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ABSTRACT

This paper considers an information theoretic model for secure

integrated sensing and communication (ISAC) with the goal

of establishing fundamental limits in low-latency scenarios. In

this secure ISAC model, a message is transmitted through a

state-dependent wiretap channel with decoder-side state avail-

ability. The model is studied under a strong secrecy constraint

when only a part of the transmitted message should be kept se-

cret. First, the secrecy-distortion rate region is established for

a degraded channel by treating the model as a special case of

a feed-backed secure ISAC model. Finite-length inner bounds

are then proved by applying nonasymptotic random binning

techniques. Bounds on the rates have a similar form to com-

mon finite-length bounds, and the distortion bound follows

from a bound for letter-typical sequences.

Index Terms— integrated sensing and communication,

joint communication and sensing, physical layer security, cod-

ing for security, finite blocklength analysis.

1. INTRODUCTION

The vision for future communication and computation net-

works includes an integration of the physical and digital worlds

by enabling high-resolution and high-accuracy sensing and po-

sitioning. This enables an accurate digital representation of

the real world, i.e., a digital twin. Such a seamless integration

can leverage intelligence to automatically react to changing

physical environments [1]. Using high frequencies as well
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as massive numbers of antennas and wide bandwidth allows

one to achieve integrated sensing and communication (ISAC),

which improves the performance of each component simulta-

neously with high energy efficiency and enables new services

such as activity recognition [2]. For instance, a mmWave joint

communication and radar system in autonomous vehicles can

detect a target or estimate the parameters of the channel that

are of interest to refine the communication scheme and to

make intelligent decisions on demand [3–5].

Motivated by the promises of ISAC, a fundamental infor-

mation theoretic model for joint communication and radar sys-

tems is proposed in [4]. In this model, the communication

channel depends on the channel state (determined by the re-

ceiver position, grid plan and surroundings, frequency band,

etc.) that should be estimated at the transmitter and there is

channel output feedback available at the transmitter (obtained

via reflections). However, there is a missing constraint in this

and other models for ISAC. Since the same waveform and net-

work infrastructure are used for both sensing and communi-

cation, ISAC broadcasts in the sensing signal, e.g., via beam

sweeping, the information that is aimed only at a set of legit-

imate receivers to a large area in which there can be attack-

ers. Thus, the joint and broadcast nature of ISAC makes it

mandatory to provide security guarantees against active and

passive attacks to the network [5, 6]. In this work, we con-

sider a practical secure ISAC model that consists of a wiretap

channel [7, 8] with channel states available only at the corre-

sponding receivers, one of which is the sensed target that is in-

terested in the messages transmitted to the legitimate receiver,

i.e., the sensed target is the eavesdropper. We also consider

channel output feedback available at the transmitter that can be

obtained through reflections and are used to estimate the chan-

nel states for both receivers. This model is a simplified version

of the secure ISAC model in [8, Fig. 1], as the channel output

feedback is not used to improve communication performance.

Such a model is commonly considered in the literature since,

e.g., one would then not need to adapt the encoding operations

according to the feedback, so a low-latency constraint can be
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Ŝn
j = Estj(X

n, Zn)

PY1Y2Z|S1S2X PS1S2

S1,i

S2,i

M̂ = Dec(Y n
1 , Sn

1 )

Eve

S1,i

S2,i

Xn

Y1,i

Zi

Y2,i

M̂ =
(
M̂1, M̂2

)

M = (M1,M2)

Xn = Enc(M)

Fig. 1. Practical secure ISAC model under partial secrecy, i.e.,

only M2 should be kept secret from Eve, for j = 1, 2 and

i = [1 : n], where Enc(·) and Dec(·) are an encoder-decoder

pair and Est(·) is an estimation function. Assume that M and

(Sn
1 , S

n
2 ) are independent. We consider practical secure ISAC

with perfect output feedback, i.e., we have Zi = (Y1,i, Y2,i).

satisfied. We establish the rate region for the practical secure

ISAC model when the wiretap channel is degraded. We also

establish achievable nonasymptotic performance limits by fix-

ing the blocklength to establish a reference point for practical

secure ISAC implementations.

2. SYSTEM MODEL

Consider the practical secure ISAC model shown in Fig. 1,

which consists of a transmitter, a legitimate receiver, a tar-

get that acts as an eavesdropper (Eve), and a state estimator at

the transmitter side. Suppose the message M = (M1,M2) ∈
M = M1 ×M2 is uniformly distributed, i.e., we have M ∼
PU
M , and it is sent through a practical state-dependent memory-

less ISAC channel PY1Y2Z|S1S2X with independent and iden-

tically distributed (i.i.d.) state sequence (Sn
1 , S

n
2 ) ∈ Sn

1 × Sn
2

generated according to a known probability distribution Pn
S1S2

.

The channel inputs Xn are computed from the message M .

For all channel uses i ∈ [1 : n], the legitimate receiver ob-

serves S1,i ∈ S1 and Y1,i ∈ Y1, whereas Eve observes S2,i ∈
S2 and Y2,i ∈ Y2. The legitimate receiver aims to reliably re-

construct M , whereas Eve aims to learn information about M2,

which is called partial secrecy in [9]. Furthermore, the state es-

timator at the transmitter side observes the channel inputs Xn

and the channel output feedback symbols Zn ∈ Zn to estimate

the state sequence (Sn
1 , S

n
2 ) as Ŝn

j = Estj(X
n, Zn) ∈ Sj

∧n

for

j = 1, 2. Assume that all symbol sets are finite; see [8] for

further motivations for a general secure ISAC model.

The secrecy-distortion region for the practical secure ISAC

model is defined next.

Definition 1. Under partial secrecy, a secrecy-distortion tuple

(R1, R2, D1, D2), where log |Mj | = nRj for j = 1, 2, is

achievable if, for any δ > 0, there exist one encoder, one de-

coder, n ≥ 1, and two state estimators Ŝn
j = Estj(X

n, Zn)
such that

Pr
[
M ̸= M̂

]
≤ δ (reliability) (1)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δ for j=1, 2 (distortions) (2)

I(M2;Y
n
2 |Sn

2 ) ≤ δ (strong secrecy) (3)

where we have per-letter distortion metrics dj(s
n, ŝn) =

1
n

∑n

i=1 dj(si, ŝi) for j = 1, 2 that are bounded by a value

dmax. The secrecy-distortion region RPS is the closure of the

set of all achievable tuples under partial secrecy. ♢

We next define degraded practical ISAC channels, for

which we illustrate the secrecy-distortion region. We remark

that the set of degraded channels includes both stochastically-

and physically-degraded channels; see also [4, 8]. To simplify

the proofs, we consider Zi = (Y1,i, Y2,i) for the rest of this

work.

Definition 2. Define a practical ISAC channel PY1Y2|S1S2X

as degraded if there exists a random variable Ỹ1 such that we

have Ỹ1|{S1 = s1, X = x} ∼ PY1|S1X(ỹ1|s1, x) and

P
Ỹ1Y2S1S2|X

= P
Ỹ1Y2|S1S2X

PS1S2

= PS1
P
Ỹ1|S1X

P
Y2S2|S1Ỹ1

. (4)

♢

We next establish the secrecy-distortion region for de-

graded practical ISAC channels, which is an asymptotic result,

i.e., n → ∞. We remark that the constraints in (1)-(3) only

depend on the marginal probability distributions of the tu-

ples (X,Y1, S1) and (X,Y2, S2) if we impose estimators of

the form Estj(x, yj) for j = 1, 2, i.e., y(3−j) is not used

to estimate sj . Thus, the secrecy-distortion region for the

physically-degraded practical ISAC channels is also valid for

degraded practical ISAC channels.

Define for any a ∈ R

[a]+ = max{a, 0}. (5)

Theorem 1. For a degraded practical ISAC channel, RPS is

the union over all joint distributions PV X of the rate tuples

(R1, R2, D1, D2) that satisfy

R2 ≤ [I(V ;Y1|S1)− I(V ;Y2|S2)]
+

R1 +R2 ≤ I(V ;Y1|S1)

Dj ≥ E[dj(Sj , Ŝj))] for j = 1, 2 (6)

where we have

PV XY1Y2S1S2
= PV |XPXPS1S2

PY1Y2|S1S2X , (7)

and it suffices to use per-letter estimators

Estj(x, yj) = argmin
s̃∈Ŝj

∑

sj∈Sj

PSj |XYj
(sj |x, yj) dj(sj , s̃). (8)

It also suffices to consider |V | ≤ |X |+ 1.
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Proof Sketch. The converse result follows by generalizing the

degraded wiretap channel result in [7]. We next summarize

the proof. Suppose for some n ≥ 1 and δn > 0, there exist

an encoder, decoder, and state estimators such that (1)-(3) are

satisfied for some tuple (R1, R2, D1, D2). Let

ϵn =
Hb(δn)

n
+ δn(R1 +R2) (9)

where Hb(·) is the binary entropy function, such that ϵn→0 if

δn→0. Applying Fano’s inequality and (1), we obtain

H(M1,M2|Y n
1 , Sn

1 )
(a)

≤ H(M1,M2|M̂1, M̂2)≤nϵn (10)

where (a) allows one to use a randomized decoder. De-

fine Vi ≜ (M1,M2, Y
i−1
1 , Si−1

1 , Y n
2,i+1, S

n
2,i+1) such that

for all i ∈ [1 : n] we have the Markov chain Vi − Xi −
(Y1,i, Y2,i, S1,i, S2,i).

We have

n(R1 +R2)
(a)

≤ I(M1,M2;Y
n
1 |Sn

1 ) + nϵn

(b)

≤
n∑

i=1

[
H(Y1,i|S1,i)

−H(Y1,i|M1,M2, Y
i−1
1 , Si

1, Y
n
2,i+1, S

n
2,i+1) + ϵn

]

=
n∑

i=1

(
I(Vi;Y1,i|S1,i) + ϵn) (11)

where (a) follows by (10) and since (M1,M2, S
n
1 ) are mutu-

ally independent and (b) follows because

Sn
1,i+1 − (M1,M2, Y

i−1
1 , Si

1)− Y1,i (12)

forms a Markov chain.

We also obtain

nR2

(a)

≤ H(M2|Y n
2 , Sn

2 ) + δn

= I(M2;Y
n
1 , Sn

1 |Y n
2 , Sn

2 ) +H(M2|Y n
1 , Y n

2 , Sn
1 , S

n
2 )+δn

(b)

≤
n∑

i=1

[
H(Y1,i, S1,i|Y2,i, S2,i)

−H(Y1,i, S1,i|Y i−1
1 , Si−1

1 , Y n
2,i, S

n
2,i,M1,M2)

]

+ nϵn + δn

=

n∑

i=1

[
I(Y1,i, S1,i;Vi|Y2,i, S2,i)

]
+ nϵn + δn

(c)
=

n∑

i=1

[
I(Y1,i;Vi|S1,i)− I(Y2,i;Vi|S2,i)

]
+ nϵn+δn (13)

where (a) follows by (3), (b) follows by (10) and because the

practical ISAC channel is degraded so that for all i ∈ [1 : n]

(Y1,i, S1,i)−(Y i−1
1 , Si−1

1 , Y n
2,i, S

n
2,i,M1,M2)−(Y i−1

2 , Si−1
2 )

(14)

forms a Markov chain, and (c) follows because Vi is indepen-

dent of (S1,i, S2,i) for all i ∈ [1 : n] and because the practical

ISAC channel is degraded so that Vi−(Y1,i, S1,i)−(Y2,i, S2,i)
forms a Markov chain.

Distortion bounds follow by (2) and can be achieved by

using the estimators in (8). Furthermore, by introducing a uni-

formly distributed time-sharing random variable Q that takes

values in [1 : n] and is independent of other random vari-

ables, and by letting δn → 0, the converse proof follows; see

also [4, 8] for similar steps.

Achievability proof follows by applying similar steps as

in [8, Section III] using the output statistics of random binning

(OSRB) method [10,11] with a channel prefixing auxiliary ran-

dom variable V and applying the steps in [12, Section 1.6]; see

also [13] by considering the state estimates as a function of the

channel input and outputs. Thus, we omit its proof.

We next provide an achievable finite-length bound for the

secrecy-distortion region of the practical ISAC channel.

3. NONASYMPTOTIC LIMITS OF PRACTICAL

SECURE ISAC

Nonasymptotic performance limits of the practical secure

ISAC model can be characterized by fixing the blocklength

n to a finite value in (1)-(3), for which different δ values can

be imposed and this allows us to illustrate the effect of each

constraint on rates and distortions separately. Thus, we have

the following definition for the nonasymptotic rate region of

the practical secure ISAC model.

Definition 3. Under partial secrecy and for fixed δr, δD, δsec >
0 and n ≥ 1, a nonasymptotic secrecy-distortion tuple

(R1, R2, D1, D2), where log |Mj | = nRj for j = 1, 2, is

(δr, δD, δsec, n)-achievable if there exist one encoder, one de-

coder, and two per-letter state estimators Ŝj = Estj(X,Yj)
such that

Pr
[
M ̸= M̂

]
≤ δr (15)

E
[
dj(S

n
j , Ŝ

n
j )
]
≤Dj+δD for j=1, 2 (16)

||PM2Y
n
2
Sn
2
−PU

M2
Pn
S2
Pn
Y2|S2

||1 ≤ δsec (17)

where we have the per-letter distortion metrics that are bounded

by a value dmax. The nonasymptotic secrecy-distortion region

RPS(δr, δD, δsec, n) is the closure of the set of all (δr, δD, δsec, n)-

achievable tuples under partial secrecy. ♢

We remark that the nonasymptotic strong secrecy con-

straint in (17) is an L1 distance constraint, unlike the asymp-

totic counterpart in (3) that measures the same security perfor-

mance by using a conditional mutual information term. Using

the L1 distance as the security metric simplifies our proof

since we use the nonasymptotic OSRB method that provides

bounds for this metric.
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We next provide a (δr, δD, δsec, n)-achievable nonasymp-

totic secrecy-distortion region RPS(δr, δD, δsec, n) when the

practical ISAC channel is degraded.

Similar to [14], we denote the information density of a

probability distribution PXY Z as

ı(X,Y Z) = log
PXY Z(x, y, z)

PX(x)PY Z(y, z)
(18)

and the channel dispersions for the channels PY1|V S1
and

PY2|V S2
, respectively, as

VY1|S1
= EPV Y1S1

[
Var[ı(V, Y1S1)|V ]

]
, (19)

VY2|S2
= EPV Y2S2

[
Var[ı(V, Y2S2)|V ]

]
(20)

where Var[·] denotes the variance.

Denote the inverse Q-function as Q−1(·) and define

µsŝ = min
(s,ŝ)∈supp(P

SŜ
)
P
SŜ

(s, ŝ). (21)

Theorem 2. For a degraded practical ISAC channel, a

(δr, δD, δsec, n)-achievable nonasymptotic secrecy-distortion

region under partial secrecy is the union over all joint distri-

butions PV X of the rate tuples (R1, R2, D1, D2) that satisfy,

for any θ ∈ [0, 1],

R2≤
[
I(V ;Y1|S1)− I(V ;Y2|S2)

−Q−1

(
θ
(
δr+O

( 1√
n

))
)√

VY1|S1

n

−Q−1

(
(1− θ)

(
δsec+O

( 1√
n

))
)√

VY2|S2

n

+O
( log n

n

)]+
, (22)

R1 +R2≤
[
I(V ;Y1|S1) +O

( log n
n

)

−Q−1

(
θ
(
δr+O

( 1√
n

))
)√

VY1|S1

n

]+
(23)

and

Dj ≥ E[dj(Sj , Ŝj))]− ϵD for j = 1, 2 (24)

such that

δD = ϵD(1 +Dj + ϵD) + 2|S||Ŝ|e−2nϵ2Dµ
2

sj ŝj dmax. (25)

We have (7) and use per-letter estimators in (8).

Proof Sketch. The proof mainly follows by applying the

achievability proof technique used in [14, Section IV] that

includes significant modifications of the nonasymptotic bin-

ning methods proposed in [15,16], which also use finite-length

techniques of [17, 18]; see also [19].

The proof follows by considering i.i.d. random variables

(V n, Xn, Y n
1 , Sn

1 , Y
n
2 , Sn

2 ) such that

E[dj(Sj , Ŝj))]≤Dj+ϵD (26)

for j = 1, 2 and some ϵD ≥ 0 that satisfies (25). Denote the set

of ϵD-letter typical sequences as Tn
ϵD
(P

SŜ
) and the error event

that the sequences (Sn
j , Ŝ

n
j ) are not ϵD-letter typical as

E = {(Sn
j , Ŝ

n
j ) /∈ Tn

ϵD
(P

Sj Ŝj
)}. (27)

The equality in (25) is required since we have

E[dj(S
n
j , Ŝ

n
j )]

= Pr[E ] E[dj(Sn
j , Ŝ

n
j )|E ] + Pr[Ec] E[dj(S

n
j , Ŝ

n
j )|Ec]

(a)

≤ Pr[E ] dmax + Pr[Ec] (1 + ϵD) E[dj(Sj , Ŝj))]

(b)

≤ 2|S||Ŝ|e−2nϵ2Dµ
2

sj ŝj dmax + (1 + ϵD) (Dj + ϵD) (28)

where (a) follows because the distortion metrics are per-letter

with bound dmax and from the typical average lemma [20,

pp. 26] and (b) follows by (26) and from the bound on the

probability of the error event E given in [21, Eq. (6.34)],

which can be applied since per-letter estimators are used.

We first illustrate the existence of nonasymptotic random

binning methods that simultaneously satisfy Pr
[
M ̸= M̂

]
≤

θδr and ||PM2Y
n
2
Sn
2
−PU

M2
Pn
S2
Pn
Y2|S2

||1 ≤ (1−θ)δsec for any

θ ∈ [0, 1]. Similar to the OSRB method, we first consider a

source coding problem that is operationally dual to our prob-

lem, i.e., Protocol A. In this problem, the encoder observes

(V n, Xn) and independently and uniformly assigns three ran-

dom bin indices Fv ∈ [1 : 2nR̃], M1 = Mv1
∈ [1 : 2nR1 ],

and M2 = Mv2
∈ [1 : 2nR2 ]. As in [15, pp. 3] and [14,

Eq. (12)], we consider a mismatch stochastic likelihood coder

(SLC) as the decoder, which allows one to bound the expected

error probability averaged over the random binning ensemble.

To impose (almost) independence constraints, including the

strong secrecy constraint, we apply [15, Theorem 1] and to

impose reliable sequence reconstruction constraints, we apply

[15, Theorem 2], respectively. Thus, we can obtain constraints

on the rates (R̃, R1, R2) by applying Berry-Esseen Theorem

such that L1 distances between the observed and target prob-

ability distributions are bounded by a fixed value for Proto-

col B, an equivalent channel coding problem with extra ran-

domness F . Moreover, we can eliminate the extra random-

ness F by showing that there exists a fixed realization F = f
on which the encoder and decoder can agree publicly, as in

[10, 14]. Lastly, by choosing the free parameters as chosen in

[14, Eq. (36)], we obtain the results given in (22) and (23).

We remark that the bounds given in (22) and (23) may be

improved by using, e.g., privacy amplification methods, as in

[22], analysis of which we leave as future work.
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