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including the outcome bias and the contrast effect. Additionally, automation failures

engender a larger effect on trust adjustment than successes.
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ABSTRACT

Objective: We examine how human operators adjust their trust in automation as

a result of their moment-to-moment interaction with automation.

Background: Most existing studies measured trust by administering

questionnaires at the end of an experiment. Only a limited number of studies viewed

trust as a dynamic variable that can strengthen or decay over time.

Method: Seventy-five participants took part in an aided memory recognition

task. In the task, participants viewed a series of images and later on performed 40 trials

of the recognition task to identify a target image when it was presented with a

distractor. In each trial, participants performed the initial recognition by themselves,

received a recommendation from an automated decision aid, and performed the final

recognition. After each trial, participants reported their trust on a visual analog scale.

Results: Outcome bias and contrast effect significantly influence human

operators’ trust adjustments. An automation failure leads to a larger trust decrement if

the final outcome is undesirable, and a marginally larger trust decrement if the human

operator succeeds the task by him-/her-self. An automation success engenders a greater

trust increment if the human operator fails the task. Additionally, automation failures

have a larger effect on trust adjustment than automation successes.

Conclusion: Human operators adjust their trust in automation as a result of

their moment-to-moment interaction with automation. Their trust adjustments are

significantly influenced by decision-making heuristics/biases.

Application: Understanding the trust adjustment process enables accurate

prediction of the operators’ moment-to-moment trust in automation and informs the

design of trust-aware adaptive automation.

Keywords: Human-automation interaction, human-autonomy interaction,

heuristics and biases, decision aid
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1. INTRODUCTION

Consider the following hypothetical scenarios:

Scenario A: Assume Mark and Brian were identical from the medical

perspective. Both of them spotted blood in their stools. A clinical decision

system was used to decide whether they were at risk of colon cancer and if

follow-up colonoscopy examinations were necessary. The decision system

decided that both patients were at very low risk of developing colon cancer

and colonoscopy examinations were unnecessary. Mark, a hypochondriac

fully covered by medical insurance, still requested a follow-up colonoscopy

examination, which turned out to reveal cancerous polyps in his colon. A

polypectomy afterward removed those polyps and saved his life. In contrast,

Brian, constrained by his financial status, did not request a colonoscopy.

Shortly after, unfortunately, he was diagnosed with colon cancer.

In Scenario A, the clinical decision system made wrong diagnoses for both patients.

Therefore, we would expect a decrement of trust toward the system in both cases, but

would the levels of trust drop be equal?

Scenario B: Assume Amy and Marina were identical from the medical

perspective. Both Amy and Marina spotted a painful lesion on their skins.

Their symptoms were analyzed by a medical doctor and a clinical decision

system. Based on the medical doctor’s diagnoses, only Amy has developed

skin cancer. However, the clinical decision system concluded that both

patients had skin cancer. A tandem expert review confirmed that the

decisions by the clinical system were correct.

In Scenario B, the clinical decision system made correct diagnoses for both patients.

Therefore we expect an increment of trust toward the system in both cases, but would

the levels of trust increment be equal?
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The present study seeks to answer these questions. We begin by reviewing existing

literature on trust adjustment in human-automation interaction. Next, we discuss the

two types of decision-making heuristics/biases, namely outcome bias and contrast effect.

We hypothesize that outcome bias and contrast effect would affect human operators’

trust adjustments when interacting with automation. Although there are other types of

decision-making heuristics/biases, these two types are particularly relevant to trust

adjustment and are our focus in the present study.

1.1 Trust as a Dynamic Variable

Trust in automation, or more recently, trust in autonomy, has attracted

substantial research attention in the past three decades. The majority of prior literature

adopted a snapshot view of trust and typically evaluated trust through questionnaires

administered at the end of an experiment. More than two dozen factors have been

identified to influence one’s (snapshot) trust in automation, including individual factors

such as culture and age (McBride, Rogers, & Fisk, 2011; Rau, Li, & Li, 2009), system

factors such as reliability and level of automation (Du, Huang, & Yang, 2020;

Parasuraman, Sheridan, & Wickens, 2000; Wickens & Dixon, 2007; Wickens et al.,

2009), and environmental factors such as multi-tasking requirement (Zhang & Yang,

2017). This snapshot view, however, does not fully acknowledge that trust is a dynamic

variable that can change over time (Figure 1). With few exceptions, we have little

understanding of how trust strengthens or decays due to moment-to-moment

interactions with automation (de Visser et al., 2020; Guo & Yang, 2020; Yang, Guo, &

Schemanske, To appear; Yang, Unhelkar, Li, & Shah, 2017).
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Figure 1 . The static snapshot view of trust versus the dynamic view of trust. If taking

a snapshot at time t, both agents have the same trust level, but their trust dynamics

differ.

The limited amount of research on trust adjustment reveals two major findings.

First, human operators’ trust adjustments are significantly influenced by automation

performance: trust increases after automation successes and decreases after automation

failures (Lee & Moray, 1992; Moray, Inagaki, & Itoh, 2000; Yang et al., 2017; Yang,

Wickens, & Hölttä-Otto, 2016). Second, automation failures engender a much stronger

influence on trust adjustment than automation successes – Trust is difficult to build but

can be lost quickly (Lee & Moray, 1992, 1994; Manzey, Reichenbach, & Onnasch, 2012).

In their seminal work, Lee and Moray (1992) employed a simulated pasteurization

task, in which participants controlled two pumps and one heater, each of which could be

set to automatic or manual control. Participants completed 10 training trials and 50

experimental trials over three days. Two pump faults were introduced on trials 26 and

40, at which point the pump failed to respond accurately. After each trial, participants

rated their level of trust on a 10-point Likert scale. Trust plotted over the 60 trials

showed a mild trust increment after interacting with a reliable pump but a large trust

decrement after trials 26 and 40. Based on the results, Lee and Moray (1992) developed

an autoregressive time-series model of trust. Trust at time t was modeled as a function

of trust at time t− 1, the pasteurization output, and the occurrence of pump faults.

Along the same line, Manzey et al. (2012) used the AutoCAMS multi-tasking

platform (Hockey, Wastell, & Sauer, 1998) to track the human operators’ trust over 20
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positive interactions (automation successes) and 1 or 2 negative interactions

(automation failures). Participants rated their subjective trust 5 times throughout the

experiment. Results of the experiment reveal a sharp decline of trust after the

automation failures. Manzey et al. (2012) concluded that human operators adjust their

trust in automation based on positive and negative feedback loops. The positive loop is

triggered by the experience of automation success, and the negative loop by the

experience of automation failures.

Recently, Yang et al. (To appear) summarized the two major findings as two

properties of trust dynamics, namely continuity and negativity bias, and identified the

third property, stabilization (i.e., An average person’s trust will stabilize over repeated

interactions with the same automation.) Based on the three properties, a computational

model for predicting the moment-to-moment trust was developed (Guo, Shi, & Yang,

2021; Guo & Yang, 2020; Yang et al., To appear). The computational model proposes

that trust at any time, t, follows a Beta distribution. The model outperforms existing

models in prediction accuracy and guarantees good model e generalizability and

explainability.

1.2 Decision Making Heuristics/Biases and Trust Adjustment

When making decisions, people rarely use the normative approach. Instead, their

decision-making is often subject to various types of heuristics/biases. Below we discuss

three types of decision-making heuristics/biases, namely, hindsight bias, outcome bias,

and contrast effect.

Hindsight bias, as described by Fischhoff (1975), is the tendency to adjust the

estimates of various likelihoods of possible event outcomes in uncertain situations after

the event has occurred and the outcome is known. Hindsight bias is also known as the

creeping determinism (Fischhoff, 1975) and knew-it-all-along effect (Wood, 1978). It

has been documented in auditory processing, labor disputes, medical diagnoses,

consumer satisfaction, personnel management, sporting events, political strategy, legal

proceedings, and nuclear accident analysis (Bernstein, Wilson, Pernat, & Meilleur, 2012;
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Hawkins & Hastie, 1990; Roese & Vohs, 2012). The typical experimental procedure

presents participants with a situation that may lead to several possible outcomes.

Participants estimate the likelihood of each outcome, learn the actual outcome, and

estimate the likelihood of each outcome again (Guilbault, Bryant, Brockway, &

Posavac, 2004). Hindsight bias occurs when the participants rate the actual outcome as

more likely in the second estimate and the other possible outcomes as less likely.

Rather than observing a change in the estimated likelihood of each outcome,

outcome bias observes a change in the perceived quality of the decision made (Baron &

Hershey, 1988; Henriksen & Kaplan, 2003). Outcome bias has been observed in

laboratory tasks evaluating medical decisions (Baron & Hershey, 1988), gambling

(Baron & Hershey, 1988; Brownback & Kuhn, 2019; Sezer, Zhang, Gino, & Bazerman,

2016), and business decisions (Gino, Moore, & Bazerman, 2009), and in real-world

evaluations of soccer player performance (Kausel, Ventura, & Rodríguez, 2019).

Following a similar experimental paradigm, outcome bias studies ask participants to

rate the quality of a decision that influences but do not entirely determine outcomes.

After that, participants learns the actual outcome and rate the decision quality again.

The probabilities of each outcome are held constant and in some cases even made

explicit to participants (Baron & Hershey, 1988; Brownback & Kuhn, 2019), suggesting

that any differences between the pre- and post-outcome decision quality judgments can

be attributed to the only new information provided – the outcome (Baron & Hershey,

1988). Outcome bias occurs when the same decision is evaluated to be of lower quality

when it happens to produce bad rather than good outcome.

Another decision making heuristics/biases people may use in trust adjustment is

the contrast effect. The contrast effect occurs when people’s judgments are

unintentionally affected by previous or simultaneous stimuli. It has been observed in

judgments of shape perception (Suzuki & Cavanagh, 1998), facial recognition (Hsu &

Lee, 2016), job candidate interviews (Wexley, Yukl, Kovacs, & Sanders, 1972), physical

attractiveness (Kenrick & Gutierres, 1980; Thornton & Maurice, 1997), and consumer

reports (Lynch, Chakravarti, & Mitra, 1991). In their study of sequential effects on
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perceptions of job candidates, Wexley et al. (1972) found that up to 12% of variance in

ratings of candidates could be attributed to a contrast effect from the two candidates

preceding the target candidate.

1.3 The Present Study

The primary objectives of the present study are two-folded. First, we aim to

provide further evidence on the effects of automation successes and failures on a person’s

trust adjustment. Prior studies employing a small number of automation failures

showed that a person’s moment-to-moment trust increases after automation successes

and decreases after automation failures (Lee & Moray, 1992; Moray et al., 2000; Yang et

al., 2017, 2016), and automation failures have a larger influence on trust adjustment

(Lee & Moray, 1992, 1994; Manzey et al., 2012). We will replicate and further examine

the two empirical findings with more frequent occurrences of automation failures.

Second, we aim to investigate the effects of outcome bias and contrast effect on

trust adjustment. The two types of biases/heuristics have been observed in various

judgment and decision-making tasks (Baron & Hershey, 1988; Henriksen & Kaplan,

2003; Hsu & Lee, 2016; Suzuki & Cavanagh, 1998). In the context of trust adjustment

in human-automation interaction, we postulate that people’s moment-to-moment trust

adjustment will be affected by the final outcome of a task and will be influenced by

whether a task could be completed successfully by a human operator him-/her-self

manually. To our knowledge this is the first experiment to examine how outcome bias

and contrast effect influence people’s moment-to-moment trust adjustment. In

particular, we test the following hypotheses:

H1a: Trust in automation will increase as a result of automation successes and

decrease as a result of automation failures.

H1b: The magnitude of trust decrements due to automation failures will be greater

than that of trust increments due to automation successes.

H2a: An automation success will lead to a larger increment of trust if the final

outcome of a task is desirable.
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H2b: An automation failure will lead to a larger decrement of trust, if the final

outcome of a task is undesirable.

H3a: An automation success will lead to a greater increment of trust if a human

operator fails the task on his or her own.

H3b: An automation failure will lead to a greater decrement of trust if a human

operator succeeds the task on his or her own.

Along with the primary objectives, we were interested in exploring any potential

impact of the overall automation reliability on trust adjustment. Previous research has

revealed consistently a positive relationship between automation reliability and the

(snapshot) trust in automation measured at the end of an experiment (de Visser &

Parasuraman, 2011; Wickens & Dixon, 2007). However, little research, if any, has

examined the effects of automation reliability on moment-to-moment trust adjustment.

In the present study, automation reliability was set to be above 70% (i.e., 70%, 80% and

90%) based on a meta-analysis showing that 70% is the threshold above which using

automation improves task performance and below which such use may harm

performance (Wickens & Dixon, 2007).

2. METHOD

This research complied with the American Psychological Association code of ethics

and was approved by the Institutional Review Board at the University of Michigan.

2.1 Participants

A total of 75 adults (Age: Mean = 23.4 years, SD = 4.1 years) participated. The

number of participants was determined using a power analysis for the 2 (pattern) × 3

(reliability level) mixed design F test. The power analysis was completed by assuming a

large effect, a α of .05, and a statistical power of .80. The required sample size is 51. All

participants had normal or corrected-to-normal vision. Participants were paid a base

rate of $10 dollars plus a bonus ranging from $1 to $5 depending on their performance.

Of the 75 participants, 60 performed the experiment in a face-to-face setting and

the remaining 15 in a remote control setting where they controlled the experimental PC
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remotely (due to the COVID-19 pandemic). We notice no systematic differences in

participants’ behavior or performance between the two groups except that the

participants in the remote control setting took longer to complete the experiment,

probably due to internet lags when controlling the experimental PC remotely.

2.2 Apparatus and Stimuli

The study employs a simulated memory recognition task adapted from Tulving

(1981). Figure 2 shows the flowchart of the experimental task.

View 150 pictures

Pre-experiment survey

Write about 4 people for 4 minutes

Initial recognition test: 
Participant makes initial recognition based on 

own memory and indicates confidence

Decision aid presents recommendation

Final recognition test: 
Participant makes final recognition, 
receives feedback and reports trust

Post-experiment survey

× 40

Trusti (i from 1 to 40)

Figure 2 . Flow chart of the aided memory recognition task

Before the experiment, participants fill in a demographic survey (i.e., age and

gender) and a trust propensity survey gauging their propensity to trust automation.

Trust propensity has been shown to influence a person’s (snapshot) trust in automation

after interacting with an automated system (Merritt & Ilgen, 2008). Please refer to

Appendix A for the items used in the survey.

In the experiment, each participant first views a block of 150 pictures (i.e., A, B,

C, ...), each for two seconds, as shown in Figure 3. Sixty of the 150 images are targets
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for later recognition, and 90 are buffer images to increase cognitive load. Next,

participants perform an interpolated memory task to write down as much information

as they could about four famous people in four minutes. The interpolated task is used

in the study of Tulving (1981) to bring the hit rate into the middle performance range.

The number of famous people and the duration of the interpolated task are determined

in a preliminary study (Yang et al., 2016).

A B C

. . . 

Figure 3 . Illustration of target pictures A, B, C, ...

Participants are then given the recognition test that consists of 40 trials of a two

alternative forced choice image recognition task (2AFC), in which participants identify

a target image when it is presented with a distractor. The 40 trials of target-distractor

pairs are created from the 60 target pictures (Figure 4). In each trial, a target picture

could be presented with a distractor that resembles itself (e.g, Distractor A’ resembles

target A) or a target picture could be presented with a distractor that resembles

another target picture (e.g., Distractor C’ resembles target C). Therefore, 60 target

pictures only generate 40 target-distractor pairs.
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Target

Distractor

Target

Distractor

Figure 4 . Illustration of target-distractor pairs

During each recognition trial, participants first selects the image they recall seeing

previously entirely based on their memory by clicking on it with the cursor (Figure 5).

The selected image will be highlighted in a frame. Participants then rate their

confidence using a visual analog scale, with the leftmost point labeled “I’m completely

guessing.” and the rightmost point “I’m completely certain.”
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Figure 5 . Illustration of the two-alternative forced-choice (2AFC) test

After that, the participants are reminded of their initial choice, and presented

with the recommendation from an automated decision aid (i.e., displaying “The image

recognition algorithm suggests LEFT/RIGHT” on screen). The participants are then

asked to make their final recognition selection (Figure 6). Once the participants make

their final recognition selection, they receive feedback on the correctness of their final

choice (i.e., “Your final answer is CORRECT/WRONG” on screen).
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View Recommendation, Make Final Selection

Figure 6 . The automated aid’s recommendation interface

After that, participants rate their trust towards the automated decision aid using

a visual analog scale (Manzey et al., 2012) (Figure 7), with the leftmost point labelled

“I don’t trust it at all.” and the rightmost point “I trust it completely.” All visual

analog scales are then converted to 0-100 scales for data analysis.

Rate System Confidence

Figure 7 . Illustration of the visual analog scale for measuring trusti after each trial

After participants complete the experiment, they fill in two post-experiment trust

survey adapted from Jian, Bisantz, and Drury (n.d.) and Muir and Moray (1996).

Please refer to Appendixes B and C for the items used in the two surveys.

2.3 Experimental Design

The experiment employs a mixed design with two independent variables. The

between-subjects variable is automation reliability, varied in three levels: 70%, 80%,

and 90%. The within-subjects variable is performance pattern. In the experiment,

participants perform an initial recognition, received a recommendation from the
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automated decision aid, and performed a final recognition. All the three steps could be

either correct or wrong, resulting in 8 performance patterns (Table 1). For example,

Pattern 3 indicates that the participants make a wrong recognition initially (i.e., 0 in

binary format), but after receiving a correct recommendation from the automated aid

(i.e., 1 in binary format), change the answer, and the final recognition is correct (i.e., 1

in binary format). Note that each participant does not necessarily exhibit each of the

eight patterns because the performance patterns are a result of their recognition

performance.

2.4 Measures

Trust propensity. At the beginning of the experiment, participants complete a

survey gauging their propensity to trust automation, adapted from Merritt, Heimbaugh,

LaChapell, and Deborah (2013).

Trust adjustment. After each 2AFC trial i, participants report their trust(i) in

the decision aid. We calculate a trust adjustment as:

Trust adjustment(i) = Trust(i) − Trust(i− 1), where i = 2, 3, ..., 40

Since the moment-to-moment trust is reported after each trial, only 39 trust

adjustments are obtained from each participant.

Post-experiment Trust Survey. After the experiment, participants complete a

12-item trust survey (Jian et al., n.d.) and an 8-item trust survey (Muir & Moray, 1996).

2.5 Experimental Procedure

Prior to the experiment, participants provided informed consent and completed a

demographic survey and the trust propensity survey. They were oriented to steps of the

experiment and walked through each of the screens they would see during the

experiment. After that, participants completed a practice session, wherein they viewed

12 images, performed the interpolated four well-known-people memory task, and

performed four 2AFC trials. Participants then proceeded to the experimental trials,

viewed 150 new images, performed the interpolated task, and completed 40 2AFC trials
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with their assigned automation reliability level. The images and the well-known people

used in the practice session were different from the ones in the actual experiment. At

the end of the experiment, participants reported their post-experiment trust toward the

automated aid using two scales (Jian et al., n.d.; Muir & Moray, 1996). Participants

were told that the automated decision aid was imperfect, but they were not informed of

the exact reliability level. The experiment spanned roughly half an hour, and the

average time for the 40 2AFC test trials was 8 minutes and 54 seconds (SD = 1 minute

and 58 seconds) for the in-person group, and 13 minutes and 38 seconds (SD = 5

minutes and 35 seconds) for the remote group.

3. RESULTS

After the experiment was completed, the number of occurrences for each

performance pattern was calculated. Table 1 summarizes the number of occurrences for

each pattern and the corresponding trust adjustments. As the occurrence of each

pattern can only be determined posteriorly, participants might not necessarily display

each performance pattern. Due to the extremely low number of occurrences for patterns

1 and 6, these two patterns are discarded from data analysis. As a result, a full factorial

analysis is inappropriate. Instead, we conduct a series of planned comparisons. For the

planned comparisons, we first conduct Analysis of Covariance (ANCOVAs) with both

automation reliability and performance pattern as independent variables, and trust

propensity as the covariate. Results show that neither automation reliability (i.e., 70%,

80%, 90%) or trust propensity had significant effects nor interaction effects in all the

planned comparisons. Therefore, trust propensity (as the covariate) is removed from the

analysis and the data are collapsed across the levels of automation reliability. The

following analysis is conducted on the collapsed dataset using one sample and paired

samples t-tests. Data points outside of three standard deviations of the mean are

considered outliers and excluded from the data analysis.
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TABLE 1: 8 (2 × 2 × 2) possible performance patterns based on the combinations of

human operator’s initial recognition, the recommendation provided by the automated

decision aid, and the operator’s final recognition

Performance Pattern

Decimal: Binary
Initial Recognition Recommendation Final Recognition # of Participants

Trust Adjustment

Mean (SD)

0: 000 Wrong (0) Wrong (0) Wrong (0) 68 -4.2 (4.2)
∗ 1: 001 Wrong (0) Wrong (0) Correct (1) 1 NA

2: 010 Wrong (0) Correct (1) Wrong (0) 72 1.6 (1.7)

3: 011 Wrong (0) Correct (1) Correct (1) 71 1.9 (1.3)

4: 100 Correct (1) Wrong (0) Wrong (0) 63 -5.0 (4.6)

5: 101 Correct (1) Wrong (0) Correct (1) 63 -3.7 (4.4)
∗ 6 : 110 Correct (1) Correct (1) Wrong (0) 5 NA

7: 111 Correct (1) Correct (1) Correct (1) 73 1.2 (1.0)

Note: Asterisks denote the exclusion of a pattern due to its low number of occurrences.

Recalling that H1a hypothesizes that an automation success would result in trust

increment and an automation failure trust decrement, we compare the magnitude and

direction of trust adjustment of patterns 2, 3, and 7 (correct recommendations) against

zero, and of patterns 0, 4, and 5 (wrong recommendation) against zero. One sample

t-tests with Bonferroni adjustments (α = 0.017) show that correct recommendations

increase trust (Pattern 2: t(1, 71) = 7.81, p < 0.001, Cohen’s d = 0.92; Pattern 3:

t(1, 70) = 12.6, p < 0.001, Cohen’s d = 1.48; Pattern 7: t(1, 72) = 9.94, p < 0.001,

Cohen’s d = 1.17) (Figure 8) and wrong recommendations decrease trust (Pattern 0:

t(1, 67) = −8.29, p < 0.001, Cohen’s d = 1.00; Pattern 4: t(1, 62) = −8.72, p < 0.001,

Cohen’s d = 1.10; Pattern 5: t(1, 62) = −6.74, p < 0.001, Cohen’s d = 0.85) (Figure 9).
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Figure 8 . Mean and Standard Error(SE) values of trust increment in patterns 2, 3

and 7 (∗ ∗ ∗p < .001).
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Figure 9 . Mean and Standard Error (SE) values of trust decrement in patterns 0, 4

and 5 (∗ ∗ ∗p < .001).

H1b hypothesizes that the magnitude of trust decrements would be larger than

that of trust increments. We conduct two paired samples t-tests with Bonferroni

adjustments (α = 0.025): the magnitude of pattern 0 (wrong initial recognition-wrong

recommendation-wrong final recognition) versus the magnitude of pattern 2 (wrong

initial recognition-correct recommendation-wrong final recognition), and the magnitude

of pattern 5 (correct initial recognition-wrong recommendation-correct final recognition)
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versus the magnitude of pattern 7 (correct initial recognition-correct

recommendation-correct final recognition). The only difference between each pair is the

correctness of the automation’s recommendation. Results reveal higher magnitude of

trust decrements for wrong recommendations in pattern 0 compared to correct

recommendations in pattern 2 (t(1, 65) = 5.34, p < 0.001, Cohen’s d = 0.66), and for

wrong recommendations in pattern 5 compared to correct recommendations in pattern

7 (t(1, 60) = 4.81, p < 0.001, Cohen’s d = 0.62) (Figure 10)
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Figure 10 . Comparing the magnitude of trust adjustment between (a) patterns 0 and

2 and between (b) patterns 5 and 7 (∗ ∗ ∗p < .001).

H2a hypothesizes that an automation success would lead to a larger trust

increment if the final outcome is good. We compare pattern 2 (wrong initial recognition

- correct recommendation - wrong final recognition) versus pattern 3 (wrong initial

recognition - correct recommendation - correct final recognition), where the only

difference is the final recognition performance. The t-test shows that the difference is

not significant (t(1, 67) = −1.08, p = .29) (Figure 11(a)).

H2b hypothesizes that an automation failure would lead to a larger trust

decrement if the final outcome is undesirable. The comparison between pattern 4

(correct initial recognition - wrong recommendation - wrong final recognition) and

pattern 5 (correct initial recognition - wrong recommendation - correct final

recognition) reveals a significantly larger decrement for pattern 4 (wrong final

recognition) (t(1, 52) = −2.63, p = .01, Cohen’s d = 0.36) (Figure 11(b)).
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Figure 11 . (a) Comparing trust increment between patterns 2 and 3. (b) Comparing

trust decrement between patterns 4 and 5 (∗∗p < .01).

We hypothesize in H3a that an automation success would produce a greater trust

increment if the human operator fails the task. We compare pattern 3 (wrong initial

recognition - correct recommendation - correct final recognition) versus pattern 7

(correct initial recognition - correct recommendation - correct final recognition). In the

two patterns, the automated aid provides correct recommendations, and the only

difference is the human operators’ initial recognition. A paired-samples t-test reveals a

significantly larger trust increment in pattern 3 compared to pattern 7

(t(1, 69) = 4.40, p < 0.001, Cohen’s d = 0.53) (Figure 12(a)).

In H3b, we hypothesize that an automation failure would lead to a greater trust

decrement if the human operator is capable of performing the task. We compare

pattern 0 (wrong initial recognition - wrong recommendation - wrong final recognition)

versus pattern 4 (correct initial recognition - wrong recommendation - wrong final

recognition). The analysis show a marginally significant difference between the two

patterns (t(1, 57) = 1.83, p = .07, Cohen’s d = 0.24) (Figure 12(b)).
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Figure 12 . (a) Comparing trust increment between patterns 3 and 7 (∗ ∗ ∗p < .001).

(b) Comparing trust decrement between patterns 0 and 4 (†p < .1 ).

After examining the moment-to-moment trust adjustments, we further explore

how the accumulation of moment-to-moment adjustments contribute to the

participants’ trust at the end of the experiment. Table 2 summarizes participants’ trust

propensity, trust after the 40th trial (i.e., after the entire interaction experience with

automation), and post-experiment trust at each automation reliability level.

TABLE 2: Mean and standard deviation values of participants’ trust propensity,

Trust(40), and post-experiment trust

Reliability (%) Trust Propensity
Trust after 40th Trial

Trust(40)

Post-experiment Trust

Scale of Jian et al. (n.d.)

Post-experiment Trust

Scale of Muir and Moray (1996)

70 72.6 (14.8) 56.6 (25.7) 50.6 (18.0) 53.3 (16.9)

80 69.4 (10.4) 73.8 (17.0) 54.1 (12.1) 55.9 (12.4)

90 69.4 (14.4) 81.6 (15.0) 64.9 (16.7) 72.1 (13.5)

We construct four linear regression models to explore how automation reliability

affect trust propensity, and how reliability and trust propensity jointly influence

participants’ trust after they interact with the automation. The results show that

automation reliability is not a significant predictor of trust propensity

(F (1, 73) = .73, p = .40). Both automation reliability (β = 1.32, t(72) = 4.91, p < .001)

and trust propensity (β = 0.45, t(72) = 2.72, p < .01) significantly predict participants’

trust after the 40th trial. Automation reliability (β = 0.77, t(72) = 3.60, p < .001) and
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trust propensity (β = 0.37, t(72) = 2.74, p < .01) significantly predict participants’

post-experiment trust measured by the scale of Jian et al. (n.d.). Automation reliability

(β = 1.00, t(72) = 5.10, p < .001) and trust propensity (β = 0.39, t(72) = 3.16, p < .01)

significantly predict participants’ post-experiment trust measured by the scale of Muir

and Moray (1996).

4. DISCUSSION

Consistent with previous work of Lee and Moray (1992), Moray et al. (2000) and

Yang et al. (2017, 2016), we also find that trust in automation increases as a result of

automation successes and decreases as a result of automation failures (supporting

H1a). Our finding that the magnitude of trust decrements is larger than that of trust

increments (supporting H1b) is in line with previous studies in which the number of

automation successes significantly exceeded that of automation failures (Lee & Moray,

1992; Manzey et al., 2012). In Lee and Moray (1992), participants experienced two

automation failures among 50 experimental trials. In Manzey et al. (2012), participants

had one or two automation failure(s) among 20 automation successes. Both studies

consistently showed that the strength of automation failures on trust adjustment is

considerably stronger than automation successes. Our study show that the stronger

effect of automation failures still holds when there is a considerable number of

automation failures (i.e., 12 failures among 40 trials).

With respect to the outcome bias, we find supporting evidence for H2b that an

automation failure leads to a larger trust decrement if the final outcome (i.e., the final

recognition performance) is undesirable. In line with previous research in medical,

gambling and business decisions (Baron & Hershey, 1988; Brownback & Kuhn, 2019;

Gino et al., 2009; Sezer et al., 2016), human operators demonstrate outcome biases in

trust adjustments when the automation is wrong: an automation error is forgiven to

some extent if the error does not lead to detrimental outcomes. This finding is

disconcerting because the final outcome of a task can be due to a combination of

factors. The automation influences but do not entirely determine the outcome of the
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task. This finding should be explored further in follow-up experiments with more

cognitively demanding tasks, such as medical decision-making, as the experimental task

used in the present study is fairly simple.

However, results of the present study does not support H2a that a correct

recommendation would lead to a larger trust increment if the final outcome (i.e., the

final recognition performance) is good. This non-significant result could have been due

to the self-serving bias (Duval & Silvia, 2002; Miller & Ross, 1975; Weiner, 1985). The

self-serving bias is any cognitive or perceptual process that is distorted by the need to

maintain and enhance self-esteem. It is particularly evident when individuals attribute

the cause of outcomes. When explaining positive outcomes, their attributions

emphasize the causal impact of internal, dispositional causes, but when identifying the

causes of negative events, they stress external, situational factors. If we take a close

look at the comparisons between pattern 2 (wrong initial recognition - correct

recommendation - wrong final recognition) and pattern 3 (wrong initial recognition -

correct recommendation - correct final recognition), the contrast between the two

patterns suggest that the final correct outcome in Pattern 3 is largely due to the correct

automation recommendation, and the final wrong outcome in Pattern 2 is largely due to

the human operators’ wrong initial recognition. According to the self-serving bias, the

human operator would likely distort the trust adjustment process to maintain

self-esteem, by appreciating the correct recommendation less than they should have

done in Pattern 3.

Results of the present study also provide support for H3a that an automation

success produces a greater trust increment if the human operator fails the task and

marginal support for H3b that an automation failure produces a greater trust

decrement if the human operator succeeds the task. The experimental paradigm used in

the present study allows direct assessment of human operators’ ability (i.e., manual

performance without the help of automation aids). Instead of assessing the participants’

ability directly, prior literature often evaluated participants’ self-confidence in

performing a task manually and considered operators’ self-confidence and their trust in
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automation two independent constructs (i.e., Two constructs have no association). For

example, de Vries, Midden, and Bouwhuis (2003) and Lee and Moray (1994) found that

trust and self-confidence predict participants’ automation dependence behaviors –

human operators use automation when trust exceeds self-confidence and use manual

control when self-confidence exceeds trust. Our findings reveal that human operators’

ability and their trust adjustment are not independent of each other. Because of the

strong association between self-confidence and ability (Wixted & Wells, 2017), people’s

self-confidence and trust are probably not independent either, and therefore should not

be viewed as independent constructs.

Viewing the results on H1–H3 holistically, our findings suggest that human

operators are rational only to a certain extent when adjusting trust in automation.

They are rational in the sense that they increase trust in automation after automation

successes and decrease trust upon automation failures. On the contrary, they are

irrational in the sense that their trust adjustments are significantly influenced by

decision-making heuristics/biases.

Along with the primary hypotheses, we are interested in exploring any potential

impact of the overall automation reliability on trust adjustment. We find no significant

effect on any of the one-way or pairwise t-tests (i.e., automation reliability does not

significantly influence trust adjustment). On the contrary, we find that automation

reliability significantly predicts the (snapshot) trust in automation measured at the end

of an experiment, which is in line with previous research (de Visser & Parasuraman,

2011; Du et al., 2020; Wickens & Dixon, 2007). Our findings suggest that effect of

automation reliability on the (snapshot) trust at the end of an experiment is due to the

accumulation of the moment-to-moment trust adjustments over time. A less reliable

automation produces more automation failures, leading to a lower (snapshot) trust at

the end.
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5. CONCLUSION

In contrast to the snapshot view of trust, this study considers trust a dynamic

variable and examines how human operators adjust their trust in automation as a result

of moment-to-moment interaction with automation. Understanding the trust

adjustment process enables accurate prediction of an operator’s moment-to-moment

trust in automation, which can be used to design trust-aware adaptive automation. To

the best of our knowledge, it is the first to show that operators’ trust adjustments are

subject to decision-making heuristics/biases. It also provides further empirical evidence

that automation failures have a greater impact on trust adjustments than automation

successes.

Moreover, we present a novel experimental paradigm that can be used to examine

human operators’ trust dynamics. The paradigm allows us to track participant’s

moment-to-moment trust over time. In addition, it distinguishes participants’ ability to

perform a task manually, the automated decision aid’s performance, and the final

performance. By eliciting human operators’ answers pre- and post-automation

recommendation, researchers could take a deep dive into how trust dynamics can be

influenced by the interplay between participants’ performance without the aid of

automation, automation performance, and performance with the aid of automation.

We note the following limitations. Similar to a few previous studies (Manzey et

al., 2012; Yang et al., 2017), we used a one-item scale. It is possible, however, that one

item will fail to capture all of the sub dimensions of trust compared to the use of

multi-dimension scales such as the 12-item trust scale in Jian et al. (n.d.). Further

research should investigate the possibility of a succinct multi-scale trust scale that can

be used in querying trust over repeated interactions with automation. Second, the

occurrence of patterns 1 and 6 was excluded from data analysis as their occurrences

were rare. Further research could be conducted to purposely induce the occurrences of

these two patterns.



26

Key points

• Human operators adjust their trust in automation due to moment-to-moment

interaction with automation. The trust adjustment process is moderated by

decision-making heuristics/biases including outcome bias and contrast effect.

• An automation failure is forgiven to a certain extent if the failure does not harm

the final task outcome.

• An automation success engenders a larger trust increment if the human operator

fails the task by him-/her-self. An automation failure leads to a marginally larger

trust decrement if the human operator succeed the task.

• The stronger effect of automation failures on trust adjustment still holds when the

occurrence of automation failures is up to 30% (i.e., Automation reliability is

70%).
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Appendix A

Trust Propensity Survey (adapted from Merritt, Heimbaugh, LaChapell & Deborah, 2013)

1 I usually trust machines/automated technologies until there is a reason not to.

2 For the most part, I distrust machines/automated technologies.

3 In general, I would rely on an automated machine/technology to assist me.

4 My tendency to trust machines/automated technologies is high.

5 It is easy for me to trust machines/automated technologies to do their job.

6 I am likely to trust a machine/automated technology even when I have little knowledge about it.
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Appendix B

Post-experiment Trust Survey (adopted from Jian, Bisantz & Drury, 2000)

1 The automated decision aid is deceptive.

2 The automated decision aid behaves in an underhanded manner.

3 I am suspicious of the automated decision aid’s intents, actions, or outputs.

4 I am wary of the automated decision aid.

5 The automated decision aid’s actions will have a harmful or injurious outcome.

6 I am confident in the automated decision aid.

7 he automated decision aid provides security.

8 The automated decision aid has integrity.

9 The automated decision aid is dependable.

10 The automated decision aid is reliable.

11 I can trust the automated decision aid.

12 I am familiar with the automated decision aid.
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Appendix C

Post-experiment Trust Survey (adopted from Muir and Moray, 1996)

1 To what extent does the automated decision aid perform its function properly?

2 To what extent can the automated decision aid’s behavior be predicted from moment to moment?

3 To what extent can you count on the automated decision aid to do its job?

4 To what extent does the automated decision aid perform the task it was designed to do in the system?

5 To what extent does the automated decision aid respond similarly to similar circumstances at different points in time?

6 My degree of faith that the automated decision aid will be able to cope with other system states in the future:

7 My degree of trust in the automated decision aid to respond accurately:

8 My overall degree of trust in the automated decision aid:

Note: One item,“My degree of trust in the automated decision aid’s display” from the

original survey was not included.
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