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Abstract

A parameterized mathematical model for Lithium-ion battery cell is
presented in this paper for performance analysis with a particular focus on
battery discharge behavior and electrochemical impedance spectroscopy
profile. The model utilizes various physical properties as input and
consists of two major sub-models in a complementary manner. The
first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to
simulate electrochemical, thermodynamic, and transport phenomena within
the battery. The second sub-model is a calibrated solid-electrolyte interphase
(SEI) layer formation model. This model emphasizes the electrical dynamic
response in terms of the reaction process, layer growth, and conductance
change. The equivalent circuit component values are derived from the
outputs of both sub-models, reflecting the battery’s changing physical
parameters. The simulated discharge curves and electrochemical impedance
spectroscopy (EIS) profiles are then provided with a comparison against
empirical results for validation, which exhibit good agreement. This modeling
methodology aims to bridge the gap between the physical model and the
equivalent circuit model (ECM), enabling more accurate battery performance
predictions and operation status tracking.
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1. Introduction

The Li-ion battery (LIB) behavioral model can be constructed under
various approaches such as learning-based methods [1, 2, 3, 4, 5], data-driven
analysis [6, 7, 8], equivalent circuit model (ECM) characterization [9,
10], and via multiphysics platforms [11, 12, 13]. Despite these options,
mathematical and parameterized physics models are considered in this
paper, due to their inherent advantages such as more flexible, intuitive,
and versatile in both implementation and adaptation. This model adapts
the Doyle-Fuller-Newman (DFN) framework for cylindrical LIBs, specifically
targeting 18650 type. It is to better match these batteries’ distinct
characteristics, focusing on their electrical and electrochemical features.
The model provides steady-state performance predictions for batteries
at acceptance, using ECM population and electrochemical impedance
spectroscopy (EIS) for validation against public-domain battery data.
Subsequent sections will detail the model’s predictive capabilities for
battery behavior at acceptance. However, due to its focus on steady-state
behavior, the model is not equipped with aging tracking and analysis
ability. Furthermore, discussions on enhancing battery life and performance
primarily belong to the realms of metallurgical and material science research
and are not addressed within the scope of this paper.

The DFN model is a generalized mathematical modeling approach
for LIBs, focusing on predicting charging and discharge behaviors under
galvanostatic conditions [14]. Doyle ef al. presented the charge transport
from the lithium anode to the composite cathode through a polymer
membrane as a one-dimensional process, involving simultaneous lithium
ion (Li*) diffusion within the active materials! and electrolyte, charge
transfer at the electrode/electrolyte interphase, and Li+ migration within
the electrolyte. This framework, since first introduced in 1993, has
gained widespread acceptance and has been extensively modified for
complex LIB modeling. Numerous research groups have contributed
various revisions and enhancements to the original DFN framework,
enriching its applicability and accuracy in advanced LIB studies. In [15], a
DFN-based LIB model is developed emphasizing battery charge and

'The active material in a battery is the material that is electrochemically active. This
is the material that participates in the chemical reactions that store and release energy in
the battery.



discharge responses from simulation. The DFN model in [15] is reconfigured
into a pseudo-two-dimensional (P2D) model in which solid particles are
treated as 2D circles. This approach allows for a detailed examination
of Li* diffusion and changes in particle concentration during charge and
discharge processes at a micro-scale level. The P2D model demonstrates
a reliable voltage profile and exhibits a qualified capability for parameter
identification. Another noteworthy modeling approach is Python Battery
Mathematical Modelling [16]. It is an open-source platform for the simulation
and analysis of various battery types. With the sheer content of numerical
methods and solvers for tackling the algebraic and differential equations
associated with battery models, it facilitates comparisons among different
modeling approaches, enabling researchers to investigate battery performance
such as aging, charge/discharge curves, and thermal response. In [17], Wang
et al. emphasized the flexibility of DFN model in capturing key microscopic
mechanisms of battery operation, then introduced the LIB database that
aggregates numerous parameters necessary for the DFN model. In [18], the
integration of the DFN model with machine learning (ML) has been presented
by Tu et al. to track and predict charge rates Crate with certain accuracy. The
DFN framework provides dynamic and state information from the physical
model, which has fed into the ML model for behavior prediction. Last but not
least, in [19], Lagnoni et al. proposed an electrolyte transport model within
the DFN framework, comparing directly against the generic Nernst-Planck
model. The proposed model accounts for the electrolyte behavior, especially
on its implications on thermal effects. This model offered more details in
LIB operation, which is a strong addition to the DFN framework.

This paper introduces a physics-based mathematical model specifically
designed for analyzing the steady-state response of 18650 LIB at acceptance.
Developed from a variant of the DFN framework and incorporating a range
of physical parameters, the model has been implemented exclusively in
MATLAB®. It enables the simulation of the battery’s discharge process
and provides a detailed analysis of its EIS characteristics [14, 20, 21].

In terms of performance analysis, a simplified representation of the
solid-electrolyte interphase (SEI) layer is incorporated into the model to
capture the formation process [22]. As part of the output, physical and
electrochemical changes during simulation are then used to populate the
ECM component values. Note that these component values are evaluated
based on progressive LIB physical parameters and EIS characterization. For
the steady-state model, the initial formation of SEI layer on electrodes



is carefully modeled, this is to address the Li* loss in the electrolyte.
However, this paper does not cover the evolution of SEI layers as well as
the corresponding irreversible chemical changes within a LIB. In turn, the
SEI layer growth and evolution is recognized as the immediate next step for
the authors.

The main contribution of this paper includes:

» A physics-based mathematical model, describing LIB steady-state
behavior, is presented. The model intakes exhaustive initial battery
parameters to build a 2D DFN model. The model is capable of
including specific battery details and is flexible in adjusting parameters
based on different battery features.

» The presented model exhibits the capability of predicting discharge
curves and characterizing EIS profiles under varying charge rates and
temperatures. The results obtained from the model are validated using
NASA empirical data, as is shown in Section 4.

In the remainder of this paper, Section 2 provides a description of the
LIB mathematical model and provides a comprehensive list of relevant
battery parameters used in the model. Section 3 presents the model
simulation results, illustrating battery behavior under various charge rates
and temperatures. Section 4 explains the component value estimation process
for the ECM, followed by the characterization of an EIS based on the ECM.
Last but not least, Section 5 offers additional discussion on the presented
model and concludes the paper.

2. Methods

A general implementation diagram of the presented physics-based LIB
mathematical model is shown in Figure 1, which consists of four main stages:

« Stage 1: Prepare physical parameter values of LIB, including geometric,
material, electrochemical, transport, ezc.. Data can be obtained from
public-domain datasets [44, 17], datasheets of specific tests [45, 46], and
publications [47].

« Stage 2: Develop the basic battery model using 2D-DFN framework per
the geometry and chemistry features for 18650 battery, for capturing
the electrochemical processes during operation [15, 21, 48].
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Figure 1: Comprehensive diagram of the LIB parameterized mathematical model
implementation.

- Stage 3: Build the SEI formation model based on the progressive
variables from DFN framework. Such variables include but are not
limited to electrolyte diffusivity Dx, ionic conductivity ox, and ionic
current density J. The subscript x in this stage represents variables
associated with either the positive (p) or negative (n) electrode.

» Stage 4: Simulate model for 1) battery discharge behavior under
different Crate; 2) EIS profile characterization by sweeping ambient
temperature T; and 3) populate ECM component values. The
simulation results are then validated by comparing against NASA test
data.

Note that the model simulation employs MATLAB Particle Swarm
Optimization (PSO) toolbox. PSO is widely used in battery modeling
for various optimization tasks, including parameter estimation, model
calibration, and battery design optimization. The formation of the SEI model
entails certain foundational assumptions that will be explained in Section 2.2.

There are mainly three sub-models that are also described in Figure 1 and
discussed in the next section: (1) DFN architecture, in Section 2.1, (2) SEI
layer formation, in Section 2.2, and (3) ECM elements population based on
EIS, in Section 4. The model output includes discharge curves, EIS profiles,
and populated circuit element values. A comprehensive list of parameters and



Table 1: List of math symbols and descriptions of parameters and variables that appeared
in the modeling process (part 1 of 2).

Class Symbol \ Description \ Value Unit
Geometry A electrode surface area [23] m2
As active material surface area [23] m2
dx electrode thickness [24, 25] m
lx unwrapped electrode length [26] m
r electrode radius [24] m
Material EDL double-layer rel. dielec. permit. [27] -
p resistivity of the material [28] Q'm
dpL double layer thickness [29,30] m
Dx diffusion coefficient [25] m2/s
l conductor length [25,31] m
Electro- Nx overpotential (5)6) V
chemistry Ttot total overpotential n Vv
Ox ionic conductivity [28] S/m
Pe electric potential [23] V
ixo exchange current density (8)(9) A/m2
ix interphasal current density (10)(11) A/m2
current density distribution (4 A
ionic current density (3) A/m2
kx reaction rate constant [25] m25/molos/s
Larea per unit-area inductance [32,33,34] H/m?2
Ze charge number [35] -
Transport Cx Li+ concentration (1)(2) mol/ms
Cymax | Maximum concentration [36] mol/ms3

variables used in the model and their corresponding mathematical symbols
are provided in Table 1 (2 parts total). The corresponding references or
equations in this paper that provide related information are listed in the
“Value” column of the table.

2.1. DFN Architecture

The presented DFN model architecture is a 2D representation, inspired
and adapted by [15, 19, 49, 50]. The 2D representation incorporates the
geometric properties of a jelly-roll battery cell, which are vital for capturing
the complex behaviors of batteries under diverse operational conditions.
The necessary battery parameters and initial conditional variables are
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Figure 2: DFN architecture flowchart.



Table 1: List of math symbols and descriptions of parameters and variables that appeared
in the modeling process (part 2 of 2).

Class Symbol ‘ Description ‘ Value Unit
SEI Layer dsgr thickness (12)(17)(18) m
dsgrini | initial thickness [37] m
SEI, growth rate coefficient [38] m/s
SEIL, | J-dependent growth rate [38] ms3/A/s
SElex | permittivity [39] -
SEIpx | resistivity [30] Q-m
SElsx | conductivity [40] S/m
ECM Rohmic | Ohmic resistance [41] (fit) Q
Ls series inductance [32,33,34] H
RsEr SEI layer resistance 13)(14) Q
CsEr SEI layer capacitance (15)(16) F
Ret charge transfer resistance [42] (fit) Q
CpL double layer capacitance [42] (fit) F
Zw Warburg element (21) L
Wo Warburg coefficient (22) Q/ s
Constant €0 vacuum permittivity 8854 x 107" F/m
Br Briiggeman coefficient [43] -
F Faraday constant 96485 C/mol
R ideal gas constant 8.314 J/K/mol
T test ambient temperature (sweep) °C
Subscript x an/cath | anode / cathode electrode
olr oxidized- / reduced-reaction
p/n positive / negative
s/i solid / electrolyte

acquired from [17, 47]. The top-level flowchart of the presented DFN sub-
model is shown in Figure 2. This model considers the impact of changes
in SEI layer thickness on reaction rate and conductivity. These factors
subsequently influence the estimation of diffusion through simulation,
enhancing the model’s predictive capabilities. Consequentially, the presented
model incorporates five key governing theories:

« Fick’s second law, in Equations (1)(2);
» Nernst-Planck equation, in Equation (3);
e Ohm’s law, in Equations (5)(6);
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 Butler-Volmer equation, in Equations (7)—(11);
 Charge conservation and energy conservation.

Appropriate concatenation of these theories is essential for a reasonable
battery performance simulation. Firstly, Fick’s second law accounts for
the solid and electrolyte phase diffusion profiles [14, 51], the concentration
gradient drives the diffusion of ions from regions of higher concentration
to regions of lower concentration, eventually leading to a non-homogeneous
distribution of Li+’s across the solid and electrolyte phases. In the context of
the DFN model of a cylindrical LIB, it can be expressed separately for the
solid and electrolyte phases as given by (1) and (2), respectively.

dcs Dy 0/, acs)
s _Is 2 _ 1
ot 1?2 Or (r or W
dc;
a_tl = Di . VZCi (2)

where t is time, r is the radius of active material particles in the electrodes,
cx and Dy are the concentration and diffusivity, where x € {s, i} for solid or
electrolyte phases, and V3¢ is the Laplacian operator, which represents the
spatial gradient of the concentration at electrolyte [52, 19]. The integration
of both reduced and oxidized (redox) processes within the battery is also
incorporated in (1) and (2). These processes play a crucial role in modeling
the changing concentration and diffusion of Li+.

Secondly, the Nernst-Planck equation in (3) takes in the ionic conductivity
as well as the electrolyte phase concentration profile, which is derived from
the output of Fick’s second law for migration and diffusion of Li+ in the
electrolyte [53], where z. is the charge number of the electroactive species [35], F
isthe Faraday constant, R isthe ideal gas constant, T isthe temperature, and
V ¢e is the gradient of the electric potential. The output J is the ionic
current density. The negative sign indicates that the direction of the current
flow (e~) is opposite to that of Li+.

DiZeT

2 Dy — 22l
] l Cl RT

ciVo, (3)

Immediate next to the Nernst-Planck equation is an intermediate process
described by Faraday’s law of electrolysis, given in (4). This law establishes
that the current I between electrodes is proportional to the change in the
ionic current density J. Although the current remains constant throughout



the battery, variations in ionic conductivity within the electrolyte o: and the
solid phase o5 lead to differences in overpotentials within phases, denoted
by 7s for the solid phase and 7: for the electrolyte. These overpotentials are
further defined by Ohm’s law, as detailed in equations (5) and (6), with A
representing the electrode surface area.

AJ

I - —T (4)
I

ns = Ao, (5)
i

N = 4o, (6)

The total overpotential of both phases is required to implement the
Butler-Volmer equation for exchange current density ixo and interphasal
current density ix [13]. This equation describes the relationship between
the voltage difference across an electrode and the electrical current for a
simple, uni-molecular redox reaction [54]. Equations (10) and (11) are
used to calculate interphasal current density at solid phase and electrolyte.
An abridged step-by-step iteration of intermediate variables are provided
in (7)—(9), where kx is the reaction rate constant, cxmax is defined as the
maximum concentration, x € {s, i}.

Mot = Ns — M (7)

. — . F
lso = ks ' Csmax(l - Cs) - sinh (ZRT ntot> (8)
. — F
Lio = ki ' Cimax(l - Ci) - sinh (ZRT ntot> (9)

ls = isO Y CsmaxCs (10)
i; £ i * y/CimaxCi (11)

Last, the laws of charge and energy conservation are incorporated
to ensure a zero-sum transport of charge and a balance in energy
conversion within the battery model. This is achieved during simulation
by cross-checking overpotential and ionic conductivity at each time step,
thus maintaining consistency with the fundamental principles of physics.
These two parameters directly influence the efficiency of charge transport
and energy conversion [55, 56, 57]. The outputs of the presented DFN model
are then used in setting up SEI layer model in Section 2.2.
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Figure 3: SEI layer formation model flowchart, which mainly consists of two sub-parts:
(a) SEI intermediate variables, and (b) SEI formation model for state space equations
construction.

2.2. SEI Layer Formation

The SEI formation process is often viewed as a side effect of battery
operation. From a modeling standpoint, the DFN model and SEI sub-models
are integrated and function in a complementary manner. The SEI layer
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formation model is built upon the DFN framework but is not merely an
extension of the latter. The purpose behind developing this coupled model is
to offer a detailed insight into the battery’s operational processes. However,
due to the static nature of the model, it focuses on capturing the initial
formation of the SEI layer, without exploring the underlying factors that
lead to battery degradation and capacity loss. The formation process can be
streamlined in terms of essential features of the SEI, by using three common
assumptions:

(1) The SEI layer conductivity and electrolyte diffusivity are assumed to be
constant, this is justified in [14, 38, 58, 591, allowing a straightforward
calculation for fast convergence on battery operation.

(2) The SEI layer accumulation is modeled per layer over the electrode
surface despite the particle agglomeration effect [58, 60, 61].

(3) Under regular test conditions, the SEI layer is assumed to grow
uniformly at the entire contacting surface with respect to time [59, 62].

The overall flowchart of the SEI model is shown in Figure 3, where in
(a), the model calculates the necessary SEI intermediate variables. The
SEI layer growth-rate coefficient SElIa indicates the rate at which the
SEI forms on the electrode surface, which is derived from the kinetics
of electrochemical reactions and the diffusion of reactants, depending on
overpotentials, Li* concentration, and reaction rates at both the solid and
electrolyte phases [38]. Meanwhile, current density-dependent growth
rate SEIy explains how SEI growth varies with current density, which is
calculated by modeling the impact of current density on reaction rates and
SEI formation [38].

Furthermore, the permittivity SEle is calculated to understand the
dielectric properties of the SEI, indicating the SEI layer’s ability to store
electrical energy within an electric field [39]. The conductivity SElo
measures the easiness of ionic movement through the SEI layer, impacting
the battery’s overall ionic transport efficiency [40]. Similarly, resistivity SEI,
quantifies the SEI layer’s resistance to ionic movement, which is crucial for
understanding the SEI’s impact on battery internal resistance [39].

Based on the works presented in [38, 39, 40], the calculations of these
intermediate variables are validated through comparisons with experimental
measurements, including electrochemical impedance spectroscopy and direct
SEI property measurements, this is to ensure accurate modeling of the SEI
layer physical and chemical behavior.
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The intermediate variables are then used in the SEI formation model for
constructing the state space equations to calculate SEI layer features, namely
thickness, resistance, and capacitance (SEI-dR(), this forms a state vector
denoted as [d-sE1p, d*SE1n R-SELp, R*SELw C*sELp, C*sEIn] ', respectively.

The SEI layer grows on the surface of the anode due to the effect
of the Li+ loss during the reduced reaction at SEI. The model shown
in Figure3(b) discretizes the positive and negative electrode in terms of
operation time and layer depth, then calculates the layer growth from the
initial thickness, growth rate, and position. The discretization process based
on the assumptions, the change in thickness Adsgr can be calculated as —

dx
Adggi(x, t) = dggpini + T
where x and t are the discretized electrode position and cycling time;
dseLini is the initial thickness [37], and SEI, is the SEI layer growth
rate, which is an intrinsic property based on the membrane material
and electrolyte composition, usually determined empirically or fit from
experimental observations [38]. The battery under test in this model
is a lithium-nickel-manganese-cobalt-oxide (LiNixMnyCo:-x-yO2 or NMC)
battery, where SEI, can vary greatly but typically falls within 5—20 nm/cycle
[63]. On the other hand, for lithium-iron-phosphate (LiFePO, or LFP)
batteries, SEI, was observed to be in the range of 1—5 nm/cycle under certain
conditions [64].

Note that the “discretization” process in this context involves breaking
down the gradual evolution of the SEI layer growth on the electrode surface
into discrete steps. While each step represents a specific moment in time
and a specific layer thickness. By doing this, the SEI layer formation can be
analyzed step by step, which helps understanding the effect of the SEI layer
and its impact on the battery’s capacity fade.

The functions computing the SEI-dRC are represented in (13)—(18), where
Rserdise and Cserdise are the discretized SEI resistance and capacitance,
respectively; ox is the electrode conductivity, the SEIx are several inherent
properties of the layer, as provided in Table 1. The subscript x here represents
variables associated with either the positive p or negative n electrode.

- SEI, (12)
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The thickness of the SEI layer dse1 is directly related to the change in SEI
resistance, Li* concentration cs, current density-dependent SEI growth rate
SEl, and current density is. Comprehensive insights into the electrochemical
reactions driving SEI layer formation are detailed in previous studies [38, 65].
The SEI resistor is treated physically as the increment in resistance to the flow
of Li* between the electrode and electrolyte. It subsequently influences the
battery’s charge transfer efficiency. Note that an increase in SEI resistance
yields degraded battery performance, especially in terms of reduced capacity,
slower charge rates, and accelerated aging [65, 66]. On the other hand, when
calculating SEI capacitance, it is important to consider the permittivity and
thickness of the SEI layer [39], as is shown in (15) and (16), describing an
interconnected relationship between both electrodes’ behaviors. The results
are then adjusted by incorporating the Briiggeman coefficient B [43].

The overall SEI output is the discretized SEI-dRC with respect to time.
At the current state, the model is equipped with prediction ability for battery
discharge quantification.
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At this point, the two important subparts of the model have been
introduced. Note that the model is specifically parameterized based on the
intrinsic properties of the battery, with the only geometric constraint being
that it must be a cylindrical jelly-roll design. Consequentially, collecting
the necessary data for the specific battery becomes a challenging task.
However, the parameterization setup ensures that, with carefully selected
parameter inputs, the model is scalable and can be applied to any cylindrical
jelly-roll battery. In the upcoming sections, it will be demonstrated that the
comprehensive model is capable of accurately tracking discharge behavior and
characterizing the EIS profile of a specific battery under various conditions.

3. Model Simulation & Validation

The battery selected for the modeling and simulation is the LG MJ1
INR-18650, with its specifications listed in Table 2 and referenced in [23,
24]. The LG MJ1 battery, because of its high energy density and reliable
performance, has become a frequently used research subject. The well-
documented studies and operation records are publicly accessible, and
datasets from various test purposes are readily obtainable. These resources
are essential for validating and benchmarking the model [47, 67, 68, 69].

The discharge behaviors of a fresh battery under various charge rates are
simulated in MATLAB version 2022b. The processor and operating system
used are 4 GHz Quad-Core Intel Core i7, and MacOS Monterey version
12.6.2. The installed memory is 32 GB 1867 MHz DDR3. Figure 4 shows
the simulation result for when the charge rate Crate is swept from -1C to -8C
(negative sign indicates discharge). The first observation is that, the voltage
change over time shows a quasi-linear response from the very beginning of
the discharge process, this further corresponds to a constant state-of-charge
(SOC) decrement. The slope of the curve is more sensitive to the Crate, where
higher discharge rate leads to a steeper voltage drop, whiis is as expected.
When Crate = —2C, the simulation result is in good agreement with the
empirical result for the same battery at acceptance reported by Iannello ez
al. [68] and Krause et al. [69]. The disagreement in the slope changes
between time to and t: could be due to variations in the internal resistance,
or discrepancies in the environmental conditions during testing.

Another observation is the rapid voltage drop occurring at the “inflection
point,” as labeled in Figure 4, indicating the voltage cut-off. During battery
discharge, Li*’s move from the anode to the cathode through the electrolyte.
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Table 2: LG MIJ1 battery specifications.

Parameter Location \ Value Unit Reference
size INR-18650 - [23]
cathode NMC-811 - [23]
anode silicon graphite - [23]
membrane polyethylene — [24]
nom. capacity 3.50 Ah [23]
nom. voltage 3.635 V [23]
disch. cutoff volt. 250 V [24]
charge voltage 4.2+ 005 V [23]
max disch. curr. 10 A [24]
Briiggeman coeff. 1.5 - [43]
conductivity cathode 1.58 S/m [25]
anode 1.04 S/m [25]
membrane 0.344 S/m [28]
electrolyte 1.1 S/m [25]
diffusivity cathode 5.35X1077 m2/s [25]
anode 5.37X10°7 m2/s [25]
membrane 1.68X1077 m2/s [28]
electrolyte 5.34X1071° m2/s [25]
reaction rate negative 6.48xX10-7 A/mz2 [25]
positive 3.59X10°% A/m?2 [25]
Li* concentration negative 33429 mol/m3 [36]
positive 63104 mol/m3 [36]

A higher discharge rate exacerbates the collision of Li+’s with the cathode’s
crystal lattice structure, causing the material to undergo distortions or
rearrangements [70, 71, 8]. This makes the cathode reach its capacity limit
faster. At the inflection point, the cathode reaches its capacity limit and can
no longer store more Li+’s, resulting in a rapid voltage drop. This explains
why fast charging/discharging can shorten battery life, as the structural
stress on the cathode accelerates degradation.

Note that the voltage response of NMC batteries during discharge only
has one inflection point occurring at low SOC. In contrast, LFP batteries
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Figure 4: Discharge behaviors of a fresh battery under various charge rates, where the
case Crate = —2 is compared against the results in [68, 69].

have a more distinct voltage plateau due to the two-phase reaction in the
LFP cathode material [12, 72], thus comparatively the slope of the linear
region in LFP batteries is less sensitive to Crate [72, 73].

4. Experiments

After repeated simulation and characterization, the EIS profile for LG
MJ1 battery is presented in Figure 5, in the form of the Nyquist plots under
variant test ambient temperatures. The x- and y-axes denote the real- and
negative-imaginary-part of impedance, respectively.

To begin with, it is observed that the size of EIS arches becomes larger
when the temperature changes from 50 to 5°C, presented by the increment at
both real- and imaginary-impedance values. This observation is consistent

with previous works and results in the literature [22, 74, 75], since the Li+

diffusion becomes slower at lower temperature values. As per Brownian
motion, the reduced kinetic energy of molecules slows down the reactions,

therefore leading to increased impedance.
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Figure 5: The sweep of EIS of LG MJ1 battery at acceptance, under different test ambient
temperatures. The result is compared against the experimental characterization of the
same battery. Experimental results © NASA 2019 [68].

Moreover, when T = 20°C, the model shows a good match against NASA
EIS qualification [68, 69]. The comparison between simulation and empirical
result is zoomed-in at the top-left corner in Figure 5. However, a 5mQ real
impedance offset between the simulated and experimental results is observed.
Upon close inspection, this could reasonably be attributed to a few factors
such as:

» The simplifications in the SEI model, though necessary, can yield slight
differences between the model result and the experimentally measured
data.

« Discrepancies could arise from slight differences in the test conditions,
under which the simulation is conducted, such as temperature or
current rate, when compared to the conditions of NASA’s experiments.

The EIS curve provides valuable insights into the electrical properties
of the battery under study. One insight is that it can be used to populate
the circuit elements within a predefined ECM setup [76]. In Figure 6, a
detailed layout of the ECM and a flowchart illustrating the calculation for
specific circuit elements are also provided [77]. The ECM comprises four
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Figure 6: A pre-determined ECM structre of a typical Li-ion battery

primary circuit segments connected in series: 1) a series resistor-inductor
(RL) pair, 2) a high-frequency (HF) parallel resistor-capacitor (RC) pair,
3) alow-frequency parallel RC pair, and 4) a Warburg impedance element.
These four segments represent various electrochemical processes occurring
within the battery during operation.

The series RL represents the ohmic resistance Rohmic and inductive
behavior Ls. The ohmic resistance corresponds to the immediate voltage
drop when a current is applied to the battery. The inductive behavior
of a battery mainly accounts for a small inductive loop attributed to the
inductive nature of the current collectors or electromagnetic interactions
between battery components, such as cell winding.

The HF parallel RC pair is used to model the charge transfer resistance
Rcr and the double layer capacitance Cpu at the SEI layer. This is a rapid
process that incurs instantaneous impedance changes in response to current
or voltage variations. Hence, they occur in the high-frequency region of the
impedance spectrum, usually in the range of 100Hz to 10kHz [15, 78]. During
operation, the charge transfer involves the oxidized or reduced reactions at

19



the electrode surface, which can be inhibited by this resistance [79, 80]. On
the other hand, when a potential is applied across the electrode-electrolyte
interphase, the separation of charges creates a capacitive effect, which results
in double layer capacitance Cpi.

In contrast to the HF response, the parallel SEI RC pair (Rser and Cskr)
is associated with the mass transport processes at the SEI, such as diffusion
of Li* in the electrode materials, which occur only on slower time scales,
thus they become more prominent in the low-frequency spectrum of the EIS
profile, typically within the range of 10Hz to 100Hz [9, 10, 39].

In the calculation of this RC pair, the time- and layer position-dependent
discretization process in the SEI model prevent their immediate use. Thus,
a de-discretization process needs to be performed on both Rser and Csgr,
separately.

The calculation of Rser employs a dynamic averaged model, involving the
selection of a time interval At within the linear region of battery discharge
response, shown in Figure 4, from to to t1, while t1 — to > At. A mathematical
representation of Rser de-discretization is shown in (19), where RsgLtot is the
total SEI resistance after the culmination of the said process.

t to+At
- ftoo Rsgy,qdt
Rsgrtot = Z At (19)
t=t0

to+Atsty

In the meantime, the SEI capacitance de-discretization is an accumulative
process, addressing spatial and time dependencies, which is closely related
to the SEI layer growth process, denoted as dskr. Revised from [81, 82], for
a long-term SEI layer growth, the calculation of CseLtot is given in (20).

t1
] . dSEI t0+At
C = | ———— 712[ C dt
SELtot \/ZCiDiTZe"’i n; L), SELd (20)
=tlo

to+Atst,
In the physical interpretation of battery behavior, the Warburg element
Zw is associated with the time-dependent impedance due to Li* diffusion

within the electrode material [38, 83]. Since this diffusion process is relatively
slow compared to the other electrochemical processes in the battery, its

impact on the EIS is more pronounced at lower frequencies below 1 Hz [79].
It’s impedance can be calculated by (21).

W,
Zy(ws) =

\/ZGTf(l —J) (21)
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where we is the Warburg coefficient. The value of which can be calculated
from the redox processes within the battery given in (22), where D and ¢
are the diffusivity and concentration coefficients with subscripts o and r for
oxidation or reduction reactions, respectively.

RT 1 1

Yo :ﬁAzfz<¢D—oco Wu—rcr) 22)

With properly quantified circuit elements {RsErtot, CsErtot, Wo}, the
remainder components in the ECM are then curve-fitted from the EIS
result in Figure 5, when T = 20°C. The ECM fitting process utilizes
nonlinear multivariable optimization function, searching for minimum value
specified as minx L, where L is the cost function defined as the sum of
root-mean-square error of difference between the fitted and simulated EIS.
The process constructing L is described as follows —

(1) Given quantified {RsErtot, CSELtot, Wo};

(2) Given frequency range f =[0.1, 3k] Hz;

(3) Initial guess {Rohmic, Ls, Rct, CpL);

(4) Calculate total frequency-domain impedance Ziot in (23), where s is
Laplace transform operator,s 2 j - 2n f;

1 R 1
CT "5C SEI " §C
Ziot = Rohmic +SLs + 2k iEI +Zy (23)
Rer*5tor Moo ¥ 5Cqm

(5) Constructthecostfunction L in (24), where Zsim is the simulated total
impedance, which is given in Figure 5; num( f ) returns the number of
elements in frequency vector f .

I = Znum(f) (Ztot - Zsim)z
num(f)

(24)

After careful fitting and characterization, the populated ECM component
values are listed in Table 3. Note that since the impedance Zw is frequency-
dependent, it is more reasonable to list the Warburg coefficient as the
result in ECM.
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Table 3: Estimated circuit elements of the predetermined ECM.

Parameter | Value Unit Calculation
Ls 29.56 uH curvefit
Rohmic 5.85 mQ curvefit
Ry 12.84 mQ (19)
CsEx 019 F (20)
Rcr 23.78 mQ curvefit
CpL 34.98 mF curvefit
Wo 56.91 pQ/Vs (22)

5. Conclusion

In this paper, a physics-based LIB mathematical model is presented in
details, regarding the different sub-models including DFN framework, SEI
layer formation, and ECM population. The novelty of this approach is to
enable the derivation of ECM circuit components directly from the
battery’s physical properties. The simulation and characterization of battery
discharging behavior and EIS profile under diverse conditions are presented
with validation comparing to NASA’s empirical data [68, 69]. This proves the
accuracy and predictive capabilities of the presented model. The interaction
between the physical model and the ECM captures the battery’s real-time
behavior in both time- and frequency-domains. The ECM parameters and
EIS data provide valuable insight into the electrical properties of the battery
under study. This information is crucial for understanding the battery’s
behavior under different operating conditions and developing effective battery
management strategies. Although not exhaustive, the model is adaptable for
tracking battery operation status. It also paves the way for future studies to
focus on visualizing degradation mechanisms and evaluating state of health,
contributing to enhanced battery performance and longevity.

Data Availability
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