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Abstract—We consider the problem of joint communication
and sensing with covertness constraint, in which the transmit-
ter needs to design a signal to simultaneously communicate
and probe a channel while escaping detection by a passive
eavesdropper. Because of the covertness constraint, the weight
of transmitted codewords needs to obey the square-root law.
We show the existence of a coding scheme with Pulse Position
Modulation that achieves the optimal performance between com-
munication throughput and state sensing-error exponent while
remaining covert with respect to a passive eavesdropper. For
a binary-input discrete memoryless channel, we show that the
performance is solely determined by the covertness constraint,
and we characterize the optimal pair of achievable rate and error
exponent.

I. INTRODUCTION

The benefits of dual-functional waveforms simultaneously
supporting radar and communication have motivated the in-
tegration of both communication and sensing [1]-[6]. Such
Joint Communication and Sensing (JCS) systems, in general,
incur inevitable performance tradeoffs, which have been ex-
tensively analyzed [4], [5], [7]-[13]. The dual use of signals
for communication and sensing also raises security challenges
that have been investigated in [14]-[16]. In particular, the
growing concerns for the transmission behaviors to remain
undetectable by an adversary bring the idea of covertness into
the picture [17]. Even in a less malicious scenario, covert JCS
can potentially provide a solution to the dynamic spectrum
access when secondary users such as sensors are employed.

Our work is largely inspired by the recent development in
covert communications and covert sensing. Following the dis-
covery of the square-root law [18] for covert communication,
[19]-[21] have characterized the pre-constant in front of the
square-root scaling, often identified as the covert capacity.
Subsequent works have studied covert communications under
channel uncertainty, meaning either the legitimate transceiver
pair or the passive eavesdropper has uncertainty regarding the
channel state, to explore different strategies guaranteeing a low
probability of detection [18], [22] when the eavesdropper is
aware of the channel state, or even achieve a positive com-
munication rate [23]-[26] when the eavesdropper is not aware
of the channel state. Practical covert coding mechanisms have
also been investigated in [27]-[32]. Of particular relevance
to the present work, the Pulse Position Modulation (PPM)
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strategy developed in [33], [34] is a crucial component in
the algorithms proposed by [28], [29], [32]. Motivated by the
possibility of designing covert radar systems, [35]-[38] have
studied the problem of covert sensing to characterize how to
remain covert while actively performing sensing actions.

The main contributions of our work are twofold. 1) We
characterize that when only an innocent symbol and a non-
innocent symbol are at the transmitter’s disposal, there exist no
tradeoff between communication and sensing performance, as
the performance is dictated by the covertness constraint. This
result is in contrast to prior works [10]-[12]. 2) Our achievabil-
ity proof suggests that PPM is again a good candidate for joint
communication and sensing under a covertness constraint. The
main reason is that PPM is a much more structured signaling
strategy that is well adapted to the sensing problem.

II. NOTATION

Let Ry and N, denote all non-negative real numbers and
all positive integers, respectively. For any set 2, the indicator
function is defined as 1(w € Q) = 1 if w € Q and 0
otherwise. For any discrete set X and n € N,, a sequence of
length n is implicitly denoted x £ (x1,--- ,x,) € X™, while
' & (21,---,2;) € X denotes a sequence of length i. Fol-
lowing the standard method of type [39], we let Py be the set
of all probability distributions on X. For x € X", px denotes
the type of x, i.e., px(z) = £+ 31 | 1{z; = x}. Py is the set
of all possible types for length n sequences in X". We let
H(Px) £ — >, cx Px(z)log Px(z) be the entropy of X ~
Px. If Wy x is a conditional distribution on Y € Y given
X e X, H(Wy‘x|Px) = IEPX [H(Wy‘x(LX))] is the con-
ditional entropy of Wy |x given an input distribution Px and
I(Px, Wy |x) £ H(Wy|x o Px) — H(Wy x|Px) is the mu-
tual information between X and Y, where X ~ Px and Y ~
Px o Wy|x £ Y Px(x)Wy|x(:|z). For two distributions
Px and QQx over the same set X, we let Py < (Qx denote
the absolute continuity with respect to (w.r.t.) Qx, if for any
x € X, Qx(z) =0 implies Px(z) = 0. Also, the relative en-
tropy is D(Px | @x) £ Y, Px(z)log IQD);((?) , the variational
distance is V(Px,Qx) £ 33, |Px(z) — Qx ()|, and the
chi-squared distance is x2(Px [|Qx) £ >, W
For A € (0,1), we define the binary entropy function as
hy (A). Moreover, for a,b € R such that |a] < [b], we
define [a;b] £ {|a],|a] + 1,---,[b] — 1,[b]}; otherwise




[a;b] £ 0. In addition, for any = € R, we let |z|* denote
max(z,0). For any x € R, we also define the Q-function
2

Qz) = [ \/%76% dz and its inverse function Q~!(-).
Finally, throughout the paper, log is w.r.t. base e, and therefore

all the information quantities should be understood in nats.

III. COVERT JOINT COMMUNICATION AND SENSING
MODEL

Wy x0

Toe—s

&)» v 6

Wz xs
ESTIMATOR

Wuixo

Fig. 1. Covert joint communication and sensing model.

We consider a JCS model with compound channels. As
illustrated in Fig. 1, in which a transmitter, Alice, attempts to
communicate with a receiver, Bob, over a state-dependent Dis-
crete Memoryless Channel (DMC) (0, X', Wy |x4,)) while
simultaneously probing the channel state 6 through a sensing
channel (©, X', Wy x¢,U). However, a passive eavesdropper,
Willie, monitors the activity between the legitimate users
through another state-dependent DMC (©, X', Wy x¢, Z). The
a priori unknown state 6 is assumed to be fixed during the
whole duration of the transmission and takes value in a finite
set © (|©] < o0), and Willie is fully aware of the frue
realization of 0, i.e., the channel state information is available
at the eavesdropper. More formally, Alice encodes a uniformly
distributed message W € [1; M|, with the help of a uniform
secret key S € [1; K| preshared with Bob, into a codeword X
of length n as follows:

Fo[L M x [ K] = X" (w,8) = Xes 2 f(w,s). (1)

At the end of transmission, Alice also uses the estimator to
detect the channel state 0 as follows:

g X" XU = O (x,u) — 0. )
Bob decodes the message with his knowledge of the secret
key S as follows:

h:Y"x [ K] — [1;M]: (y,s) — . 3)

Following the convention in the covert communication and
sensing literature [20], [21], [37], we assume that there
exists an innocent symbol o € X representing the chan-
nel input when Alice remains idle, i.e., Alice does not
perform any meaningful action, and zy induces the fol-
lowing three distributions: Py g £ Wy |x—yo0=9, Qo =
WZ|X:z0,«9:19a and RO,’& = WU|X::r0,6':19 for all ¥ € ©.

Willie declares whether Alice remains idle or not by perform-
ing a test T' to distinguish the following two hypotheses:

T:2Z" X@%{H@,Hl}

where Hy : Z ~ Q?g, H :7Z ~ @g, and @g is the
distribution induced by the encoder f:

Z Z Wiy (2

wlsl

z|f(w,s)).

We make the following assumptions:

o [1o 2 mingeo ez Qo,v(z) > 0.

o There exists another symbol x; € X distinct from zy. We
then define the associated distributions P; », Q1,9, and Ry »
similar to Fy 9, Qo9 and R .

o For every channel state ¥ € ©, Q1,9 < Qo9 and Q1,9 #
Qo,9-

o For every channel state ¥ € ©, P, y < Fp».

o For every channel state ¥ € ©, Ryy = Ry for some
Ry, otherwise Alice can simply perform channel sensing
by sending the innocent symbol.

The system performance is measured in terms of the asymp-
totic throughput of reliable communication and the asymptotic
sensing-error exponent while subject to a covertness metric.
Formally, we define the communication error probability and
the sensing-error probability as follows:

pc(n)* 2
ﬂe@,se[{r;ll%]}fwe[l;M] (h(Y, 5) # vl b % )
pg(n)* 2

max P(g(U) # s|S = s, W =w, 0 =9),

V0€0,s€[1; K], we[l;M]

where the dependency on the blocklength n will be omitted
when it is clear from the context. The covertness metric is
defined as maxae@V(Qg, 89’:,?), and it has been justified
in [19], [22], [34] that variational distance constraint as a
covertness metric is more operationally relevant and provides

a 25% gain in throughput compared to the commonly used

relative entropy constraint I ( Q% ? 9

Definition 1 (Achievable pairs). A covert throughput and
sensing-error exponent pair (R, E) € Ry x Ry is achievable
with corresponding key throughput Ry, € R, if there exists
a sequence of codes C = (n,f,g,h,[1; M],[1; K],d) with
increasing blocklength n such that
lim logM log MK
e /m NG

> E, lim P! =0 maxV(Qﬁ, 55) <o

> R, lim

n—r oo

<R+Rk7

*

log P;
NG
We then define C as the closure of all achievable (R, E) pairs.

lim —

n—oo

Remark 1. The above sensing strategy is called open-loop.
A closed-loop strategy would allow Alice to adapt the code-
words based on her feedback observations through the sensing



channel [12], [13], [36], [40], [41]. We do not consider the
closed-loop strategy in the present work.

Remark 2. We allow Willie to obtain a reliable channel state
before the transmission. This assumption not only captures
a situation in which a more powerful eavesdropper can
control the channel but also prevents the legitimate pair from
exploiting the channel uncertainty to go beyond the square-
root law [23], [24].

IV. MAIN RESULT

We restrict ourselves to the binary case X = {zg,x1}
in order to obtain a closed-form result that reflects how the
covertness constraint affects JCS performance.

Theorem 2. The closure region C for X = {xg, x1} degrades
to a rectangular region characterized by the vertex (R*, E*):

B 2ming D(P1 g || Po,w) 1 (1 - 5)
/maxs xa(Qro || Qo.0) 2 )

B 2ming gr.929 C (V||[V") (1 - 5)
Vmaxy x2(Q1,9 | Qo) 2 )

where C(9]]9") £ Sup;eo,1] — 10g (Zu Ry 5(w)' Ry o (u)l’l).
The above region is achievable with key throughput

—1(1=6
Rk: 2Q (2)

\/max19 X2(Q1,9 || Qo,9)

x mng(Ql,qs | Qo,s)

+
_ InﬁiHD(Pl,ﬂ || P0,19)

The above result is conceptually different from prior
work [12] in that no tradeoff appears between the covert
throughput and sensing-error exponent. The main reason is
that the covertness constraint effectively controls the numbers
of non-innocent symbol x; allowed in the codebook.

Remark 3. The tradeoff between the covert throughput and
sensing-error exponent reappears again in the case |X| > 2
with more than one non-innocent symbol. The closure region
C is then governed by the distribution among non-innocent
symbols, i.e., P € Px\(z,). Our conjecture is that C =

UPePin a0y
(R E) S ]RJr X Ry :
R< 2Q 71 (152 ming 3, i #o P(xi)D(Pi 9 || Po,o)
max.y X2(ZIZ¢L0 P(z)Qi,0 Qo,ﬁ) ,
E< 2Q° ( =5 ) ming ;s C('&Hﬂ \P)
\/maxﬂ Xz(zmi P(z:)Qi,9 H Qo,ﬁ)
where  C(99'|P) 2 SUDE[0,1] — D o P(z;) x

10g (Zu Ri7qg(u)lRi719/ (u)lil) .
A. Achievability for Theorem 2

Our achievability proof reuses several results from [33], [34]
to analyze the performance of the codebook constructed from
PPM symbols. The advantage of utilizing PPM in the present
work is to control the type of codewords very precisely. In
particular, for the binary input alphabet, this is equivalent to a
constant-composition codebook characterized by the number

of non-innocent symbols z;, which allows us to precisely
analyze the sensing-error exponent.

1) Codebook Construction via Pulse Position Modulation:
We first define the notion of PPM super symbol.

Definition 3. For m € N,, a PPM super symbol of
order m is a sequence x™ € X™ of weight one, i.e.,
Yot 1{x; =x1} = 1. We then denote these PPM super
symbols by {xW}™ . and % is the PPM super symbol
with x1 at its i-th position. The distribution induced by
choosing all PPM super symbols of order m uniformly at
random is Iy (z™) = L3 1{a™ = %9}, PPM su-
per symbols are effectively transmitted over super channels

@ {X(Z)}’m 1 W)@\T)réeﬁ Y = y ) (6 {X( )}1 1> W?T;ev
Z™), and (©,{xW}m 1,W5¢&, U = U™), and subsequently
induce distributions PPPMﬁ £ Wff")’} 9 © HPPM, QPPM g =

Xm m
W5ty © My, and Ry o £ WG, o Ty

We then construct a random code of blocklength ¢ over
PPM super symbols of order m, and the overall blocklength
is n £ ml. The choices of m and ¢ are not independent and
both scale like O(y/n). By choosing

o1 1—5) n
=20 (2 \/maxﬁxQ(Ql,ﬁ||Qo,ﬁ>

a1 (1)’
o

Qﬁe 2 n
) maxy x2(Q1,9 || Qo,0)

where C' is some constant independent of n, then by Lemma 4

below, we can show that

max ¥ ((Qhb)®, (Q55)%) <6 -nt @

=

+C,

IS

N|=

which characterizes the covertness performance of our signal-
ing strategy based on PPM super symbols after ¢ super channel
uses.

Lemma 4 (Lemma 8 from [34]). Let n,{ € N, withm = | % |
large enough and ¢ = ©(m). We have

A £
e V (@)™, Q5" <1

90 <§\/man9 X2(C;?11,19 | Q0,0)> n % Lo <\/15> .

Intuitively, the ratio of weight to overall blocklength for
each codeword is 1/m, and the order of PPM becomes
larger as we increase the overall blocklength n; the increasing
sparsity level is to ensure the covertness constraint is satisfied.

Alice generates M K codewords {X!,, £ f(w, s)} of length
¢ from IIppy in an independent and identically distributed
(i.i.d.) fashion, where X € {XxW}™  w € [1;M] is the
message and s € [1; K] is the secret key preshared with
Bob. Given channel state ¥, the distribution induced by the
codebook over the PPM super channel at Willie’s terminal is

Q5 =

PPM 9



2) Channel Reliability: We first introduce the average prob-
ability of error induced by the code as

Poys 2 (W¢W|Sf59719)

Lemma 5. By
26)(D(Pyy || Pow),
error satisfies

EC [Pe,ﬁ,s]

choosing  log M = ming(l —
the expected average probability of

®)

for every key s and every ¥ and for some £,p1 > 0, €1 €
(0,1/2) and n large enough.

< exp(—pint/27)

Proof: Modified from [33, Proposition 1]. [ |
3) Channel Resolvability:
Lemma 6. By choosing logMK = maxy(l +

EUD(Q1.9 || Qo,9), the expected variational distance between
the codebook-induced distribution and PPM signaling
distribution satisfies

Ec [V Qv (Qiu)®") | < exp(—pan'272), )

Sor every ¥ and for some £, ps > 0, €2 € (0,1/2) and n large
enough.

Proof: Modified from [33, Proposition 1]. [ |

4) Identification of a Specific Universal Code: We will use

an idea similar to the step in [34, Lemma 4] to identify the

existence of a joint reliability and resolvability code that is

universal w.r.t. the compound channel. We first define the
following events:

&= {mgaexﬁe,ﬁ,s < )\16_p1nl/2761 b
2 2 VT C [1; M] x

Amal (7 ¢ 1/2-e
mng(Q’I",ﬂ, (Qpom,0)® ) e /\3}

[1; K] such that |Z| = \aM K,

where @?’5 is the distribution induced by codewords in Z.

Lemma 7 (Lemma 4 from [34]). Suppose that con-
ditions in Lemma 5 and Lemma 6 are satisfied. If
1 > exp(log|© — M (A2A] + hy (A2))) + [OA[", then
Pc (51 052) > 0.

We then choose A1 = n, A0 = 1 —n"1 A3 = n71; we
can therefore guarantee the existence of a code C satisfying
that maxy s Fe719’5 < ne’plnl/z_q, and that for every Z C
[1; M] x [1; K] such that |Z| = (1 —n )M K,

1/2—en 1

mng( Iﬂv(QPPMﬁ) Z) <e 7 +no,

since all the conditions in Lemma 7 are satisfied for n
large enough. To guarantee the maximal probability of error,
we then expurgate the codewords by removing (1 — Ao)M
codewords within every sub-codebook Cg indexed by s, i.e.,
Cs £ {#!,}wep;an. The codewords which are removed are
those with top-(1 — Ay) error probability within each Ci;

then by Markov’s inequality, the expurgated code C’ then
guarantees that for n large enough

1/2—¢;

Z—n/251 —pin
P1 gem ,

P*

and the maximal probability of error can be made arbitrarily
small as n — co. The expurgated code C’ satisfies

max V (Q5, (Qpbn ) ) < e

We then proceed to analyze the covertness metric for C’ as
follows:

1/2762 _
+nt

)

) (<) maxV (Qﬁv (Qbpm 19)®€)

+ mng ((QPPM,&)Wa ?m£>

®) y
g 6—1)2"

maXV <Q19,

2—eo

tnl45—n3

(©)
< 57

where (a) follows from the triangle inequality, (b) follows from
(4) and (7), and (c) follows for n large enough.

5) Sensing-Error Exponent: The sensing-error exponent is
given by Lemma 8.

Lemma 8 (Lemma 10 from [12], Theorem 1 from [40]).
Suppose that the codeword {Xus}wi;m),scii;x] has type
Px € Px, then the maximal sensing-error probabil-
ity Ps(n)* in an open-loop scheme is lower bounded
by maxy Ps(n)* > @(1)6_"¢(PX), where ¢(Px) =
minqg mingl;ﬁqg maxle[o)l} - Zx PX (.Z‘)

x log (3, Wu xo(ulz) Wy xg (ulx)' ") . Moreover, it is
also asymptotically achievable by a maximum likelihood esti-
mator gy, 1L.e.,

mﬂaXIP’(gML(Z) £90=0,8=5W =w) < @(1)e—n¢>(Px).

Indeed, since the code C’ is a constant composition code,
every codeword has exactly ¢ x; symbols and our assumption
that V¥ Ry 9 = Ro precludes zy from contributing to the
sensing-error exponent, we obtain that for n large enough

log Pl =/ min  max —log <ZR1»§ "Ry gr( )1_l> —£

9,9 979" LE[0,1]

CEIY) - ¢,

where £ is some positive constant.
6) Throughput and Exponent Analysis:

lim log M _ lim (1 725)211'111’119 D(P1s || Pov)
n—00 n n—00 \/ﬁ
2Q7" (132) ming D(Py,» || Po,.
_ (1 95?¢ () ming D(Pro | o)
vmaxy x2(Q1, | Qo,v)
lim log MK — lim (1+€)€max19 D(Q1,9 || Qov)
n—00 \/ﬁ n—oo \/ﬁ
_ (14620 (5) maxo D(Qus [|@0.0)
Vvmaxg x2(Q1,0 || Qo.v)
i _log B lim fming g9 C(9||0") —
n—o0 n n—o0o \/’71



2@ ( ) miny /.92’ C|9")
Vmaxy x2(Q1,0 || Qo) '

B. Converse for Theorem 2

The proof largely follows from [34, Section IV.B] and
[22, Section III.A] to conclude that there exists a good sub-
codebook in the sense that the weight of each codeword is
low. We reiterate key steps to provide a self-contained proof.

1) Lower Bound on Covertness Metric: We start by char-
acterizing the covertness metric from the minimum weight
of codewords within a given code M. Since Willie is fully
aware of the true channel state 1, his goal is to distinguish the
two hypotheses Hy and H; associated to distributions QO 9

and Qﬁ, respectively, based on his observations Z of length
n. He employs a sub-optimal test 7' as follows: T'(z, ) =
Y, A(zi) > 7}, where A(z) & Qoo and 7
is some threshold to be determined later. The idea is that
using a sub-optimal test potentially provides a looser constraint
on our converse result but as we shall see later, it turns
out to match the achievability; test 1" captures the weight
requirement within a code subject to the covertness constraint.
Lemma 9 then characterizes the probabilities of false alarm «

and missed-detection 3 of a given code M.

Lemma 9 (Lemma 11 from [34]). Consider a specific code
M. Let wt, be the minimum weight of the codewords in M.

Then by setting the threshold to T = = x5(Q1,9 || Qo,v) of
test T, for any channel state 9,

[ _1
oy <O <W x2(Q1,0 || Qo,e)) v Bt
2 n
ts _3 _1
519 g Q <VV2 XQ(QLﬂ || QO,ﬂ)) +Wt>2kB3n g + BQ’I’L é’
n

where By, By and Bs are some positive constants independent
of n.
We therefore obtain
mﬁaxV( " %) > m;;ixl —ay — By

>1-20 <W2t maxg x2(@1 | Qw))

n

3

— (Bl —+ Bz)ﬂié — Wtng’flii, (8)

which characterizes the lower bound on covertness metric and
relates it to the minimum weight as promised.

2) Existence of a Low-weight Sub-codebook: Now we
consider a covert code C that indeed satisfies the covertness
constraint maxy V ( Q, ?g < 6. Lemma 10 then shows
that there must exist a low-weight sub-codebook with sub-
stantial size to satisfy the covertness constraint.

Lemma 10 (Lemma 12 from [34]). For any code C satisfies

covertness constraint, there exists a sub-codebook c® of C
such that |C©)| > ~,|C| and
207 (552 - %~ )
max py(z1) < v 9)

xeC®)

/nmaxy x2(Q1,0 || Qo,ﬁ)7

where v, € (0,1), hm 1 Yo = = 0 and C is some constant

depends on the campound channel.

3) Upper Bound on Covert Throughput: The code C can be
partitioned into K sub-codebooks C; indexed by the key s, and
each of C, has size M. Now consider the sets C”) 2 ¢,nC(®.
The pigeonhole princi Ple would therefore imply that at least
one C." satisfying |C | > v, M. Since the code C satisfies
the maximal probability of error PC(")*, the sub-code formed
by ng) also satisfies the same reliability constraint. Then by
the standard converse techniques for reliable communication,
for every channel state J,

nl(Ilx, Wy |xy) + 1
1- P
where Ox(z) & L1y, ﬁ Doxeer Ho =i} =

(e) erc“’) Px(x). Then by Lemma 10, [20, Lemma 1] and
[34 (294)], we have for every channel state 9J,
2D(Pyy || Pow) 0! (1 - 6)
Vv/nmaxy x2(Q1,0 [ Qo,0) 2
+0(n7 )+ O(n~2y,).

log |C{")] <

)

I(ILx, Wy |x9) <

Therefore,
log [C{"|

2y ming D(Pio | Poo) )—1 (1=8Y) 4 ) (1) + O(nl/2
Wiy o5 @7 (1Y) + O (1) + O(n'2y)
< ( '

1— Pcn)*

Finally, by choosing {7y} such that lim flog% =0,

n—oo

log |C8)] — log
Jn
_ 2min19D(P1,19 ||P0’19) 1 (1—(5)
Vvmaxy x2(Q1, || Qo,s) 2 )

4) Upper Bound on Sensing-Error Exponent: We then char-
acterize an upper bound on sensing-error exponent for C(*),
and it subsequentl 2/ serves as an upper bound for C. We first
partition C into C; ", each of them corresponds to a specific
type P; € Py such that Ci 2 Ix € CY ¢ py(xy) = i},
where ¢ € N represents the weight of codewords. Finally,

— log ps(n)*
—log

log M
o8 < lim

lim <
n— oo n

n—oo

max
9,(w,s)ef~

P(g(U

) # 8|S =5, W =w,0=0)
e

(a)

< min iC(I||Y) —
e

g Qﬁminﬁﬂg/:ﬁ#ﬁ/ C(0||19I)Q71 (1 - (5> —f
Vvmaxy x2(Q1,9 | Qo.0) 2 7

where (a) follows from Lemma 8 and (b) follows from
Lemma 10. We obtain

IOg Ps(n) *
vn

2minyg g 949/ C

lim — < (I (1 — 5) |
vmaxy x2(Q1,9 | Qo,0) 2

n—oo
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