2.3 that asserts that if typical dilates of a polynomial are
equidistributed modulo 1, then the polynomial itself is equidistributed modulo 1: see Corollary 2.4
below.)

Our treatment of type /> minor arc sums is more novel. A model case is that of treating the d,-type
correlation

>, dmF(gm).

X<n<X+H

From the definition of the divisor function d;, we can expand this sum as a double sum

F(g(nm)T). (1.27)

nm: X<nm<X+H

We are not able to obtain non-trivial estimates on such sums in the regime H < X'/3. However,
when H > X'/3*# it turns out by elementary geometry of numbers that the hyperbola neighborhood
{(n,m) € Z* : X < nm < X + H} may be partitioned® into arithmetic progressions P c Z? that mostly
have non-trivial length; see Theorem 8.1 for a precise statement. This decomposition lets us efficiently
decompose the sum (1.27) into short sums of the form

>, F(gm)r)

(n,m)eP

that turn out to exhibit cancellation for most progressions P in the type I, minor arc case, mainly
thanks to the quantitative Leibman theorem (Theorem 2.7) and a corollary of the Vinogradov lemma
(Corollary 2.4); see Section 8.

It remains to handle the contribution of type /1 sums, which are of the form

> axBmF(g(nn)

X<n<X+H

which we can expand as

D, a@ ) BBF(s(ab)r). (1.28)

A} <a<Ay, X/a<b<X/a+H]a

To treat these sums, we can use a Fourier decomposition and the equidistribution theory of
nilmanifolds to reduce (roughly speaking) to treating the following three special cases of these sums:

* Type 11 major arc sums that are essentially of the form

a = B(mn'"
X<n<X+H

for some real number T = X1 of polynomial size (one can also consider generalizations of such
sums when the n'” factor is twisted by an additional Dirichlet character y of bounded conductor).

* Abelian Type II minor arc sums in which F(g(n)I') = e(P(n)) is a polynomial phase that does
not “pretend” to be a character n'” (or more generally y (n)n'” for some Dirichlet character y of
bounded conductor) in the sense that the Taylor coefficients of e(P(n)) around X do not align with
the corresponding coefficients of such characters.

3This partition is reminiscent of the classical Hardy—Littlewood partition of the unit circle into major and minor arcs, except that we are partitioning
(a neighborhood of) a hyperbola rather than a circle.
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* Non-abelian Type 11 minor arc sums, in which g(n)I" is highly equidistributed in a nilmanifold
G /TI' arising from a non-abelian nilpotent group G, and F exhibits non-trivial oscillation in the
direction of the center Z(G) of G (which one can reduce to be one-dimensional).

One can treat the contribution of the type I/ major arc sums by applying Perron’s formula and
Dirichlet polynomial estimates of Baker—Harman—Pintz [4] in the regime, so long as one actually has a
suitable triple convolution (with one of the subfactors having well-controlled correlations with n'7); see
Lemma 3.5. As already implicitly observed by Zhan [64], this case can be treated (with favorable choices
of parameters) for any of the three functions u, A, dy in the case § = 5/8. As observed in [50], in the
case of the Mobius function g, it is possible to lower 6 to 3/5 and still obtain triple convolution structure
after removing a small exceptional error term from g (which is responsible for the final discorrelation
bounds not saving arbitrary powers of log X); see Lemma 4.5.

It remains to treat the contribution of non-abelian and abelian type // minor arc sums. It turns out
that we will be able to establish good estimates for such sums (1.28) in the regime

X
XSH < Aj; < A]; << X"°H.

In this regime, the inner intervals (X/a, X /a + H/a] in (1.28) have non-negligible length (at least X¥),
and furthermore they exhibit non-trivial overlap with each other ((X/a, X /a + H/a] will essentially be
identical to (X/a’, X/a’ + H/a'] whenevera’ = (1 + 0 (X~ ¢£)) a).

As a consequence, many of the dilated nilsequences b +— F(g(ab)T") appearing in (1.28) will cor-
relate with the same portion of the sequence . To handle this situation we introduce a nilsequence
version of the large sieve inequality in Proposition 2.15, which we establish with the aid of the equidis-
tribution theory for nilsequences, as well as Goursat’s lemma. The upshot of this large sieve inequality
is that for many nearby pairs a’, a there is an algebraic relation between the sequences b +— g(ab) and
b — g(a’b), namely that one has an identity of the form

g(a,') = 5aa’g(a')7aa’

where €4, Z — G is a “smooth” polynomial map and y,, : Z — G is a “rational” polynomial map;
see (6.7) for a precise statement. This can be viewed as an assertion that the map g is “approximately
dilation-invariant” in some weak sense. This turns out to imply a non-trivial lack of two-dimensional
equidistribution for the map

(a,a’,b,b") — (g(ab)T, g(ab" )T, g(a’b)T, g(a’b")T)

which is incompatible with the non-abelian nature of G thanks to a commutator argument of Furstenberg
and Weiss [15]; see Section 6. This resolves the non-abelian case. In the abelian case, one can replace
the maps g by the ordinary polynomials P, and one can then proceed by adapting the arguments by the
first two authors in [49] to show that e(P(n)) necessarily “pretends” to be like a character n'”, which
resolves the abelian type /1 minor arc case. Combining all these cases yields Theorem 1.1.

1.3.1. The result on Gowers norms

The proof of Theorem 1.5 (in Section 9) requires in addition to Theorem 1.1 and the inverse theorem
for the Gowers norms also a construction of pseudorandom majorants for (W-tricked versions of) A
and dy over short intervals (X, X + H]. By this we mean functions vy, v, that majorize the functions
A, dy (after W-tricking and suitable normalization), and such that v; — 1 restricted to (X, X + H] is
Gowers uniform. In the case of long intervals (that is, H = X), the existence of such majorants is well
known from works of Green and the third author [16] and Matthiesen [52]. Fortunately, it turns out
that the structure of these well-known majorants as type I sums of small “level” enables us to show that
they work as majorants also over short intervals (X, X + H]; see Lemmas 9.5 and 9.6. These lemmas
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combined with the implementation of the W-trick (which in the case of dj requires additionally two
simple lemmas, namely Lemmas 9.8 and 9.9) leads to the proof of Theorem 1.5.

Remark 1.10. In this remark we discuss the obstructions to improving the value of 6 in the various
components of Theorem 1.1. In most of these results, the primary obstruction arises (roughly speaking)
from portions of u, A, or di that look something like

Lixar oxor) * -+ % 1(xam 2xam (1.29)

for various tuples (a7, .. ., @) of positive real numbers that add up to 1. More specifically:

(a) For the 6 = 5/8 results in Theorem 1.1(i)—(iii), the primary obstruction arises from convolu-
tions (1.29) with (ay,...,a,;) equal to (1/4,1/4,1/4,1/4), when correlated against characters
n'T with T < X9 as this lies just outside the reach of our twisted major arc type I and type 1
estimates when 6 goes below 5/8. This obstruction was already implicitly observed by Zhan [64].

(b) For the 8 = 3/5 result in Theorem 1.1(iv), the primary obstruction are convolutions (1.29) with
(a1,...,ay) equal to (2/5,1/5,1/5,1/5) or (1/5,1/5,1/5,1/5,1/5), when correlated against
“minor arc” nilsequences, such as ¢(an) for some minor arc . Such convolutions become just out
of reach of our type I, type 11, and type I, estimates when 6 goes below 3/5. This obstruction was
already observed in [50].

(c) For the 6 = 1/3 result in Theorem 1.1(iii), the primary obstruction is of a different nature from
the preceding cases: it is that our treatment of minor arcs in this case relies crucially on the ability
to partition the neighborhood of a hyperbola into arithmetic progressions (see Theorem 8.1), and
this partition is no longer available in any useful form once 6 goes below 1/3.

(d) Forthe 8 = 5/9 result in Theorem 1.1(iii), the primary obstruction arises from convolutions (1.29)
with (aq,...,a,) equal to (1/3,1/3,1/3), when correlated against minor arc nilsequences, for
reasons similar to those in the previous case (c).

1.4. Notation

The parameter X should be thought of as being large.

WeuseY < Z,Y = O(Z),or Z > Y to denote the estimate |Y| < CZ for some constant C. If we wish
to permit this constant to depend (possibly ineffectively) on one or more parameters we shall indicate
this by appropriate subscripts, thus for instance O o 4(Z) denotes a quantity bounded in magnitude by
C¢ AZ for some quantity C. 4 depending only on €, A. We write Y < Z forY <« Z < Y. When working
with dy, all implied constants are permitted to depend on k. We also write y ~ Y to denote the assertion
Y<y<2y.

If x is a real number (resp. an element of R/Z), we write e(x) = e
distance of x to the nearest integer (resp. zero).

We use 1 to denote the indicator of an event E, thus 1g equals 1 when E is true and O otherwise. If
S is a set, we write 1g for the indicator function 1g(n) = 1,cs.

Unless otherwise specified, all sums range over natural number values, except for sums over p which
are understood to range over primes. We use d|n to denote the assertion that d divides n, (n,m) to
denote the greatest common divisor of n and m, n = a (q) to denote the assertion that n and @ have
the same residue mod g, and f * g(n) = 3.4, f(d)g(n/d) to denote the Dirichlet convolution of two
arithmetic functions f,g: N — C.

The height of a rational number a/b with a, b coprime is defined as max(|al, |b|).

27ix and let ||lx||r/z denote the
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2. Basic tools
2.1. Total variation

The notion of maximal summation defined in (1.4) interacts well with the notion of total variation,
which we now define.

Definition 2.1 (Total variation). Given any function f : P — C on an arithmetic progression P, the
total variation norm || f||tv(p) is defined by the formula

k-1
Iflirvepy = sup [f (M)l + sup > |f(njar) = £(n)]
neP ny<---<ng 7=
where the second supremum ranges over all increasing finite sequences n; < --- < ng in P and all
k > 1. We remark that in this finitary setting one can simply take ny, ..., ng to be the elements of P in

increasing order, if one wishes. We adopt the convention that || f||tv(p) = 0 when P is empty. For any
natural number g > 1, we also define

1 flltv(p:g) = Z lf ltv(Pn(a+qz)) -

acZ/qZ

Informally, if f is bounded in TV(P;g) norm, then f does not vary much on each residue class
modulo g in P. From the fundamental theorem of calculus we see that if f: I — C is a continuously
differentiable function then

I trviey < suplr @+ [1f o dr @
te 1
for all arithmetic progressions P in /. Also, from the identity ab—a’b’ = (a—a’)b+(b—b")a’ we see that

Ifglltvip.q) < Iflltvipg)llgliTvirg) (2.2)

for any functions f, g: P — C defined on an arithmetic progression, and any g > 1.
We can now record some basic properties of maximal summation:

Lemma 2.2 (Basic properties of maximal sums).

(i) (Triangle inequalities) For any subprogression P’ of an arithmetic progression P, and any f: P —

C we have
Drm| <[> £

nepP’ nepP

* * *

<

D Fm)1p(n)

neP

and

<> fm| < DIl

neP neP

PG

nebP

If P can be partitioned into two subprogressions as P = P1 ¥ Py, then

Dirm| <[> Fm)| +

nepP nepP

*

< (2.3)

Finally, the map f v | Y ,cp f(n)|* is a seminorm.
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(ii) (Local stability) If xo e R, H > 0, and f: Z — C, then

>

xo<n<xo+H

*

2 xo+H /2
dx.

< f(n)

x<n<x+H

H JC()*H/Z

(iii) (Summation by parts) Let P be an arithmetic progression, and let f,g: P — C be functions. Then

we have

prm)g(n) < ligllvep) pr(n) 2.4)
and more generally

pr(rog(n)* < llglltvpig) Z})f(n)* 2.5)

forany g > 1.

Proof. The claims (i) all follow easily the triangle inequality and the observation that the intersection
of two arithmetic progressions is again an arithmetic progression; for instance, (2.3) follows from the
observation that any subprogression P’ of P is partitioned into subprogressions P’ N Py, P’ N P, of
Py, P; respectively. To prove (ii), we observe from (i) that for any O < ¢ < H/2 we have

D! N D S 01 I I DR A ()
xo<n<xo+H xo<n<xo+H /2 xo+H [2<n<xo+H
< D fwl+ > f

xo—t<n<xo—t+H xXo+t<n<xo+t+H

and the claim then follows by averaging in ¢.
To prove the first claim (2.4) of (iii), it will suffice by the monotonicity properties of total variation
and maximal sums to show that

*

> fmgn

nepP’

G

nep’

< llgllrvepr (2.6)

for all subprogressions P’ of P. Clearly we may assume P’ is non-empty. If we order the elements of P’
asny < np < --- < ng, then from summation by parts we have

k-1 J k
DT Fmg(n) = (g(n)) = g(njs) D Fln) +g(ne) Y. (o).
j=1 i=1 i=1

nepP’

Since each segment {ny,...,n;} of P’ is again a subprogression of P’, we have from the triangle
inequality that

*

+1g ()]

> fn)

nepP’

D F(mg(n)

nepP’

> fm)

nepP’

k-1
< > lg(ny) = g(njun)|
Jj=1

and the claim (2.6) now follows from Definition 2.1. Thus (2.4) holds. To prove the second claim (2.5),
partition P into subprogressions PN (a+qZ), apply (2.4) to each subprogression, and sum using (i). O
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2.2. Vinogradov lemma

If P: Z — R/Z is a polynomial of degree d, and [ is an interval of length |I| > 1, we define the
smoothness norm

IPllcery = sup sup|I[/[|8{ P(n)l|g/z
0<j<d nel

where 0 is the difference operator 9; P(n) := P(n) — P(n — 1). We remark that this definition deviates
very slightly from that in [19, Definition 2.7]; in particular, we allow the index j to equal zero and we
allow n to range over / rather than being set to the origin. We use the same notation ||P||c« () for a
polynomial P: Z — R after reducing its coefficients modulo 1.

The following lemma asserts, roughly speaking, that a polynomial P is (somewhat) equidistributed
unless it is smooth.

Lemma 2.3 (Vinogradov lemma). Let 0 < £,6 < 1/2, d > 0, and let P: Z — R/Z be a polynomial of
degree at most d. Let I be an interval of length |I| > 1, and suppose that

IP(n)|lr/z < &
Jor at least S|1| integers n € I. Then either § <q &, or else one has

lgPllc=ry <a 6 %1V

for some integer 1 < q <4 6941,

Proof. By applying a translation, we may assume that / takes the form (0, N| for some N > 1. We may
also assume & < §/2, since we are clearly done otherwise. We may now invoke [19, Lemma 4.5] to
conclude that there exists 1 < g <4 6?4V g such that

sup sup |71/ [lgd] P(n)llrjz <a 6% WVe. 2.7

1<j<d nel

This is almost what we want, except that we have to also control the j = 0 contribution. But
from hypothesis we have at least one ny € I such that ||P(ng)|lr/z < &, and from (2.7) we have
lgo1P(n)|lrjz <a & ~0a(|11=1¢ for all n € I. From the triangle inequality we then conclude that

lgP(n)|lz/z <a 6794 WMe
for all n € I, and the claim follows. ]

The following handy corollary of Lemma 2.3 asserts, roughly speaking, that if many dilates of a
polynomial are smooth, then the polynomial itself is smooth.

Corollary 2.4 (Concatenating dilated smoothness). Let0 < § < 1/2,d >0, andlet P: Z — R/Z be a
polynomial of degree at most d. Let A > 1, let I be an interval with |I| > 2A, and suppose that

(2.8)

1
P(a- o < =
IP@llce 1 < 5

for at least 5A integers a in [A,2A], where il = {L :t € I} is the dilate of I by é Then either
|| <q 694U A, or else one has

lgPllcer) <a 64V

for some integer 1 < q <4 6941,
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Proof. We allow all implied constants to depend on d. We may assume that |I| > C6~C A for a large
constant C depending on d, as the claim is immediate otherwise.
We now claim that for each 0 < j < d that there exists a decomposition

P=Pj+Q; 2.9)
where P;: Z — R/Z is a polynomial of degree at most d with
g Pjllcsy < 67" (2.10)

for some 1 < g; < 60 and Qj: Z — R/Zis a polynomial of degree at most j. For j = d one can
simply set Py = 0 and Q4 = P. Now suppose by downward induction that 0 < j < d and the claim has
already been proven for j + 1. From (2.10) (for P;41) we have

lgj+1Pjsillcoqry < 6700,

Routine Taylor expansion then gives

||Qj+1Pj+l(a')||coo(£1) < ¢ oW

for all a € [A,2A], thus by (2.8) and the triangle inequality we have

||¢]j+le+l(a‘)||coo(%1) < § oW
for > §A choices of a € [A, 2A].

Now write Q j41(n) = a4 (jﬁl) +Q ;(n) where Q  is of degree at most j. Taking j+1-fold derivatives,
we see that

e/ g1 jsillejz < 670D (A/|1])7*!

for > §A choices of a € [A,2A]. Applying Lemma 2.3 to the polynomial a — a/*'g j+1@j41 (and
recalling that |I|/A > C5~C for a suitably large C by assumption), we conclude that there is 1 < ¢ <
590 such that

lg()* g s llesaza)) < 6 CW(A/T])*
and hence on taking j + 1-fold derivatives
1+ D'qq ez < 67007771

If one thensets g := (j+1)!gq 41 and Pj(n) = Py (n)+a (jfl), we obtain the decomposition (2.9),
and (2.10) follows from the triangle inequality. This closes the induction. Applying the claim with j = 0,
we obtain the corollary. O

2.3. Equidistribution on nilmanifolds

We now recall some of the basic notation and results from [19] concerning equidistribution of polynomial
maps on nilmanifolds.

Definition 2.5 (Filtered group). Let d > 1. A filtered group is a group G (which we express in
multiplicative notation G = (G, -) unless explicitly indicated otherwise) equipped with a filtration
G, = (Gi)l?'zo of nested groups G > Gog > G > ... such that [G;,G ] < Gy foralli, j > 0. We say
that this group has degree at most d if G; is trivial for all i > d. Given a filtered group of degree at most
d, a polynomial map g: Z — G from Z to G is a map of the form g(n) = gog](‘) .. .ggd where g; € G;
for all 0 < i < d; the collection of such maps will be denoted Poly(Z — G).
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The well-known Lazard-Leibman theorem (see e.g., [ 19, Proposition 6.2]) asserts that Poly(Z — G)
is a group under pointwise multiplication; also, from [19, Corollary 6.8] we see thatif g: Z — G is a
polynomial map then so is n + g(an + b) for any integers a, b.

If G is a simply connected nilpotent Lie group, we write log G for the Lie algebra. From the
Baker-Campbell-Hausdorff formula* (see e.g. [22, Theorem 3.3]) we see that the exponential map
exp: logG — G is a homeomorphism and hence has an inverse log: G — log G.

Definition 2.6 (Filtered nilmanifolds). Let d,D > 1 and 0 < 6 < 1. A filtered nilmanifold G /T of
degree at most d, dimension D, and complexity at most 1/§ consists of the following data:

* A filtered simply connected nilpotent Lie group G of dimension D equipped with a filtration
Ge = (G,-)l?‘io of degree at most d, with Go = G| = G and all G; closed connected subgroups of G.

* A lattice (i.e., a discrete cocompact subgroup I') of G, with the property that I; =T N G; is a
lattice of G; for all i > 0.

* A linear basis X1, ..., Xp (which we call a Mal’cev basis) of log G.

Furthermore we assume the following axioms:

(i) Forall1 <i,j < D wehave [X;, X;] = Zi’j<ksD cijk X for some rational numbers c; i of height
at most 1/6.
(ii) For all 0 <i < d, the vector space G; is spanned by the X; with D —dimG; < j < D.
(iii)) We have I' = {exp(n1X}) - - -exp(npXp) : ni,...,np € Z}.

It is easy to see that G/I" has the structure of a smooth compact D-dimensional manifold, which we
equip with a probability Haar measure dug,r. We define the metric dg on G to be the largest right-
invariant metric such that dg (exp(t1X1) - - -exp(tpXp), 1) < sup;c;<p |t;| forall ¢1,...,tp € R. We
then define a metric dg,r on G/I" by the formula dg/r(x,y) = infgr—x nr-y dc (g, #). The Lipschitz
norm of a function F: G/I" — C is defined to be the quantity

F(x)-F
sup |F(x)|+ sup —| (x) W
xeG/T x,yeG[Tix#y dG/r(xv y)

A horizontal character n associated to a filtered nilmanifold is a continuous homomorphism#n: G —
R that maps I" to the integers.

An element y of G is said to be M-rational for some M > 1 if one has y" € I" for some natural
number 1 < r < M. A subnilmanifold G’ /T” of G /T (thus G’ is a closed connected subgroup of G
with I} == G} N T" cocompact in G/ for all 7) is said to be M-rational if each element X i, X éim o
of the Mal’cev basis associated to G is a linear combination of the X; with all coefficients rational of
height at most M.

A rational subgroup G’ of complexity at most 1/ is a closed connected subgroup of G with the
property that log G’ admits a linear basis consisting of dim G’ vectors of the form Zi[il a;X;, where

each a; is a rational of height at most 1/4.

It is easy to see that every horizontal character takes the form 7(g) = A(logg) for some linear
functional A: log G — R that annihilates log[G, G] and maps log I to the integers. From this one can
verify that the number of horizontal characters of Lipschitz norm at most 1/ is at most O 4. p (6 ~94-» My,

From several applications of Baker—Campbell-Hausdorff formula we see that if G has degree at most
d and yy,y> € G are M-rational, then 7y, is O4(M9< (1)) rational.

We have the following basic dichotomy between equidistribution and smoothness:

Theorem 2.7 (Quantitative Leibman theorem). Let 0 < 6 < 1/2, let d,D > 1, let I be an interval
with |I| > 1, and let G|T be a filtered nilmanifold of degree at most d, dimension at most D, and

4The reader may consult [48, Appendix B] for more details on the use of the Baker—Campbell-Hausdorff formula in the context of quantitative
nilmanifold theory.
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complexity at most 1/6. Let F: G/T" — C be Lipschitz of norm at most 1/6 and of mean zero (i.e.,
fG/F F dugr = 0). Suppose that g: Z — G is a polynomial map with

(ZF(g(n)r)]* > 5\1].

nel

Then there exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm O 4, p(6 ~Oa.p(1))
such that

17 0 gllce (1) <ap 6~%P M.
Proof. By applying a translation we may assume / = (0, N] for some N > 1. The claim now follows
from [59, Theorem 3.5]. ad

Let G/I" be a filtered nilmanifold of dimension D and complexity at most 1/§, and let G’ be a
rational subgroup of complexity at most 1/8. In [19, Proposition A.10] it is shown that G’ /T” can be
equipped with the structure of a filtered nilmanifold of complexity O 4 p (6~94> (1)) where I := 'NG’,
G} = G; N G’, and the metrics dg, dg’ are comparable on G’ up to factors of Oy p (6940 one
can view G’ /T as a subnilmanifold of G/T".

One can easily verify from basic linear algebra and the Baker—Campbell-Hausdorft formula that the
following groups are rational subgroups of G of complexity O p (694> (D):

* The groups G; in the filtration for 0 < i < d.

* The kernel ker ;7 of any horizontal character 17 of Lipschitz norm 04 p (6942 (1)),

e The center Z(G) = {exp(X) : X e logG; [X,Y] =0 VY € logG} of G.

* The intersection G’ N G” or commutator [G’, G”’] of two rational subgroups G’,G”" of G of
complexity Oy p (6~ P+p (D),

* The product G’N of two rational subgroups G’, N of G of complexity Oy p(6~%4> (1)), with N
normal.

We can quotient out a filtered nilmanifold by a normal subgroup to obtain another filtered nilmanifold,
with polynomial control on complexity:

Lemma 2.8 (Quotienting by a normal subgroup). Let G/T" be a filtered nilmanifold of degree at most
d, dimension D and complexity at most 1/6. Let N be a normal rational subgroup of G of complexity at
most 1/6, and let n: G — G /N be the quotient map. Then n(G)/n(T") can be given the structure of a
filtered nilmanifold of degree at most d, dimension D — dim N, and complexity O 4.p(6=94P (D), such
that

dr(G)(n(8). 7 () =a.p 67O+ inf dG(g.nh) (2.11)
ne

forany g, h € G.

Proof. We allow all implied constants to depend on d, D. Let 7: log G — log G /log N = log(G/N) be
the quotient map of log G by the Lie algebra ideal log NV, then 7 o exp = exp oft. Foreach 0 < i < d, the
vectors (X;) for D —dim G; < j < D span the linear subspace 7(log G;) of log(G/N), and the linear
relations between those vectors are are generated by O(1) equations with coefficients rational of height
O(679W). From this and linear algebra we may find a basis X, . . ., Xgim(G/n) of log(G/N) such that
for each 0 < i < d, A(log G;) is the span of Xj for dim(G/N) — dimA(log G;) < j < dim(G/N), and

each X is a linear combination of the #(X), . . ., #(Xp) with coefficients rational of height 0(67°W),
Meanwhile, 7(T") is generated by n(X}),...,n(Xp). From this and the Baker-Campbell-Hausdorff
formula we see that the basis X1, ..., Xgim(G/n) is @ 0(6~9V)-rational weak basis for n(G)/n(T) in

the sense of [19, Definition A.7]. Applying [19, Proposition A.9] to this weak basis, we obtain a Mal’cev
basis that gives 7(G)/x(I") the structure of a filtered nilmanifold with the stated degree, dimension, and
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complexity. It remains to establish the bound (2.11). By right translation invariance we can take g to be
the identity. For the upper bound, it suffices (since 7 is N-invariant) to show that

dr(c)(La(h) < 67°Wdg(1, h),

but this follows from the fact that 7: log G — 7(log G) has operator norm O (6~°(1) when using the
X1, ..., Xp basis for log G and the X, ..., Xdim(G/N) basis for 7(log G) to define norms.
Now we need to establish the lower bound. By [19, Lemma A.4] it suffices to show that

Y= s°Y inf Y|

Y’ er—1(Y)
for any Y € 7(log G), where again we use the norm given by the X, ..., Xp basis for log G and the
X1, ..., Xdim(G/n)- Butthis is easily verified for each ¥ = X;, and the claim then follows by linearity. O

A central frequency is a continuous homomorphism ¢: Z(G) — R which maps Z(G) N T to the
integers Z (that is to say, a horizontal character on Z(G), or a Fourier character of the central torus
Z(G)/(Z(G)NT)). A function F: G/T" — C s said to oscillate with central frequency & if one has the
identity

F(zx) = e(£(2)) F (x)

for all x € G/T" and z € Z(G). As with horizontal characters, the number of central frequencies & of
Lipschitz norm at most 1/6 is O 4. p (6~94> (D) If ¢ is such a central frequency, one can readily verify
that the kernel ker & is a rational normal subgroup of G of complexity Oy p (694> (1),

We have the following convenient decomposition (cf., [19, Lemma 3.7]):

Proposition 2.9 (Central Fourier approximation). Let d,D > 1 and 0 < § < 1. Let G/T" be a filtered
nilmanifold of degree at most d, dimension D, and complexity at most 1/6. Let F: G/T' — C be a
Lipschitz function of norm at most 1/6. Then we can decompose

F=ZF§+0(6)
£

where & ranges over central frequencies of Lipschitz norm at most O g.p(6~%4P () and each F ¢ has
Lipschitz norm O 4 p (6 ~0a.0 () and oscillates with central frequency &. Furthermore, if F has mean
zero, then so do all of the F¢.

Proof. We allow all implied constants to depend on d, D. Since Z(G)/(Z(G) NT') is an abelian filtered
nilmanifold of complexity O(6~?(1)), it can be identified with a torus R™/Z"”, where m = O(1) and
the metric on Z(G) is comparable to the metric on R up to factors of O(5~?(1)); the identification
of log Z(G) with R™ induces a logarithm map log: Z(G) — R and an exponential map exp: R™ —
Z(G). Central frequencies £ can then be identified with elements k¢ of Z™, with £(z) = k¢ - log(z) for
any z € Z(G).

Let ¢ : R — R be a fixed bump function (depending only on m) that equals 1 at the origin, and let
R > 1 be a parameter to be chosen later. For any central frequency &, we set

Fet = ghe/R) [ Fne(-£() de

where dz is Haar probability measure on the torus R™/Z™, which acts centrally on G /T in the obvious
fashion. It is easy to see that F¢ has Lipschitz norm O (8 ~0()) oscillates with central frequency &, and

5The decomposition in [19] uses the action of the vertical group G4 (which is a subgroup of the center Z (G )) rather than the entire center, but
the arguments are otherwise nearly identical. One can think of Proposition 2.9 as a slight refinement of [19, Lemma 3.7], in that the components
exhibit central oscillation rather than merely vertical oscillation.
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vanishes unless & has Lipschitz norm O (62D ROM); also, if F has mean zero, then so do all of the
F¢. From the Fourier inversion formula we have

olke/R) = [ eetke yIR dy= [ gel(exniy/R)) db,

where ¢(y) = me w({)e(=C - y) dZ, as well as the Fourier inversion formula on the torus,
YiFe) = [ pFexps/R) dy,
3

On the other hand, from the Lipschitz nature of F' we have
F(exp(y/R)x) = F(x) + 06~V y|/R).
Since ¢ is rapidly decreasing and has total integral 1, we obtain

F = Z Fe+0(57°W/R),
3

and the claim follows by choosing R = O (6-2()) suitably. O

Next we shall recall a fundamental factorization theorem for polynomial sequences. Before we can
state it, we need to define a few notions.

Definition 2.10 (Smoothness, total equidistribution, rationality). Let G/I" be a filtered nilmanifold,
g € Poly(Z — G) be a polynomial sequence, I C R be an interval of length |/| > 1, and M > 0.

(1) We say that g is (M, I)-smooth if one has

dg(g(n),16) < M; dg(g(n),g(n—1)) < M/|I|

foralln € 1.
(i1) We say that g is fotally 1/M-equidistributed in G /T" on [ if one has

1
7] 2 Fetn) - /G o

whenever F: G/T" — C is Lipschitz and P is an arithmetic progression in / of cardinality at least
[1/M.
(iii) We say that g is M-rational if there exists 1 < r < M such that g(n)" € T for all n € Z.

1
< M“F”Lip

From Taylor expansion and the Baker—Campbell-Hausdorff formula it is not difficult to see that if
G /T has degree at most d and g is M-rational, then the map n — g(n)I" is g-periodic for some period
1 <q<qg MO,
Lemma 2.11. Let d,D > 1 and 0 < 6 < 1. Let G/T" be a filtered nilmanifold of degree at most d,
dimension D, and complexity at most 1/6. Let g € Poly(Z — G), and let I be an interval with |I| > 1.
Suppose that
l70gllcey <1/6 (2.12)

for some non-trivial horizontal character n : G — R/Z of Lipschitz norm at most 1/8. Then there is a
decomposition g = g’y into polynomial maps €,g’,y € Poly(Z — G) such that

(i) €is (6‘0"’9(1), I)-smooth;
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(ii) g’ takes values in G’ = kern;
(iii) 7y is §5~94.0() _rational.

Proof. This is a slight variant of [19, Lemma 7.9], the main difference being that our hypothesis (2.12)
involves 7 o g rather than n o g, (where g, is the nonlinear part of g). The argument in the proof of [19,
Lemma 7.9] can be modified in an obvious manner as follows. By translation we may assume that
I=[1,|I]]. Let ¢ : G — RP be the Mal’cev coordinate map. Suppose that

w(g(n) =10+ (T)tl + (Z)tz T (Z)td

for some tg, 11, - - ,t4 € RP with y~(#;) € G;. Our assumption on || o gllc=(r) implies that for some
k € ZP with |k| < 67!, we have

Ik - tillgjz < 6O+ M 1|
for each 1 <i < d. Choose u; € R with ! (u;) € G;, such that
k-u; €Z, |t; —u] <6 %2y,

Then choose v; € RP with Lp‘l (vi) € G, all of whose coordinates are rationals over some denominator
< 6‘0"~D(1), such that

k'Lti:k'Vi

for each 1 < i < d. Define ¢,y by

d d
wtem) =0+ Y (1), wirin = . (7)o
i=1

i=1
and then define g’ by
g'(n)=e(n) gy

One can verify that they satisfy the desired properties. O

Theorem 2.12 (Factorization theorem). Let d,D > 1 and 0 < § < 1. Let G/T" be a filtered nilmanifold
of degree at most d, dimension D, and complexity at most 1/6. Let g € Poly(Z — G) and A > 0,
and let I be an interval with |I| > 1. Then there exists an integer 1/6 < M <A p.a 6 0ap.a() gnd g
decomposition g = g’y into polynomial maps €, g’,y € Poly(Z — G) such that

(i) €is (M, I)-smooth;
(ii) There is an M-rational subnilmanifold G’ /T’ of G /T such that g’ takes values in G’ and is totally
1/ MA-equidistributed on I in G’ /T, and more generally in G’ /T whenever I is a subgroup of
I of index at most MA; and
(iii) y is M-rational.

Proof. See [19, Theorem 1.19] (after rounding / to integer endpoints and translating to be of the form
[1, N]). The additional requirement in (ii) that one has equidistribution in the larger nilmanifolds G’ /T
is not stated in [19, Theorem 1.19] but follows easily from the proof, the point being that if a sequence
g’ € Poly(Z — G’) fails to be totally 1/M*-equidistributed in G’ /T"”’, then one has ||o g’ llce ) <a,p
MOa.0(A) for some non-trivial horizontal character n on G’ /T of Lipschitz norm Ou4p(M Oa.n(A)y,
which on multiplying n by the index of I in I'" also gives |7’ o g’|lc~(1) <a.D MO4.0(A) for some
non-trivial horizontal character " on G’/T” of Lipschitz norm Oy p(M©P4r(4)) As a consequence,
one can replace all occurrences of G’ /I in the proof of [19, Theorem 1.19] with G’/T”" with only
negligible changes to the arguments. O
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We will also need a multidimensional version of this theorem.

Theorem 2.13 (Multidimensional factorization theorem). Lett,d,D > 1 and0 < 6 < 1. Let G/T be a
filtered nilmanifold of degree at most d, dimension D, and complexity at most 1/6. Let g € Poly(Z' — G)
and A > 0, and let Iy,. .., I, intervals with |I{|,...,|I;| = C5C, for some C that is sufficiently
large depending on t,d, D, A. Then there exists an integer 1/0 < M <A p.a: 6-0ap.a:(l) gnd q
decomposition g = g’y into polynomial maps €,g’,vy € Poly(Z' — G) such that

(i) eis (M, Iy X---X1I;)-smooth, in the sense that dg(e(n), 1g) < M and dg(e(n+e;), 1g) < M/|L;]|
forallne 1 X---xXI;andi=1,...,t, where eq,...,e; are the standard basis ond;

(ii) There is an M-rational subnilmanifold G’ [T’ of G /T such that g’ takes values in G’ and is totally
1/ MA-equidistributed in G’ /T, and more generally in G’ /T whenever T"" is a subgroup of T’
of index at most M, in the sense that

1
< M”F”Lip

1 J
S — F(g'(mI) — F
|P]X"’XP[| Z (g( ) ) G//ru

nePyx---xXP;

whenever F: G /T" — C is Lipschitz and for each i = 1, .. .,t, P; is an arithmetic progression in
I; of cardinality at least |I;| /M, and
(iii) v is M-rational, in the sense that there exists 1 < r < M such that g(n)" €T foralln € Z'.

Proof. This follows from [19, Theorem 10.2], after implementing the corrections in [20], and the
modifications indicated in the proof of Theorem 2.12. O

As a first application of Theorem 2.12, we can obtain a criterion for correlation between nilsequences
with a non-trivial central frequency:

Proposition 2.14 (Correlation criterion). Letd, D > 1 and0 < § < 1. Let G /T be a filtered nilmanifold
of degree at most d, dimension D, and complexity at most 1/6, whose center Z(G) is one-dimensional.
Let g1, 8> € Poly(Z — G), let I be an interval with |I| > 1, and let F: G /T" — C be Lipschitz of norm
at most 1/8 and having a non-zero central frequency &. Suppose that one has the correlation

%

D FaimD)F(g2(mD)| = ol1].

nel

Then at least one of the following holds:

(i) There exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm O g4 p (67 Ca.n (1))
such that |1 o gillc=(1) <a,p 67040 for some i € {1,2}.
(ii) There exists a factorization

g2=¢&(pog)y

where & is (04.p(6C+2M) I)-smooth, ¢: G — G is a Lie group automorphism whose
associated Lie algebra isomorphism log¢: logG — logG has matrix coefficients that are
all rational of height 04 p (692U in the Mal’cev basis X, ...,Xp of logG, and y is
Od,D(6’Od~D(l))—rati0nal.

Proof. We allow all implied constants to depend on d, D. The product of the filtered nilmanifold G /I"
with itself is again a filtered nilmanifold (G X G) /(I"'xT"), with the obvious filtration (G XG); = G; XG;
and Mal’cev basis (X;,0), (0, X;),i = 1,..., D. This product filtered nilmanifold has degree at most d,
dimension 2D, and complexity at most O(6~?1)). The pair (g1, g2) can be then viewed as an element
of Poly(Z = G x G).Ifwelet F® F: (G x G)/(I' xT") — C be the function

F ® F(x1,x2) = F(x1)F(x2)
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then F is Lipschitz with norm O(6~?(1)) and one has

*

D FoF((g1,82) (T xD)| = dlil. (2.13)

nel

Let A > 1 be sufficiently large depending on d, D. Applying Theorem 2.12 to (g1, g2) (with ¢ replaced
by 64) we can find 674 < M <4 6-94() and a factorization

(81,82) = (e1,€2) (g1, 85) (Y1, 72) (2.14)

where 1, g1,¥1 € Poly(Z — G1), &, g}, v2 € Poly(Z — G») such that

(i) (&1,&2) is (M, I)-smooth;
(i) There is an M-rational subnilmanifold G’ /T of (G x G)/(I" x I') such that (g}, g}) takes values

in G’ and is totally 1/M*-equidistributed in G’ /T for any subgroup I'”” of I of index at most
MA; and
(iii) (y1,72) is M-rational.

We caution that G’ is a subgroup of G X G rather than G. From (2.13) we thus have

*

D F @ F((s1,82)(n)(g}, 85 (m) (71, 72)(n) (I x )

nel

> 61.

Since (y1,y2) is M-rational, it is O(M©P())-periodic, and then by the pigeonhole principle (and
Lemma 2.2(i)) we can thus find M-rational (7(1), )/(2)) € G X G such that

*

> FoF((e1,22) ()8} 8) (¥ xT))| > MW

nel

By shifting 7(1)’ yg by elements of T if necessary we may assume that they lie at distance O(M°1))
from the identity. If we partition / into subintervals J of length < M ~C|I| for some large constant C,
we see from the pigeonhole principle (and Lemma 2.2(i)) that we can find one such J for which

*

Z F®F((s1,6)(n)(g}, ) (M) (), y)(T x )| > M~CWD)J].

neJ

As (&1,&2) is (M, I)-smooth, it fluctuates by_O(Ml_C) on J and stays a distance O(M) from the
identity, hence by the Lipschitz nature of F ® F we conclude (for C = O(1) large enough) that there
exists (8(1), ag) € G X G at distance O (M) from the identity such that

DIF@F((e), 5)(g1, ) (M (., y) (T x 1)) > MO,
neJ

Allowing implied constants to depend on C, we conclude that
D F@F((e),9)(gh, ) (M (¥, ¥ (T x )| > M=ODy).

nel
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From the Baker-Campbell-Hausdorff' formula and the M-rationality of (y‘l), yg), we see that
(7(1), y(z))(F xT) (y(l), yg)‘1 can be covered by O(M©P (V) cosets of I' x I, and conversely. Thus if we set

I =G nTxD)nOLyDTxD)o, )™

then G’ N (I' x ') can be covered by O(M©P (1) cosets of I'”, thus I'” is a subgroup of G’ N (I' x ') of
index O(M©°M) such that

(¥, 99) € (), ¥ x ). (2.15)

Indeed, one can take I’ to be the intersection of G’ N (I' x ') and (¥, ¥9)(I' x ) (¥}, ¥3)~!. One can
then write the above claim as

*

D UF (8] g ()| > MO

nel

where F’: G’ /T — C is defined by
’ r "y . 0 7. 0\ (0,..0
F ((glsgz)r )= F(s]glyIF)F(azgzyZF)

for any (g{,g,) € G’, with the inclusion (2.15) ensuring that this function is well-defined. Since F
is Lipschitz with norm 1/6 < M, and &%, 79, £9,99 are at distance O(M©) from the identity, this
function is Lipschitz with norm O (M©")), hence by total equidistribution of (g}, g,) we conclude (for
A large enough) that
Jow"
eI

Suppose that the slice H .= {g € G : (g, 1) € G’} is non-trivial. This is a non-trivial closed connected
subgroup of G; by considering the final non-trivial element of the series H, [H, G|, [[H,G],G], ...,
we conclude that H contains a non-trivial closed connected central subgroup of G. Since Z(G) is
one-dimensional, we conclude that H contains Z(G). In particular, G’ contains Z(G) x {1}.

Since F has central frequency &, we see that

> MO, (2.16)

F'((z,1)(g1,82)) = e(é - 2)F'(g1,82)

for all z € Z(G). By invariance of Haar measure, this implies that

/ F' =e(&-2) F.
Gl/r‘// Gl/r‘l/

Since ¢ is non-trivial, this implies that fc/ o F’ = 0, contradicting (2.16). Thus the slice {g € G :
(g,1) € G’} is trivial. Similarly the slice {g € G : (1, g) € G’} is trivial.

Now suppose that the projection K = {g; € G : (g1,£2) € G’ for some g, € G} is not all of G. This
is a proper closed connected subgroup of G with

logK ={X €logG : (X,Y) € logG’ for some Y € log G};

thus log K is the projection of log G’ to log G. Since log G’ is M1 -rational, log K is also. Hence there
exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm O(M© () that annihilates K,
so in particular 17(g}(n)) = 0 for all n. From (2.14) we then have

n(g1(n) = n(e1(n) +n(y1(n)).
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Since y; is M-rational, Mn(y;(n)) = 0. Thus if we replace n by Mn we have
n(gi(n)) =n(ei(n)).
Since (&1, &;) is (M, I) smooth we thus conclude that
l7 0 gillcey < mOoW

and we are in conclusion (i) of the proposition. Thus we may assume that the projection {g; € G :
(g1,82) € G’ forsome go € G} is all of G. Similarly we may assume that {g» € G : (g1,82) €
G’ for some g; € G} isall of G.

Applying Goursat’s lemma, we now conclude that G’ takes the form

G' ={(g1,¢(g1) : g1 € G}

for some group automorphism ¢: G — G. Since G’ is a O(M©1))-rational subgroup of G X G, ¢ must
be a Lie group automorphism whose associated Lie algebra automorphism log ¢: log G — log G has
coefficients that are rational of height O (M) in the Mal’cev basis. Since (g} (n), g5(n)) takes values
in G/, we have

g, (n) = ¢(g)(n))

and hence by (2.14) and some rearranging

g2(n) = &2(M)p(e1(n) ™' B(g1 (M) $(y1 (M) 72 ().
It is then routine to verify that conclusion (ii) of the proposition holds. O

As a consequence of this criterion, we can establish the following large sieve inequality for
nilsequences, which is a more quantitative variant of the one in [48, Proposition 4.11].

Proposition 2.15 (Large sieve). Let d,D > 1 and 0 < 6 < 1. Let G/I" be a filtered nilmanifold of
degree at most d, dimension D, and complexity at most 1/8, whose center Z(G) is one-dimensional. Let
gl,---,8k € Poly(Z — G), let I be an interval with |I| > 1, and let F: G |T" — C be Lipschitz of norm
at most 1/6 and having a non-zero central frequency &. Suppose that there is a function f: Z — C with
Ser lF (WP < 41| such that

*

> F)F(gi(mT)

nel

> 6|1 2.17)

foralli=1,...,K. Then at least one of the following holds:

(i) There exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm O 4. p (67 0a.n (1))

such that ||n o gillc~ 1) <a,p 67940 for >4 p §%40 DK values of i = 1,. .., K.
(ii) For>qp 694 VK2 pairs (i, j) € {1,...,K}?, there exists a factorization
8i = €ij8jVij

where g;j is (Oa,p (6=C4.0 W) ) -smooth and vij is 04.p(6~%+> W) rational.

Proof. We allow implied constants to depend on d, D. From (2.17) one can find progressions P; C [
fori =1,..., K such that

D F)1p, () F(gi(m)D)| 2 6]1]

nel
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and thus
K

D0 > Fm)1p,(mF(gi(mT)

i=1 nel

> 6K|I|

for some complex numbers 6; with |6;| < 1. By interchanging the sums and applying Cauchy—Schwarz,

we have

K 2

D6 > F)1p(mF(gi(mT)

i=1 nel

K f—
D 6ilp (W F (gi(m)T)

i=1

2
1
<352,

nel

and thus
2

K
2,0l (WF(gi(n)T)| 2 &K1

i=1

2,

nel

From the triangle inequality we have

2,

2

kS

K —
Z 0i1p,(n)F(gi(n)I')

)

> F(gi(mDF (g (n)T)

nel |i=1 1<i,j<K |n€el
and thus
D DL FmDF (D) = 8°K31l.
1<i,j<K |nel

The inner sum is O (6~2|1|), thus we have

> F(gi(mDF(g;(m)| > M|

nel
for > §OWK? pairs (i, j) € {1, ..., K} For each such pair, we apply Proposition 2.14. If conclusion

(i) of that proposition holds for > §°(1) K? pairs (i, j), then by the pigeonhole principle (noting that
there are only O (6-91) choices for n7) we obtain conclusion (i) of the current proposition. Thus we
may assume that conclusion (ii) of Proposition 2.14 holds for > 62V K? pairs (i, ) € {1,...,K}?,
thus we have

8i = &ijPij(8;)vij
for all such pairs (i, j), where g;; is (0(679M), I-smooth, Yijis 0(6~9W)-rational, and $ij:G—>G
is a Lie group automorphism whose associated Lie algebra isomorphism log ¢: logG — log G has
matrix coefficients that are all rational of height O (& ‘0(1)) inthe Mal’cev basis X1, . .., Xp oflog G. The
total number of choices for ¢, ; is O (6 ~0() 50 by the pigeonhole principle we may assume that ¢; i=¢
is independent of i, j. By Cauchy—Schwarz, we may thus find > §°V K3 triples (i,i’, j) € {1,...,K}?
such that

gi = €ij9(g;)vijs & = €ij (&) Vi)
where €;;, &y, vij, v’ are as above. This implies that
8i = Eij87 18 Vi Vij-

Pigeonholing in j and relabeling i, i’ as i, j, we obtain conclusion (ii) of the current proposition. O
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2.4. Combinatorial lemmas
The following lemma is a standard consequence of Heath-Brown’s identity.

Lemma 2.16. Let X > 2, and let L € N be fixed. We may find a collection & of (log X)°Y) functions
f: N — R, such that

Am) = > f(n)

feF
Joreach X /2 < n < 4X, and each f € F takes the form
f=a® s xgl®

for some € < 2L, where a") is supported on (N;,2N;] for some N; > 1/2, and each a¥)(n) is
either 1(n, an;1(n), (logn)l(n, an,1(n), or u(n)l(n, on,]. Moreover, N\N»---N¢ = X, and N; <
XYL for each i with a') (n) = u(n)L(n, 2n;1(n). The same statement holds for u in place of A (but

(logn)1(n;, 2n,1(n) does not appear).
Proof. Using Heath-Brown’s identity (see [37, (13.37), (13.38)] with K = L and z = (2X)'/1), we have

A(n)zZ(—l)f”(if) D, mlm)-pmp) Y logm

1<j<L mi,...,m;<(2X) VL my-ming e nj=n
and
RSN o IS YT R D S
1<j<L J M., < (2X) VL mp--mjng-nj_1=n
The conclusion follows after dyadic division of the ranges of variables. O

The following Shiu’s bound [60, Theorem 1] will be used multiple times to control sums of divisor
functions in short intervals in arithmetic progressions.

Lemma 2.17. Let A > 1 and & > 0 be fixed. Let X > H > X% and 1 < q < H'"%. Let f be a non-
negative multiplicative function such that f(p%) < A’ for every prime power p¢ and f(n) <. n¢ for
every ¢ > 0. Then, for any integer a coprime to q, we have

H f(p)
Z fn) < Wexp( Z T)

X<n<X+H p<2X
n=a (mod q) ptq

For proving Theorem 1.1(iv)—(v), we need a more flexible combinatorial decomposition of the
multiplicative functions u, dy, where we introduce an extra variable p € (P, Q] in the factorization.

Before stating this, let us quickly prove a lemma that will in particular allow us to write, for P < Q <
Xl/(loglogX)2

Lo Mpepeo p)=1 = Z u(d) + acceptable error

dl(n.ITp<p<o P)
d<X?®

in our sums. This can be seen as a simple version of the fundamental lemma of the sieve that is sufficient
to our needs.
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Lemma 2.18. Let k,r > 1 and € > 0 be fixed. Let X > H > X® and X > D > Q > P > 2. Then, for
any C > 1,

los X 2k" €
> dimn) <c H%. (2.18)
X<mn<X+H exp(C 12§ o)
plm= pe(P,Q]
m>D

Proof. Write £ = mn and note that since m > D, we have Q({) > igig. Hence the left hand side
of (2.18) is

_cleD log X)2K"e€
< Y GO <R Y OO0 <c 5 og )10gD
X<C<X+H X<C<X+H exp(Ciogg)
Q)= 125
by Lemma 2.17. -

Now we state the lemma allowing us to introduce an extra variable p € (P, Q] in the factorization.
It is a slight variant of [50, Lemma 3.1] (see also [50, Remark 3.2]).

Lemma 2.19. Let € > O and k > 1 be fixed. Let X > 3, X < H < X,andlet2 < P < Q
X1/ (loglog X)? " g P(P,Q) = [lp<p<p p- Let f be any multiplicative function satisfying | f(n)|
dy(n). Then for any sequence {wy} with |w,| < 1, we have

4k
S fmen= Y af () fmwpm+o TN, H

INIA

2 b
X<n<X+H X<prun<X+H P exp((loglog X)?)
(n,P(P,Q))>1 P<p<Q
VSX£/2

where {a,} is an explicit sequence satisfying |a,| < dp+1(r).

Proof. This is very similar to [50, Remark 3.2] but for completeness we provide the proof in a somewhat
simpler form.
By Ramaré’s identity

f(pm)wpm

S em (2.19)
w(p,0)(pm)

f(mwplmpp,0))s1 = Z

P<p<Q pm=n

where w(p, o] (m) is the number of distinct prime divisors of m on (P, Q]; this identity follows directly
since the number of representations n = pm with P < p < Q is w(p,o|(n).

We write m uniquely as m = mmy, with m| having all of its prime factors from (P, Q] and m; having
no prime factors from that interval. Summing over n and then spotting the condition (m2, P (P, Q)) =1
using Mdobius inversion, we see that

f( )
Z f(n)(’-)n = Z Z %wrmmz;}

X<n<X+H P<p<Q X/p<mmy<(X+H)/p
(n,P(P,Q))>1 p'lm=p’e(P,Q]
(m2,P(P,Q))=1

u(d) f(pmidm;)
= Z Z w—(’n)a)mldmzp . (220)
P<p<Q X/p<midmy<(X+H)/p (P01 (P
d|P(P,Q)
p'lmi=p’e(P.,0]
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Let us show that we can restrict the summation to dm; < X*/?. Writing m = dm and n = pm», we
see that by Lemma 2.18 with C = 4/¢ the contribution of dm; > X*/? is bounded by

H
< dy(m)dy(n)dy(mn) < dor(mn)? « —————.
X<ng§1X+H X<ng§]X+H exp((loglog X)?)
plm= pe(P,Q] plm= pe(P,Q]
m>X*/? m>X*/2
Furthermore, since in (2.20) all prime factors of pdm, are from (P, Q], we have
f(pmidmy) = f(p)f(dm1)f(mz2) and wpg)(pmi)=wp,gi(m)+1 (2.21)

unless there exists a prime g € (P, Q] such that g*> | pm;dm, =: £. Applying Lemma 2.17, the error
introduced by making the changes (2.21) to (2.20) is

H a1 H 4k-1
< Z Z di(0)di () < Z — (log X)*~! < —(log X)*1.
P<g<Q X<t<X+H P<g<Q
q*le
Thus (2.20) equals

p(d)f (p)f(dm1) f(m2) 10 (#
wp,p)(m1) +1 midmp exp((loglog X)?)

H
+ = (log X)*-1) .
P(Og )

X<pmidmy<X+H
p’ldm=p’e(P,Q]
P<p<Q,dm;<X*/?

and the claim follows with

u(d)
wp,oj(m) + 1’

ar = f(r)lplr = pe(P,Q] Z

r=dm,

]

The following combinatorial lemma will be used to arrange each component arising from Lemma 2.16
into a desired form, such as a type / sum, a type I/ sum, or a type I sum.

Lemma 2.20. Let a1, ..., ar be nonnegative real numbers with Zl'.;l a; = 1 and let % <6 < 1. For
any I c {1,...,k}, write ay = };c; @;. Consider the following statements:

(I) One has a; > 1 — 0 for some 1 <i < k.
(I;naj) One has a; jy 2 1 -0 forsome1 <i < j <k
(I) One has ay; jy = %(1 —0) for some 1 <i < j<k.
(II™) There exists apartition {1, ..., k} = IWJWJ' suchthat20-1 < a; < 40-2and|a;—ay| < 20-1.
(II™") There exists a partition {1,...,k} = J W J' such that |\ay — ay| < 20 — 1 (or equivalently,
aj,ay € [1—0,0]; or equivalently, ay € [1 - 6,6]).

Then the following claims hold.

(i) Suppose that @ = 5/8. Then at least one of (I) or (II™Y) holds.

(ii) Suppose that € > 3/5. Then at least one of (1), (I2), or (I1™) holds.

(iii) Suppose that 8 = 7/12. Then at least one of (I), (I;mj), or (1I¥) holds.

(iv) Suppose that k =5 and 6 = 11/20. Then at least one of(I;naj) or (1I'3) holds.
(v) Suppose that k € {3,4} and 6 > 1/2. Then (I;naj) holds.

(vi) Suppose that k =3 and 0 > 5/9 or k =2 and 6 > 1/3. Then (1) holds.
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Remark 2.21. The different conclusions (1), (I;n aj), (1), (II™3), (II™™) in Lemma 2.20 correspond to
different types of sums that behave well on intervals (X, X + H] with H much larger than X 9:

» Exponents obeying () correspond to “type I sums” which behave well for both major and minor
arc correlations. )

* Exponents obeying (I;n ¥) correspond to “type I, sums” which behave well for major arc
correlations.

» Exponents obeying (1) correspond to “type I, sums” which behave well for both major and minor
arc correlations.

+ Exponents obeying (/1™¥) correspond to “type II sums” which behave well for major arc
correlations.

» Exponents obeying (II™™) correspond to “type /I sums” which behave well for minor arc corre-
lations, or for major arc correlations when one can extract a medium-sized prime factor from the
sum.

Proof. We first handle the easy case (vi). If k = 2 and 6 > 1/3, then %(1 —0) < 1 and (1) follows

simply by taking {i, j} = {1,2}. If k =3 and 0 > %, then %(1 -0) < % and (/) follows by noting that
the sum of the two largest of the reals a1, @, @3 is necessarily at least %

Now we prove (v). If k =4 and 6 > 1/2, then by the pigeonhole principle one of a2}, @3 4} is at

least % > 1 — 6, and we obtain (I;n aj) in this case. The case k = 3 follows similarly, with some room to
spare.
In a similar spirit in case (iv), when k =5 and 6 = %, then one of the @; must be at most %; without

loss of generality as < 1. Since 1 — 6 = 5, we obtain (I;“aj) except when a(j 5}, @(3.4} < 5, which by
1

Ny =1 forces azap ey 2 1= 55— 3 = 55 Thus leq2) eyl < 55— 55 = 15 =20 - 1.
Also we have
9 9 1
=l-qr-asu>1-——-——=—=20-1
@ W2T@4= 1750720 10

and

=46 -2

| —

a5 <

and so we obtain (/™) in this case. This establishes (iv).
In the remaining cases (i)—(iii) we assume, without loss of generality, that

a1 =@y = > Q.

In case (ii) when 6 > 3/5 we obtain (/) unless &z; < 1 — 6 for each j and (/) unless ay; j; <
2(1-6) < 6 for any distinct 7, j. Butif a; ;3 € [1 — 6, 6] for some distinct 7, j, then we have (/™).
Hence we can assume that @; ; < 1 — @ for any distinct 7, j. In particular, for any j # 1 we have

ay +a; 1-6
2 2

<20-1.

Consequently there must be an index r € {3,..., k} such that a; + Z;zQ a; € [1-6,0], and hence

(11™") holds.

Let us now consider (i). Now § = 5/8 and we obtain (/) unless a; < 3/8 for every j (and in particular
we can assume that £ > 3). Note that 26— 1 = 1/4 in this case. If now a3 > 1/4,thenay, a € [1/4,3/8]
and we have (11™¥) with J = {1},J’ = {2},and [ = {3, ..., k}.

On the other hand, if a3 < 1/4, we set Jo = {1} and Jj = {2,...,r} with r > 2 the greatest integer
such that @y; < a@y,. Then necessarily |y, —a]6| < 1/4 = 20— 1. Furthermore aytay <21 < 3/4.
If also ay; + @y, > 1/2 then we have (19 with J = Jo,J" = Ji,and I = {1,...,k}\ (Jo U J)).
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Otherwise we add indices j > r + 1 one by one to Jy or J depending on whether @, < @ J; or not. We
continue this process until a, + ;€ [1/2,3/4], and we again obtain (11™¥).

Let us finally turn to (iii). Now 8 = 7/12 and 26 — 1 = 1/6. We obtain (I;naj) unless a; jy <1-6=
5/12 for any distinct i, j. In particular we can assume that @ + @, + @3 + @4 < 5/6 < 1 and thus k > 5.

If s > 1/6, then a2 3}, aq1,4) € [1/3,5/12]. Consequently 1 — a4y — 2,31 € [1/6,1/3] and we
obtain (/17™¥) with J = {1,4},J’ = {2,3},and I = {1,...,k} \ {1,2,3,4}.

On the other hand if s < 260 — 1 = 1/6, we can argue similarly to case (i): We set Jo = {1,2} and
Jo =A{3,...,r} with r > 4 the greatest integer such that @, < ay,. Then necessarily |a, — | <
1/6 =26 — 1. Furthermore «, + ay < 2a12 < 5/6. If also ay, + @y 2 2/3 then we have (11™¥) with
J =Jp and J’ = J{. Otherwise we add indices j > r + 1 one by one to Jo or J; depending on whether

@y, < ay; ornot. We continue this process until @, +ay € [2/3,5/6], and we again obtain (/I™¥). O

Remark 2.22. The following counterexamples, with & small, show that 6 in the various components of
Lemma 2.20 cannot be decreased (apart from the k = 3 case of (v)):

c0=5/8—¢,(ay,...,ar) =(1/4,1/4,1/4,1/4);
*0=3/5-¢,(a,....ax) € {(2/5,1/5,1/5,1/5),(1/5,1/5,1/5,1/5,1/5)};
e 0=T7/12-¢, (a1,...,ar) =(1/6,1/6,1/6,1/6,1/6,1/6);

* 9=11/20-¢, (a1,...,ax) = (1/5,1/5,1/5,1/5,1/5);
c0=1/2—-¢,(ay,...,ar) =(1/4,1/4,1/4,1/4);
*0=5/9-¢,(a,...,ar) =(1/3,1/3,1/3);

e 0=1/3-¢,(ay,...,ar) = (a,1 —a) forany a € (0, 1).

3. Major arc estimates

In the proof of Theorem 1.1 we shall use Theorem 4.2 below to reduce to “major arc” cases where
more-or-less F(g(n)T') = 1 (or F(g(n)T') = n'" in case of type II sums). The purpose of this section
is to establish the following estimates corresponding to the case F(g(n)[") = 1 as well as an auxiliary
result (Lemma 3.5 below) on trilinear sums in case F(g(n)T") = n'’.

Theorem 3.1 (Major arc estimate). Let X > 3 and X%+° < H < X'~¢ for some 0 < 6 < 1 and & > 0.

(i) (Huxley type estimates) Set @ = 7/12. Then, for all A > 0,

*

u(n)| <a.e v
X<1;(+H log™ X
and
' H
D (A - AFm)| <ae —
X<n<X+H log” X

(ii) Let k > 2. Set @ = 1/3 fork =2,0 =1/2 fork =3,4,0 = 11/20 for k = 5, and 0 = 7/12 for

k > 6. Then
4 H
(di(n) —df ()] <o —o + ——s
: =/1000
X<11;(+H Xex XF/
for some constant cy > 0 depending only on k.
We remark that if we replace the maximal sums | - |* here by the ordinary sums | - |, then the

60 = 7/12 case of Theorem 3.1 can also be extracted after some computation from the work of
Ramachandra [56] (see in particular Remarks 4, 5 of that paper), with a pseudopolynomial gain
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O (exp(—c(log X)'/3 /(loglog X)'/3)), while the cases k = 4,5 of Theorem 3.1(ii) follow from [23,
(4.23)]) and [27]. Here we will provide the proofs from our viewpoint. It may be possible to improve
the error terms in (i) to be pseudopolynomial in nature even for the maximal sums, if one adjusts the
approximants u*, A" to take into account the possibility of a Siegel zero, in the spirit of [61, Proposition
2.2].

For the 6 = 7/12 result, the primary obstruction arises from convolutions (1.29) with (ay, ..., an)
equal to (1/6,1/6,1/6,1/6,1/6,1/6), as this lies just outside the reach of our untwisted major arc type
I and type 11 estimates when 6 goes below 7/12 (cf., the third item of Remark 2.22). This obstruction
has long been known; see e.g., [29]. Note that this obstruction does not arise for k < 6, which explains
the fact that better exponents than 7/12 are available for d,, d3, d4, ds. The corresponding obstructions
can be found in the other items of Remark 2.22.

It would probably be possible to obtain Theorem 3.1(ii) for 6 = 131/416 ~ 0.315 when k = 2
and for 6 = 43/96 ~ 0.448 when k = 3 — corresponding to the progress in the Dirichlet divisor
problem [34, 41] — but we do not attempt to compute this here (it requires checking that the arguments
in the literature, when adapted to the Dirichlet divisor problem in an arithmetic progression, give a
polynomial dependence on the common difference of the arithmetic progression, and it also does not
directly improve the exponents in Theorem 1.1).

Let us now explain the strategy of the proof of Theorem 3.1. Let f € {u, A, di}. By adjusting the
implied constants, it suffices to show the claims with

> (fm) = fHn)| replacedby max | > (f(n) - fHn))|.
X<n<X+H a.qeN X<n(sX+C—lH)
n=a (mod g

In the cases f = u, A we take H' = X/log?®4 X and in the case f = di we take H' := X'~ 1/100k we
use the triangle inequality to write

1 1 1
— _ — -
=2, Uw=rfol<lz X f-— Y fm
X<n<X+H X<n<X+H X<n<X+H’
n=a (mod q) n=a (mod q) n=a (mod q)
(3.1)
T R R A1) i EA LI S S Sl
H’ H H’
X<n<X+H’ X<n<X+H X<n<X+H’
n=a (mod q) n=a (mod q) n=a (mod q)

Then we show that each of the three differences on the right-hand side is small. Let us next state the
required results.

To attack the second difference in (3.1), we show in Section 3.1 that Theorem 3.1 holds in long
intervals.

Proposition 3.2 (Long intervals). Let X > Hp > 2.
(i) Let A > 0 and® X /log" X < H, < X. Then

max Z un)| <a 1 H (3.2)

ut
ANy XA Hy og” X
n=a (mod q)

6Actually, thanks to Lemma 2.2(i), it would suffice to consider the case H> = X here.
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and

H
max Z (A(n) = A (n)| <4 —2—. (3.3)
G4y Xy log™ X
n=a (mod q)
(ii) Let k > 2 and X'\~% < H, < X. Then
H2
max | > (di(n) - df(n)| < Yzlogk_zX. (3.4)
aqeN | v e,

n=a (mod q)

Furthermore, using the definitions of our approximants Af(n) and d]ﬁ{(n) as type I sums, it will be
straightforward to show that the third difference on the right of (3.1) is small; in Section 3.2 we shall
show the following.

Lemma 3.3 (Long and short averages of approximant). Let X > Hy, > H; > X'/ > 2.

(i) One has

max 1 Z Af(n) - HL Z A ()| < exp(—(log X)'/19). (3.5)

a.qeN | Hy X<n<X+H, 2 X<n<X+Hs
n=a (mod q) n=a (mod q)
(ii) Let k > 2. Then
1 4 1 4 1 Hy .
max_|— Z d;(n) — — Z d;(n)| < ~i7700 + & log" " X. (3.6)
aqel\Hy o S Hy y S, X X
n=a (mod q) n=a (mod q)

Our ability to handle the first difference in (3.1) is what determines the exponent 6. Concerning the
first difference we prove the following proposition in Section 3.4.

Proposition 3.4 (Long and short averages of arithmetic function).

(i) Let X/1og®*A X > H, > H; > X"/12*%_ Then

1 1
max |- Z An) = = Z A)| <4z
@qR T v X, 2 X<n<X+Hs

n=a (mod q) n=a (mod q)

logh X

and

1
max H. Z pu(n)| <a,e
aqeNi L SRl
n=a (mod q)

log# X
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(ii) Let k > 2. Set 0 = 1/3 for k =2, 0 = 1/2 for k = 3,4, 0 = 11/20 for k = 5, and 6 = 7/12 for
k > 6. There exists ¢ > 0 such that ile_l/(IOOk) > H, > Hy > X9+°, then

1 1 1 1
max |— Z di(n) — — Z dr(n)| <e.x ~er ¥ Vo100
’ "k 000
aqeN|\Hy o Ao S, Xee o xel
n=a (mod q) n=a (mod q)

Theorem 3.1 now follows from (3.1) together with Propositions 3.4 and 3.2 and Lemma 3.3.

The case k = 2 of Proposition 3.4(ii) can be treated using classical methods on the Dirichlet divisor
problem. In k > 3 cases of Proposition 3.4(ii), we write di(n) = X.,—,...m, 1, split m; into dyadic
intervals m; ~ M; < X% and classify resulting dyadic sums using Lemma 2.20(iii). On the other hand
in case of Proposition 3.4(i) we first use Heath-Brown’s identity and then Lemma 2.20(iii) to classify
the resulting sums.

For trilinear sums satisfying (/7™¥) from Lemma 2.20 we shall deduce in Section 3.3 the following
consequence of the work of Baker, Harman and Pintz [4]. Part (ii) of the lemma will be used in handling
certain type /] sums in Section 4.

Lemma 3.5. Let 1/2 < 0 < 1 and & > 0. Let also W < X%/?% and X9+% < H) < Hy < X/W*. Let
L, M, M > 1 be such that Mj = X% and LM 1M =< X. Let a,, by,, v¢ be bounded by d2C for some
Cz>1

Assume that a,q € N, § € {11/20,7/12,3/5,5/8} and that ay, ay > 0 obey the bounds

£ &
- <20-1+— d l-a1—-ay <40 -2+ —.
1 = @ 100 " @@ 100
(i) If
£ L 1/2
max max sup Vflr/)z(fit) <<c( /’33 s (3.7
rl(a,q) x (mod W>W5|Z|SXT“II4 P 4 W
then
1 1 log@c™M x
H_ Z amlmeV,g - F Z am, bm2Vg < d3(q)gvv—l/3
1 X<mimyl<X+H, 2 X<mymyl <X+H,
mj~Mj,[’~L ijMj,€~L
mymyf=a (mod q) mymyt=a (mod q)
(ii) If
¢ L 1/2
max max sup vflr//\z/f”) <<c( /’33 R (3.8)
rl(a,q) x (mod W)ltlg%zt P w
then
1 logPcM x
‘F amlbmzvf < d3(¢])gvv—1/3
U X omimat<x+H,

mj~Mj,€~L
mymyf=a (mod q)

For sums satisfying (I;n aj) from Lemma 2.20 we shall use standard methods to deduce in Section 3.3
the following lemma.
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Lemma 3.6. Let 6 € [1/2,1) and € > 0. Let W < X®/* and let X9+% < H, < Hy < X/W*. Let
L,M,M> > 1 be such that M; = X% and LM\ M> = X. Let v, be bounded by dzc({’). Assume that
a,q € N and

ar+ay >21-6. 3.9)
Then
1 1 logPcM x
|F ve = - Z V€| < ds(tl)gw—l/6
U X<mmf<X+H, 2 X<mmpl<X+H,
mj~Xaf ijX“j
mymyl=a (mod q) mymal=a (mod q)

3.1. Proof of Proposition 3.2

The bound (3.2) follows immediately from the Siegel-Walfisz theorem (1.13) and the triangle inequality.
Before turning to the proof of (3.3), let us discuss the choice of A¥. The prime number theorem with
classical error term (see, e.g., [54, Theorem 6.9]) gives

Z A(n) = X + O(X exp(—c/log X)), (3.10)

n<X

so that if one is interested only in the correlation of A(n) with a constant function, one can select the
simple approximant 1. However, this is not sufficient even for the maximal correlation with the constant
function. There is some flexibility” in how to select the approximant, but (following [61]) we use the
Cramér—Granville model (1.1), which has the benefits of being a nonnegative model function and one
that is known to be pseudorandom (which will be helpful in Section 9).

Proof of (3.3). It suffices to show that, for any a, ¢ € N and any H, € [X/log” X, X], we have

H
D A - A < ——.
X<n<X+H, log”™ X
n=a (mod q)

We can clearly assume that ¢ < R and (a, q) = 1.

Let D = exp((log X)3/%). By the fundamental lemma of the sieve (see e.g. [37, Fundamental Lemma
6.3 with y = D,z = R, and « = 1]), there exist real numbers /l; € [-1, 1] such that, for any H > 2,
g < R, and a € N with (a, g) = 1, we have

P(R) +
Z Aﬁ(n) < W Z Ay Z 1

X<n<X+H d<D X<n<X+H
n=a(q) d|P(R) n:(;z‘(q)
1\ H
=[] (1——) > L= +0(DlogR)
P<R P d<D q
d|P(R)
(d.q)=1
H log D
- (1 +0 (exp (—&))) +0(DlogR),
v(q) log R

7For instance, a Fourier-analytic approximant Af (n) = Yq<0 %ﬂ;ﬂ(") is used in [28], where ¢4 (1) = X1 <a<g:(a,q)=1 €(an/q) denotes

the Ramanujan sum. Another option is to use a truncated convolution sum, A (n) = — Ydin,a<r #(d)logd, following e.g. [37, §19.2].
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and also by the fundamental lemma we have a lower bound of the same shape. Hence, for H > X* we
have

H
A¥(n) = —— + 0. (H exp(~(log X)'/?)), 3.11)
X<n<X+H ¢(q)
n=a(q)
so (3.3) follows by the Siegel-Walfisz theorem and the triangle inequality. O

Remark 3.7. One could improve the error term in (3.3) by adjusting the approximant A* to account for
a potential Siegel zero; see for instance [37, Theorem 5.27] or [61, Proposition 2.2]. However, we will
not do so here.

Before turning to the proof of (3.4) let us discuss the construction of the approximant di which is a
somewhat non-trivial task. The classical Dirichlet hyperbola method gives the asymptotic

Z di(n) = XPy q.q(l0g X) + 0y o (X' 1K) (3.12)
n<X
n=a (q)

for any fixed a, g, any & > 0, and some explicit polynomial P ., of degree k — 1 with coefficients
depending only on k, a, g. Better error terms are known here; see e.g., [36, Section 13].
From (3.12), the triangle inequality, and Taylor expansion one has

Xl—l/k+£ H
Z di(n) = H (Pk,a,q(log X)+ P, ,(logX)+0,, (— + —))

1-¢&
X<n<X+H H X
n=a (q)

for any £ > 0 whenever 2 < H < X.
Hence we have to choose the approximant di to also obey estimates such as

> dim=H (Pk,a,q(log X)+ P, (logX) + 0, (X + HX";‘I)) (3.13)
X<n<X+H
n=a (q)

for some ki > 0, with exactly the same choice of polynomial Py 4 4.

The delta method of Duke, Friedlander and Iwaniec [9] can be used to build an approximant of
a Fourier-analytic nature, basically by isolating the major arc components of d; see [35], [5], [55],
and [47, Proposition 4.2] for relevant calculations in this direction. However, the approximant that is
(implicitly) constructed in these papers is very complicated, and somewhat difficult to deal with for our
purposes (for instance, it is not evident whether it is non-negative).

The simpler approximant

di(n, A) = A'™* Z di-1(m)

mln
m<nA

was recently proposed by Andrade and Smith [1] for various choices of parameter 0 < A < 1.
Unfortunately the polynomial Py , 4 4(log X) associated to this approximant usually only agrees with
Py a,4(log X) to leading order (see [1, Theorem 2.1]), and so with this approximant one cannot hope to
get polynomial saving like in our Theorem 1.1(iii).

Our approximant (1.2) with P, (z) as in (1.3) can be seen as a more complicated variant of the
Andrade—Smith approximant. Note that the constraint m < R7*~2 in (1.2) is redundant, as P,, vanishes
for m > Rik_z. Note also that (by adjusting the value of cx 4 p in Theorem 1.1) one could take Ry to
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be any sufficiently small power of X, and that, for any n <« X,

PRV
(10gn—10g(n1~--ank ))
(k—j—1D!logk7~1 Ry

= 3 S ¥

m<RF2 =0 ny o <Ri<njir,. o1 SRE (3.14)
m|n e ng-1=m ’
< Y di1(m) = di(n)
m|n

. o . .
Recall we chose Ry = X1k in (1.2). The motivation for our approximant di can be seen by noting
that, sorting a factorization n = nj - - - n into terms ny,...,n; < Ry and terms nj,1,...,nx > Ri, we
get the generalized Dirichlet hyperbola identity

k=1
am=3() X N (3.15)
Jj= J ni,..., anRk Njilsenes ng—1>Ry
— " SR
nl...nk,I
The polynomials P,, () are chosen to match with the contribution from the sum over 741, ..., ng—1 as

can be seen from the proof of (3.4) that we now give.

Proof of (3.4). Tt suffices to show that, for any k > 2, any a, ¢ € N, and any H, € [X'~1/G00) X7 we
have

H2
DT k() - di(m)| < Yzlogk_zX.
X<n<X+H,
n=a (mod q)

Since di(n) = O (n®), we can clearly assume that ¢ < XoE . Using (3.15) we obtain

> i = E(f) 2 2 (ﬁwm)

X<n<X+H; a; (mod q) j=0 Toeens nj<Rr njip,..., ni—1>Ry

n=a (mod q) aj--ax=a (mod q) ni=a; (modq) X >R,
1 7k—1

n;=a; (mod q)

+0 Z Z (%+1) .

np,...,Nj<Ri  Njyl,esnk-1>Ry

X+Hyp X
>Ry >
g k= n

Let us consider the two error terms. The first error term contributes, using the inequality 1 <
X/(Rgny -+~ ng-1),

X X 3
< Z Rem s < 9% logh ' X < 72 logt=2 x
ap (mod q) ni,...,nxg-1<X I -1 k
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since g < Xﬁ, Ry = Xﬁ, and H, > X!=5% . The second error term contributes, using ny - - - ng_1 <
X /Ry and Shiu’s bound (Lemma 2.17),

2
RyH, Ry H; H _
< Z - Z di_1(n) < —2logk 2 X.
X X X
Ny, ng-1<2X X X
X X+Hy Ry Ry
R—k<n1---nk_1ﬁ Ry
Hence
Z di(n)
X<n<X+H,
n=a (mod q)
k-1
oy S oy Ly
] ni---n; n;: Ry Tl
q a; (mod q) Jj= J Ny SRy ! J njtseesnk—1>Ry Jj+ k=1 (3.16)
ay---ax=a (mod q) ni=a; (mod q) #>Rk

ni=a; (mod q)
2

H
+0|=2logh2x
x ¢

Forany B > A > 1, we have

1 1 rB1 1
> -=—/ —dt+0(z).
A<n<B n qJA t

n=a (mod q)
Applying this k — 1 — j times, we see that?®
1

Mjp] - Mg
Mjslse-sNk—1> Ry J+l k=1
X

T >Rk
npenge_
n;=a; (mod q)
1 dije---die1 | f(log X)*177t 1 (3.17)
gk=1-J _ tj”""’t<’“1>§k ST gk-1-J-1 Ry
l‘_,+1“‘tkf|_,,1...ank
10 k=-j-1 4_ .
o T TR o ((1ogX)k—f—2 1 )
¢ k=1 ¢ R
. 1 1 __L .
Since Ry = X1r, g < X%k, and Hp > X!~ %%, the error term contributes to (3.16)
k-1 i
H, 1 (log X)k=7=2 1
iy TR
4q j=0 Ajils-.-Ak (mod ¢q) I’l],...,anRk n nj q k
k-1 i 2
H» iy - (logX)k=7=2 1 -
< =) g* /(logX)J-%~—<< —zlogk 2X.
9 ‘o q*<J Ry X
j=
8To obtain the second equality we use the classical formula fx] _____ 200+ tx g SL ldx)...dxg = % for the volume of a simplex (easily

proven by induction on d and the Fubini-Tonelli theorem combined with the change of variables x; = log ti;;j fori=1,...,k—j—1).




Hence (3.16) and (3.17) give

2

X<n<X+H,
n=a (mod q)

H,
di(n) = prayi

+0

On the other hand, by definition,

2,

X<n<X+H,
n=a (mod q)

2

a; (mod q) Jj=0
ay---ax=a (mod q)

d* (n)

1]
~
|
L
—_—
S

.

Rk<nj+1 ,,,,, ni—1 SRi
ni=a; (mod q)

a; (mod q) Jj=0

ay-ar=a (mod q)

ay--ar=a (mod q)
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1 X
ny ~~~an,,::_"

55
o L n; <Ry (k=Jj—=Dny---n;

a; (modg) j

logh=/-

n;=a; (mod q)
H2
— logk=2 x
X

k-j-1__ X H k—j-2
) Z log p—— +0 ( % log X)
Nlyeney nj<Rk (k—]— 1)!logk_j_1 Rk
ni=a; (mod q)
H
M, 0(1))
qny---ng_1
k=j-1 X
IOg 'll""ljR,I::_j

2

()
j nl,..., anRk

n;=a; (mod q)

(k—j—1)!ogk /=1 Ry

2 :
ni---Ng-1
Rp<njiy,...ng-1 SR,%
n;=a; (mod q)
k-1
H, H,
+0 Z Ylos X Z +1
- (0] ny:--Nk-1
ay (mod g) j=0 ny,...,nj<Ri £ Ri<nji1,...ne-1 <R 1
k—1
+0 2 2!
ar (mod q) j=0 ny,..., nj <R Ri<fjil,e.es "k—1<R,2{

The error terms contribute

H?
2 k-2
< —lo X+
X & 1

and in the main term

1

logk_j_1 R

Ry <Nji]

2

H> R2K=D) o p2(k=1) H% loek~2 X + ax /2
— + < —=1o +
Xlog Xk 4R x 8 i

1 (1
il (
Njyl - Ng—1 q

n;=a; (mod q)

The claim follows since Ry = X oF and qg<X r

41
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3.2. Proof of Lemma 3.3

Note first that the claims are trivial unless ¢ < X 1/80 For part (ii), note that, for j = 1,2,

! :
— dy(n)
) k
H; X<n;(+l-lj
n=a (mod q)
_ L 3 3 (PullogX) +0 (di-r(m) H, 1
H; " I X log x
b,c (mod q) <X% X/m<n<(X+Hj)/m
bc=a (mod q) m;"b* (mod q) n=c (mod q)
1 Z Z ( H; H;
= — P(log X) + O dp—1(m) — +0(1)
H; be fomd ) 4 XlogX mq

bc=a (mod q) mz";y (

_ P, (log X) Hjlog" X + aX'”
b,c (mod q) m<X% " ) Hj
be=a (mod @) 2p™(mod ¢)

The claim follows by subtracting this for j = 1,2. Part (i) follows directly from (3.11) applied with
H € {Hy, H,} and the triangle inequality.

3.3. Proof of Lemmas 3.5 and 3.6
We first make a standard reduction to studying averages of Dirichlet polynomials.

Lemma 38. Let W < XY Ler |a,| < dy(n)€ for some C > 1 and let A(s,y) =
2ie1X<n<eyx Anx (n)n™* for some fixed cy > ¢y > 0. Let X2 <H, <H, <X/W*and (a,q) = 1.

(i) One has

1 1 logPcM x
S N ) Y Y.
U X<n<x+H, 2 X<n<X+H,
n=a (mod q) n=a (mod q)
log X 1 X/H
JloeX e L X/t / A + it )| dr.
xv HL]STSXTV‘I/Z‘ 90(6]) ¥ (mod ¢) T W<|t|<T
(ii) One has
1 logOC(l) X
’F an| < ———
I x<n<x+H, W
n=a (mod q)
log X 1 X/H,

max AL +it, y)| dt.
172 / 27
X1/ HLISTSXT“I’“ v(q) v (mod q) [t|<T
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Proof. Let us first consider part (i). We begin by using the orthogonality of characters and Perron’s
formula (see e.g. [54, Corollary 5.3]) to get that, for j = 1, 2,

xwh . .
1 1 e (X +H.)l/2+ll _ X1/2+tt
7P Z W= SH § (a)/ W’ AL +it, x) — dt
7 X<n<X+H; PR (rod q) H; Ztu

n=a (mod q)

log% ™M x
w4 '

The “main term” comes from (only x( contributes to actual main terms)
(X+Hj)l/2+it _ Xl/2+it

| w
Y AL +ir, dt
w(q)H; Z x(a) [W (z+itx) I+it

x (mod q)

2
]—WlogOC(l) X1.

1 w ,
=— Y(a AL +it, VXV 4+ 0
= W )[W (L +it.x)

x (mod g)

The error term is O(logOC(l) X /W?) while the main term is independent of ;. Hence

1 1 log@c M x
|H_ Z anp — F Z [FARSS gT
U x<n<x+H, 2 X<n=X+H,
n=a (mod q) n=a (mod q)
' (X+H')1/2+it _ X1/2+it
+Z ( ) Z / XW4 |A(2 +lt,/\/)’ ! — dt
w\q); v (mod q) W<t < 5 +it

| (X+Hj)l/2+i!_xl/2+it

Since | < min{HjX_l/z, XY2/(1 +|t])}, the second line contributes

T/2+it
Zzl : Z -
J .
< —_— |A(5 +it, y)|dt
. 12/ 2
Se@H; Ld XY Jwsisg
2 12
1 X
+ § — E / |A(2+ll )()| dt.
= o(q)H; v (mod q) —<\t|< V: + |t

Splitting the second integral dyadically, we see that this is

2
log X 1 X/H;
<« 082 max = —— § /’/ |A(L +it, x)] ar.
T Jws<p<t

X1/2 j:1 HLJ,STSXTV‘;A‘ ‘P(Q)
Since Hy > Hji, the contribution of the part with j = 1 is larger than the contribution of the part with
J = 2. Hence part (i) follows.
Part (ii) follows similarly, except there is no need to handle a main term separately. m}

x (mod q)

Proof of Lemma 3.5. By Shiu’s bound (Lemma 2.17) we can clearly assume that g < W'/2 < X&/400,

Let us consider, for j = 1,2,
1

o Z Am b, Vve.
J X<mymyl <X+H;
mympyl=a (mod q)
mj~Mj,€~L
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We first split the sums according tor, = (my,q), rn = (mz,q/rl) and r3 = (£, q/(r1rz)), writing
mj = r,mj and ¢ = r3{’. Then m{m}€'r\ror3 = a (mod ——rryr3) and necessarily riror3 = (a, q).
We have

rlr2r3

1
o Z Ay b, Ve
J X<mymyl<X+H;
mimyt=a (mod q)

mj~Mj,t’~L
1
= Z H_ Z am’lrl bmérzvé”ry
rirr3=(a,q) X/ (rirars)<mimy ' <(X+Hj)/(r1r2r3)

m m2[,7r1r2)3 ( mod rlrzrg)
(my.q/r)=(m}.q/(nr2))=(¢'.q/(rryrs))=1
4~Mj/rj '~L/r3

Part (i) follows from Lemma 3.8 (with X/(a, q), H;/(a,q), q/(a,q), and a/(a, q) in place of X, H;,
g, and a) if, forany T € [X/H,, XW*/H,] and any ryr,r3 = (a, ¢) and any y (mod ¢/(a, q)), one has

amtr x (M) 3 bumr, x (M) D verx ()

/ dt
1/2+i 1/2+i /241
wsltlst mi~M/[r m,l et mi~Ma[r) m;/ . '~L[r3 e
(m1,q/r)=1 (m}.q/(rir2))=1 (€ .q/(rirar3))=1
logoc(l) X T x \'/2
<
wis  X/H, ((a,q))

But, using the assumption (3.7), this follows from a slight variant of [4, Lemma 9] with g = 1 in cases
0 € {7/12,3/5,5/8} and with g = 2 in case 6 = 11/20 (alternatively see [24, Lemma 7.3]). The idea in
the proofs of these lemmas is to first split the integral to level sets according to the absolute values of
the three Dirichlet polynomials appearing, and then to apply appropriate mean and large value results
individually for the three Dirichlet polynomials to obtain upper bounds for the sizes of the level sets.
Combining these upper bounds using case-by-case study and Holder’s inequality leads to the lemmas.
Part (ii) follows similarly. m|

In fact, one can establish Lemma 3.5 for § € [7/12,5/8] by using [4, Lemma 9] with g = 1, and for
€ [11/20,9/16] by using [4, Lemma 9] with g = 2 (see [24, end of Section 7.2]), but we shall not
need this more general result.

Proof of Lemma 3.6. By Shiu’s bound (Lemma 2.17) we can assume that ¢ < W'/, Notice first that if
for either i = 1 ori = 2, we have 6 + € — (1 — @;) > &, then we can obtain the claim by simply moving
the sum over m; inside. Hence we can assume that aj,ay < 1 — 6.

Arguing as in proof of Lemma 3.5 and doing a dyadic splitting it suffices to show that, for any
T € [W,XW*/H,] and any riryr3 = (a, q),

1 X (my) X (m2) X(O)ver, dt
90( q Z l/2+lt Z 1/2+it Z [l/2+it
(a’q) x (mod (m)) m1~M1/r1 m ma~Myfry My O~Lfrs
! (m1,q/r1)=1 (ma,q/(r1r2))=1 (€,q/(rir2rs3))=1
(3.18)

log®™ x { T }( X )‘/2
< max o1 .
wi/e X/H, (a,9)
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By the fourth moment estimate for Dirichlet L-functions we have (see [24, Lemma 10.11]), for any
M,T >2andd | (a,q),

P ol

2T
dt < Z /

x (mod %)

A |5, 2

(m.q /d) 1

(3T+ = )1og0(1>(MT)

Hence, using also Holder and the mean value theorem (see e.g. [37, Theorem 9.12 with k = g and
Q = 1)), the left-hand side of (3.18) is

2ap\ 1/4 X2 1/4 xl-a-a 1/2
) (o) )

< 10g°M X | ¢*T +
g q 73 73 4

2-m/2  yl/2-am/2  yl/2
<<q10g0(1)X(T+T]/2X1/2“‘/2“2/2+X“1/2+X"2/2+X - X A S

T1/2 T1/2 + T3/2

One can see that this is always at most the right-hand side of (3.18) by considering each term separately
— depending on the term, the worst case is either T = W or T = X /H,. )

3.4. Proof of Proposition 3.4

Let us first show the k£ = 2 case of Proposition 3.4(ii). It follows from classical arguments leading to the
exponent 1/3 + & in the Dirichlet divisor problem (see e.g. [62, Section 1.6.4]). For completeness, we
provide the proof here. By a trivial bound we can assume that ¢ < X /4.

First note that

1 2 1
J X<n<X+H; J X<mn<X+H; I me (X1, (X+H;)112] X[m<n<(X+H;)[m

n=a (mod q) m<X'/? mn=a (mod q)
mn=a (mod q)

The error term contributes
1 H; H; H; 1
< — |=L+1 —L 1< L+ —.
Hj \x1/2 X1/2 X " H
Hence it suffices to show that, for any M € [1/2, X'/?], we have

1 1
o 1= > 1+0(
U X <mn<X+H, 2 X<mn<X+H>

m~M m~M
mn=a (mod q) mn=a (mod q)

Xs/S)
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Now, for j = 1,2,

JNEID YD Y (1D YARTID V)
X<mn<X+H; 0<b,c<q m~M X+H 13,13%

I<n<
~M b d g) m=b (mod q) Sns =y .
mn=a. (mod g) csa (med g) n=c (mod q) n=c (mod q)

-2, & Sl
-2, LS al)-GRdl)

be=a (mod g) m=b (mod q)
be=a (mod g) m=b (mod q)

Hence it suffices to show that, for j = 1,2 and ¢ € {X/q,(X + H})/q},

1 H;
5 3 (E_{é_ﬁ})zo( 8]/5)- (3.19)
0<b,c<q m~M m 4 X
be=a (mod g) m=b (mod q)

The left-hand side is trivially O(gM) = O(X#/*M) and so (3.19) is immediate in case M < H;/X*/?,
and so we can concentrate on showing (3.19) for j and M for which M > H; /X &/2,
For any K > 1 we have the Fourier expansion (see e.g. [62, Section 1.6.4])

% -{y} = Z vie(ky) +O(1/K) with vy < min{1/k, K/k*}.
k#0

Taking K; = MX*®/?/H; (which is > 1) and writing m = b + rq, it suffices to show that, for j = 1,2
and & € {X/q,(X+Hj)/q},

e(k&/(b+rq))|=O0(X"H;/q%.

(1 mMx??/H;
LT e
|k|>0

} (M-b)/q<r<(2M-b)/q

The second derivative of the phase has size < kX¢q/M?3, so that by van der Corput’s exponential sum
bound (see e.g. [62, Theorem 5 in Section 1.6.3] or [37, Corollary 8.13]), the left-hand side is

(ke )

kXq 12 M3 \12
() 5 lew)

<

0<|k|<MX*?/H;
MX*®2/H;

+ 2

|k|>MX#/2/H;

X1/2+8/4 M3/2
< + .
H}/qu/z ql/2X1/2

This is < X~/2H; /¢ since Hy > Hy > X'/3*¢, g < X#/* and M < X'/2. This establishes the k = 2
case of Proposition 3.4.
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The cases k = 3, 4 of Proposition 3.4(ii) follow from dyadic splitting, Lemma 2.20(v), and Lemma 3.6
with W = min{X ﬁ, X#/*}, so we can concentrate on Proposition 3.4(i) and cases k > 5 of Proposi-
tion 3.4(ii). To apply Lemma 3.5 we need parts (i) and (ii) of the following lemma (part (iii) will be
used in the proof of Lemma 4.5 below):

Lemma 3.9 (Dirichlet polynomial bounds). Let 0 < Ty < X and a € (0, 1].
(i) There exists § = 6(«) such that, for any character x of modulus g < X*/* and any L € [X?, X],

log X

<o L'2PX 0412
¢ (To + 1)1/2

x ()
sup sup L
To<|f|<X Ic[L,2L] Z} {172+

124 or an >0, an < r L X, and any character o] moaulus < lo , one nas
(ii) Forany A > 0, any 1 X, and any ch x of modulus q < log* X, one h

Xa/2
log” X

Z u(ré)x(£)

sup - sup £1/2+it

[t]<X Ic[X@,2X]

<a,A

(iii) Let & > 0. For any A > 0, any P € [exp((log X)?/**#), X?] and any character y of modulus
g <log" X,

P1/2 P]/Z

sup sup T_O + log—AX

To<|t|<X IC[P,2P]

x(p)
Z oir| oA

pel p

Proof. Parts (ii) and (iii) follow by standard contour integration arguments, using the known zero-free
region for L(s, y) (see e.g., [44, Lemma 2] for a similar argument without the character).
Let us concentrate on part (i). By partial summation, splitting into residue classes a (mod ¢) and

writing £ = mq + a, it suffices to show that, for any a € {1,..., ¢} and |t| € [T, X], we have
t X0 log X
e (— log(mq + a)) R (3.20)
el 2r q q(T0+1) /

q
The vth derivative of the phase g(m) = 5 log(mgq + a) satisfies
mV
g (m)l— =, It|
v!

for any v > 1. We apply the Weyl bound in the form of [37, Theorem 8.4]. When Ty < |t| < L/q, we
use [37, Theorem 8.4] with k = 2, obtaining

t It] 1\'? L L2 Llog X
—1 + )<< + — —1 X < —1 X+ — .
Zfe(z’f oetma+0)) < Lz ) e < Cptoexe 2R
me-=
q

Recalling that ¢ < L'/?, the bound (3.20) follows with 6 = /5.
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On the other hand, when L/q < |t| < X, we use [37, Theorem 8.4] with k = L% + 2], obtaining

t 2] 1 \F L
e(—log(mq+a)) < (—+—) —log X
Z‘ 2n “Nw/gF q
meEI
4
X 1 \eF L (3.21)
La (—(LI/Z)k + _LI/Z) 5logX
1— 2
L~ K2k
<q log X
and (3.20) follows. O

Let us now get back to the proof of Proposition 3.4(ii). Recall that we can assume that £k > 5.
The claim follows trivially unless ¢ < min{X?, X*/°00} We can request that ¢; < z55. By dyadic
splitting it suffices to show that, for any N; € [1/2, X] with Ny - -- Ny =< X, one has

1 1 1 1
ma)FN F 1- F 1| < W + W (3.22)
<;’3(€2000k) U X<n) - mp<X+H, 2 Xen - mp<X+Hs
q= ni~N; ni~N;
ny---ng=a (mod q) ny---ng=a (mod q)
We can find a1, ...,a, € [0,1] with @] +--- + @ = 1 such that N; < X% foreachi=1,...,k.

In case k = 5 and 6 = 11/20 we start by applying Lemma 2.20(iv). In case (I;n aj) holds we

apply Lemma 3.6 with W = min{X*/*, X8} to obtain (3.22). In case (/I™¥) holds we wish to apply
Lemma 3.5. In order to do this, we need to show that (3.7) holds with

= > (3.23)

m=[l;c; mi
m,wNi

and W = min{X¢/2%0, x20¢x} for any L = [];c; N;. Now there exists iy € I such that aj, =2 (20-1)/k =

ﬁ. We have (using d(r)d|;-1(m) < W1/100)

Z verx ()] _ Z Z dygj-1(m) Z x(mjy)

fl/2+it - ml/z 1/2+it

¢~L[r r=rry Lo opm< 2L mi, ~X"0 /r iy
27, x 10 X 0 0

mj,~L/(mr)
1/2
L 1 m
< | =5 W/100 max ;7 Mmax Z # .
X %o r=rir rl/ y~X”"0/r1 o m [2+it
2 X0 /ri<m<y

Hence (3.7) follows for (3.23) if we show that

X (m) (X% [r)'/2
/2 W1/3+1/100 °
X0 /r<m<y

max sup max (3.24)
rirzlg ~X0 /r)

W<t < XWh Y
x (mod T"’q)) SUE H)
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Note that X /ry > XTt~2¢ > X2t We apply Lemma 3.9(i) with Ty = W. Taking cx < 6(55)/30
we obtain that the left-hand-side of (3.24) is

X(Yi() 1/2 IOgX (de()/rl)l/z
< " Wiz < W1/3+1/100

r

Hence (3.22) follows from Lemma 3.5. The case k > 6 and 8 = 7/12 follows similarly using
Lemma 2.20(iii).
A similar method allows us to establish Proposition 3.4(i). We start by applying Heath-Brown’s
identity (Lemma 2.16) with L = [2/g], writing N; = X% . Then we apply Lemma 2.20(iii) to these «;.
In case (I71™¥) holds we argue as above but with W = log” X for some large A > 0. On the other
hand, in case @;, > 1 — 6 — &/2 for some iy, we write M = NL'() H?:l N; and move the summation over

ni, ~ X% inside. Then it suffices to show in this case that, for any B > 1,

max Z de—1(m) i Z an,, = i Z an,, !

L —
B
a,qeN H log X
M<m<2tM 1 X/m<n; <(X+H)/m 2 X/m<ni0§(X+H2)/m ( g )
n{ONN{O ni0~N,'0
njym=a (mod q) njym=a (mod q)

for an,, = (N, 2n;,1(ny) and an, = 1w 2, 1(ni,) log njg. But here Hy /M > Hy /M > X2, 50 the
claim is easy to establish.

In the remaining case (Ig1 ¥) holds and «;, @ ; > &£/2. Thus the corresponding coefficients from Heath-
Brown’s identity are either 1y, 2n,1(n) or (logn)1(n;, 2n,1(n) and the claim follows from Lemma 3.6
(and partial summation if needed).

3.5. Major arc estimates with restricted prime factorization

When proving Theorem 1.1(iv)—(v) we need the following quick consequence of Theorem 3.1. One
could obtain stronger results, but this is sufficient for our needs.

Corollary 3.10. Let X > 3 and X'%*¢ < H < X'~¢ for some & > 0. Let 2 < P < Q < X'/(loglogX)*
and write P(P,Q) = [1p<p<o P-

(i) Forall A >0,

*

H H(log X)*

Z Lin,p(P.0))>11(n) log” X P

X<n<X+H

<A e

(ii) Let k > 2. Forall A > 0,

*

H H(log X)*k

<a,
“ log? X P

D1 lpr.on1(di(n) - di(n)
X<n<X+H
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Proof. Let us first show (i). By Lemma 2.19 it suffices to show that

*

arp(n)| <ae —5—
X<prn<X+H log”™ X
P<p<Q
r<Xxe=/?

whenever |a,| < da(r). By the triangle inequality and Theorem 3.1 the left-hand side is

*

< 2 D @ > u(n)

P<p<Qr<xel? X/(pr)<n<(X+H)/(pr)

H H
<Ae dr(r) < )
P;Qr;ﬂ pr(log X)4%3 — logh X

Let us now turn to (ii). By Theorem 3.1 and the triangle inequality it suffices to show the claim with
L(n,p(P,0))>1 Teplaced by 1(,, p(p,0))=1- Hence by Mobius inversion we need to show that

*

H
p(d)(di(n) = d (m))| <a e (3.25)

X<n<X+H d|(n,P(P,Q))

Write D := min{X#/2000 x<x/2} Since di(m) < di(m) (see (3.14)), the contribution of d > D to the
left-hand side of (3.25) is by Lemma 2.18 at most

H
< Z di(dn) <a —
X<dn<X+H log” X
d>D
d|P(P.Q)
On the other hand, the contribution of d < D to the left-hand side of (3.25) is by the triangle inequality
and Theorem 3.1

Z :u(d)lnEO (mod d) (dk (n) - d]ri (”))
X<n<X+H d<D
d|P(P,Q)

*

H

§ H
< Z Z (di(n) —d; (n))| <z X2/2000 * Y2
d=D |X<n=X+H

4. Reduction to type /, type /], and type I, estimates

To complement the major arc estimates in Theorem 3.1, we will establish later in the paper some “inverse
theorems” that provide discorrelation between an arithmetic function f and a nilsequence F(g(n)T")

assuming that f is of® “type I”, “type 11", or “type I5”, and the nilsequence is “minor arc” in a suitable
sense. To make this precise, we give some definitions:

9Informally, we use type I} to refer to expressions resembling a * dj for some arithmetic function a supported on a relatively short range, with
the classical type I sums corresponding to the case k = 1, and type /1 sums to refer to convolutions « * 8 where both @ and 3 are supported away
from 1.
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Definition 4.1 (Type I, I1, I sums). Let0 < § < 1 and Aj, A7,, AT

I II’A’Z 2 1.

(1) (Type I sum) A (0, Ay) type I sum is an arithmetic function of the form f = a * 8, where « is
supported in [1, A;], and one has the bounds

1
Dlam)? < <A 4.1)
)
n<A
and
1
IBllTvang) < 3 4.2)

forallA > 1landsome 1 < g < %.

(ii) (Type I1 sum) A (6, A}, A},) type 11 sum is an arithmetic function of the form f = a * 8, where

a is supported on [AI‘I, A;’I] , and one has the bound (4.1) and the bounds

DB < %B and > |B(n)I* < %B 4.3)

n<B n<B

for all A, B > 1. (The type 11 sums become vacuous if A}, > A7,.)

(iii) (Type I sum) A (8, Ap,) type I sum is an arithmetic function of the form f = @ * 8 * B2, where
«a is supported on [1, A;, ] and obeys the bound (4.1) for all A > 1, and 4, 8> obey the bound (4.2)
for some 1 < g < 15.

‘We now state the inverse theorems we will establish here.

Theorem 4.2 (Inverse theorems). Let d,D > 1,2 < H < X,0< § < @, let G/T" be a filtered

nilmanifold of degree at most d, dimension at most D, and complexity at most 1/6. Let F: G/T' —» C
be Lipschitz of norm at most 1/6 and mean zero. Let f: N — C be an arithmetic function such that

3k

> fF(g(mD)| = 6H. (4.4)

X<n<X+H
for some polynomial map g: Z — G.
(i) (Type I inverse theorem) If f is a (6, A) type I sum for some A > 1, then either

H <4p 5—0d.D(1)AI

or else there exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm
04.p (67940 M)y such that

7 0 gllcw(x x+b] <a.p 6 04P M),

(ii) (Type 11 inverse theorem, non-abelian case) If f is a (6, Aj;, A},) type II sum for some A}, >
A, =21,Gis non-abelian with one-dimensional center, and F oscillates with a non-zero central
frequency & of Lipschitz norm at most 1/6, then either

H <4.p 6 %2 max (AT, X /A7)

or else there exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm
04.p (67940 M)y such that

7 0 gllcw(x x+0] <a.p 6042, 4.5)
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(iii) (Type 11 inverse theorem, abelian case) If f is a (6, Ay, A},) type 11 sum for some A}, > A;; > 1

and F(g(n)T') = e(P(n)) for some polynomial P: Z — R of degree at most d, then either
H <4 6% max(A},, X/ A}
or else there exists a real number T <4 594 (X /H)*" such that

le(P(m)n™ T llry((x.xem10z:q) <a 679"
Jorsome 1l < g <4 §=0a(l)
(iv) (Type I, inverse theorem) If f is a (0, Ar,) type I sum for some Ay, > 1, then either
2 2

H <qp 6 0erWx1BATR (4.6)

or else there exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm
Od,D(é’OdvD(')) such that
7 0 gllcsx.x+m) <a,p 6 0P,
In this section we show how Theorem 4.2, when combined with the major arc estimates in
Theorem 3.1, gives Theorem 1.1.

4.1. Combinatorial decompositions

We start by describing the combinatorial decompositions that allow us to reduce sums involving u, A, di
to type I, type 11, and type I, sums. Lemma 4.3 will be used to prove (1.5) and (1.6), Lemma 4.4 will
be used to prove (1.7), and Lemma 4.5 will be used to prove (1.8) and (1.9).

The model function A# is not quite a type I sum, but we can approximate it well by the type I sum™

P(R)
Ay = =L § d). 4.
1 ¢(P(R) 44, #a @7
d|(n,P(R))

Indeed by (1.1), Mobius inversion and Lemma 2.18 we have

P(R
Z AR (n) — AF(n)] < % 1 < Hexp(—(log X)'/29). (4.8)
X<n<X+H 90( ( )) X<dn<X+H
d>Xx°12
d[P(R)

In practice, this bound allows us to substitute A¥ with the type I sum Ag with negligible cost.

Lemma 4.3 (Combinatorial decompositions of u, A, and Ag). Let X9*% < H < X for 0 = 5/8 and

some fixed € > 0. For each g € {u, A, A?}, we may find a collection F of O((log X)°WV) functions
f: N — R such that

g =" f(n

feF
foreach X /2 < n < 4X, and each component | € F satisfies one of the following:

(i) fisa(log®WM X, 0(X9)) type I sum;

90ne could alternatively use a type I approximant coming from the S-sieve, using the fundamental lemma of the sieve (see e.g. [37, Lemma

6.3]) but the simper approximant Ai; is sufficient for us.
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(ii) fisa (logfo(l) X,0(xB9=D12)) type I, sum.
(iii) fisa (log ®WM X, A7, AT e 11 sum for some X179 <« A7, < A*, < X9, and it obeys the
g 1 Ar) Hp 11 11 Y
bound

*

fmn'T| <4 Hlog™ X (4.9)

X<n<X+H

sup
(X/H) (log X)304<|T|<X4

for all sufficiently large A > 1.

Lemma 4.4 (Combinatorial decompositions of dj and di). Letk > 2. Let X9 < H < X for 6 = 6,
and some fixed € > 0, where 6, = 1/3, 83 =5/9, and 6y = 5/8 for k > 4. For each g € {dk,dﬁ}, we
may find a collection F of O((log X)°V) functions f: N — R such that

g = > fn)

feF

Joreach X[2 < n < 4X, and each component [ € F satisfies one of the following:

(i) fisa (log_o(l) X,0(X?)) type I sum;
(ii) fisa (log=®M x,0(xB-D/2)) type I, sum.
(iii) fisa (log™®YV X, A7, At)) type II sum for some X'~¢ < A, <A}, < X? and it obeys the

1211
bound
G

X<n<X+H

*

sup <ax HX™C (4.10)

(X/H)X%*<|T|<XA

forall A > 0, where ¢ = ci s > 0 is a sufficiently small constant.

Lemma 4.5 (Flexible combinatorial decompositions of , dy, and di). Let X33+ < H < X for some
fixed € > 0, let exp((logx)*/3*¢) < P < Q < X1/(0glogX)? " gl yyrite P(P,Q) =[lp<p<op- We can
find a collection F of functions, where |F| = O((log X)°M), such that for any sequence {wy} with
lwn| <1,

(Hlog4X H

2, lopwopsmmen= ), ) fe,+0 (= " exp((loglog X)) )

X<n<X+H feF X<n<X+H

Moreover, each component [ € F satisfies one of the following:

(i) fisa (log=@®WM x, X3/5+£/19) type I sum;
(ii) fisa (log=®WM x, X2/5+/10) type I, sum.
(iii) fisa (log_o(l) X, X?/5-¢/10 x3/5+£/10y type [T sum and it obeys the bound

*

F(mn'T| <4 Hlog™* X 4.11)

X<n<X+H

sup
(X/H)(log X)20A<|T|<XA

for all sufficiently large A > 0.

Similarly, for fixed k > 2 we can find a collection F of functions, where || = O((log X)°M)), such
that for any sequence {wy} with |wy,| < 1,

Z di(Mwul(n,p(P,0))>1 = Z Z f(Mw, +0

(Hlog4k X H
X<n<X+H feF X<n<X+H

+ .
P exp((loglog X)?)
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Moreover, each component f € F is one of (i), (ii), or (iii) above, and a similar decomposition holds
also with di in place of dy.

We will prove Lemmas 4.3, 4.4 and 4.5 by first decomposing the relevant functions into certain
Dirichlet convolutions (using Lemma 2.16 in the proof of Lemma 4.3 and Lemma 2.19 in the proof of
Lemma 4.5). We then use Lemma 2.20 to arrange each convolution into either type I, type 11, or type I,
sums. In the case of type /1 sums, Lemma 2.20 also allows us to arrange them into a triple convolution
for which Lemma 3.5 is applicable.

Remark 4.6. Let us briefly discuss the type I conditions such as (4.9), concentrating on the case of
the von Mangoldt function.

One may observe from the proof of Theorem 1.1(ii) below that if our major arc estimate
(Theorem 3.1(i)) held, for any 7 < X°W, with (A(n) — A¥(n))n'T in place of A(n) — Af(n), we
could prove Theorem 1.1(ii) without the need to impose in Lemma 4.3 the condition (4.9) concerning
type /1 sums.

Unfortunately, with current knowledge, one cannot obtain such a twisted version of Theorem 3.1, at
least not in the whole range X”/1>*# < H < X'~¢. However, inserting special cases of our type I and
type I, estimates into Section 3, it would be possible to obtain such a twisted variant in the relevant range
X583+ < H < X'=% If we did this, we would not need to impose the condition (4.9). However, we
found it more natural to work out the major arc estimates first using existing methods without needing
to appeal to the more involved I, case.

Proof of Lemma 4.3. The function Ag is clearly a (log=?™" X, 0(X?)) type I sum by definition (4.7).
For A and p, we apply Lemma 2.16 with L = 10. Each component f € ¥ takes the form

FzaWuoxqg® 4.12)

for some £ < 20, where each a'?) is supported on (N;, 2N;] for some N; > 1/2, and each a'?) (n) is either
L, an;1 (), (logn) 1, 2w, 1 (1), or u(n) 1w, 2w, (n). Moreover, NN, - -- N < X, and N; < X110 for
each i with ¢ (n) = u(m 1y, 2n,1(n).

We can find a1, ...,a, € [0, 1] with Zle a; = 1, such that N; < X% for each i. If a; > 1/10 for
some i, then a'?) (n) is either 1(y, 2,1 (n) or (logn)1(n, 2n,](n), and hence [la'? ||ty < log X.

Since 6 = 5/8 > 3/5, we may apply Lemma 2.20(i), (ii) to conclude that either (/) holds, or (1)
holds, or both (/7™") and (17™¥) hold.

First consider the case (/) holds, i.e. @; > 1 — 6 for some i. Since e; > 1/10, ||a? Itvay < logX,
and (4.12) is a (log~ 2" X, 0(X?)) type I sum of the form a * 8 with 8 = ) and @ = aV) - %
a0 g gD 4 oy g0

Henceforth we may assume that @; < 1 — 6 for each i. Next consider the case (/) holds. Then
o +aj > %(1 - 6) for some i < j. Since @;,a; < 1 - 6, this implies that ¢;,a; > 1/10 and thus
la® llrvan, laY lrvan < log X. Hence (4.12) is a (log™ ) X, 0(X39=D72)) type I, sum of the
form f = a * B * B2, with 81 = a'D, By = /).

Finally consider the case when both (17™™) and (/1™¥) hold. Let {1, ..., £} = J & J’ be the partition
from (11™™), so that ay, @y € [1-6,0]. Then (4.12) is a (log_o(l) X, A, A}“I) type 11 sum of the
form f = a * B, where a (resp. f) is the convolution of those a®) with i € J (resp. i € J'), and
X' <« Ay, < AT, < X°.

It remains to establish the bound (4.9). For any subinterval (X, X; + H1] C (X, X + H], any residue
class a (mod q), any fixed A > 0, and any (X/H)(log X)°°4 < |T| < X4, we need to show that

Z f(n)niT’ <4 Hlog™* X.
X1<n<X;+H;
n=a (mod q)



Forum of Mathematics, Pi 55

We may assume that A is sufficiently large, H; > H(log X) >4 and ¢ < (log X)**. Letnow {1,...,(} =
1w J @ J be the partition from (//™¥), so that

260-1<a;<40-2, |ay—ay|<20-1.

Let {ay,, }, {b;,,}, {v}} be the convolution of those a') withi € J,i € J',i € I, respectively. Note
that they are supported on m;| = de 7omy < Xla ToE=xX 1“’ , respectively. Thus, after dyadic division of
the ranges of my, my, €, we need to show that

4 4 ’ -
Z am]mllTbmzm;vaf’T < Hlog™* X
Xi<mimyl<X|+H,
my~My,my~M;,0~L
mymyl=a (mod q)

for My =< X[, M> < Xl“", L = X{". In view of Lemma 3.5(ii) applied with W = (log X)'194 and v, =
vz,ﬁ"T, it suffices to verify the hypothesis (3.8). There exists ip € I such that @;, > (26 — 1)/20 = 1/80.
Now (3.8) follows if we show that

max max sup
rl(a,q) x (mod ﬁ) X| (log X)40A
H

$ Oy

m1/2+i(t-T) A (log X)104

|t]< m=Xx"0 /r

Since a™) is either 1, log, or u on its support, this follows from Lemma 3.9 applied with Ty =
(log X)*»4.

Proof of Lemma 4.4. The function di is clearly a (log_o(l) X, 0(X?)) type I sum by definition (1.2).
On the other hand d can be decomposed into a sum of log® X terms, each of which takes the form

F=Tvang * - * Lo ang

for some N; > 1/2 with N|N, - -+ N < X. The k > 4 case of the lemma then follows in a similar way
as Lemma 4.3, with the only difference being that Lemma 3.5 is now applied with W = X !¢ instead of
a power of log X.

In the case k = 2 and 6 = 1/3, f is clearly a (log_o(l) X, 1) type I, sum. In the case k = 3 and
6 = 5/9, at least one of the N;’s (say N3) is < X'/3. Hence f is a (log"?!) X, 0(X'/3)) type I, sum
of the form f = @ * By * B2, with @ = 1(n; 2ny] and B = 1 (v, 2n;1(n) for j = 1,2. O

Proof of Lemma 4.5. Let us first outline the proof for u. We first apply Lemma 2.19 and then Heath-
Brown’s identity (Lemma 2.16) with L = 10 to u(n) on the right-hand side; note that we now have extra
flexibility with the p variable. We obtain a collection of functions 7, where each f € ¥ takes the form

F=a® s q s iq®
for some ¢ < 21, where each a‘® is supported on (N;, 2N;] for some N; > 1/2, with
P/2<Ng<Q, Ny <X NoNi--- N < X.

(Here a® comes from the p variable, a!) comes from the r variable, and a® # - - - * a(©) comes from
applying Heath-Brown’s identity to u(n).) Moreover, a® (n) = 1, prime L(Nvg,2v, 1 (), aV is divisor-
bounded, and for each i > 2, a'?) (n) is either L, 2n; () or u(n) 1w, on; (1), and N; < X190 for each
i with a® = u(m 1y, 2n,1(n).

Wecanfind ey, ..., a € [0, 1] with 32, @; = 1,suchthat X%~/ < N; < X% foreach 1 <i < (.

We may apply Lemma 2.20(ii) to conclude that either (1) holds, or (1) holds, or (/1™™) holds.
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As in the proof of Lemma 4.3, if (7) holds then f is a desired type I sum, if (/) holds then f is a desired
type I sum, and if (/I™™) holds then f is a desired type 11 sum. It remains to establish the bound (4.11)
in the type /7 case. Let {1,...,£} = J W J’ be the partition from (/I™™), so that |y — yr| < 1/5.In
view of Lemma 3.5(ii) with W = (log X)*4, it suffices to verify the hypothesis (3.8) for the sequence

Ve = aE»O)ZiT =1 primegiT-
Since Ny > P, Lemma 3.9 implies that hypothesis (3.8) is satisfied when (log X)?°AX/H < |T| < X4

as required.
The claim for dj, follows similarly.

In case dﬁ we use Mobius inversion to write
k

Z di(”)wnl(n,P(P,Q)pl: Z di(”)wn_ Z di(”)wnl(n,P(P,Q)):l

X<n<X+H X<n<X+H X<n<X+H
= > dimea- ) p(d)dj(dnwan.

X<n<X+H X<dn<X+H

d|P(P,Q)

Now dﬁ (n) is immediately a (log~?") X, X3/5) type I sum by the definition (1.2). Using Lemma 2.18
we can truncate the last sum above to d < X*/1° with an admissible error O (H /exp((loglog X)?/20))
and it remains to show that

fay= > ud)di(dn)

d|(n,P(P.,Q))
dgx.‘;/lo

is also a (log_o(l) X, X3/3) type I sum. But this follows easily from the definition (1.2) of di. O

4.2. Deduction of Theorem 1.1

In this subsection we deduce Theorem 1.1 from Theorem 4.2. We focus on establishing (1.6). The other
estimates in Theorem 1.1 are established similarly and we mention the small differences at the end of
the section. In this section we allow all implied constants to depend on d, D.

We induct on the dimension D of G/I'. In view of the major arc estimates (Theorem 3.1), we
may assume that ' has mean zero (after replacing F by F — / F). In view of Proposition 2.9 with
5 = log™ X, we may assume that F oscillates with a central frequency &: Z(G) — R. If the center
Z(G) has dimension larger than 1, or ¢ vanishes, then ker & has positive dimension and the conclusion
follows from induction hypothesis applied to G /ker & (via Lemma 2.8). Henceforth we assume that G
has one-dimensional center and that £ is non-zero. (A zero-dimensional center is not possible since G
is nilpotent and non-trivial.)

Let X%*¢ < H < X'=% for § = 5/8 and & > 0. Redefining &, we see that, to prove (1.6), it suffices to
show the following claim: There exists a small ¢ > 0 such that for any large A and § = log™* X, if G/T’
has complexity at most 6 ¢ and F has Lipschitz norm at most 6 ¢, then we have

|2, (A= AF@)FmDI < 6H. (4.13)
X<n<X+H

Suppose that (4.13) fails, i.e.
DL (A = A*m)F(g(mD)[" > 6H. (4.14)

X<n<X+H
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By (4.8) and the triangle inequality, we then have

D (Am) = ARm)F(g(mD)[* > 6H. (4.15)
X<n<X+H

By Lemma 4.3, for some component f € ¥ as in that lemma, one has the bound

| Z FF(gmD)|* > °DH. (4.16)
X<n<X+H
Consider first the case when fisa (log™®") X, A;,, A%)) type Il sumwith X'~ < A7, < A}, < X
obeying (4.9), and G is abelian, hence one-dimensional since G = Z(G). Then we may identify G /T’
with the standard circle R/Z (increasing the Lipschitz constants for F, & by O(6-2())) if necessary)
and & with an element of Z of magnitude O (6°"), and we can write

F(x) = be(¢x)

for some b = 0(6~°) and all x € R/Z. We can write & - g(n)I" = P(n) mod 1 for some polynomial
P: Z — R of degree at most d, thus by (4.14), (4.16) we have

D Fe(=Pm)I" = s°VH 4.17)
X<n<X+H
and
DL (A = AFm)e(=P(n))[* = 6° D H. (4.18)
X<n<X+H

Theorem 4.2(iii) implies that there exists a real number 7 < 6?1 (X /H)%*! such that

”e(P(n))n_iT||TV((X,X+H]0Z;q) <6 oW (4.19)

for some 1 < g < 6~2W), By Lemma 2.2(iii), we thus obtain

> fnT

X<n<X+H

*

> §°WH. (4.20)

By (4.9), we must have |T| < -2V X/H, and thus by (2.1) we have

1T oy x X b nzg) < 6O,

Hence by (4.19) and (2.2) we have

lle(P(r)lITv((x,x+H]NZ:q) < s0W,

From (4.18) and Lemma 2.2(iii), we conclude that

| Z A(n) — Af)|" > 6V .
X<n<X+H

But this contradicts the major arc estimates (Theorem 3.1(i)).
Hence in case f is a type I/ sum we can assume that G is non-abelian with one-dimensional center.
We claim that in all the remaining cases arising from Lemma 4.3, Theorem 4.2 implies that there exists
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a non-trivial horizontal character n: G — R/Z of Lipschitz norm §~°(1) such that
7 0 gllcs (x,xam7 > 6. 4.21)

Indeed, in the case when f is a (log=®" X, A;) type I sum for some A; = O(X?), the bound
H < (log X)?M A fails since H > X?+#. Hence (4.21) follows from Theorem 4.2(i).

In the case when f is a (log™®") X, Ap,) type I, sum for some A;, = O(X3¢~1D/2)  the bound
H < (log X)O(I)XIBA;Z/3 fails since H > X9+¢ and X1/3Ai/3 = 0(X?). Hence (4.21) follows from
Theorem 4.2(iv).

In the case when f is a (log™®") X, A7,, A%,) type II sum for some X'~¢ < A7, < A}, < X?,
we can assume that G is non-abelian with one-dimensional center as discussed above to meet the
assumption in Theorem 4.2(ii). The bound H < (log X)?(V) max(Aj,, X/Aj,) fails since H > Xx0+e
and max(Aj,, X/A;,) < X 9. and thus (4.21) follows from Theorem 4.2(ii).

Now that we have (4.21), we can reduce the dimension (by passing to a proper subnilmanifold)
and apply the induction hypothesis to conclude the proof. By (4.21) and Lemma 2.11, we have a

decomposition g = g’y for some &, g’, y € Poly(Z — G) such that

(i) eis (679 (X, X + H])-smooth;
(ii) There is a 69 rational proper subnilmanifold G’ /T of G /T such that g’ takes values in G’ (in
fact G’ = kern); and
(iii) y is 679D -rational.
Let g < 69 be the period of yI". Form a partition (X, X+H] = P;U---UP, forsome r < 6 91,
where each P; is an arithmetic progression of modulus g and dg (£(n), e(n’)) < 6* whenever n,n’ € P;

(which can be ensured by the smoothness of & as long as |P;| < §€ H for some sufficiently large constant
(). By the triangle inequality in Lemma 2.2(i), we have

*

DA =AY F(g(mD)| -

nep;

* r

)

i=1

(A= AH(n)F(g(m))
X<n<X+H

For each i, fix any n; € P;, and write y(n;)[" = ;" for some y; € G which is rational of height
0(679M). Let g; € Poly(Z — G) be the polynomial sequence defined by

gi(n) =v;'¢' (nyyi,
which takes values in y; 'G’y;. Let F;: G/T" — C be the function defined by
F;i(xT') = F(&(n;)y:xD).
For each n € P; we have

|F(g(n)) = Fi(gi(m)T)| = |F(g(n)T") = F(e(n;)g’(n)y:I)]
< IFllLip - dG (e(n)g" (n)yi, e(ni) g’ (n)y;)
= ||Flluip - dG (e(n), e(n;)) < 6°.

It follows that

* *

D A=AHYMF(ai(mD)| +0(°H)  (4.22)

neP;

r

)

i=1

D (A= AHMF(g(mT)

X<n<X+H
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By Lemma 2.2(i) and the induction hypothesis, we have, foreachi =1,...,r,

* *

< < 6“H (4.23)

DA =AY () Fi(gi(m)T)

nep;

DT (A= AHY)Fi(gi(m)T)

X<n<X+H

for any sufficiently large constant C. Combining this with (4.22) we obtain

(A= AH ) F(g(m))| < 6°H,

X<n<X+H

contradicting our assumption (4.14). This completes the proof of (1.6).

The proof of (1.5) is completely similar (with the role of A# and Ag both replaced by yﬂ = 0). For
the estimate (1.7) involving dg, one runs the argument above with § = X~°® for some sufficiently small

constant ¢ > 0, using Lemma 4.4, and with the role of AP and A? both replaced by d,’i.
Let us now turn to the estimate (1.8). We choose

P =exp((logx)***®) and Q = x1/(loglog x)? (4.24)

and write P (P, Q) = [ p<p<o p- We first use Shiu’s bound (Lemma 2.17) to note that

> umFEmD = 1(n,mp,@w(n)f(g(n)n+0(H

log P )
X<n<X+H X<n<X+H

logQ

Now one can repeat the previous arguments with § = log™* X and L(n,2(P,0))>11(n) in place of A and
0in place of AFand Ag — this time we use Lemma 4.5 to replace 1, p(p,0))>14(n) by the approximant
2 e f(n) and Corollary 3.10 gives the required major arc estimate for 1(,,p(p,0))>14(1).

The estimate (1.9) follows similarly, noting first that, with P, Q as in (4.24) we have by Shiu’s bound
(Lemma 2.17)

> dmFEMD) = > Lper.o)s-1demF(gn))

X<n<X+H X<n<X+H

H(log X)*~! (IOLP)I()

0]
* logQ

and then arguing as for (1.8).

5. The type I case

In this section we establish the type I case (i) of Theorem 4.2, basically following the arguments in [18].
In this section we allow all implied constants to depend on d, D.
Writing f = a = 8, we see from Lemma 2.2(i) that

D, fF@EmD)| < > le@l| >, B(b)F(g(ab)l)

X<n<X+H a<Ajp X/a<b<X/a+H|a
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By the pigeonhole principle (and the hypothesis 6 < @), we can thus findascale 1 < A < Aj such that

*

> le@l| > Bb)F(g(ab)D)| > 6°VH

A<a<2A X/a<b<X/a+H/a

and hence by (4.1) and the Cauchy—Schwarz inequality
%\ 2
B(b)F(g(ab)D)| | > 6%V H?/A.
A<a<2A\|X/a<b<X/a+H/a
From Lemma 2.2(iii) and (4.2) we conclude that
s\ 2
Z F(g(ab)D)| | > 6°WH2/A. (5.1)
A<a<2A\|X/a<b<X/a+H]a
We may assume that H > C6~€ A for some large constant C depending on d, D, since otherwise we
have H < 6~ A; and can conclude. Trivially

%

Z F(g(ab)D)| <67 'H/A
X/a<b<X/a+H|a
forall A < a < 2A, and hence by (5.1) we must have
Z F(g(ab)D)| > 6°DH/A

X/a<b<X/a+H]a

for > 69 A choices of a € (A,2A]. For each such a, we apply Theorem 2.7 to find a non-trivial
horizontal character n: G — R/Z of Lipschitz norm O(6~?(1)) such that

I 0 g(a)llc=(x/ax/arkja) < 6 M. (5.2)

This character 7 could initially depend on a, but the number of possible choices for 7 is O(6-21),
hence by the pigeonhole principle we may refine the set of @ under consideration to make 7 independent
of a. The function 77 0 g: Z — R/Z is a polynomial of degree at most d, hence by Corollary 2.4 (and
the assumption H > C5~€ A) we have

llgm o gllc=(x.x+H] < 6oW

for some 1 < g < 6~2(1), Replacing 17 by g7, we obtain Theorem 4.2(i) as required.

Remark 5.1. It should also be possible to establish Theorem 4.2(i) using the variant of Theorem 2.12
given in [26, Theorem 3.6].

6. The non-abelian type /] case

In this section we establish the non-abelian type [I case (ii)) of Theorem 4.2. Let

d,D,H,X,6,G|T,F, f,A},, A;I be as in that theorem. For the rest of this section we allow all constants
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to depend on d, D. We will need several constants
1<C1 <C2<C3<C4

depending on d, D, with each C; assumed to be sufficiently large depending on the preceding constants.

We first eliminate the role of @ by a standard Cauchy—Schwarz argument. By Definition 4.1(ii), we
can write f = a * 3, where « is supported on [AI‘I, A;'I], and one has the bounds (4.1), (4.3) for all
A, B > 1. From (4.4) we have

Z a*B(n)F(g(n)D)| > 6H

nebP

for some arithmetic progression P C (X, X + H]. By the triangle inequality, we have

DaspmFEmD| < > la@)l]| > Bb)F(gab)l).
nepP A} <a<Ay, b:abeP
By the pigeonhole principle and the hypothesis ¢ < @, one can thus find A}, < A < A7, such that
Z la(a)] Z B(b)F(g(ab)D)| > sV H. 6.1)
A<a<2A b:abeP
We may assume that
X
5‘C4ﬁ <A <6%H, (6.2)

since otherwise the first conclusion of Theorem 4.2(ii) holds. Now by (6.1), the Cauchy—Schwarz
inequality, and (4.1)
2

H2
O —_ 6.3
> 2 (6.3)

D Bb)F(g(ab)T)

A<a<2A |b:abeP

Next, we dispose of the large values of 5. Namely, we now show that the contribution of those b for
which |(b)| > 6~ to the left-hand side is negligible. They contribute

2 2
<572 (Z 1|ﬁ(b)|>5—c2lﬁ(b)l) <o N (Z Iﬁ(b)lz)
A<a<2A \b:abeP A<a<2A \b:abeP
<& BGOPIBBIE D 1 (64)
bi,by A<a<2A
aby,ab,eP

Since P C (X, X + H], the inner sum can be non-empty only if b; < X/A and |b; — by| < H/A and in
this case it has size < H/(X/A) = AH/X. Using also the inequality |xy|> < |x|* + |y|* and (4.3), we
see that (6.4) is

AH H?
<&@ 3Bt D ~ <O
b]XX/A 2

|b1=b2|<H/A

From now on in this section we allow all implied constants to depend on C;. Write

B(b) = B(D)1 gy <5-c2 = O(677M).
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By above and the triangle inequality, (6.3) holds with B(b) in place of B(b). Hence, by Markov’s
inequality, we see that, for C, large enough, we have

*

B(b)F(g(ab)D)| > °VH/A (6.5)
X/a<b<(X+H)/a

for > 691 A choices of a € (A,2A]. We cover (A, 2A] by O(X/H) boundedly overlapping intervals of
the form 74 = (A, (1+ %)A’] with A < A’ < 2A. Note that these intervals are non-empty by the lower

bound on A in (6.2). By the pigeonhole principle, we see that for > §°1) X /H of these intervals, (6.5)
holds for > 60(1>%A choices of a € I4 . For all such A’ and a, the interval (X/a, (X + H)/a] is

contained in
10H\ X 10H\ X
) = 1—— _ 1 _ — .
=[5 3 (1 ) 2 ©o

hence

*

Z B(b)F(g(ab)D)| > s®VH/A
bedyr

for > §9(1) %A choices of a € 14.. We can now apply Proposition 2.15 and the pigeonhole principle to
reach one of two conclusions for > §°(1) X /H of the intervals I 4 :

(i) There exists a non-trivial horizontal character n: G — R/Z of Lipschitz norm 0(6-?()) such
that || o g(a-)llcx ) < 670 for > §9W |14 | values of a € I 4.
(ii) For > 69|14 |? pairs (a,a’) € I%,, there exists a factorization

g(a") = Saa’g(a')yaa/ (67)

where &40 is (0(679M), J4)-smooth and e is O(6~9W))-rational.

Suppose first that conclusion (i) holds for > 6%V X/H of the intervals I4,. By pigeonholing we
may make 7 independent of A’, and then by collecting all the a we see that

I © g(a)llcs((x/a.xet)/a)) < 670
for > 62V A values of a with a = A. Applying Corollary 2.4, we see that either H < 6~ (D A, or else
there is another non-trivial horizontal character ’ : G — R/Z of Lipschitz norm O(6-?(") such that

7" 0 glles(x.xemy < 670,
In either case the conclusion of Theorem 4.2(ii) is satisfied.

Now suppose that conclusion (ii) holds for some A” which we now fix (discarding the information
collected for all other choices of A’). We will formalize the argument that follows as a proposition, as
we will need this precise proposition also in our followup work [46].

Proposition 6.1 (Abstract non-abelian Type II inverse theorem). Let C > 1,d,D > 1,2 < H/A < X,
0<d< @, and let G T be a filtered nilmanifold of degree at most d, dimension at most D, and
complexity at most 1/6, with G non-abelian. Let g : Z — G be a polynomial map. Cover (A, 2A] by at
most CX/H intervals 14 = (A’, (1 + %)A’) with A < A’ < 2A, with each point belonging to at most C
of these intervals. Suppose that for at least %6CX [H of the intervals 14/, there exist at least é6C|I a)?
pairs (a,a’) € I2, for which there exists a factorization

g(a,') = saa/g(a')yaa/
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where qq is (C6~C, Jar)-smooth and vy 4o is C5~C -rational, with J o defined by (6.6).
Then either

H <4p.c 6 %4pc)max(A, X/A) (6.8)

or there exists a non-trivial horizontal character n: G — R/Z having Lipschitz norm
O4.p.c(67940.c()) such that

-0 !
7 0 gllce (x.x+r) <a,p,c 6 P,

Indeed, applying this proposition (with a suitable choice of C = O(1), and the other parameters
given their obvious values), the conclusion (6.8) is not compatible with (6.2) for C4 large enough, so we
obtain the desired conclusion (4.5).

It remains to establish the proposition. We allow all implied constants to depend on d, D, C. We will
now proceed by analyzing the equidistribution properties of the four-parameter polynomial map

(a,b,a’,b") — (g(ab),g(ab’),g(a’b),g(a’b")).

The one-parameter equidistribution theorem in Theorem 2.12 is not directly applicable for this purpose.
Fortunately, we may apply the multi-parameter equidistribution theory in Theorem 2.13 instead. We
conclude that either

min(|Za |, [Jar]) <y 670D, (6.9)

or else there exists
5 <M <590 (6.10)

and a factorization
(g(ab),g(ab’),g(a’b),g(a’b’)) = e(a,a’,b,b")g’(a,a’,b,b")y(a,a’,b,b") (6.11)

where €, g,y € Poly(Z* — G*) are such that

(1) (& smooth) For all (a,a’, b,b’) € I4 X 14 X Jao X J 4-, we have the smoothness estimates

dg(e(a,a’,b,b"),1) <M
dg(e(a+1,a’,b,b"),e(a,a’,b,b")) < M/|I]
dg(e(a,a’ +1,b,b"),e(a,a’,b,b")) < M/|1|
dg(e(a,a’,b+1,b"),e(a,a’,b,b")) < M/|J |
dg(e(a,a’,b,b" +1),e(a,a’,b,b")) < M/|J|.

(i) (g’ equidistributed) There is an M-rational subnilmanifold G’/I"" of G*/T'* such that g’ takes
values in G’ and one has the total equidistribution property
’ ’ N Lo 2 Ja 2
F(g'(a.a’ b, b)) < LAWAT sy

(a,a’,b,b’)e P XPyxP3x Py M=
for any arithmetic progressions P, Py C I/, P3, P4 C J 4, any finite index subgroup I’ of IV of
index at most M , and any Lipschitz function F: G’/ — C of mean zero.

(iii) (y rational) There exists 1 < r < M such that y" (a,a’,b,b’) € I foralla,a’,b,b’ €Z.

The alternative (6.9) of course implies (6.8), so we may assume we are in the opposite alternative.
Thus we may assume that we have a scale M and a factorization (6.11) with the claimed properties.
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We know that (6.7) holds for > M~9W|I|? pairs (a,a’) € IZ,. By pigeonholing we may assume
there is a fixed 1 < r < MPW) such that y,. (b)" € T for all such pairs (a,a’) and all b, and also such
thaty” (a,a’, b’,b’) € T'*. This implies that there is some lattice I" independent of a, a’ that contains T as
an index O (6~9(1)) subgroup, such that y,. (b) € I for all such pairs (a,a’), and y(a,a’, b,b’) € T'*;
indeed, by [19, Lemma A.8(i), Lemma A.11(iii)], we could take I to be generated by exp(éXi) for the

Mal’cev basis X, ..., Xp of G/T, and some Q" < M) From (6.7) we then have
g(a'b)I' = g44/(b)g(ab)[’

for all such pairs (a,a’) and all b € Z. If we introduce the subinterval

g (X (g, L H)X
AT\ MG X)) A

of J 4+, then from the smoothness of £,,, we have

eaa (b)) = 06 (M~ 0 Mg 0 (b) = 06 (MPWD)

whenever b, b’ € J',,, where O (r) denotes an element of G at a distance O(r) from the identity. This
implies that

(g(ab)T, g(ab)I, g(a’b)T, g(a’b")I) € Q
where Q ¢ (G/T')* consists of all quadruples of the form
(x,y,ex,key) (6.12)

for some x,y € G/T" and &,k € G with € = O0g(MPWV)) and k = O (M~C+OW) (with appropriate
choices of implied constants). We conclude that

> lalg(ab)l, g(ab)E, g(a'b)l, g(a'b)T) > M=OD |1y 2|} 12

a,a’€lyb,b’el),
Applying (6.11), we conclude that

Y, lale(ad.b.b)g (aa b b)) > MWL P P

a,a’€lyr ;b,b'e]g/
By the pigeonhole principle, we can find intervals ’,,, Iy, in I of length M ~C 14 such that

la(e(a,a’,b,b")g (a,a’, b, b)T*) > MOV |11, 1%

aEI/’\,,a’GIX,;b,b’EJ/’V
By the smoothness of € we have
&(a,a’,b,b') = 06 (M~ W) (ag, ap, by, bo) = 0G(M°")

where ao, aj), b are the left endpoints of I',,, I}, J/,, respectively. Let ¢ be a bump function" supported

on Q that equals 1 on Q, with Lipschitz norm O(M©(€3)), where Q is defined similarly to Q in (6.12)
but with slightly larger choices of implied constants O (1) in the definition of &, k. This implies that

la(e(a,a’,b,b")g (a,d’, b, b)T*) < ¢(e(ay, ag, bo, bo)g'(a,a’, b, 720) )

Indeed, one could set ¢ (x) = max (1 — Kdist(x, ), 0) for some K = O (MO (C3),
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whenever a € I),,,a’ € I/,;b,b’ € J,,. Abbreviating &9 = &(ao,a}, bo.bo) = Og(MPDV), we
conclude that

> o(e0g’ (a.a’, b, b)T4) > MO 115|177, 12

ael;x,,u’el;",;b,b'e]/;,

Using the equidistribution properties of g’, we conclude that
/ @(&0x) dpgrrorsy > MO, (6.13)
G'/(G'nl*)

We now use this bound to obtain control on the group G’. Let us introduce the slice
L={geG:(1,1,1,g) € G'}. (6.14)

This is a O(M?))-rational subgroup of G. Suppose first that this group is non-trivial, then L N I
contains a non-trivial element y = Og(M°M). For 0 < r < 1, the group element y' := exp(rlogy) =
06 (MPWM) is such that (1, 1, 1,9") lies in G’, and hence from (6.13) and invariance of Haar measure
we have

) p(eo(1, 1, 1,Y)%) ditgyy gropsy > MO0,
G’ /(G'nT4)

Integrating this and using the Fubini—Tonelli theorem, we have

1
/ / e(eo(1, 1, 1,y")x) dt dugj(rnpey > MO0,
G'/(G'nl*) JO

and thus by the pigeonhole principle there exists x € (G /I")* such that

1
/ o(eo(1,1,1,9")x) dr > M~ 9M).
0

In particular, we have
eo(1,1,1,y)x e Q c (G/T)* (6.15)

forasetofr € [0, 1] of measure > M=9M Butif we let x;, x2, x3 be the first three components of gqx,
we see from (6.12) that in order for (6.15) to hold, the fourth coordinate of £y(1, 1, 1, y')x must take the
form kex;, where € = O(M 0(1)) is such that x3 = &x;. Since the equation x3 = £x fixes & to a double
coset of T, there are at most oM 0(1)) choices for &, and for each such choice, kex, is confined to a
ball of radius O(M~+9()); thus the fourth coordinate of (1, 1,1, y")x is confined to the union of
O (MOPM) balls of radius O(M~+9W)_ Since vy is non-trivial, ¢ € [0, 1] is thus confined to the union
of 0(MPM) intervals of radius O (M ~C*9()) Thus the set of 7 € [0, 1] obeying (6.15) has measure
at most O (M ~S+9(1)) Jeading to a contradiction for C3 large enough. Thus L must be trivial.

Now we apply a “Furstenberg—Weiss” argument [ 15] (see also the argument attributed to Serre in [57,
Lemma 3.3]). Consider the groups

Li={geG:(1,¢,1,8) € G' forsome g’ € G}
Ly ={geG:(1,1,¢',g) € G’ forsome g’ € G}.

Taking logarithms, we have

logL; ={X €logG : (X, X’,0,X) € logG’ for some X’ € log G}
logL; ={X €logG : (0,0, X', X) € logG’ for some X’ € log G},
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thus log L1, log L, are projections of certain slices of log G. Since G’ was a O (M2 (1)-rational subgroup
of G*, we conclude from linear algebra that L1, L, are O(M?"))-rational subgroups of G; comparing
with (6.14), we also see that [L, L,] C L; since L is trivial, [L;, L;] is trivial. Since G is non-abelian
by hypothesis, [G, G] is non-trivial; thus at least one of L1, L, must be a proper subgroup of G. For sake
of discussion let us assume that L; is a proper subgroup, as the other case is similar. Then there exists
a non-trivial horizontal character n4: G — R/Z on G/ of Lipschitz norm O(M©1) that annihilates
L, that is to say 174(g) = 0 whenever (1,g’,1,g) € G’ for some g’ € G. Thus, the homomorphism
(1,g’,1,g) — na(g) on 1 Xx G X 1 X G annihilates the restriction of G’ to this group, as well as
1 X G x 1 x 1. Taking logarithms, we obtain a linear functional on the Lie algebra 0 X log G X 0 X log G
(with all coefficients O(M©P (1)) in the Mal’cev basis) that annihilates the restriction of log G’ to this
Lie algebra, as well as to 0 X log G x 0 x 0; by composing with a suitable linear projection we can
then extend this linear functional to a linear functional on all of (log G)* that annihilates all of log G’,
again with all coefficients O (M), Undoing the logarithm, we may find (possibly trivial) additional
horizontal characters n1,73: G — R/Z on G /T of Lipschitz norm O(M?(1)) such that

m1(g1) +13(83) +14(g4) =0
for all (g1, 82,83, 84) € G’. In particular, writing g’ = (g}, 85, 85 84), We have
ni(gi(a,a’,b,b")) +n3(g5(a,a’,b,b")) +na(gs(a,a’,b,b")) =0

for all a,a’,b,b’ € Z. Applying the factorization (6.11), and noting that the horizontal characters
11,13, 114 annihilate the components of y, we conclude that

m(g(ab)) +n3(g(a’b)) +na(g(a’d’)) = &(a,a’,b,b") (6.16)
forall a,a’, b, b’ € Z, where
&(a,a’,b,b") =ni(e1(a,a’,b,b")) +n3(e3(a,a’,b,b")) + ns(e4(a,a’, b, b"))
and &1, €3, €3, &4 are the components of . From the smoothness properties of &, we see in particular that
&(a,a’,b,b" +1) = &(a,a’, b, b")||lpjz < MOV /|Ju|
fora,a’ € Ix,b,b’ € Ju, and hence from (6.16)
lIna(g(@’ (B + 1)) = na(g(@’ b)) gz < MOV /| a|

whenever a’ € I4/,b" € Ja. For any a’ € 14, the map b’ — n4(g(a’b’)) is a polynomial of degree at
most d, so by Vinogradov’s lemma (Lemma 2.3), for each such a’, we either have

arl < MO0,
or else there exists 1 < g < M) such that

llgna(g(a’ Nlics s,y < MO, 6.17)

The former possibility is not compatible with (6.2) if Cy4 is large enough, so we may assume the
latter possibility (6.17) holds for all a’ € 14-. Currently the quantity ¢ may depend on a’, but by the
pigeonhole principle we may fix a ¢ so that (6.17) holds for > M~92(M|I,| choices of a’ € .
Applying Corollary 2.4, we conclude that either

Tar] < MO,
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or else there exists 1 < ¢’ < M such that

lg'na © gllem(x.xemy) < MO,

In either case we obtain one of the conclusions of Proposition 6.1. The proof of Theorem 4.2(ii) is now
complete.

7. The abelian type /1 case

In this section we establish the abelian Type I1 case (iii) of Theorem 4.2 using arguments from [49].
We shall need the following variant of [49, Proposition 2.2].

Proposition 7.1. Let § € (0,1/2), M > 2 and L = X /M. Assume that H > 6~€ max(L, M) for some
sufficiently large constant C = C(k) > 0. Let a(€), B(m) € C. Let k € N and let

k
g(n) = > vi(n-X)I

J=1

be a polynomial of degree k with real coefficients v;. If

172 1/4

1 1
> alOBmegm)z ot > la(OF (H > Iﬁ(m)|4) ,

Z,WAL/[ L/2<€<2L m~M
X<£erln~sX+H
then there exists a positive integer ¢ < 6~ %1 such that
. . —O X
lg(vj+ (G +DXvj)llrz <6 O"(])W

forall 1 < j < k, with the convention that vy = 0.

Proof. This follows from the same argument as [49, Proposition 2.2]. The only difference is that we do
not assume that the coefficients @ (£) and B(m) are divisor bounded and due to this in the beginning of
the proof we do not estimate the sums >3y > ¢<o1, la(£)|? and 3,5 |8(m)|* with bounds for averages
of divisor functions but keep them as they are. O

Let us get back to the proof of Theorem 4.2(iii). We can assume that
max{A},, X/A;,} < 6%V H

since otherwise the claim is immediate. Note that in particular H > §~%¢(1) x1/2_ By assumption and
dyadic splitting (noting that § < 1/log X)

Z a(O)f(m)e(P(tm))| > 62H (7.1)
x<tm<x+h
i~
fm=u (mod v)
for some (x,x+h] € (X, X +H],some M € [X/A},,X/A},], some polynomial P(x) of degree at most
d and some u,v € N with u < v. Before applying Proposition 7.1 we will show that (7.1) can hold only
if v < 68 and h > 6%H. In order to show this, we give an upper bound for the left-hand side using the
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Cauchy-Schwarz inequality. Using also (4.1) and denoting L = X /M, we obtain, using the inequality
byl < xl? + 1yl

2

S*H? < Z a(0)B(m)e(P(tm))

x<tm<x+h
m~
¢m=u (mod v)

< > le@pe Y ( > Iﬁ(m)l)z

L/2<€<2L L/2<€<2L m~M
x<tm<x+h
{m=u (mod v)

<= DT 1BmBm)l Y1
my,my~M L/2<¢<2L
|my—my|<2h/L x<lmy,tmy<x+h
(mj,v)|u tmj=u (mod v)
h(mg v)
2 s
< — 1+ ——=].
> 1B ( o
ml,msz
|my—my|<2h/L
(m2,v)|u

Writing d = (m2,v) and m}, = m>/d and using (4.3) we obtain

§*H? <<§ Z |ﬁ(m1)|2(%+l+z Z %)

mi~M dlu m)
[mi—dm}|<2h/L

- hM+LM+LMZ hd (k|
52 82 62 44 My \Ld
hM LM h*dy(u) hL  u?

+—+ + -

< — : :
o2 62 V62 0%v  o(u)

Since L, M < §®WH and LM < §°(M) H?, this is a contradiction unless v < 678 and h > 65H.
From (7.1) together with (4.1) and (4.3) we have

1/2 1/4
1 1
D, aOBmePtm)| =&l = > la(OF (ﬁ > Iﬁ(m)|4) :
x<tm<x+h L/2<t<2L m~M
t’msbrtnN(mod V)
We can write, for some v; € R,
d .
P(n) = Z vi(n—X)/.
j=0

We can assume that vo = 0. Furthermore we can spot the condition {m = u (mod v) using additive
characters, so that, for some r (mod v) we have

12 1/4
>, a0pme(pem + )| 1Y (o (%n;wlﬁ(m)l“) .

x<{m<x+h L/2<¢<2L
m~M
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Now we are in the position to apply Proposition 7.1 to the polynomial P(n) + rn/v. By multiplying
the resulting ¢ by v we see that the conclusion of the proposition holds also for the coefficients of P(n),
ignoring rn/v. Hence we get that there exists a positive integer ¢’ < §~%¢(1) such that

X

g’ Gvi+ G+ DXvie)llzz <6~ odeﬁl

for all 1 < j < d, with the convention that v4,; = 0.
Next we use a variant of the argument in the treatment of type II sums in [49, Proof of Theorem 1.3
in Section 4]. We start by shifting each v; by (g’j)~'a; for an appropriate a; € Z to get v;. such that

X

e (7.2)

lg’ (v + (i + DXV ] < 6700 —

forall 1 < j <d.Let
d

Pi(n) = Y vi(n=X),

J=1

so that

d ] .
e(P(n) = e(Pi(m)e |~ ) Z(n=X)/|.

J=1

Choosing g = ¢’d!, we see that e(P(n) — P{(n)) is constant in any arithmetic progression (mod ¢) and
thus

lle(P(n) = Py(n)lrv((x.x+6)0z:q) < g < 64D (7.3)
By induction one can deduce from (7.2) that
—1)/-1! 1
V- (, ) —vi| <67 — (7.4)
JXJ_ HJ

forall 1 < j <d+1.1In particular when j = d + 1 this gives

Xd
’ -0y4(1
|V1| < 1) a ( >W
WesetT = 271Xv1, so that
d+1
X
T <6 %W (Z) | 75
I y @.5)

We write also

d i d i i
o (=it ;T -1/~ (n-Xx\’
PZ(”)_Z jXi vi(n=X) _27r.z J X |-
J=1 J=1
By (7.4) we have that

lle(P1(n) — P2(m)llTv([x,x+F)nZ:q) < g6 04 « 70, (7.6)

)

By Taylor expansion, forany k > 0 andn € (X, X + H],

d+k 1 i
- 1)/~ -X
10g?—(=10g(1+ ) Z( ) (n ) +0
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so that, using (7.5),

d+k

T ot n-xV (ou (H)
Pz(n)——lg———z 4 ( ).,.05 a(D) (2] ],
s X X
Hence
d+k 1 j k
e(Py(m)n™T =x"Te|- Z - ) (" ) +0 |50« (?)
] =d+1

Taking k large enough in terms of 6, this implies that
le(Pa(m))n™ T |lrv((x x+H)nzsg) < 004D, (7.7)

Now the claim follows by combining (7.3), (7.6), and (7.7) utilizing (2.2).

8. The type I, case

In this section we establish the type I, case (iv) of Theorem 4.2. Our main tool will be the following
elementary partition'? of the hyperbolic neighborhood {(m,n) € Z> : m € J; X < nm < X + H} into
arithmetic progressions, which is non-trivial when H is much larger than X'/3.

Theorem 8.1 (Partition of hyperbolic neighborhood). Let X, H, M > 1 be such that
X" <H<X and M < X'’
and let J be a subinterval of (M,2M]. Then the set
{(m,n)€Z*:meJ; X<nm<X+H)} (8.1)

can be partitioned for any integer Q obeying

K<Q< M

q = = W (82)

as

where for each pair a, q of coprime integers with1 < g < Q and a = M2 q, Pa,q is a family ofO( 0% )

arithmetic progressions P in (8.1), each of spacing (q,—a) and length at most WQ

In particular, the cardinality of the set (8.1) does not exceed

< Z Z‘ XZ;ILQ <H. (8.3)

12]n this section only, (m, n) will denote the element of the lattice Z> with coordinates m, n, rather than the greatest common divisor of m and
n. We hope that this collision of notation will not cause confusion.
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Proof of Theorem 8.1. For future reference, we note from (8.2) and X'/3 < H < X that

M__ M <MH1/2
(Hx)1/4 - X137 xi12

0< <M. (8.4)

Note thatif (m, n) liesin (8.1) thenm =< M andnm =< X, thus 7> < % By the Dirichlet approximation
theorem, we then have

n a 1 a 1

J— ____+_

m |qg Qq q Qg

for some 1 < g < Q and some a = Afl(zq coprime to g. If for any such a, g we define I, 4 to be the

portion of the interval [Z - QLq + Q—] that is not contained in any other such interval I, , with

q’ < g, we see that the I, 4 are dlSJOlnt intervals, and that we can partition (8.1) into sets
n
{(m,n)EZZ:meJ;—EIa,q; X <nm < X+H} 8.5)
m
where a, g range over those coprime integers with

1<q<0; (8.6)

a X
qg M*

It then suffices to show that each such set (8.5) can be partitioned into 0(%) arithmetic progressions
P in Z2, each of spacing (g, —a) and length at most %

Fix a, g, and write I = I, 4. It in fact suffices to show that the set (8.5) can be partitioned into
0(%;) arithmetic progressions P of spacing (g, —a) and arbitrary length, so long as we also show
that the total cardinality of (8.5) is 0( ) This is because any such progression P can be partitioned

into 0( #P + 1) subprogressions of the same spacing (g, —a) and length at most 2< and

M M HM?*? M3 M3
Z —H#P + 1| < — + 5 < 5
7 HQ HQ XQq XQ%q X0°q

It remains to obtain such a partition. From Bezout’s theorem we see that for any integer c, the set
{(m,n) € Z® : gn+ am = c} is an infinite arithmetic progression of spacing (g, —a). The intersection
of (8.5) with this set is

Ec:z{(m,c—“'");m,c—amez;mej;i_zez;kwsxw}. ®.7)
q q mqg g q
The constraints
c a (c—am)m
meJ,———ell X<——<X+H
mqg g q

confine m to the union of at most two intervals in the real line, and hence the set E. is the union of at
most two arithmetic progressions in Z? of spacing (g, —a). It thus suffices to show that E.. is non-empty

for at most O (24— e Q2 ) choices of ¢, and that

2

HM
Z $E, < : (8.8)
~ XQq
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We begin with the first claim. If (m,n) € E. then ¢ = gn + am and nm = X + O(H) and hence
c? = (gn —am)? = (gn+am)* - (gn — am)* = 4agnm = 4aqX + O(aqH). 8.9)

On the other hand, we have
gn —am =mq (ﬁ_ﬁ) < mq <« —. (8.10)
m q

We thus have
M2
c? =4aqX + O(agH) + O (E) .
From (8.6), (8.2) we have

XHQ' M?

X 5
agH <« H < < —
a M? w2 Q2 M4 02
and thus

M2
2 =4agX +0 (5) .
Also AQ’I—ZZ < M? < X < agX. Thus on taking square roots we have

o= X o s o)

and hence by (8.6)

WW( M )

X02%qg

giving the first claim.
It remains to prove (8.8). We first consider the contribution of those ¢ for which

1
=+/4agX + 0O
aa (\/aqX

agH + 1),

so the total number of possible ¢ here is O ( aqH+1). For a fixed such ¢, we then have from (8.9) that

1
VvagX
gn —am = 0(\aqH).

But once one fixes ¢ = gn+am, the residue class of gn —am modulo g and modulo a are both fixed, thus
by the Chinese remainder theorem gn — am is restricted to a single residue class modulo aq. Thus the

‘aqH +1). The net contribution of this case to (8.8) is then

1 VagH
<<( aqH+1)(&+1)
VagX aq

number of possible values of gn —am is O(~— _—

which expands out to

HY?  a'2g\2H H/2

< + + +1.
x1/2 x1/2 all2gl?
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Using (8.6), this becomes
HY? qH H'*M

_X1/2 + i +—qX1/2 +1.

<
Thus we need to show that
H3? ¢gH H'Y’M HM?
> s I <<=
X2 M qxl/z XQq

which on using 1 < g < Q rearranges to

M M H'Y?’M H'?M

Q< HUAx1/4 x1/3° xl1/2 7 xl/2

and the claim now follows from (8.4).
Now we consider the contribution of the opposite case, in which |c —+/4aq X | exceeds a large multiple

of ‘/al(TXaqH + 1. Then |c? — 4aqX| exceeds a large multiple of agH, so from (8.9) we have

c? =4agX + O((gn — am)?)

and thus if we restrict to a dyadic range gn — am € £[A,2A] forsome 1 < A <« % that is a power of
two (the upper bound coming from (8.10)) we have

1
=\dagX + 0 | ——A?|.
o= VA 0 (e’

Thus for a fixed A, the total number of possible ¢ here is O(ﬁAz) (note that we have already

excluded those ¢ that lie within O (1) of /4agX). On the other hand, once c is fixed, we see from (8.9)
that (gn —am)? is constrained to an interval of length O (agH). The quantity gn—am is also constrained
to lie in +[A, 2A] and to a single residue class modulo ag, so the squares (gn — am)? are separated by
> Aaq when gn — am is positive, and similarly when gn — am is negative. Thus the total number of
possible values of gn — am available is O ( Zq;; +1) = 0(%), since from (8.2) one has % > ML/Q > 1.
Thus the total contribution of this case to (8.8) is

A2 H 1 M
< Z — < H—
A 0

13A<<% agX agX
A=2)
which after applying (8.6) gives 0(%) as required. O

Combining this with the pigeonhole principle we obtain
Corollary 8.2 (Pigeonholing on a hyperbola neighborhood). Let X, H, M, Q > 1 be such that

M M

XP<H<X, M<X"? and —<Q<—0-,
H (HX)V/4

and let J be a subinterval of [M,2M].
Let Py be an arithmetic progression in (X, X + H|, and let B, 82: N — C be functions obeying the
bounds

”ﬁl”TV(N;qo)s ”ﬂZ”TV(N;qo) <1/s



74 Forum of Mathematics, Pi

for some 1 < g < 1/8 and some’> 0 < § < 1/(log X). Let f : Z* — C be a 1-bounded function such
that

Z Z B1(m)B2(n)1py(nm) f(n,m)| = 6H. (8.11)

n
MES X cnme<X+H

2
Then for > 6§01 % pairs of coprime integers q, a with 9°VQ <« g < Q and a = %q, one can find

an arithmetic progression P in (8.1) of spacing (q,—a) and length at most % such that

*

Z f(n,m)| > 60(1)1-11”—Q.

(m,n)eP

Here we extend the maximal sum notation (1.4) to sums over arithmetic progressions in Z> in the obvious
fashion.

Proof. Let g, be the spacing of Py. We first claim that g < 6~ 10 Indeed, by Shiu’s bound (Lemma 2.17)
we have

Z Z 1< Z dz(n)<<adz(q6)((10gX)q£,+Xs),

meJ X<nm<X+H X<n<X+H 0
nm=b(q() n=b(q)

and if g, > ¢ ~10 then this together with the triangle inequality contradicts our assumption (8.11). Now

we may assume that g{, < 610
By Lemma 2.2(iii), the left-hand side of (8.11) is bounded by

*

: Z Z B2(n)1p,(nm) f (n, m)

o
n
M\ X <nme<X+H

which by definition is equal to

% Z Z Lp, (m)B2(n)1p,(nm) f (n, m)

n
MES % cnm<X+H

for some arithmetic progression P; C J. Interchanging the n and m sums and using Lemma 2.2(iii)
again, we can bound this in turn by

(é Z Z Lp, (m)1p,(n)1p,(nm) f (n,m)

n
MES X cnm<X+H

Bt is likely that with more effort the restriction on ¢ can be increased up to 1, but that we will not need to do so here.
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for some arithmetic progression P,. From Theorem 8.1 and the triangle inequality, we have

Z Z Lp, (m) 1 p, (1)1, () f (n, m)

X<nm<X+H
< sup 1p,(m)1p,(n)1p,(nm) f(n, m)
; avz XQ2q PePaq (m%:eP

(uq) 1

and since the set {(m,n) € P : m € Pi,n € P»,nm € Py} is the union of at most O(6~?())) arithmetic
progressions in P (recalling that g, < 6~91)), we have

*

D L (m) e, (M)1p, (nm) f(n,m)| < 57O | 3" f(n,m)

(m,n)eP (m,n)eP

We conclude that

*

o M3
Z Z ——— sup Z Ffn,m)| > s°DH. (8.12)
q=1 g=<X ¢4 XQ q PePag (m,n)eP
M
(a,q)=1

As f is 1-bounded, we have here

i Z f(nm)*< M H—Q—M2H~

su = ;
X0 pep X% M ~ XQq

(8.13)
Pa.q (m,n)eP

since the number of a associated to a fixed ¢ is O(Xg/M?), we conclude that, for any g < Q,

%

3

M H
2 x| 2, T < g

ax= Lq P“"’ (m,n)eP

M2
(a,q)=1

Comparing this with (8.12), we conclude that

*

3

Z ng sup Z f(n,m) >>60<‘>g (8.14)

ax;l(z qPEPaq (m,n)€P
(a,q)=1

for > 2 Q choices of 1 < g < Q. By dropping small values of ¢, we may restrict attention to those
g with 52N 0 « ¢ < Q. For each such ¢, we combine (8.13) with (8.14) to conclude that

*

M3 M? H
~ 5= Sup Z F(n,m)| > —s%M=
X0°q Petuy |(mimepr Xq Q
for > 60(1) Xq > 0 X9 372 choices of a, and the claim follows. m]

We can now obtain a preliminary version of Theorem 4.2(iv) (which basically corresponds to the
case Ay, = 1, after some dyadic decomposition):
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Proposition 8.3 (Preliminary type I, inverse theorem). Let X, H, M > 1 be such that
X'W<H<X and M<X'

and let J be a subinterval of (M,2M]. Let 0 < 6 < 1/(log X), let Py be an arithmetic progression in
(X, X + H], and let B1, B2: N — C be functions obeying the bounds

1811V (3:90)» 1B21ITV (ge) < 1/6

for some 1 < go < 1/6.

Let G /T be a filtered nilmanifold of degree d, dimension D, and complexity at most 1/6 for some
d,D > 1, and let F: G|T" — C be a Lipschitz function of norm 1/6 and mean zero, and g: Z — G a
polynomial map. Suppose that

> B1(m)Ba(n) 1 p, (nm) F (g (nm)T)| > 6H.

n
M) ¥ cnm<X+H

Then either
H <qp 6 %40 x!/3 (8.15)

or else there exists non-trivial horizontal character n: G — R of Lipschitz norm O 4 p (6~94.» WY such
that

I 0 gllc=(x,x+m) <a,p 6~ 4P,

Proof. We allow all implied constants to depend on d, D. We apply Corollary 8.2 with

et
Q= ik

This gives that for > 621 XQ?/M? pairs a, g with ¢ = O(Q) and a = O(XQ/M?), we have

K

D" F(g((no - ka)(mo + kq))T)

5 somHQ
k=1 M

. H
for some integers ng, mgy and some 1 < K < WQ

Applying the quantitative Leibman equidistribution theorem (Theorem 2.7), we can find a non-trivial
horizontal character  : G — R of Lipschitz norm O (6~?(1) such that

7 0 g((no = -a)(mo +-g)llcmom)) < 6 WM. (8.16)

By pigeonholing we can make 7 independent of a, g, so that (8.16) holds for > §°() XQ?/M? pairs
a,q with ¢ = 0(Q) and a = O(XQ/M?). Fix this choice of 7. The map P = pog : Z — Risa
polynomial of degree at most d; say

P()=nogn)= > a;j(n-X).

0<j<d
Now suppose that (8.15) fails. We will show that
Igoa;lle/z < 6~V H (8.17)

forsome 1 < gg <6 W andall1 < <d.
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We use downward induction on j. Extracting out the top degree coefficient @4 of P, we see that
lea(ga)? gz < 6~V (HQ/M)™>.

We apply the polynomial Vinogradov lemma (Lemma 2.3) twice. Since HQ/M <« 6 90
implies (8.15), we must have

Igoaallz/z < 6~V (HQ/M)2Q ¢ (XQ/M?) ™4 = 6O H 2 A=ty = 57O g~¢

for some 1 < go < 621 by choice of Q. This proves (8.17) for j = d.

For the induction step, let 1 < jo < d, and assume that (8.17) has already been proved for j €
{jo + 1,--+,d}. Then the polynomials n — goa;(n — X)/ has C*((X, X + H])-norm < 6~ for
je{jo+1,---,d}, and thus the polynomial Q defined by

d
0 =qo(P) = Y ay(n=X))=q0 ) aj(n=X)!
J=jo+l 0<j<jo

also satisfies the bound (8.16). By repeating the analysis above with inspecting the top degree coeflicient
qoaj, of O and applying twice the polynomial Vinogradov lemma, we deduce that

llg1 - goaj,llr/z < s~ g-io

for some 1 < g; < 6-2(1). This completes the induction step after replacing ¢o by goq;.
Now that we have (8.17), it follows that goP has C®((X, X + H])-norm < 6-2() and the claim
follows after replacing i by gon. o

Now we are ready to establish Theorem 4.2(iv) in full generality, using an argument similar to that
employed in Section 5. Letd, D, H, X, 8, G/I', F, f, Ay, be as in Theorem 4.2(iv). Henceforth we allow
implied constants to depend on d, D. By Definition 4.1 we can write f = a * 31 * 8, where « is supported
on [1,Ay,] and obeys (4.1) for all A, and S1, B2 obey (4.2). From (4.4) we have

D@ > Bim)Ba(n)ip(anm)F(g(anm)D)| = SH

<a< n
Ia<Ap " X/a<nm<X/a+H |a

for some arithmetic progression Py C (X, X + H]. Applying a dyadic decomposition in the a,m,n
variables, we may assume that a, B, B> are supported in (A, 2A], (M,2M], (N,2N] forsome 1 < A <
Aj,and M, N > 1/2, at the cost of worsening the above bound to

§ a(a) E § B1(m)B2(n)1 p,(anm)F(g(anm)D)| > s°VH  (8.18)
ac(A2A] me(M,2M | N<n<2N
X/a<nm<X/a+H/a

(here we use the hypothesis § < @). By symmetry we may assume that M < N. We may also assume
that AMN = X since the sum is empty otherwise; this implies in particular that M < (X/A)'/2. We
may also assume that

H/A > 6 C(x/A)"3 (8.19)
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for some large constant C (depending only on d, D), since otherwise we have (4.6) after some algebra.
By (8.18), Cauchy—Schwarz, and the bound (4.1) we obtain

2
> > > B1(m)Ba(n) 1 p, (anm)F (g(anm)T)| > O DH?JA.  (8.20)
ac(A2A] |me(M,2M] N<n<2N
X/a<nm<X/a+H/a

For each a € (A, 2A], we see from the triangle inequality and (4.2) that

D, BimB(m)1p,(anm)F (g(anm)T)

me(M,2M| N<n<2N

X/a<nm<X/a+H/a
< §0W Z Z 1
me(M,2M] n
X/a<nm<X/a+H|a

and hence by the bound (8.3)

> > B1(m)B2(n)1 p, (anm) F (g(anm)T) < 6~V H/A.
me(M.,2M| ne(N,2N]
X/a<nm<X/a+H/a

Combining this with (8.20) implies that

Z B1(m)Ba(n)1p,(anm)F(g(anm)I')| > 60(1)H/A

me(M,2M | ne(N,2N]|
X/a<nm<X/a+H/a

for > 69V A values of a € (A,2A]. Applying Proposition 8.3 (and (8.19)), we conclude that for each
such a there exists a non-trivial horizontal character : G — R of Lipschitz norm O (6-°1) such that
I 0 g(a)llc=(x/a.x/artja] < 6~

This 7 currently is permitted to vary in a, but there are only O (62 (1) choices for 7, so by the pigeonhole
principle we may assume without loss of generality that 5 is independent of a. Applying Corollary 2.4
(and (8.19)), we conclude that there exists 1 < ¢ < 6-2) such that

llgn o glicex.xmy < 670
and the claim follows.

At this point we have proved all cases of Theorem 4.2 which are necessary for our main Theorem
(Theorem 1.1).

9. Controlling the Gowers uniformity norms

In order to deduce our Gowers uniformity result in short intervals (Theorem 1.5) from Theorem 1.1,
we wish to apply the inverse theorem for the Gowers norms to A — Aﬂ, di — dﬁ, u. However, before

we can apply the inverse theorem, we need to show that the functions A — A¥, dj — di possess
pseudorandom majorants even when localized to short intervals. In the case of long intervals, the
existence of pseudorandom majorants for these functions follows from existing works [17], [52], and the
main purpose of this section is to show that these long interval majorants also work over short intervals
(X, X +X7].
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We begin by defining what we mean by pseudorandomness localized to a short range'*.

Definition 9.1 (Pseudorandomness over short intervals). Letx, H > 1.Let D e Nand0 < < 1. We
say that a function v : Z — Ry¢ is (D, n)-pseudorandom at location x and scale H if the function
vx(n) := v(x+n) satisfies the following. Let 41, . . .,/ be affine-linear forms, where each ¢; : Z¢ — Z
has the form y;(x) = ; - X + ;(0), with ¢; € Z¢ and ;(0) € Z satisfying d,t < D, |;| < D and
l¢;(0)| < DH, and with ; and ¢ linearly independent whenever i # j. Then, for any convex body
K c [-H, H]?,

D @i () vi (g (m) = vol (K)| < nH.

nek

Remark 9.2. We note that the (D, n)-pseudorandomness of v at location x and scale H directly implies
the short interval Gowers uniformity bound ||v — 1{|yp (« x+m] <D n'/ 2, just by the definition of the
Gowers norm as a correlation along linear forms.

Our notion of pseudorandomness in the “long interval” case x = 0 differs from that of Green—Tao [17,
Section 6] in two ways. Firstly, we do not need to impose the correlation condition [17, Definition 6.3]
(making use of the later work of Dodos and Kanellopoulos [8]). Secondly, we work with pseudorandom
functions defined on the integers, as opposed to those defined on cyclic groups. The latter is only a
minor technical convenience, as then we do not need to extend majorants defined on the integers into
a cyclic group. The next lemma shows that the notion of pseudorandomness over the integers is very
closely related to pseudorandomness over a cyclic group.

Lemma 9.3. Letx,H > 1, D € N, and 0 < < 1. Suppose that v : Z — Rs¢ is (D, n)-pseudorandom
at location x and scale H. Then there exists a prime H < H' <p H and a function v : Z/H'Z — Rxq
such that v(x +n) < 2v(n) for alln € [0, H] (where [0, H]| is embedded into Z,/ H'Z in the natural way)
and such that v satisfies the following. Let Yy, . . ., be affine-linear forms, where each ; : Z¢ — 7
has the form y;(X) = y; - X+ (0), with y; € Z and ;(0) € Z satisfying t < D, |¢;| < D. Then

Z V(Y1) V(g (m) = (1+0p () (H), (CRY

ne(Z/H'Z)4

where the affine-linear forms ; : (Z/H '7)¢ — Z/H'Z are induced from their global counterparts in
the obvious way.

Proof. Let H € [CpH,2CpH] be a prime for large enough Cp > 1. Take v(n) = (% + %v(x +
n))laero,m) + 1(a,m7)(n), extended to an H’-periodic function. Then the claim (9.1) follows from the
(D, n)-pseudorandomness of v at location x and scale H by splitting v into its components. O

We then state the inverse theorem for unbounded functions that we are going to use.

Proposition 9.4 (An inverse theorem for pseudorandomly bounded functions). Lets € Nand(0 < n < 1.
Let I be an interval of length > 2. Let f : I — C be a function, and suppose that the following hold.

e There exists a function v : I — Ry such that ||v = 1||y2s ;) < mand |f(n)| < v(n).
® For any filtered (s — 1)-step nilmanifold G /T and any Lipschitz function F : G |I" — C, we have

sup

K| FllLip.G/T M-
gePoly(Z—G)

o > F ()
nel

4Strictly speaking, H does not need to be small in terms of x in Definition 9.1, but that is the regime we are most interested in.
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Then we have the Gowers uniformity estimate

”f”US(I) = 0s;7]—>0(1)-

Proof. Let I = (X, X + H], where without loss of generality X and H are integers. The desired result
follows from the work of Dodos and Kanellopoulos [8, Theorem 5.1] (which gives the inverse theorem
of [17, Proposition 10.1] under weaker hypotheses). Indeed, we can apply [8, Theorem 5.1] to the
functionn — f(X+n) on [1, H], noting that the interval Gowers norm estimate ||v—1||y2s (1) = 05—0(1)
is equivalent to the cyclic group Gowers norm estimate ||V — 1||y2s(z/nvz) = 05—0(1) for all primes
N’ € [100sH,200sH], where v(n) is defined as v(X + n)l,e1,5) for 0 < n < N’ and extended
periodically to Z/N'Z. O

The following lemma tells us that if a function has a pseudorandom majorant over a long interval,
and if the majorant is given by a type / sum, then it in fact has a pseudorandom majorant over short
intervals as well. This allows us to conveniently reduce the concept of pseudorandom majorants over
short intervals to that over long intervals.

Lemma 9.5 (Pseudorandomness over long intervals implies pseudorandomness over short intervals).
Let € € (0,1), D,k € N be fixed. Let C > 1 be large enough in terms of k and D. Let H € [X¢,X /2]
and n € ((logX)~€,1/2), with X > 3 large enough. Let v : Z — Rsq be (D, n)-pseudorandom at
location 0 and scale H. Also let 1 < A, B < log X be integers.

Suppose that there is an exceptional set 8§ C Z and a sequence A,, such that

v(n) = Z Ag for n¢dS,
d|An+B
d<Xx=/(2D) (92)

[4.] < (og X)kd(n)*  forall n,
|v(n)| s(logX)kd(An+B)k for neds.

Also suppose that § is small in the sense that
|§ N [y-2DH,y+2DH]| < H/(log X)*“ for y € {0, X} 9.3)

Then v is (D, 2n)-pseudorandom at location X and scale H.

Proof. By (9.2), we can write

v(n) = lugs >, Ag+O0((log X)*d(An+ B) 1,cs)
d|An+B
d<x*/D)

= Z g +O0((log X)*d(An + B)*' 1 ,,c5).

d|An+B
d<x*/(2D)

Hence, for any convex body K ¢ [—H, H]¢ and for x € {0, X}, we can split the sum

D] ]vewitmy

nek i=1
(where vy (n) := v(x + n)) as the main term

t

Aoy e, D0 | | Lertacorsimy s 9.4)

el,..., e, <X€/(2D) nek i=1
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and 2 — 1 error terms whose contribution is for some j < ¢ bounded using (9.2) by
t
< (log X)¥ > [ [ d(AGe +wi(m)) + B 1y mycs- 9.5)
nekK i=1

Now, using Cauchy—Schwarz, the inequality []i_,x; < i xf, (9.3), and Shiu’s bound
(Lemma 2.17), (9.5) is

< (log X)k

12 . 12
Z 1x+wj(n)ecs’) (Z l_[d(A(x'HJ/i(l‘l)) +B)2(k+1))

nek nek i=1
1/2 ' 12
< (log X)X Z 1x+¢j(n)e<§’) (Z Z d(A(x +y;(n)) + B)z(k“)f)
nek nek i=1

< H%(log X)*1=2€ (log X)Mp .+

for some constant Mp, > 1. If C is large enough in terms of D and k, this is < H?(log X)3¢/2.
We lastly estimate the main term in (9.4). A lattice point counting argument as in [17, Appendix A]
gives us

Z 1_[ Les|AGxrus )+ = @ag(el, ..., e )vol(K) + O(H™)

nek i=

for some @a g(ey,...,e;) € [0, 1] independent of x and H (since the left-hand side is counting elements
of K in some shifted lattice qZ + a). Combining this with the estimates e; - -- ¢, < X/ < H'/? and
|14] < XM we see that

Z]‘[vx(w )= > Ao dgaapen,...,e)vol(K) + O(H! (log X)), (9.6)

nek i= el,...,e; <X#/2D)

Since the main term on the right-hand side of (9.6) is independent of x € {0, X}, we see that

> ﬂ yx(Wi(m) = ﬂ vo(wi () + O(H (log X) /%)

nek i= nek i=

Hence, using the assumption that v is (D, n)-pseudorandom at location 0 and scale H, v must also be
(D, 2n)-pseudorandom at location X and scale H. O

Lemma 9.5 leads to the existence pseudorandom majorants over short intervals for W-tricked versions
of our functions of interest. Let us recall that, for any w > 2,

Ay (n) =

W
n, Ww)=1,

where W = [],,<,, p. We note for later use that in this notation our model function AP equals to AR,

where R = exp((log X)'/19).

Lemma 9.6 (Pseudorandom majorants over short intervals for A—A,,, dx —d 2). Lete >0and D,k € N
be fixed. Let X > H > X* > 2. Let 2 < w < w(X), where w(X) is a slowly growing function of X, and
denote W =[] ,<,, p. Also let w < w < exp((log X)1/10),
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1. There exists a constant Cy > 1 such that each of the functions

90(WV/V)A(W +b)/Co. o(W)

—As(Wn +b) 9.7
for1 < b < Wwith (b,W) =1, is majorized on (X, X + H| by a (D, n)-pseudorandom function
at location X and scale H for some n = 0yw—w(1). In fact, the latter of the two functions is
(D, n)-pseudorandom at location X and scale H.

2. Let W’ be such that W | W’ | W, Suppose that H > X'/>*. There exists a constant C, > 1
such that each of the functions

-1
(log )¢( ) [1 (1+f) di(W'n+b)/Cy,
w<p<X p

9.8)
o(W) K\
(log X) == || 1+p d; (Wn+b)/Cy

wsp<X

for1 < b < W with (b,W’) = 1, is majorized on (X, X + H| by a (D, n)-pseudorandom function at
location X and scale H for some 1 = 0,,—00(1).

Remark 9.7. Note that if ||vi — 1[|yp (xx+m) < 7 and [[v2 = Ulyp (x, x+m] < 7, then by the triangle
inequality for the Gowers norms also || (vi+v2)/2—1{|yp (x,x+#] < n- Hence, by Remark 9.2, Lemma 9.5
in particular provides us a majorant v for the difference of the two functions in (9.7) or (9.8) satisfying
IV = Ulyp (x,x+H] = Ow—eo(1), allowing us to apply the inverse theorem (Proposition 9.4).

Proof. (1) Letus first consider the function %A(W;ﬁb) /Co.Let R” = X” withy > O small enough in

terms of &, D. Let i be a smooth function supported on [-2, 2] with ¢ (0) = —1 and /Ooo [’ (V)| dy = 1.
Define

Aru(n) = ~(10g R) Y ()i ( gd ) .

dln

Put

¢()

vp(n) 1= === (log R) ™' Arey (Wn + b)? + 2(log X) lwnspes,

where S is the set of perfect powers. Then

%W)A(Wn +b) <2y vy (n)

for X/2 < n < X, since Wn + b being prime implies that Wr + b has no divisors 1 < d < X?7.

From [17, Theorem D.3] we see that v;, is (D, 0,y (1))-pseudorandom at location 0 and scale
H (since the term 2(log X)lwu+pes has negligible contribution to the correlations that arise in the
definition of pseudorandomness). Moreover, v (1) can be expanded out as

Z Ag +2(log X) lwnibes
d|Wn+b
d<x*

for some

11| < (log X) Z 1 < (log X)d(n)?.
di,dr>1
n=[d\,d>]
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Hence, by Lemma 9.5, v, is (D, 0,,—(1))-pseudorandom also at location X and scale H (since the set
& :={n:Wn+b € S} certainly obeys (9.3)).

For the case of %AW(Wn + b), we can apply [61, Proposition 5.2] to directly deduce that this
function is (D, 0,,—(1))-pseudorandom at location 0 and scale X. To prove the (D, 0, —w(1))-
pseudorandomness of this function also at location X and scale H, we show that it is well-approximated
by a type I sum. By Mobius inversion,

1
s = S0 (1-2) 57 uta)
p<w d|Wn+b
d|P (W)

and by Lemma 2.18 we have

(log X)**
Z ,U(d)‘ <H—— < H exp(~(log X)*7),
X<n<X+H d|Wn+b eXP(55 ogw
d|P(w)
d>x#/2D)
say. Hence %W)Av;(Wn + b) = v(n) + n(n), where v is of the form of Lemma 9.5 and

Dix<n<x+H IM(n)| < Hexp(—(log X)313), say. It suffices to show that v is (D, 0,y (1))-pseudorandom
at location X and scale H, and this follows from Lemma 9.5.

(2) Note that by (3.14) we have dz(n) < di(n) forall n > 1, so by Lemma 9.5 it suffices to show
that the function

h(n) : —(logX)‘p(W) 1_[ ( —) dk(W'n+b)/C;,

wp<X
is for some C; > 1 majorized by a (D, 0y (1))-pseudorandom function at location 0 and scale H,
which is of the form (9.2) outside an exceptional set & satisfying (9.3).
By [52, Proposition 9.4], forany X > 2 and 1 < n < 2DX, we have
h(n) < v(n) + h(n)l,cs,

where v is a certain (D, 0x_,0(1))-pseudorandom function at location 0 and scale X, and & is defined
in [52, Section 7] as

=8 UGS,
loglog X
S = {n <2Dx: Ip: vp(n) = max {Z,Clﬁ}}.
log p
Syi=in<2pX: [ pw® > xyleeleX

pgxl/(log logX)3

Here C; can be taken arbitrarily large, so we may assume that C; > 8C for any given constant C. To
show that & satisfies (9.3), it suffices to show that for j € {1,2} we have

|S; N [X —2DH, X +2DH]| < H/(log X)*C, 9.9)
|S; N [-2DH,2DH]| < H/(log X)*C. (9.10)

Let us prove (9.9), the proof of (9.10) is similar but easier.
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We first prove (9.9) for j = 1. By splitting into shorter intervals if necessary, we may assume that
H < X'/3, say. Note that the number of n € (X-2DH, X +2DH] satisfying vp(n) > max{2, C loilgo‘;’;x}
for some p is

H

< Z H exp(—C(loglog X)) + -
p<(log X)4€ (log X)4C<p<(4DH)'/2 p
X+2DH X -2DH
’ oL
(4DH)'2<p<(2X)1/2
X+2DH X -2DH
< H(log X)™*¢ + Z ( 5 J—{ 5 J),
p p

(4DH)'2<p<(2X)\/2

since C; > 8C.
We can trivially bound

X+2DH X -2DH
5 - 5 < 1
(4DH)'?2<p<H (log X)~4C p p (4DH)'2<p<H (log X)~4C
< H(log X)™*€.
Next, we bound
X+2DH X -2DH
1557 - [) o1
p pP

H(log X)*C <p<(4DH)!'/2

Note that for any p > H(log X)*C there is at most one multiple of p?in (X —2DH, X +2DH],s0 (9.11)
is at most |S(H (log X)*C, (4DH)'/?)|, where

S(t1,12) :=={d € (t1,12] : md*> € [X —2DH, X +2DH] for some m € N}
In [11, p. 221], it is proven for H > X'/3*% that
IS(Hlog X,2VX)| < X' log X,

50 (9.11)is < H(log X)™4€.
Finally, we bound

X+2DHJ
> -

({ X - ZDHJ)
2
H (log X)~#€ <p<H (log X)4C p P
4DH X+2DH X -2DH
2 | p 1T, '

( (9.12)
H (log X)~*C€ <p<H (log X)4C

The first term in the sum gives a negligible contribution of < (log X)*C. Pick two 1-periodic smooth
functions W—, W* such that W~ (¢) < {r} < W*(¢) forall# € R and such that W= () differs from {7} only
in the region where ||f[|r/z < (log X)~8C, and W= satisfy the derivative bounds sup, |(W*)(©) (1)| <
(log X)3€¢ for 1 < £ < 3. Then (9.12) is

so((logX)4C)+ —X+2DH)+W+(—X_2DH)).

(_W_ ( p? p?
H (log X)~4C <p<H (log X)*C
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By [45, Proposition 1.12(ii)] and the fact that for any u, 2 > 0 we have {u + h} — {u} = h unless
|lullr/z < h, the main term here is

H (log X)*¢ X —2DH X +2DH\\ dt
/ (W+ (—2 ) —W- (—2 )) +O(H(log X)~%¢)
H (log X)~4C t t logt

H(logX)* (4py dt
< ma +1 — + H(log X)~%¢
oe{1)f+1}/f1(1ogx)40( 2 " Ne2DHE) [Pl s log X7 8C)log (log )

< H(log X)™*€,

since the condition ||(X + 2DH0')/t2||R/Z < (log X)78C for t € [H(log X)™*€, H(log X)*“] holds in a
union of intervals of total measure < H (log X) ™4

Putting the above estimates together, we obtain (9.9) for j = 1.

Let us then prove (9.9) for j = 2. We thus bound the number of integersn € [ := (X-2DH, X+2DH|

that satisfy np<xl/<'°g'°gx>3 pVP(") > X/loglogX Writing v = Xl/(l"gk’gX)S, the number of such n € I is

10C (log log X)2
b W
< - -
< Z < Z (Xy/IOgIOgX) (log X)IOC Z g(n), ©.13)
abel abel nel
pla= p>v pla= p>v
plb = p<v plb = p<v

b>Xy/]0g]ngX

where g is the completely multiplicative function for which

1 ifp>v;
8(p) =1 wcumiex?
p vleX ifp<v.

Then Shiu’s bound (Lemma 2.17) implies that (9.13) is < H/(log X)*C. This proves (9.9) for j = 2.
Hence |§| < H/(log X)*C, and in particular arguing as in the beginning of the proof of Lemma 9.5
we see that the fact that v is a (D, 0x—(1))-pseudorandom function at location 0 and scale X implies
that so is v(n) + h(n)1,cs.
Hence it suffices to show that v(n) is of the form (9.2). The majorant v(n) is defined in [52, Section
7], for some y > 0 small enough in terms of D, k, as

L (loglog X)*] |log((loglog X)*)/log 2]

v(n) =Y diw) > 2% ety By (*) : (9.14)

uln k=4/y A=[log(k)/log2-2] HPW pvp(n)
where

e U(A,«), defined in [52, Section 7], is a set contained in [1, XIOVI/Z] and satisfying

vk(A1+3 - (logk)/(log2))

U, ), 1 >
ueUk),u>1 = wu) 200

leUA, k) = «k=4]y,

e hy(n) = Xpn(di = ) (O x (l(l);‘g)(,/) where y : R — [0, 1] is some smooth function supported in
[_ 1 > 1] .

Therefore, in particular, in (9.14) we have

Kk < (200/y)(w(u) + 1),
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so that
2k < d(u)M

for some constant M = My, > 1. Inserting the definition of %, into the definition of v, and setting
T = X107’l/2, we see that for some |A,,| < d(u)**M (loglog X)9P+(1) we have

log ¢
SR INCICITE: el
L’t/tﬂ"% [’Sl;y

Writing e = fu, we see that for some |1,| < (loglog X)9P-+(Dd(e)*M+1 4, .| (e) the function v is of
the form

v(n) = Z L.

eln
1/2
(_’SXIOY / +y

Taking y small enough in terms of D, k, this is of the form required in Lemma 9.5, so appealing to that
lemma we conclude that v is (D, 0,,—(1))-pseudorandom at location X and scale H. O

We need two more lemmas before proving Theorem 1.5.

Lemma 9.8. Let D € N be fixed. Let 1 < q < H'* be an integer. Let X > H > 2, and let
f:(X,X + H] — C be afunction with | f (n)| < H'2"7 Then we have

1 -
flloo e < = . Waallun g, oot ) + OH),

1<a<gq

where f, o(n) := f(gn+a).

Proof. Denote by 1,4 the indicator of the arithmetic progression a (mod g). Then, by the triangle
inequality for the Gowers norms, we have

1 llop xxem <Y 1 la@ loo (e

I<a<q

The claim now follows by making a linear change of variables (n,h) = (gn’ + a, gh’) in the definition
of [| flag)llur (x, x+H1- m

Lemma 9.9. Let D,k € N and € > 0 be fixed, with € > 0 small enough. Let X > H > X?®, and let
1<g< X% be an integer. Let f(n) = (log X)'"*dy (n). Then for 1 < a < q with (a, q) = 1 we have

k-1
¢(q)
”fq,a”UD(X,X.,.H] < (T) ,

where f, o(n) := f(gn+a).
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Proof. Let g4,q4(n) := di(gn + a). By the definition of the interval Gowers norms and the fact that
11 (x,x+H] ”%]1;(2) = HP*! we have

D
18a.algo x o) = HD+1 > ] dar+o by + )l xxom(n+w-h)
n hy,...hp we{0,1}P
(9.15)
< gD di(gn+w-h)+a)+H 2,
X<n<X+H |hyl,....|hp|<2H we{0,1}P
h; distinct

We can upper bound the correlation of these multiplicative functions using Henriot’s bound [30, Theorem
3] (takingx — X,y —» H,6 —» 27P72,0(n) — [Tweqo,1y2 (¢(n + w - h) + a) there), obtaining

Z l—l di(g(n+w-h)+a)

X<n<X+H we{0,1}D

- ADH( pQ(p)) 1—[ Z dk(”)PQw(n) ©.16)

p<X we{0,1}P n<;)( |

where

Qo) =qu+w-h+a, 0= [] Qu

we{0,1}P
pp(n) =[{u (modn): P(u) =0 (modn)},

D =D(h) = (-1 D222 T (0 -w) ) =t (-1)

wFw’

2D~ 1 22D oD

D',

dp?): pi || Qw (W)Y ]
AD=1_[ 1+ Z dk(pvl)"'dk(psz)l{n (mod p=) : pY7 || Qu,(n)V j}|

2

rlD 0<vi,..., v,p <1 p
V15,0 ) #(0,...,0)
(0] 1
< 1_[ (1+ D,k )),
, p
r|D
where wy, . .., wyp is any ordering of {0, l}D . In order to bound the various expressions above, note that
2D 2D 2D
ﬂ (1 - 'DQ—(m) < ﬂ (1 - —) < (logX)‘zD ﬂ (1 + _) . (L)
p<X p p<X p plD’ p 90(51)
p1D

and

5 di(mpo, (M) _ [ (1 . 5) < (log X)k (so(q))
n p q

n<X p<X
(n,D)=1 ptq

We now conclude that (9.16) is

< (log X)*=D2" (M)(k]).w 1_[ (1 + —OD’k(l))
1 plD’ p
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By the inequality l_[f.‘=1 x; < Zf‘z 1 xf‘ and an elementary upper bound for moments of n/¢(n), we have

o 1 1 Op k(1)
(1+L()) < (1+—) < HP.
i ..o | <2H p| D (h) P il il | <2H we{-1.01}P\(0) pleoh P
h; distinct h; distinct
The claim now follows by combining this with (9.15). O

We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5. (i) Let H be as in Theorem 1.5(i). By the triangle inequality for the Gowers
norms, to prove (1.18) it suffices to show that

IAF = A llus (x x4m1] = Ow—soo(1). (9-17)

and

IA = A*llys (x.x+0] = 0xeo (1) (9.18)

The first claim (9.17) follows directly from Lemma 9.6 and Remark 9.2.

We are then left with proving (9.18) and (1.19). Let 1 < b < W’ < log X be integers. For f = A—AF,
by Theorem 1.1 for any x € [X/(log X)4, X (log X)4],H(log X)™4 < H' < H and G/T', F as in that
theorem, we have

sup Z F(W'n+b)F(g(n)I)
8EPOlY(Z—G) |y cpn<x+H’

b (9.19)
)

n

= sup Z F(m)F(g(
gePoly(Z—G) W’ x+b<n<W’(x+H')+b
n=b (mod W)

<4 H'/(log X)4,

WI

since there exists a polynomial sequence g : Z — G such that g(n) = g((n — b)/W’) foralln = b
(mod W’).

Now (1.19) follows by combining the inverse theorem (Proposition 9.4) with the estimate (9.19),
Lemma 9.6, and Remark 9.7. Lastly, (1.18) follows from (1.19) and Lemma 9.8.

(i) We then turn to the case f = dy — di. Again, Theorem 1.1 gives us the bound (9.19). Together
with the inverse theorem (Proposition 9.4), Lemma 9.6 and Remark 9.7, this implies (1.21).
Let

h(n) = (log X)! " (dx (n) - df (n)).
Then, to prove (1.20), we must show that

12llue (x, x+H5] = 0x—00(1).
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Let W := W" with w an integer tending to infinity slowly>. By Lemma 9.8, we have

_ _ +OH?
US(X/W,(X+H)/W]

Wallys (x x+m7 < th,a

|- -

1<a<W
= l’l~
Z~ ” Weallys (x /W ,(x+H) /W]
I<asWw
(a,W)|ww! (9.20)
| .
F = he _ _ +0(H?).
W Z~ “ Woallys (x/W,(x+H) /W] ( )
I<a<W
(a,W)tw-1

The number of terms in the last sum is

«y Ty

P<W

so by Lemma 9.9 the contribution of this sum is < 27*/2, say. The first sum over a in (9.20) can further
be written as

9.21)

D () Z

(lew 1

dk(f) US (X)W, (X+H) /W]

(aW) [’

Since di(m) < di(m), for (a, W) = € we have

wo\! hW,a(”) wo\! l_kdk(Wn+a)
(¢<W>) AT <<(¢(W)) (log X) "0

wo\F! . [W o a
:(W) (logX)1 dk(7”+z)a

and since W' | g, by Lemma 9.6 and Mertens’s theorem this function is pseudorandomly majorized by
a (D, 0x—w(1))-pseudorandom function at location 0 and scale H/ W. This combined with (9.19) (with
W /¢ in place of W’) and Proposition 9.4 yields

h 4
di(f)

k-1
((ﬂ) ) ©.22)

UDP (X/W,(X+H) /W] w

uniformly in 1 < a < W with (W, a) = ¢

5Let us explain why we perform the W-trick for the divisor function with the modulus W := W™ rather than with the modulus W. In order to
apply the inverse theorem, we wish to ﬁnd amodulus W’ such that A(W’n + a) is pseudorandomly majorized for almost all 1 < a < W’. Since

Ih(Wn+a)| < di (W, a))dic (s n + oviary o
1 < a < W’.ByLemma 9.6, we thus want that W | (W’ a) for almost all 1 < a < W. This property fails if W/ = W but holds if W' = W"
with w — oo,

) ) we want to show that this latter function is pseudorandomly majorized for almost all
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Now the bound (1.20) follows from (9.21), (9.22), and the estimate

k—1 7 k
Y a0 Y (4P« ¥ aof (4P

wwst l<a<W Lyww-l
(a,W)=¢
k
— k 1 w ~
< Wn (1+—+0(—2)) (M) < W.
p p w
plw
(iii) This case follows directly from the inverse theorem (Proposition 9.4 with v = 1) and
Theorem 1.1(iv). |

10. Applications
In this section, we shall prove the applications stated in Section 1.

Proof of Corollary 1.3. Parts (i) and (iii) follow immediately from Theorem 1.1, as polynomial phases
are special cases of nilsequences. By Theorem 1.1 and the triangle inequality, the proof of part (ii)
reduces to proving that

D Awe(P(n)| >

H
A
X<n<X+H (log X)

implies (1.10). Recalling from (4.8) that A#(n) = A?(n) + E(n), where A? is a ((logX)°M), x#)
type I sum and Yy, <x.m |E(n)| <a Hlog™* X, the claim follows from the type I estimate in [49,
Proposition 2.1]. O

Proof of Theorem 1.6. First note that, since log p = (1+0(1)) log N for p € (N, N + N¥] and since the
contribution of higher prime powers is negligible, we have

En<penene fi(TMPx) - fi(T"Px) = Encpenene An) fi (T""x) - fi(T""x) + 0y oo (1).
(10.1)

Hence, it suffices to show that the right-hand side of (10.1) converges in L?(u).
Let w be a large parameter (which we will eventually send to infinity), and let W =[], ,, p. Let

€(n) := A(n) = Ay (n);

this is a function that has small Gowers norms over short intervals by Theorem 1.5.
We first claim that

2
/ [En <n<nense(m) fi(T""x) - filT""0)[" dpa(x) = 0o (1). (102)
X
Since the average over n in (10.2) is bounded, it is enough to show for all bounded fj : X — C that
/ EN<n<nn<€(n) fo(x) fi(T""x) - fie(T""x) dp(x) = 0wsoo (1 follL2(y0))- (10.3)
X

To prove this, we first make the changes of variables n’ = n+ N, x = T™y, with m arbitrary, and use
the T-invariance of u to rewrite the left-hand side of (10.3) as

/XEmen/sw«eN(n')fa(T’"wf(Tm*’“"’T’“Ny) coe f(Tm TN by (), (10.4)
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where ey (n’) := e(n’ + N). Since f; : X — C are bounded, we can appeal to the generalized von
Neumann theorem in the form of [13, Lemma 2] (after embedding [N*] to Z/MZ for some M <« N*)
to bound (10.4) as

< |len llyxnep lfoll 2wy = Ow—eo Ul foll L2 ()5

where for the second estimate we used Theorem 1.5. Now (10.2) has been proved. Then let w’ > w. By
an argument identical to the proof of (10.2), but using in the end the fact that |[Ay, — Aw/ [[gx | § nene] =
0yw—oo(1) (Which follows from Theorem 1.5 and the triangle inequality, but could also be proved more
directly), we see that also

/X [Exenenne (Ao (1) = A (W) A (TM) - fi (T du(x) = 0pse (D). (10.5)
Consider now

EN <nsNansAw (1) fi (T"7x) - fi(T""x).

This can be rewritten as

W n
o) Z Enywensvene)wfi (T V0)x) o fio (@MW) 4oy e (1).
A

Since the sequence ((N/W, (N + N¥)/W])n of intervals are translates of a Fglner sequence, from [2,
Theorem 1.1] it follows that there exists ¢, : X — C such that

2
/ ‘EN/W<ns(N+NK)/Wf1(Thl(W’Hb)x) oo fr (TR Vb)) ¢w,b(x)) dp(x) = ON—eo,w(1).
X

Hence there exists also ¢,,: X — C such that

2
/ BN <nsnene A (m) fi(TM720) - fi(T""x) = ¢y (x)]” dpa(x) = 0N 0, (1). (10.6)
X

By (10.5), for w’ > w we have

llpw — ¢w/”L2(M) = Ow—w(1),
so the sequence (¢, ),y is Cauchy in L?(u). Let ¢ € L*>(u) be its limit. Then, denoting

F(x) = EN<nenaneA(n) fi(T""x) - fil(T""x),
from the triangle inequality, (10.2) and (10.6), we have
|F - ¢”L2(;4) = lgw — ¢||L2(,u) + 000 (1) + ON 00w (1)
= 0W—>oo(1) + 0N—>oo;w(1)-

By sending N, w — oo with w tending to co slowly enough, and recalling (10.1), this proves the claim
of Theorem 1.6, with the limit being ¢. )

For proving Theorem 1.7, we need the generalized von Neumann theorem, so we state here a version
of it that is suitable for us.

Lemma 10.1 (Generalized von Neumann theorem). Let Let s,d,t, L > 1 be fixed, and let D be large
enough in terms of s, d, t, L. Let v be (D, 0 n—(1))-pseudorandom at location 0 and scale N, and let
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fiseeos ft 0 Z > Rsatisfy | fi(x)| < v(x) foralli € [t] andx € [N]. Let ¥ = (Y1, ..., ¥;) be a system
of affine-linear forms with integer coefficients in s-normal form such that all the linear coefficients
of i are bounded by L in modulus and |¢;(0)| < DN. Let K ¢ [-N,N]? be a convex body with
¥(K) c (0, N]9. Suppose that for some § > 0 we have

]réll_igt | fillyseipng < 0.

Then we have

DU [Awim) = 0s5-0(v9).

nek i=1

Proof. Note that by Lemma 9.3 there exists a prime N’ < N such that we have a majorant for f; on the
cyclic group Z/N’Z satisfying the (D, D, D)-linear forms condition of [17, Definition 6.2]. Then the
claim follows from [17, Proposition 7.1], observing that its proof only used the (D, D, D)-linear forms
condition of [17, Definition 6.2] and not the correlation condition. O

Proof of Theorem 1.7. Let w be a sufficiently slowly growing function of X, and let W =[], ,, p. Let
N=(X,....,X) € R4, We can write K = N + K’, where K’ C (O,H]d is a convex body. Now the
sum (1.25) becomes

2 | [rwim +ui N, (10.7)

neK’'nzd i=1

Writing A = A, + (A — A,,), this splits as the main term

>, [ [av@im +4i-N)

neK’'nzd i=1
and 2’ — 1 error terms
t
Do [ M)y +6i N (108)
neK’'nzd i=1

where A; € {A,,, A — A, } and at least one A; equals to A — A,,. Following [17, Section 5] verbatim,
we see that the main term is

vol(K NP~ (R ) ﬂ Bp +0x oo (HY).
P

Following [17, Section 4], we may assume that the system of linear forms involved in (10.8) is in
s-normal form for some s <p 1.
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We make the change of variables n = Wm + b with b € [0, W)d in (10.8) and abbreviate My, ; :=
Wi - b +;(0) to rewrite that sum as

>y HA(w,(Wm+b)+gbl N)

be[0,W)d mezd i=1

Wm+beK’
=2 HA(W% m+y; - b+y;(0)).
be[0,W)d mezd i=1 109)
Wm+beK’
Wy o (W)
=(¢<W>) 2 Z [ ( AWy -m+ My;) — 1
be[0,W)4 me 1<i<t

(Myp,;,W)=1Vi<r me(K'~ b)/W/\ =A=Aw

+ 0X—>00(H )s

where the error term comes from the contribution of integers in the support of A that are not w-rough.
By Theorem 1.5(i), uniformly for integers 1 < M < X with (M, W) = 1 we have

max "'D( )A(W +M) —
I<as<W

(a,W)=1

= 0X—c0;s ( 1)-
Us+l [0,H/W]

Moreover, by Lemma 9.6 the function %A(W - +M) — 1 is majorized by a (D, 0x—w(1))-
pseudorandom measure vy, at location 0 and scale H/W for any fixed D > 1. Hence, applying the
generalized von Neumann theorem (Lemma 10.1, with v = % i<t VM, )» we conclude that (10.9) is

t t d
(] (22 e ] i

completing the proof. O

Proof of Corollary 1.9. This follows directly from Theorem 1.7, since the assumptions imply that
Bp > 0forall p, and on the other hand 8, = 1 +0;.4..(1/p?) by [17, Lemmas 1.3 and 1.6], so we have

[1, 8, >0. ]

A. Variants of the main result

In this appendix discuss in more detail the variants of the main results described in Remark 1.4.

A.l. Results for the Liouville function
It is an easy matter to replace the Mdbius function u by the Liouville function A in our main results:

Proposition A.1. The results in Theorem 1.1(i), (iv) (and hence also Corollary 1.3(i), (iv)) continue to
hold if u is replaced by A.

Proof. We illustrate the argument for the estimate (1.5), as the other estimates are proven similarly.
Under the hypotheses of Theorem 1.1(i), we wish to show that

*

sup Z /l(n)f(g(n)F) <A, £.d.D (S_Ofiﬁf’(l)Hlog_A
8€Poly(Z=G) |x<n<x+H
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Writing A(n) = X, _ VIXm?n u(n/m?) for n < 2X and using the triangle inequality, we can bound the
left-hand side by

%

sup > p(n)F(g(m*m)T)

me< TXgePoly(Z—»G) X/m2<n<X/m+H m?

If m < X°/'0 (say), then by Theorem 1.1(i) (with X, H, g replaced by X/m?, H/m?, g(m?-), and &
reduced slightly) we have

*

sup Z u(n)F(g(m*n)T) <A £.d.D m_zé_od"’(l)Hlog_A X.
g€Poly(Z—-G) X/m?2<n<X/m?+H|m?

For X410 < m <« VX, we simply use the triangle inequality and the trivial bound |F (g(n)T")| < 1/6 to
conclude

*

sup Z u(n)f(g(mzn)l“) < é (% + 1) .

gePoly(Z—>G) X/m?2<n<X/m2+H|[m?

Summing in n, we obtain the claim after a brief calculation (since H is significantly larger than X'/2). O

A.2. Results for the indicator function of the primes
It is also easy to replace the von Mangoldt function A with the indicator function 1o of the primes #:

Proposition A.2. The results in Theorem 1.1(ii) (and hence also Corollary 1.3(ii)) continue to hold if
A is replaced by 1p, and A*(n) is replaced by @Aﬁ (n).
Proof. From (1.6) and Lemma 2.2(iii) we have

*

1
<A, e,d,D 5_0‘1*D(1)H10g_A X

logn

sup

AW = o )| Pl
g€Poly(Z—G) ogn

X<n<X+H (

and so by the triangle inequality it will suffice to show that

<A Hlog™ X.

1
Lp(n) = 1o —An)
X<n<X+H ogn

But the summand is supported on prime powers p/ with 2 < j < log X and p < VX, so there are at
most O(VX log X) terms, each of which gives a contribution of O(1). Since H is significantly larger
than X1/2, the claim follows. m]

A.3. Results for the counting function of sums of two squares
It is a classical fact that the counting function

ra(n) = Z 1

a,beZ
a’+b*=n

can be factorized as r(n) = 4(1 = y4)(n), where y4 is the non-principal Dirichlet character of modulus
4. This is formally very similar to the divisor function dy(n) = (1 * 1)(n). In this paper we use the
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Dirichlet hyperbola method to expand d»(n) for X <n < X + H as

da(n) = Z 1+ Z 2

RzSnISn/Rz ni<Ry
ni|n niln

with R, := X'/?%, and approximate this function by the Type I sum

logn — log R
f,) =
dz(n) - Z 10g Ry Z 2

Ry <m <R2 ni<Rp
niln niln

(these are the k = 2 cases of (3.15), (1.2) respectively). In a similar vein, we can expand

ra(n) = Z 4xys(ny) + Z 4(x4(m) + xa(n/ny))

Ry<n <n/R; ni<Ry
niln niln

and then introduce the twisted Type I approximant

logn — log R?
A= Y )T e 3 a0(m) + xalnfm))

Ry<n|<R? ni <R,

nyln min

We then have

Proposition A.3. The k = 2 results in Theorem 1.1(iii) continue to hold if d,, dg are replaced by ro, r})
respectively.

This proposition is established by repeating the arguments used to establish Theorem 1.1(iii), but
by inserting “twists” by the character y4 at various junctures. However, such twists are quite harmless
(for instance, since || y4|lTv(p4) < 1 for any arithmetic progression P, Proposition 2.2(iii) allows one
to insert this character into maximal sum estimates without difficulty), and there is no difficulty in
modifying the arguments to accommodate this twist.

A.4. Potential result for the indicator function of the sums of two squares

Let S = {n®> +m? : n,m € Z} be the set of numbers representable as sums of two squares. The Dirichlet

series for S is equal to £ (s)'/?>L(s, x4)'/* times a holomorphic function near s = 1, and in particular

extends into the classical zero-free region after making a branch cut to the left of s = 1 on the real axis.
By a standard Perron formula calculation, one can then obtain asymptotics of the form

A-1
Z Is(n) =x Z B; log_j_l/zx + OA(xlog_A_l/zx)
n<x Jj=0

forany A > 0 and some real constants B; which are in principle explicitly computable; see for instance [ 7,
Theorem 1.1] for a recent treatment (in significantly greater generality) using the Selberg—Delange
method. Similar calculations give asymptotics of the form

A-1
Z 1s(n) =x Z Bjag log‘j_l/zx +0a(x log_A_l/zx)
=0

n<x
n=a (q)
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for any fixed residue class a (g) and some further real constants B; , ,. With further effort one can
also localize such estimates to intervals {X < n < X + H} with H not too small (e.g., H = X3/8+¢ or
H= X7/ 12+a).

This suggests the existence of an approximant 1§’A for any given accuracy A > 0 that is well
approximated by Type I sums, and is such that one has the major arc estimate

1s(n) - lﬁS’A(n) <4 Hlog™ x
X<n<X+H

(cf. Theorem 3.1). For small A, it seems likely that one could construct lﬂs’A by a variant of the Cramér—
Granville construction used to form A#; but for large A it appears that the approximant is more difficult
to construct (for instance one may have to use Fourier-analytic methods such as the delta method).
However, once such an approximant is constructed, we conjecture that the methods of this paper will
produce analogues of Theorem 1.1(ii) (and hence also of Corollary 1.3(ii)) if A, A¥ are replaced by
ls, lﬂS’A' respectively, with A’ sufficiently large depending on A. The main point is that a satisfactory
analogue of the Heath—-Brown decompositions in Lemma 2.16 for 1g is known; see [59, Lemma 7.2].

We do not foresee any significant technical issues with the remaining portions of the argument,
though of course one would need to define the approximant lg’A more precisely before one could say
with certainty that the portions of the argument involving this approximant continue to be valid.

A.5. Potential result for the indicator function of smooth numbers

Let0 < n < %, let X be large, and let S,, denote the set of X”7-smooth integers, that is to say those
numbers whose prime factors are all less than X”7. Let H > X+¢ with 6 = % + 1. As is well known,
the density of S, in [X, X + H] is asymptotic to the Dickman function p(1/7) evaluated at 1/n. We
conjecture that the methods of this paper can be used to establish a bound of the form

*

sup >0 (s, () = p(U/MF(@(MD)| <g.a.0.y 5 %4>V Hlog™ X
gePoly(Z—G) |x<n<x+H

for some absolute constant ¢ > 0 under the hypotheses of Theorem 1.1.

Indeed, a Heath-Brown type decomposition, involving only (1,x'/277 x!/2) type II sums and a
(somewhat) small exceptional set, was constructed in [40, Lemma 11.5]; the exceptional set was only
shown to be small on long intervals such as [1, X] in that paper, but it is likely that one can show the set
to also be small on the shorter interval {X <n < X + H}.

There are however some further technical difficulties in implementing our methods here. The first
(and less serious) issue is that one would need to verify that the type II sums f(n) produced by [40,
Lemma 11.5] obey the bound (4.9); we believe that this is likely to be achievable after some computation.
The second and more significant difficulty is that one would need an approximant 12,, obeying a major
arc estimate of the shape

*

D1 s, () —1% ()] <a Hlog™ X
X<n<X+H !

for any A > O (possibly after removing a small exceptional set from §,), in the spirit of Theorem 3.1
and Corollary 3.10.

The constant p(1/n) is an obvious candidate for such an approximant, but unfortunately such an
estimate is only valid for small values of A; see [31, Theorem 1.8]. Thus, as in the previous discussion
for the indicator of the sums of two squares, a more complicated approximant is likely to be required; the
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function A(x, y) appearing in [31, Theorem 1.8] will most likely become involved. See also [53] for some
recent estimates on the distribution of smooth numbers in short intervals or arithmetic progressions (in
a slightly different regime in which the X" threshold for smoothness is replaced by a smaller quantity).
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