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This study examined the impact of experience on individuals’ dependence behavior and response strategies
when interacting with imperfect automation. 41 participants used an automated aid to complete a dual-task
scenario comprising of a compensatory tracking task and a threat detection task. The entire experiment was
divided into four quarters and multi-level models (MLM) were built to investigate the relationship between
experience and the dependent variables. Results show that compliance and reliance behaviors and perfor-
mance scores significantly increased as participants gained more experience with automation. In addition, as
the experiment progressed, a significant number of participants adapted to the automation and resorted to an
extreme use response strategy. The findings of this study suggest that automation response strategies are not
static and most individual operators eventually follow or discard the automation. Understanding individual
response strategies can support the development of individualized automation systems and improve operator

training.

INTRODUCTION

Automated/autonomous technology has become an integral
part of our daily lives, from self-driving cars and drones to intel-
ligent personal assistants and robots. If used properly, they offer
many benefits such as improved safety (Gombolay et al., 2018;
Luo et al., 2021) and performance (Luo, Du, & Yang, 2022;
Wickens & Dixon, 2007), and reduced operator workload (Lu,
Zhang, Ersal, & Yang, 2019; Luo et al., 2021).

Since the seminal paper by Parasuraman and Riley (1997),
research has extensively explored aspects of automation use and
the impacts on human-automation team performance. These as-
pects range from general, such as synthesizing the literature to
estimate when automation performs well enough for the benefits
to outweigh the costs (Wickens & Dixon, 2007), to the specific,
by conducting a laboratory experiment to examine how automa-
tion error types affect performance (Dixon, Wickens, & McCar-
ley, 2007). In the former, they found that performance is sensi-
tive to the automation imperfections and estimated that automa-
tion performing correctly less than 70% of the time may not be
worth using. In the latter, they found that human-automation
team performance deteriorates differently based on the automa-
tion error type; false-alarm prone automation has been consid-
ered more damaging to performance than miss-prone automa-
tion. Others mentioned that this performance detriment is fur-
thered when operators place undue trust and dependence on the
automation (Lee & See, 2004; Parasuraman & Riley, 1997). In-
dividual traits and task specific factors have also been explored,
such as the effects of workload and age on automation depen-
dence (McBride, Rogers, & Fisk, 2011). They found that the
performance and compliance of younger adults was affected by
the workload, while older adults did not change as the workload
increased.

However, there is a gap regarding how automation use
changes as operators repeatedly use automation. To address this
gap, we conducted a laboratory experiment investigating how
human operators change their decision-making and response
strategies with increased use of imperfect diagnostic automa-
tion.

Dealing with uncertainty

Human interaction with diagnostic automation, a form of
automation that analyzes raw information and infers the status
of the world (Wickens & Dixon, 2007), is considered decision-
making under uncertainty (Manzey, Gérard, & Wiczorek, 2014;
Meyer, 2004; Sorkin & Woods, 1985; Wang & Yang, 2022;
Yang, Unhelkar, Li, & Shah, 2017). As the most basic form
of diagnostic automation, binary diagnostic automation cate-
gorizes the world into ‘signal present’ and ‘signal absent’” and
alerts the human (often in the form of an alarm) once a signal
is detected. The human operator is typically responsible for the
final decision concerning if a signal is actually present.

Compliance and reliance refer to how an operator responds
to automation alarms/non-alarms (Meyer, 2001, 2004). Com-
pliance quantifies the human’s response during an automation
alarm and reliance quantifies the human’s response when the
automation is silent (i.e., non-alarm). The availability of alarm
validity information (AVI) adds complexity to the operator’s
decision-making process (Allendoerfer, Pai, & Friedman-Berg,
2008; Sorkin & Woods, 1985). AVI is defined as informa-
tion that can be used to validate the alarm or non-alarm; it re-
duces uncertainty in the operator’s decision-making by inform-
ing about the ground truth. Compliance and reliance can be
further divided, based on availability of AVI, into blind compli-
ance and reliance, and verified compliance and reliance. The
blind responses are categorized by when the operator blindly
follows the automation’s alarms/non-alarms. Verified responses
are categorized by when the operator verifies the automation’s
alarms/non-alarms with additional information, such as AVI.
For example, if a smoke detector started ringing, someone could
comply with the alarm and evacuate immediately (i.e., blind
compliance) while others could search the area for fire or smoke
before deciding to exit (i.e., verified compliance).

Extreme response strategy

Prior research analyzed the occurrence of blind compli-
ance and reliance and identified the use of the extreme response
strategy. An extreme response strategy occurs when the opera-



tor either uses or discards the automated aid (Bliss, Gilson, &
Deaton, 1995). Theoretically, the rational operator could use
information about automation performance and situational spe-
cific consequences (costs and benefits) to model the outcome.
They could then calculate a threshold and decide to always use
or ignore the alarm to maximize their performance. This strat-
egy was noted in the findings of Bliss (1993), where a small
number of participants (just under 10%) resorted to an extreme
response strategy. The participants appeared to be sensitive
to alarm performance: they applied an extreme disuse strat-
egy to automation that was 25% correct and an extreme use
strategy to automation that was 75% correct. In a subsequent
review, Bliss (2003), compared extreme response strategies of
groups informed about collective alarm performance to groups
that could access AVI (trial specific information to validate the
alarm). They found that the participants who could not vali-
date alarms were much more likely to resort to an extreme use
response strategy. Building upon the findings of those studies,
Manzey et al. (2014) did a controlled laboratory study with 4
experiments and examined the effects of having AVI, effort to
validate alarms, and workload on response strategies. In ad-
dition to finding that AVI directly impacted operator response
strategies, there was a reduced amount of cry wolf effect (coined
from Breznitz (1984)) and AVI access increased operator sensi-
tivity to non-alarms.

Our study differs from previous work by examining how
people adapt their strategies to the automation throughout the
experiment. We hypothesized that participants would adapt to
the automation and adjust their strategies as they increase their
experience with the automated aid.

METHODS
Participants

A total of 41 (25 males, 15 females, and 1 person who did
not disclose gender information) university students (mean age
= 24.05 years old, SD = 3.49) with normal or corrected to nor-
mal vision participated in the experiment. Upon completion of
the experiment, the participant received US$20 with an oppor-
tunity to earn a performance bonus ranging from $1 to $5.

Apparatus and stimuli

The experimental displays were presented on a HP 24 in.
monitor, with a 1920 x 1200 resolution. Participants used a
Logitech Extreme 3D Pro joystick to interact with a simulated
surveillance drone. Each participant performed 100 trials (each
lasting 10 seconds) of a dual task scenario, which consisted of
two simultaneous tasks: a compensatory tracking task and a
threat detection task (Du, Huang, & Yang, 2020; Yang et al.,
2017). Participants could only see one task display at a time
and every trial began on the tracking task display. During the
trial, participants could choose to toggle between task displays;
this would occur a 0.5 second delay. An imperfect diagnostic
automated aid would provide a binary recommendation about
status of threats. Both displays can be seen below in Figure 1.
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Figure 1. The tracking task is on the left and 4 static photos are
on the right, only one display could be seen at a time.

Tracking Task. The tracking task was programmed based
on the Psychology Experiment Building Language (PEBL)
(Mueller & Piper, 2014). Participants used a joystick to center
a randomly drifting green circle over a static, central cross-hair.
During each trial, 10 points could be earned based on tracking
task performance. Tracking error was defined as the pixel dis-
tance between the cross-hair and circle and it was collected at a
frequency of 20 Hz. We calculated the RMSE from each trial’s
tracking error. The RMSE distribution from a previous study
(Yang et al., 2017) was used to calculate a 10-bin histogram
and determined the corresponding tracking score (out of 10).

Threat Detection Task. During each trial, participants were
provided with a new set of 4 static photos, which could poten-
tially display threats. Threats were presented as human figures
and only 1 threat was shown at a time. There were no distraction
stimuli and participants were instructed to treat every human
figure as a threat. Threats were uniformly distributed across the
four images. Participants could earn up to 5 points for each
threat detection task, with a linear time penalty for threat de-
tection time. An participant’s incorrect detection (false alarm
or miss) would result in a threat detection score of O for that
trial. If participants correctly determined no threat, it would
result in 5 detection task points - as no action was required. The
following calculation was used during hits: Detection Score =
5- 5*(detection time/ total trial time).

Automated Aid. For the threat detection task, participants
were supported by an imperfect automated aid, which would
make a binary recommendation on the status of status of threats
(“safe” or “danger”) through audio and visual alarms. However,
the participants were ultimately responsible for choosing to re-
port a perceived threat, which was done via the joystick’s trig-
ger. We set the base rate to 30% (i.e., the amount of true signals)
after bench-marking prior literature (Du et al., 2020; McBride et
al., 2011; Wiczorek & Manzey, 2014; Yang et al., 2017). Of the
100 trials, there were 21 hits, 59 correct rejections, 11 misses,
and 9 false alarms.

Procedure. Participants were recruited via email and in-
vited to the lab. Upon arrival, they completed an informed con-
sent form and begin training to become familiar with the sce-
nario. During training, participants completed 30 practice trials
of only the tracking task, followed by 8 practice trials of the
dual task scenario. No automation likelihood information was
disclosed to participants. A 3-second countdown preceded each
trial and performance feedback was provided immediately after



each trial. A required 5-minute break was given after the 50th
trial.

Independent and dependent variables

This study focused on the effects of repeated automation
use on operators’ compliance and reliance behaviors. There-
fore, we divided the experimental session (100 trials) into 4
quarters (Q): QI = trials 1-25, Q2 = trials 26-50, Q3 = trials
51-75, and Q4 = trials 76-100.

The first set of dependent variables were dual task perfor-
mance scores and the operator’s compliance and reliance rates.
In particular, we were interested in the operator’s blind com-
pliance and blind reliance behaviors, defined as the probability
that the human follows the automation’s recommendation with-
out cross-checking the raw information and calculated using the
following equations.

Blind Compliance =
P(report and not cross checkinglautomation alert)
Blind Reliance =

P(not report and not cross checkinglautomation slience)

(D

An additional dependent variable of interest was the oper-
ator’s extreme automation use/disuse behaviors. According to
prior research (Manzey et al., 2014), the participant applied an
extreme strategy when he/she blindly complied with or relied on
automation more than 90% or less than 10% of the time. In this
study, the term extreme use refers to extreme high blind compli-
ance and extreme high blind reliance (>90%), the term extreme
disuse refers to extreme low blind compliance and extreme low
blind reliance (>10%). Finally, we examined the proportion of
time spent on the tracking task display (tracking task time/ total
trial time) for each quarter.

Data Analysis. We used multi-level modeling (MLM) to
analyze the relationship between the independent variable and
dependent variables, using the ‘nlme’ package in R (version
4.2.2). Following the standard procedure for MLM building
(Hofmann, Griffin, & Gavin, 2000), we started simple and grad-
ually added complexity to our models. Next, we used the Anal-
ysis of Variance (ANOVA) test to compare the Akaike infor-
mation criterion (AIC) scores between the simpler and more
complex model, which determined whether the latter model
was needed. Quarters of experiment were nested within par-
ticipants, as this was a repeated measures design. In addition
to the MLMs, the McNemar’s test (Eliasziw & Donner, 1991)
was performed to determine whether the proportions of extreme
use/disuse strategy users was equal in the beginning (Q1) com-
pared to the end (Q4) and a continuity correction was applied.
The alpha for all statistical tests was set to 0.05.

RESULTS

Performance. The experimental quarter had a significant
effect on the total performance score, ¢ (122) = 8.14, p<0.001.
The random-slope random-intercept model was used and 8 =
14.75. When separating performance scores by task, the threat
detection scores remained stable throughout the experiment

Table 1. Mean and SD values for performance scores, reliance and compliance
rates.

Tracking Task ~ Detection Task ~ Compliance Reliance
Score Score Rates Rates
Ql  156.17 (48.71)  102.34 (12.17)  0.29(0.36)  0.44 (0.36)
Q2  181.78 (43.81) 98.64 (13.57) 0.42(0.41)  0.57 (0.35)
Q3 199.83 (42.12) 99.96 (12.70) 0.53(0.44)  0.63 (0.36)
Q4  202.15(38.94) 99.10 (13.18) 0.54 (0.46)  0.65 (0.39)

while tracking task scores improved (details in Table 1).

Blind Compliance. There was a significant effect of exper-
imental quarter on operators’ blind compliance rates #(122) =
3.99, p<0.001. The random-slope random-intercept model was
used and B; = 0.09. As the experiment progressed, the blind
compliance rates increased from 0.29 to 0.54, while the SD in-
creased from 0.36 to 0.46. Box-plots with compliance rates in
each quarter can be seen below in Figure 2.

Blind Reliance. There was a significant effect of experi-
mental quarter on operators’ blind reliance rates ¢ (122) = 3.76,
p<0.001. The random-slope random-intercept model was used
and 8; = 0.07. As the experiment progressed, the mean blind re-
liance rates increased from 0.44 to 0.65, while the SD remained
fairly stable (it shifted from 0.36 to 0.39). Box-plots with re-
liance rates in each quarter can be seen below in Figure 3.

Extreme Use/Disuse. As the experiment progressed, the
count of participants applying an extreme use strategy increased
while the count for extreme disuse decreased (see Table 2). A
significant difference in extreme high blind compliance counts
was found between the beginning and end of the experiment
i (1) =7.56, p= 0.01. A significant difference was found in
extreme high blind reliance counts between the beginning and
end of the experiment ¥ (1) =10.08, p <0.01. No significant
differences were found for the extreme low blind compliance
(p=0.39) or low blind reliance (p=0.51).

The largest shift of participants (n = 7) to an extreme high
compliance strategy occurred during Q3. Participants steadily
shifted to an extreme high reliance strategy (n = 5) during Q2,
Q3 and Q4. By quarter 4, the number of participants resorting to
an extreme high compliance (n = 15) and extreme low compli-
ance (n = 16) strategy were roughly equal. The number of par-
ticipants applying an extreme high reliance strategy more than
doubled from the beginning (quarter 1 = 8) to the end (quar-
ter 4 = 20) of the experiment. Participants could resort to an
extreme strategy during only alarms, only non-alarms, or they
could have applied the extreme strategy to both; which is why
the Q4 counts in Table 2 sum up to 57 for the 41 participants.
The box-plots (Figures 2 and 3) display the group’s increasing
median compliance and reliance rates. Proportion of time spent
on the tracking task also illustrated the group’s eventual col-
lective extreme use/disuse strategy. Participants increased the
proportion of time spent on the tracking during the first half of
the experiment: 89% in Q1, 92% in Q2, 94% in Q3, 94% in Q4.



Table 2. Counts of participants with extreme automation use/disuse in response
to alarm or non-alarm states.

Alarms Non-Alarms
Extreme high Extreme low Extreme high  Extreme low
blind compliance  blind compliance  blind reliance  blind reliance
(#outof 41) (# out of 41) (#outof 41) (#outof 41)
Ql 4 19 8 9
Q2 8 16 10 6
Q3 15 14 15 5
Q4 16
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Figure 2. Box-plots illustrating operators’ blind compliance rates
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Figure 3. Box-plots illustrating operators’ blind reliance rates (Y
axis), divided into quarters of the experiment.

DISCUSSION

We predicted that participants would adjust their automa-
tion response strategy throughout the experiment. To test this,
we examined operators’ performance, compliance, and reliance
across the 4 quarters of the experiment. Our results showed
that compliance and reliance significantly increased and per-
formance significantly improved. When specifically examining
the performance score by task, the tracking task performance
improved throughout the experiment while the threat detection
task performance remained the same. The tracking improve-
ment likely stems from participants spending more time focus-
ing on that task. This is similar to other research Du et al.
(2020), they noted how automation was used as an attention
management tool instead of a tool that directly improved the
task associated with the automated aid.

When examining compliance and reliance rates for the
group, we see that operators generally increased their compli-
ance and reliance rates throughout the experiment. Similar to
prior results (Du et al., 2020; Manzey et al., 2014; Schuler &
Yang, 2022; Wickens & Dixon, 2007), the changes in com-
pliance and reliance behaviors were not random and appear to
be systematic responses to alarm characteristics. In this study,
the average blind compliance and blind reliance rates gradually
became closer to the automation alarm and non-alarm perfor-
mance as the experiment went on; the group appeared to use
what has been referred to as a probabilistic matching strategy.
The probabilistic matching strategy is a heuristic where the hu-
man’s blind compliance and reliance rates roughly mirror the
automation alarm/non-alarm performance (Bliss, 2003; Bliss et
al., 1995; Dorfman, 1969).

When examining individual operator strategies, we see that
the majority of individuals were not using a probabilistic match-
ing strategy, but instead adapted an extreme response strategy.
Our results show a significant change in the counts of extreme
use strategy, people were increasing the amount of extreme high
compliance and reliance. The extreme automation use strategy
seems logical since the automation’s performance was above
the threshold calculated by Wickens and Dixon (2007), where
automation benefits outweigh the costs of errors. Our results
also show that participants using the extreme disuse strategy did
not significantly change during the experiment. During non-
alarms, extreme use (n=20) was eventually preferred over ex-
treme disuse (n=6). The number of participants using a ex-
treme alarm use and disuse strategy was roughly equal by the
last quarter. The differences in alarm and non-alarm response
strategies are likely due to the differences in automation’s alarm
and non-alarm performances. More people adapted an extreme
use strategy when the automation was clearly performing well
(during non-alarms it was 84% correct) than when it was un-
clear (during alarms it performed 70% correctly). The shift to
extreme strategies appears to vary between alarm and non-alarm
states and more research is warranted to explore this further. For
extreme alarm responses, there was one fairly large shift of 7
participants to extreme alarm use in the third quarter. We can
see a more gradual shift in participants who eventually chose an
extreme non-alarm use strategy, with about 5 people changing
to extreme non-alarm use in each of the last 3 quarters. Partici-



pants eventually may have found that extreme response strategy
removed the burden of using AVI to validate automation’s rec-
ommendation, allowing participants to maximize their attention
resources and performance in dual task scenarios (Bliss, 1993;
Du et al., 2020; Wiczorek & Manzey, 2014).

This study has the following limitations: first, no automa-
tion likelihood information was provided to participants, each
participant was required to estimate how well the automation
performed. Second, we only examined the decision-making and
response strategies for one automation performance level. Fu-
ture research studies should manipulate the automation’s perfor-
mance during alarms and non-alarms to examine how operators
adjust their strategies.

CONCLUSION

Our study aim was to examine how decision-making and
response strategies change as operators increase their experi-
ence with imperfect diagnostic automation. Our results show
that mean performance, compliance, and reliance significantly
increased during the experiment. Individual operators shifted
their strategies and the majority eventually resorted to extreme
automation use or disuse. Future work should expand to ex-
amine how automation performance affects individual decision-
making and response strategies. Understanding the individual’s
strategy supports the development of individualized automation
systems and can improve operator training.
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