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Abstract—We consider the problem of joint communication
and sensing with covertness constraint, in which the transmit-
ter needs to design a signal to simultaneously communicate
and probe a channel while escaping detection by a passive
eavesdropper. Because of the covertness constraint, the weight
of transmitted codewords needs to obey the square-root law.
We show the existence of a coding scheme with Pulse Position
Modulation that achieves the optimal performance between com-
munication throughput and state sensing-error exponent while
remaining covert with respect to a passive eavesdropper. For
a binary-input discrete memoryless channel, we show that the
performance is solely determined by the covertness constraint,
and we characterize the optimal pair of achievable rate and error
exponent.

I. INTRODUCTION

The benefits of dual-functional waveforms simultaneously

supporting radar and communication have motivated the in-

tegration of both communication and sensing [1]–[6]. Such

Joint Communication and Sensing (JCS) systems, in general,

incur inevitable performance tradeoffs, which have been ex-

tensively analyzed [4], [5], [7]–[13]. The dual use of signals

for communication and sensing also raises security challenges

that have been investigated in [14]–[16]. In particular, the

growing concerns for the transmission behaviors to remain

undetectable by an adversary bring the idea of covertness into

the picture [17]. Even in a less malicious scenario, covert JCS

can potentially provide a solution to the dynamic spectrum

access when secondary users such as sensors are employed.

Our work is largely inspired by the recent development in

covert communications and covert sensing. Following the dis-

covery of the square-root law [18] for covert communication,

[19]–[21] have characterized the pre-constant in front of the

square-root scaling, often identified as the covert capacity.

Subsequent works have studied covert communications under

channel uncertainty, meaning either the legitimate transceiver

pair or the passive eavesdropper has uncertainty regarding the

channel state, to explore different strategies guaranteeing a low

probability of detection [18], [22] when the eavesdropper is

aware of the channel state, or even achieve a positive com-

munication rate [23]–[26] when the eavesdropper is not aware

of the channel state. Practical covert coding mechanisms have

also been investigated in [27]–[32]. Of particular relevance

to the present work, the Pulse Position Modulation (PPM)
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strategy developed in [33], [34] is a crucial component in

the algorithms proposed by [28], [29], [32]. Motivated by the

possibility of designing covert radar systems, [35]–[38] have

studied the problem of covert sensing to characterize how to

remain covert while actively performing sensing actions.

The main contributions of our work are twofold. 1) We

characterize that when only an innocent symbol and a non-

innocent symbol are at the transmitter’s disposal, there exist no

tradeoff between communication and sensing performance, as

the performance is dictated by the covertness constraint. This

result is in contrast to prior works [10]–[12]. 2) Our achievabil-

ity proof suggests that PPM is again a good candidate for joint

communication and sensing under a covertness constraint. The

main reason is that PPM is a much more structured signaling

strategy that is well adapted to the sensing problem.

II. NOTATION

Let R+ and N∗ denote all non-negative real numbers and

all positive integers, respectively. For any set Ω, the indicator

function is defined as 1(ω ∈ Ω) = 1 if ω ∈ Ω and 0
otherwise. For any discrete set X and n ∈ N∗, a sequence of

length n is implicitly denoted x ≜ (x1, · · · , xn) ∈ Xn, while

xi ≜ (x1, · · · , xi) ∈ X i denotes a sequence of length i. Fol-

lowing the standard method of type [39], we let PX be the set

of all probability distributions on X . For x ∈ Xn, p̂x denotes

the type of x, i.e., p̂x(x) =
1
n

∑n
i=1 1{xi = x}. Pn

X is the set

of all possible types for length n sequences in Xn. We let

H(PX) ≜ −∑x∈X PX(x) logPX(x) be the entropy of X ∼
PX . If WY |X is a conditional distribution on Y ∈ Y given

X ∈ X , H
(
WY |X

∣∣PX

)
≜ EPX

[
H
(
WY |X(·|X)

)]
is the con-

ditional entropy of WY |X given an input distribution PX and

I(PX ,WY |X) ≜ H
(
WY |X ◦ PX

)
−H

(
WY |X

∣∣PX

)
is the mu-

tual information between X and Y , where X ∼ PX and Y ∼
PX ◦ WY |X ≜

∑
x PX(x)WY |X(·|x). For two distributions

PX and QX over the same set X , we let PX ≪ QX denote

the absolute continuity with respect to (w.r.t.) QX , if for any

x ∈ X , QX(x) = 0 implies PX(x) = 0. Also, the relative en-

tropy is D(PX ∥QX) ≜
∑

x PX(x) log PX(x)
QX(x) , the variational

distance is V(PX , QX) ≜ 1
2

∑
x |PX(x)−QX(x)|, and the

chi-squared distance is χ2(PX ∥QX) ≜
∑

x
(PX(x)−QX(x))2

Q(x) .

For λ ∈ (0, 1), we define the binary entropy function as

hb (λ). Moreover, for a, b ∈ R such that ⌊a⌋ ⩽ ⌈b⌉, we

define [a; b] ≜ {⌊a⌋, ⌊a⌋ + 1, · · · , ⌈b⌉ − 1, ⌈b⌉}; otherwise



[a; b] ≜ ∅. In addition, for any x ∈ R, we let |x|+ denote

max(x, 0). For any x ∈ R, we also define the Q-function

Q(x) ≜
∫∞
x

1√
2π

e
−x2

2 dx and its inverse function Q−1(·).
Finally, throughout the paper, log is w.r.t. base e, and therefore

all the information quantities should be understood in nats.

III. COVERT JOINT COMMUNICATION AND SENSING

MODEL

Fig. 1. Covert joint communication and sensing model.

We consider a JCS model with compound channels. As

illustrated in Fig. 1, in which a transmitter, Alice, attempts to

communicate with a receiver, Bob, over a state-dependent Dis-

crete Memoryless Channel (DMC) (Θ,X ,WY |Xθ,Y) while

simultaneously probing the channel state θ through a sensing

channel (Θ,X ,WU |Xθ,U). However, a passive eavesdropper,

Willie, monitors the activity between the legitimate users

through another state-dependent DMC (Θ,X ,WZ|Xθ,Z). The

a priori unknown state θ is assumed to be fixed during the

whole duration of the transmission and takes value in a finite

set Θ (|Θ| < ∞), and Willie is fully aware of the true

realization of θ, i.e., the channel state information is available

at the eavesdropper. More formally, Alice encodes a uniformly

distributed message W ∈ [1;M ], with the help of a uniform

secret key S ∈ [1;K] preshared with Bob, into a codeword X

of length n as follows:

f : [1;M ]× [1;K] → Xn : (w, s) 7→ xws ≜ f(w, s). (1)

At the end of transmission, Alice also uses the estimator to

detect the channel state θ as follows:

g : Xn × Un → Θ : (x,u) 7→ θ̂. (2)

Bob decodes the message with his knowledge of the secret

key S as follows:

h : Yn × [1;K] → [1;M ] : (y, s) 7→ ŵ. (3)

Following the convention in the covert communication and

sensing literature [20], [21], [37], we assume that there

exists an innocent symbol x0 ∈ X representing the chan-

nel input when Alice remains idle, i.e., Alice does not

perform any meaningful action, and x0 induces the fol-

lowing three distributions: P0,ϑ ≜ WY |X=x0,θ=ϑ, Q0,ϑ ≜

WZ|X=x0,θ=ϑ, and R0,ϑ ≜ WU |X=x0,θ=ϑ for all ϑ ∈ Θ.

Willie declares whether Alice remains idle or not by perform-

ing a test T to distinguish the following two hypotheses:

T : Zn ×Θ → {H0, H1}

where H0 : Z ∼ Q⊗n
0,ϑ, H1 : Z ∼ Q̂n

ϑ, and Q̂n
ϑ is the

distribution induced by the encoder f :

Q̂n
ϑ(z) =

1

MK

M∑

w=1

K∑

s=1

W⊗n
Z|Xϑ (z|f(w, s)) .

We make the following assumptions:

• µ0 ≜ minϑ∈Θ,z∈Z Q0,ϑ(z) > 0.

• There exists another symbol x1 ∈ X distinct from x0. We

then define the associated distributions P1,ϑ, Q1,ϑ, and R1,ϑ

similar to P0,ϑ, Q0,ϑ and R0,ϑ.

• For every channel state ϑ ∈ Θ, Q1,ϑ ≪ Q0,ϑ and Q1,ϑ ̸=
Q0,ϑ.

• For every channel state ϑ ∈ Θ, P1,ϑ ≪ P0,ϑ.

• For every channel state ϑ ∈ Θ, R0,ϑ = R0 for some

R0, otherwise Alice can simply perform channel sensing

by sending the innocent symbol.

The system performance is measured in terms of the asymp-

totic throughput of reliable communication and the asymptotic

sensing-error exponent while subject to a covertness metric.

Formally, we define the communication error probability and

the sensing-error probability as follows:

P (n)∗
c ≜

max
ϑ∈Θ,s∈[1;K],w∈[1;M ]

P(h(Y, s) ̸= w|W = w, S = s, θ = ϑ)

P (n)∗
s ≜

max
ϑ∈Θ,s∈[1;K],w∈[1;M ]

P(g(U) ̸= s|S = s,W = w, θ = ϑ),

where the dependency on the blocklength n will be omitted

when it is clear from the context. The covertness metric is

defined as maxϑ∈Θ V

(
Q̂n

ϑ, Q
⊗n
0,ϑ

)
, and it has been justified

in [19], [22], [34] that variational distance constraint as a

covertness metric is more operationally relevant and provides

a 25% gain in throughput compared to the commonly used

relative entropy constraint D
(
Q̂n

ϑ

∥∥∥Q⊗n
0,ϑ

)
.

Definition 1 (Achievable pairs). A covert throughput and

sensing-error exponent pair (R,E) ∈ R+ ×R+ is achievable

with corresponding key throughput Rk ∈ R+, if there exists

a sequence of codes C = (n, f, g, h, [1;M ], [1;K], δ) with

increasing blocklength n such that

lim
n→∞

logM√
n

⩾ R, lim
n→∞

logMK√
n

⩽ R+Rk,

lim
n→∞

− logP ∗
s√

n
⩾ E, lim

n→∞
P ∗

c = 0,max
ϑ∈Θ

V

(
Q̂n

ϑ, Q
⊗n
0,ϑ

)
⩽ δ.

We then define C as the closure of all achievable (R,E) pairs.

Remark 1. The above sensing strategy is called open-loop.

A closed-loop strategy would allow Alice to adapt the code-

words based on her feedback observations through the sensing



channel [12], [13], [36], [40], [41]. We do not consider the

closed-loop strategy in the present work.

Remark 2. We allow Willie to obtain a reliable channel state

before the transmission. This assumption not only captures

a situation in which a more powerful eavesdropper can

control the channel but also prevents the legitimate pair from

exploiting the channel uncertainty to go beyond the square-

root law [23], [24].

IV. MAIN RESULT

We restrict ourselves to the binary case X = {x0, x1}
in order to obtain a closed-form result that reflects how the

covertness constraint affects JCS performance.

Theorem 2. The closure region C for X = {x0, x1} degrades

to a rectangular region characterized by the vertex (R∗, E∗):

R∗ =
2minϑ D(P1,ϑ ∥P0,ϑ)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1

(
1− δ

2

)
,

E∗ =
2minϑ,ϑ′:ϑ ̸=ϑ′ C (ϑ∥ϑ′)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1

(
1− δ

2

)
,

where C(ϑ∥ϑ′) ≜ supl∈[0,1] − log
(∑

u R1,ϑ(u)
lR1,ϑ′(u)1−l

)
.

The above region is achievable with key throughput

Rk =
2Q−1

(
1−δ
2

)
√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

×
∣∣∣∣max

ϑ
D(Q1,ϑ ∥Q0,ϑ)−min

ϑ
D(P1,ϑ ∥P0,ϑ)

∣∣∣∣
+

.

The above result is conceptually different from prior

work [12] in that no tradeoff appears between the covert

throughput and sensing-error exponent. The main reason is

that the covertness constraint effectively controls the numbers

of non-innocent symbol x1 allowed in the codebook.

Remark 3. The tradeoff between the covert throughput and
sensing-error exponent reappears again in the case |X | > 2
with more than one non-innocent symbol. The closure region
C is then governed by the distribution among non-innocent
symbols, i.e., P ∈ PX\{x0}. Our conjecture is that C =
∪P∈PX\{x0}



























(R,E) ∈ R+ × R+ :

R ⩽
2Q−1( 1−δ

2 )minϑ
∑

xi ̸=x0
P (xi)D(Pi,ϑ ∥P0,ϑ)

√

maxϑ χ2

(

∑

xi ̸=x0
P (xi)Qi,ϑ

∥

∥

∥
Q0,ϑ

)

E ⩽
2Q−1( 1−δ

2 )minϑ ̸=ϑ′ C(ϑ∥ϑ′|P)
√

maxϑ χ2

(

∑

xi
P (xi)Qi,ϑ

∥

∥

∥
Q0,ϑ

)



























,

where C(ϑ∥ϑ′|P ) ≜ supl∈[0,1] −
∑

xi ̸=x0
P (xi) ×

log
(∑

u Ri,ϑ(u)
lRi,ϑ′(u)1−l

)
.

A. Achievability for Theorem 2

Our achievability proof reuses several results from [33], [34]

to analyze the performance of the codebook constructed from

PPM symbols. The advantage of utilizing PPM in the present

work is to control the type of codewords very precisely. In

particular, for the binary input alphabet, this is equivalent to a

constant-composition codebook characterized by the number

of non-innocent symbols x1, which allows us to precisely

analyze the sensing-error exponent.

1) Codebook Construction via Pulse Position Modulation:

We first define the notion of PPM super symbol.

Definition 3. For m ∈ N∗, a PPM super symbol of

order m is a sequence xm ∈ Xm of weight one, i.e.,∑m
i=1 1{xi = x1} = 1. We then denote these PPM super

symbols by {x̃(i)}mi=1 and x̃(i) is the PPM super symbol

with x1 at its i-th position. The distribution induced by

choosing all PPM super symbols of order m uniformly at

random is Π̃m
PPM(xm) = 1

m

∑m
i=1 1{xm = x̃(i)}. PPM su-

per symbols are effectively transmitted over super channels

(Θ, {x̃(i)}mi=1,W
⊗m
Y |Xθ, Ỹ = Ym), (Θ, {x̃(i)}mi=1,W

⊗m
Z|Xθ, Z̃ =

Zm), and (Θ, {x̃(i)}mi=1,W
⊗m
U |X , Ũ = Um), and subsequently

induce distributions P̃m
PPM,ϑ ≜ W⊗m

Y |Xϑ ◦ Π̃m
PPM, Q̃m

PPM,ϑ ≜

W⊗m
Z|Xϑ ◦ Π̃m

PPM, and R̃m
PPM,ϑ ≜ W⊗m

U |Xϑ ◦ Π̃m
PPM.

We then construct a random code of blocklength ℓ over

PPM super symbols of order m, and the overall blocklength

is n ≜ mℓ. The choices of m and ℓ are not independent and

both scale like O(
√
n). By choosing

ℓ = 2Q−1

(
1− δ

2

)√
n

maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

− 2
√
πe

Q−1( 1−δ
2 )

2

2 n
1
4√

Q−1
(
1−δ
2

)
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

1
4

+ C,

where C is some constant independent of n, then by Lemma 4

below, we can show that

max
ϑ∈Θ

V

(
(Q̃m

PPM,ϑ)
⊗ℓ, (Q⊗m

0,ϑ )⊗ℓ
)
⩽ δ − n− 1

2 , (4)

which characterizes the covertness performance of our signal-

ing strategy based on PPM super symbols after ℓ super channel

uses.

Lemma 4 (Lemma 8 from [34]). Let n, ℓ ∈ N∗ with m = ⌊n
ℓ ⌋

large enough and ℓ = Θ(m). We have

max
ϑ∈Θ

V

(
(Q̃m

PPM,ϑ)
⊗ℓ, Q⊗mℓ

0,θ

)
⩽ 1

− 2Q

(
ℓ

2

√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

n

)
+

2√
ℓ
+O

(
1√
n

)
.

Intuitively, the ratio of weight to overall blocklength for

each codeword is 1/m, and the order of PPM becomes

larger as we increase the overall blocklength n; the increasing

sparsity level is to ensure the covertness constraint is satisfied.

Alice generates MK codewords {x̃ℓ
ws ≜ f(w, s)} of length

ℓ from Π̃m
PPM in an independent and identically distributed

(i.i.d.) fashion, where x̃ ∈ {x̃(i)}mi=1, w ∈ [1;M ] is the

message and s ∈ [1;K] is the secret key preshared with

Bob. Given channel state ϑ, the distribution induced by the

codebook over the PPM super channel at Willie’s terminal is

Q̂n
ϑ = Q̂m,ℓ

PPM,ϑ.



2) Channel Reliability: We first introduce the average prob-

ability of error induced by the code as

P e,ϑ,s ≜ P

(
W ̸= Ŵ |S = s, θ = ϑ

)
.

Lemma 5. By choosing logM = minϑ(1 −
2ξ)ℓD(P1,ϑ ∥P0,ϑ), the expected average probability of

error satisfies

EC

[
P e,ϑ,s

]
⩽ exp(−ρ1n

1/2−ϵ1) (5)

for every key s and every ϑ and for some ξ, ρ1 > 0, ϵ1 ∈
(0, 1/2) and n large enough.

Proof: Modified from [33, Proposition 1].

3) Channel Resolvability:

Lemma 6. By choosing logMK = maxϑ(1 +
ξ)ℓD(Q1,ϑ ∥Q0,ϑ), the expected variational distance between

the codebook-induced distribution and PPM signaling

distribution satisfies

EC

[
V

(
Q̂m,ℓ

PPM,ϑ, (Q̃
m
PPM,ϑ)

⊗ℓ
)]

⩽ exp(−ρ2n
1/2−ϵ2), (6)

for every ϑ and for some ξ, ρ2 > 0, ϵ2 ∈ (0, 1/2) and n large

enough.

Proof: Modified from [33, Proposition 1].

4) Identification of a Specific Universal Code: We will use

an idea similar to the step in [34, Lemma 4] to identify the

existence of a joint reliability and resolvability code that is

universal w.r.t. the compound channel. We first define the

following events:

E1 ≜ {max
ϑ,s

P e,ϑ,s ⩽ λ1e
−ρ1n

1/2−ϵ1 },

E2 ≜ {∀I ⊂ [1;M ]× [1;K] such that |I| = λ2MK,

max
ϑ

V

(
Q̂m,ℓ

I,ϑ , (Q̃
m
PPM,ϑ)

⊗ℓ
)
⩽ e−ρ2n

1/2−ϵ2
+ λ3

}
,

where Q̂m,ℓ
I,ϑ is the distribution induced by codewords in I.

Lemma 7 (Lemma 4 from [34]). Suppose that con-

ditions in Lemma 5 and Lemma 6 are satisfied. If

1 > exp
(
log |Θ| −M

(
λ2λ

2
3 + hb (λ2)

))
+ |Θ|λ−1

1 , then

PC (E1 ∩ E2) > 0.

We then choose λ1 = n, λ2 = 1 − n−1, λ3 = n−1; we

can therefore guarantee the existence of a code C satisfying

that maxϑ,s P e,ϑ,s ⩽ ne−ρ1n
1/2−ϵ1

, and that for every I ⊂
[1;M ]× [1;K] such that |I| = (1− n−1)MK,

max
ϑ

V

(
Q̂m,ℓ

I,ϑ , (Q̃
m
PPM,ϑ)

⊗ℓ
)
⩽ e−ρ2n

1/2−ϵ2
+ n−1,

since all the conditions in Lemma 7 are satisfied for n
large enough. To guarantee the maximal probability of error,

we then expurgate the codewords by removing (1 − λ2)M
codewords within every sub-codebook CS indexed by s, i.e.,

Cs ≜ {x̃ℓ
sw}w∈[1;M ]. The codewords which are removed are

those with top-(1 − λ2) error probability within each Cs;

then by Markov’s inequality, the expurgated code C′ then

guarantees that for n large enough

P ∗
c ⩽ n2e−ρ1n

1/2−ϵ1
⩽ e−ρ̄1n

1/2−ϵ̄1
,

and the maximal probability of error can be made arbitrarily

small as n → ∞. The expurgated code C′ satisfies

max
ϑ

V

(
Q̂n

ϑ, (Q̃
m
PPM,ϑ)

⊗ℓ
)
⩽ e−ρ2n

1/2−ϵ2
+ n−1. (7)

We then proceed to analyze the covertness metric for C′ as

follows:

max
ϑ

V

(
Q̂n

ϑ, Q
⊗n
0,ϑ

) (a)

⩽ max
ϑ

V

(
Q̂n

ϑ, (Q̃
m
PPM,ϑ)

⊗ℓ
)

+max
ϑ

V

(
(Q̃m

PPM,ϑ)
⊗ℓ, Q⊗mℓ

0

)

(b)

⩽ e−ρ2n
1/2−ϵ2

+ n−1 + δ − n− 1
2

(c)

⩽ δ,

where (a) follows from the triangle inequality, (b) follows from

(4) and (7), and (c) follows for n large enough.

5) Sensing-Error Exponent: The sensing-error exponent is

given by Lemma 8.

Lemma 8 (Lemma 10 from [12], Theorem 1 from [40]).

Suppose that the codeword {xws}w[1;M ],s∈[1;K] has type

PX ∈ PX , then the maximal sensing-error probabil-

ity P
(n)∗
s in an open-loop scheme is lower bounded

by maxϑ P
(n)∗
s ⩾ Θ(1)e−nϕ(PX), where ϕ(PX) ≜

minϑ minϑ′ ̸=ϑ maxl∈[0,1] −
∑

x PX(x)
× log

(∑
u WU |Xϑ(u|x)lWU |Xϑ′(u|x)1−l

)
. Moreover, it is

also asymptotically achievable by a maximum likelihood esti-

mator gML, i.e.,

max
ϑ

P (gML(Z) ̸= ϑ|θ = ϑ, S = s,W = w) ⩽ Θ(1)e−nϕ(PX).

Indeed, since the code C′ is a constant composition code,
every codeword has exactly ℓ x1 symbols and our assumption
that ∀ϑ R0,ϑ = R0 precludes x0 from contributing to the
sensing-error exponent, we obtain that for n large enough

logP ∗
s = ℓ min

ϑ,ϑ′:ϑ ̸=ϑ′
max
l∈[0,1]

− log

(

∑

u

R1,ϑ(u)
l
R1,ϑ′(u)1−l

)

− ξ

= ℓ min
ϑ,ϑ′:ϑ ̸=ϑ′

C(ϑ∥ϑ′)− ξ,

where ξ is some positive constant.
6) Throughput and Exponent Analysis:

lim
n→∞

logM√
n

= lim
n→∞

(1− 2ξ)
ℓminϑ D(P1,ϑ ∥P0,ϑ)√

n

= (1− 2ξ)
2Q−1

(

1−δ
2

)

minϑ D(P1,ϑ ∥P0,ϑ)
√

maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

lim
n→∞

logMK√
n

= lim
n→∞

(1 + ξ)
ℓmaxϑ D(Q1,ϑ ∥Q0,ϑ)√

n

= (1 + ξ)
2Q−1

(

1−δ
2

)

maxϑ D(Q1,ϑ ∥Q0,ϑ)
√

maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

lim
n→∞

− logPs√
n

= lim
n→∞

ℓminϑ,ϑ′:ϑ ̸=ϑ′ C(ϑ∥ϑ′)− ξ
√
n



=
2Q−1

(

1−δ
2

)

minϑ,ϑ′:ϑ ̸=ϑ′ C(ϑ∥ϑ′)
√

maxϑ χ2(Q1,ϑ ∥Q0,ϑ)
.

B. Converse for Theorem 2

The proof largely follows from [34, Section IV.B] and

[22, Section III.A] to conclude that there exists a good sub-

codebook in the sense that the weight of each codeword is

low. We reiterate key steps to provide a self-contained proof.
1) Lower Bound on Covertness Metric: We start by char-

acterizing the covertness metric from the minimum weight

of codewords within a given code M. Since Willie is fully

aware of the true channel state ϑ, his goal is to distinguish the

two hypotheses H0 and H1 associated to distributions Q⊗n
0,ϑ

and Q̂n
ϑ, respectively, based on his observations Z of length

n. He employs a sub-optimal test T as follows: T (z, ϑ) ≜

1{∑n
i=1 A(zi) > τ}, where A(z) ≜

Q1,ϑ(z)−Q0,ϑ(z)
Q0,ϑ(z)

and τ
is some threshold to be determined later. The idea is that

using a sub-optimal test potentially provides a looser constraint

on our converse result but as we shall see later, it turns

out to match the achievability; test T captures the weight

requirement within a code subject to the covertness constraint.

Lemma 9 then characterizes the probabilities of false alarm α
and missed-detection β of a given code M.

Lemma 9 (Lemma 11 from [34]). Consider a specific code

M. Let wt∗ be the minimum weight of the codewords in M.

Then by setting the threshold to τ ≜ wt∗
2 χ2(Q1,ϑ ∥Q0,ϑ) of

test T , for any channel state ϑ,

αϑ ⩽ Q

(
wt∗
2

√
χ2(Q1,ϑ ∥Q0,ϑ)

n

)
+B1n

− 1
2 ,

βϑ ⩽ Q

(
wt∗
2

√
χ2(Q1,ϑ ∥Q0,ϑ)

n

)
+ wt2∗B3n

− 3
2 +B2n

− 1
2 ,

where B1, B2 and B3 are some positive constants independent

of n.

We therefore obtain

max
ϑ

V

(
Q̂n

ϑ, Q
⊗n
0,ϑ

)
⩾ max

ϑ
1− αϑ − βϑ

⩾ 1− 2Q

(
wt∗
2

√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

n

)

− (B1 +B2)n
− 1

2 − wt2∗B3n
− 3

2 , (8)

which characterizes the lower bound on covertness metric and

relates it to the minimum weight as promised.
2) Existence of a Low-weight Sub-codebook: Now we

consider a covert code C that indeed satisfies the covertness

constraint maxϑ V
(
Q̂n

ϑ, Q
⊗n
0,ϑ

)
⩽ δ. Lemma 10 then shows

that there must exist a low-weight sub-codebook with sub-

stantial size to satisfy the covertness constraint.

Lemma 10 (Lemma 12 from [34]). For any code C satisfies

covertness constraint, there exists a sub-codebook C(ℓ) of C
such that |C(ℓ)| ⩾ γn|C| and

max
x∈C(ℓ)

p̂x(x1) ⩽
2Q−1

(
1−δ
2 − C√

n
− γn

)

√
nmaxϑ χ2(Q1,ϑ ∥Q0,ϑ)

, (9)

where γn ∈ (0, 1), lim
n→∞

γn = 0 and C is some constant

depends on the compound channel.

3) Upper Bound on Covert Throughput: The code C can be

partitioned into K sub-codebooks Cs indexed by the key s, and

each of Cs has size M . Now consider the sets C(ℓ)
s ≜ Cs∩C(ℓ).

The pigeonhole principle would therefore imply that at least

one C(ℓ)
s satisfying |C(ℓ)

s | ⩾ γnM . Since the code C satisfies

the maximal probability of error P
(n)∗
c , the sub-code formed

by C(ℓ)
s also satisfies the same reliability constraint. Then by

the standard converse techniques for reliable communication,

for every channel state ϑ,

log |C(ℓ)
s | ⩽ nI(ΠX ,WY |Xϑ) + 1

1− P
(n)∗
c

,

where ΠX(x) ≜ 1
n

∑n
i=1

1
|Cℓ

s|
∑

x∈C(ℓ)
s

1{x = xi} =
1

|C(ℓ)
s |
∑

x∈C(ℓ)
s

p̂x(x). Then by Lemma 10, [20, Lemma 1] and

[34, (294)], we have for every channel state ϑ,

I(ΠX ,WY |Xϑ) ⩽
2D(P1,ϑ ∥P0,ϑ)√

nmaxϑ χ2(Q1,ϑ ∥Q0,ϑ)
Q−1

(
1− δ

2

)

+O
(
n−1

)
+O(n−1/2γn).

Therefore,

log |C(ℓ)
s |

⩽

2
√
nminϑ D(P1,ϑ ∥P0,ϑ)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1
(
1−δ
2

)
+O (1) +O(n1/2γn)

1− P
(n)∗
c

.

Finally, by choosing {γn}n such that lim
n→∞

− log γn√
n

= 0,

lim
n→∞

logM√
n

⩽ lim
n→∞

log |C(ℓ)
s | − log γn√

n

=
2minϑ D(P1,ϑ ∥P0,ϑ)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1

(
1− δ

2

)
.

4) Upper Bound on Sensing-Error Exponent: We then char-

acterize an upper bound on sensing-error exponent for C(ℓ),

and it subsequently serves as an upper bound for C. We first

partition C into C(ℓ)
i , each of them corresponds to a specific

type Pi ∈ Pn
X such that C(ℓ)

i ≜ {x ∈ C(ℓ) : p̂x(x1) = i},

where i ∈ N represents the weight of codewords. Finally,

− logP (n)∗
s

⩽ − log max
ϑ,(w,s)∈f−1(C(ℓ)

i )

P(g(U) ̸= s|S = s,W = w, θ = ϑ)

(a)

⩽ min
ϑ,ϑ′:ϑ ̸=ϑ′

iC(ϑ∥ϑ′)− ξ

(b)

⩽
2
√
nminϑ,ϑ′:ϑ ̸=ϑ′ C(ϑ∥ϑ′)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1

(
1− δ

2

)
− ξ,

where (a) follows from Lemma 8 and (b) follows from

Lemma 10. We obtain

lim
n→∞

− logP
(n)∗
s√
n

⩽
2minϑ,ϑ′:ϑ ̸=ϑ′ C(ϑ∥ϑ′)√
maxϑ χ2(Q1,ϑ ∥Q0,ϑ)

Q−1

(
1− δ

2

)
.
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