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Abstract 

A parameterized mathematical model for Lithium-ion battery cell is 
presented in this paper for performance analysis with a particular focus on 
battery discharge behavior and electrochemical impedance spectroscopy 
profile. The model utilizes various physical properties as input and 
consists of two major sub-models in a complementary manner. The 
first sub-model is an adapted Doyle-Fuller-Newman (DFN) framework to 
simulate electrochemical, thermodynamic, and transport phenomena within 
the battery. The second sub-model is a calibrated solid-electrolyte interphase 
(SEI) layer formation model. This model emphasizes the electrical dynamic 
response in terms of the reaction process, layer growth, and conductance 
change. The equivalent circuit component values are derived from the 
outputs of both sub-models, reflecting the battery’s changing physical 
parameters. The simulated discharge curves and electrochemical impedance 
spectroscopy (EIS) profiles are then provided with a comparison against 
empirical results for validation, which exhibit good agreement. This modeling 
methodology aims to bridge the gap between the physical model and the 
equivalent circuit model (ECM), enabling more accurate battery performance 
predictions and operation status tracking. 

Keywords: Li-ion battery, mathematical modeling, physics model, 
simulation and validation, EIS, ECM 
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1. Introduction 

The Li-ion battery (LIB) behavioral model can be constructed under 
various approaches such as learning-based methods [1, 2, 3, 4, 5], data-driven 
analysis [6, 7, 8], equivalent circuit model (ECM) characterization [9, 
10], and via multiphysics platforms [11, 12, 13]. Despite these options, 
mathematical and parameterized physics models are considered in this 
paper, due to their inherent advantages such as more flexible, intuitive, 
and versatile in both implementation and adaptation. This model adapts 
the Doyle-Fuller-Newman (DFN) framework for cylindrical LIBs, specifically 
targeting 18650 type. It is to better match these batteries’ distinct 
characteristics, focusing on their electrical and electrochemical features. 
The model provides steady-state performance predictions for batteries 
at acceptance, using ECM population and electrochemical impedance 
spectroscopy (EIS) for validation against public-domain battery data. 
Subsequent sections will detail the model’s predictive capabilities for 
battery behavior at acceptance. However, due to its focus on steady-state 
behavior, the model is not equipped with aging tracking and analysis 
ability. Furthermore, discussions on enhancing battery life and performance 
primarily belong to the realms of metallurgical and material science research 
and are not addressed within the scope of this paper. 

The DFN model is a generalized mathematical modeling approach 
for LIBs, focusing on predicting charging and discharge behaviors under 
galvanostatic conditions [14]. Doyle et al. presented the charge transport 
from the lithium anode to the composite cathode through a polymer 
membrane as a one-dimensional process, involving simultaneous lithium 
ion (Li+) diffusion within the active materials1 and electrolyte, charge 

transfer at the electrode/electrolyte interphase, and Li+ migration within 
the electrolyte.  This framework, since first introduced in 1993, has 
gained widespread acceptance and has been extensively modified for 
complex LIB modeling. Numerous research groups have contributed 
various revisions and enhancements to the original DFN framework, 
enriching its applicability and accuracy in advanced LIB studies. In [15], a 
DFN-based LIB model is developed emphasizing battery charge and 

 
1The active material in a battery is the material that is electrochemically active. This 

is the material that participates in the chemical reactions that store and release energy in 

the battery. 
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discharge responses from simulation. The DFN model in [15] is reconfigured 
into a pseudo-two-dimensional (P2D) model in which solid particles are 
treated as 2D circles.  This approach allows for a detailed examination 

of Li+ diffusion and changes in particle concentration during charge and 
discharge processes at a micro-scale level. The P2D model demonstrates 
a reliable voltage profile and exhibits a qualified capability for parameter 
identification. Another noteworthy modeling approach is Python Battery 
Mathematical Modelling [16]. It is an open-source platform for the simulation 
and analysis of various battery types. With the sheer content of numerical 
methods and solvers for tackling the algebraic and differential equations 
associated with battery models, it facilitates comparisons among different 
modeling approaches, enabling researchers to investigate battery performance 
such as aging, charge/discharge curves, and thermal response. In [17], Wang 

et al. emphasized the flexibility of DFN model in capturing key microscopic 
mechanisms of battery operation, then introduced the LIB database that 
aggregates numerous parameters necessary for the DFN model. In [18], the 
integration of the DFN model with machine learning (ML) has been presented 

by Tu et al. to track and predict charge rates 𝐶rate with certain accuracy. The 

DFN framework provides dynamic and state information from the physical 
model, which has fed into the ML model for behavior prediction. Last but not 
least, in [19], Lagnoni et al. proposed an electrolyte transport model within 
the DFN framework, comparing directly against the generic Nernst-Planck 
model. The proposed model accounts for the electrolyte behavior, especially 
on its implications on thermal effects. This model offered more details in 
LIB operation, which is a strong addition to the DFN framework. 

This paper introduces a physics-based mathematical model specifically 
designed for analyzing the steady-state response of 18650 LIB at acceptance. 
Developed from a variant of the DFN framework and incorporating a range 
of physical parameters, the model has been implemented exclusively in 

MATLAB®. It enables the simulation of the battery’s discharge process 
and provides a detailed analysis of its EIS characteristics [14, 20, 21]. 

In terms of performance analysis, a simplified representation of the 
solid-electrolyte interphase (SEI) layer is incorporated into the model to 
capture the formation process [22]. As part of the output, physical and 
electrochemical changes during simulation are then used to populate the 
ECM component values. Note that these component values are evaluated 
based on progressive LIB physical parameters and EIS characterization. For 
the steady-state model, the initial formation of SEI layer on electrodes 
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is carefully modeled, this is to address the Li+ loss in the electrolyte. 

However, this paper does not cover the evolution of SEI layers as well as 
the corresponding irreversible chemical changes within a LIB. In turn, the 
SEI layer growth and evolution is recognized as the immediate next step for 
the authors. 

The main contribution of this paper includes: 

• A physics-based mathematical model, describing LIB steady-state 
behavior, is presented. The model intakes exhaustive initial battery 
parameters to build a 2D DFN model. The model is capable of 
including specific battery details and is flexible in adjusting parameters 
based on different battery features. 

• The presented model exhibits the capability of predicting discharge 
curves and characterizing EIS profiles under varying charge rates and 
temperatures. The results obtained from the model are validated using 
NASA empirical data, as is shown in Section 4. 

In the remainder of this paper, Section 2 provides a description of the 
LIB mathematical model and provides a comprehensive list of relevant 
battery parameters used in the model. Section 3 presents the model 
simulation results, illustrating battery behavior under various charge rates 
and temperatures. Section 4 explains the component value estimation process 
for the ECM, followed by the characterization of an EIS based on the ECM. 
Last but not least, Section 5 offers additional discussion on the presented 
model and concludes the paper. 

 
2. Methods 

A general implementation diagram of the presented physics-based LIB 
mathematical model is shown in Figure 1, which consists of four main stages: 

• Stage 1: Prepare physical parameter values of LIB, including geometric, 
material, electrochemical, transport, etc.. Data can be obtained from 
public-domain datasets [44, 17], datasheets of specific tests [45, 46], and 
publications [47]. 

• Stage 2: Develop the basic battery model using 2D-DFN framework per 
the geometry and chemistry features for 18650 battery, for capturing 
the electrochemical processes during operation [15, 21, 48]. 
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SEI Parameter Evaluation

 * SEI capacitance CSEI
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Nyquist Plot

4. EIS Characterization
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Circuit Element Value

 * Series: sLs + Rohmic + Zw

 * Parallel: 1/(sCDL) // RCT

 * Parallel: 1/(sCSEI) // RSEI

(s: Laplace operator)

Frequency-sensitive ECM

 
Figure 1: Comprehensive diagram of the LIB parameterized mathematical model 

implementation. 

 

• Stage 3: Build the SEI formation model based on the progressive 
variables from DFN framework. Such variables include but are not 
limited to electrolyte diffusivity 𝐷𝑥, ionic conductivity 𝜎𝑥, and ionic 
current density J. The subscript 𝑥 in this stage represents variables 
associated with either the positive (𝑝) or negative (𝑛) electrode. 

• Stage 4: Simulate model for 1) battery discharge behavior under 

different 𝐶rate; 2) EIS profile characterization by sweeping ambient 
temperature 𝑇; and 3) populate ECM component values. The 
simulation results are then validated by comparing against NASA test 
data. 

Note that the model simulation employs MATLAB Particle Swarm 
Optimization (PSO) toolbox. PSO is widely used in battery modeling 
for various optimization tasks, including parameter estimation, model 
calibration, and battery design optimization. The formation of the SEI model 
entails certain foundational assumptions that will be explained in Section 2.2. 

There are mainly three sub-models that are also described in Figure 1 and 
discussed in the next section: (1) DFN architecture, in Section 2.1, (2) SEI 
layer formation, in Section 2.2, and (3) ECM elements population based on 
EIS, in Section 4. The model output includes discharge curves, EIS profiles, 
and populated circuit element values. A comprehensive list of parameters and 
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Table 1: List of math symbols and descriptions of parameters and variables that appeared 

in the modeling process (part 1 of 2). 

 

Geometry 𝐴 electrode surface area [23] m2 
 𝐴𝑠 active material surface area [23] m2 

 𝑑𝑥 electrode thickness [24, 25] m 

 𝑙𝑥 unwrapped electrode length [26] m 

 𝑟 electrode radius [24] m 
 

Material 𝜀DL double-layer rel. dielec. permit. [27] – 

 𝜌 
𝑑DL 

resistivity of the material 

double layer thickness 
[28] Ω·m 

[29, 30] m 
 𝐷𝑥 diffusion coefficient [25] m2/s 

 𝑙 conductor length [25, 31] m 
 

Electro- 𝜂𝑥 overpotential (5)(6) V 

chemistry 𝜂tot total overpotential (7) V 
 𝜎𝑥 ionic conductivity [28] S/m 
 𝜙𝑒 electric potential [23] V 

 𝑖𝑥0 exchange current density (8)(9) A/m2 
 𝑖𝑥 interphasal current density (10)(11) A/m2 
 𝐼 current density distribution (4) A 
 J ionic current density (3) A/m2 

 𝑘𝑥 
𝐿area 

reaction rate constant 

per unit-area inductance 
[25] m2.5/mol0.5/s 

[32, 33, 34] H/m2 

 𝑧𝑒 charge number [35] – 
 

Transport 𝑐𝑥 
𝑐𝑥max 

Li+ concentration 
maximum concentration 

(1)(2) mol/m3 

[36] mol/m3 

 

variables used in the model and their corresponding mathematical symbols 
are provided in Table 1 (2 parts total). The corresponding references or 
equations in this paper that provide related information are listed in the 
“Value” column of the table. 

2.1. DFN Architecture 

The presented DFN model architecture is a 2D representation, inspired 
and adapted by [15, 19, 49, 50]. The 2D representation incorporates the 
geometric properties of a jelly-roll battery cell, which are vital for capturing 
the complex behaviors of batteries under diverse operational conditions. 
The necessary battery parameters and initial conditional variables are 

Class Symbol Description Value Unit 
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Fick s Second Law (1)(2)

Ds, Di, cs, ci, r

cs, ci Di, ze, ϕe, F, R, T

Nernst Planck Equation (3)

JF, A

Faraday s Law of Electrolysis (4)

A

Ohm s Law (5)(6)

ηs, ηiks, ki, csmax, cimax

Butler-Volmer Equation (7)–(11)

is0, ii0, is, ii

DFN Framework

DFN Output

I

Energy & Charge Conservation

σs, σi

 
 

 
Figure 2: DFN architecture flowchart. 
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Table 1: List of math symbols and descriptions of parameters and variables that appeared 

in the modeling process (part 2 of 2). 

 

SEI Layer 𝑑SEI 

𝑑SEI,ini 

SEI𝛼 

SEI𝛾 

SEI𝜀,𝑥 

SEI𝜌,𝑥 

SEI𝜎,𝑥 

thickness (12)(17)(18) m 

initial thickness [37] m 

growth rate coefficient [38] m/s 

J -dependent growth rate [38] m3/A/s 
permittivity [39] – 

resistivity 

conductivity 
[39] Ω·m 
[40] S/m 

 

ECM 𝑅ohmic 

𝐿𝑠 

𝑅SEI 

𝐶SEI 

𝑅CT 

𝐶DL 

𝑍𝑤 

𝑤𝜎 

Ohmic resistance [41] (fit) Ω 

series inductance [32, 33, 34] H 

SEI layer resistance (13)(14) Ω 

SEI layer capacitance (15)(16) F 

charge transfer resistance [42] (fit) Ω 

double layer capacitance [42] (fit) F 

Warburg element (21) Ω √ 
Warburg coefficient (22) Ω/ 𝑠 

 

Constant 𝜀0 

𝐵𝑟 

vacuum permittivity 

Brüggeman coefficient 
8.854 × 10−12 F/m 

[43] – 
 ℱ Faraday constant 96485 C/mol 
 𝑅 ideal gas constant 8.314 J/K/mol 

 𝑇 test ambient temperature (sweep) °C 
 

Subscript 𝑥 an/cath 
𝑜/𝑟 
𝑝/𝑛 

𝑠/𝑖 

anode / cathode electrode 

oxidized- / reduced-reaction 

positive / negative 

solid / electrolyte 

 

 

acquired from [17, 47]. The top-level flowchart of the presented DFN sub-
model is shown in Figure 2. This model considers the impact of changes 
in SEI layer thickness on reaction rate and conductivity. These factors 
subsequently influence the estimation of diffusion through simulation, 
enhancing the model’s predictive capabilities. Consequentially, the presented 
model incorporates five key governing theories: 

• Fick’s second law, in Equations (1)(2); 
• Nernst-Planck equation, in Equation (3); 
• Ohm’s law, in Equations (5)(6); 

 

Class Symbol Description Value Unit 
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• Butler-Volmer equation, in Equations (7)–(11); 
• Charge conservation and energy conservation. 

Appropriate concatenation of these theories is essential for a reasonable 
battery performance simulation. Firstly, Fick’s second law accounts for 
the solid and electrolyte phase diffusion profiles [14, 51], the concentration 
gradient drives the diffusion of ions from regions of higher concentration 
to regions of lower concentration, eventually leading to a non-homogeneous 

distribution of Li+’s across the solid and electrolyte phases. In the context of 
the DFN model of a cylindrical LIB, it can be expressed separately for the 
solid and electrolyte phases as given by (1) and (2), respectively. 

𝜕𝑐𝑠

𝜕𝑡
=

𝐷𝑠

𝑟2
⋅

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠

𝜕𝑟
 ) (1) 

𝜕𝑐𝑖

𝜕𝑡
= 𝐷𝑖 ⋅ ∇2𝑐𝑖 (2) 

where 𝑡 is time, 𝑟 is the radius of active material particles in the electrodes, 

𝑐𝑥 and 𝐷𝑥 are the concentration and diffusivity, where 𝑥 ∈ {𝑠, 𝑖} for solid or 

electrolyte phases, and ∇2𝑐𝑖 is the Laplacian operator, which represents the 
spatial gradient of the concentration at electrolyte [52, 19]. The integration 

of both reduced and oxidized (redox) processes within the battery is also 
incorporated in (1) and (2). These processes play a crucial role in modeling 

the changing concentration and diffusion of Li+. 

Secondly, the Nernst-Planck equation in (3) takes in the ionic conductivity 
as well as the electrolyte phase concentration profile, which is derived from 
the output of Fick’s second law for migration and diffusion of Li+ in the 

electrolyte [53], where 𝑧𝑒 is the charge number of the electroactive species [35], ℱ 
is the Faraday constant, 𝑅 is the ideal gas constant, 𝑇 is the temperature, and 
∇𝜙𝑒 is the gradient of the electric potential. The output J is the ionic 

current density. The negative sign indicates that the direction of the current 
flow (e−) is opposite to that of Li+. 

𝑱 ≜ −𝐷𝑖∇𝑐𝑖 −
𝐷𝑖𝑧𝑒ℱ

𝑅𝑇
𝑐𝑖∇𝜙𝑒 (3) 

Immediate next to the Nernst-Planck equation is an intermediate process 
described by Faraday’s law of electrolysis, given in (4). This law establishes 

that the current 𝐼 between electrodes is proportional to the change in the 
ionic current density J . Although the current remains constant throughout 



10 
 

 
the battery, variations in ionic conductivity within the electrolyte 𝜎𝑖 and the 
solid phase 𝜎𝑠 lead to differences in overpotentials within phases, denoted 
by 𝜂𝑠 for the solid phase and 𝜂𝑖 for the electrolyte. These overpotentials are 
further defined by Ohm’s law, as detailed in equations (5) and (6), with 𝐴 
representing the electrode surface area. 

𝐼 = −
𝐴𝑱

𝐼
 (4) 

𝜂𝑠 = −
𝐼

𝐴𝜎𝑠
 (5) 

𝜂𝑖 = −
𝐼

𝐴𝜎𝑖
 (6) 

The total overpotential of both phases is required to implement the 

Butler-Volmer equation for exchange current density 𝑖𝑥0 and interphasal 

current density 𝑖𝑥 [13]. This equation describes the relationship between 
the voltage difference across an electrode and the electrical current for a 
simple, uni-molecular redox reaction [54]. Equations (10) and (11) are 
used to calculate interphasal current density at solid phase and electrolyte. 
An abridged step-by-step iteration of intermediate variables are provided 
in (7)–(9), where 𝑘𝑥 is the reaction rate constant, 𝑐𝑥max is defined as the 
maximum concentration, 𝑥 ∈ {𝑠, 𝑖}. 

𝜂tot = 𝜂𝑠 − 𝜂𝑖 (7) 

𝑖𝑠0 ≜ 𝑘𝑠 ⋅ √𝑐𝑠max(1 − 𝑐𝑠) ⋅ sinh (
ℱ

2𝑅𝑇
𝜂tot) (8) 

𝑖𝑖0 ≜ 𝑘𝑖 ⋅ √𝑐𝑖max(1 − 𝑐𝑖) ⋅ sinh (
ℱ

2𝑅𝑇
𝜂tot) (9) 

𝑖𝑠 ≜ 𝑖𝑠0 ⋅ √𝑐𝑠max𝑐𝑠 (10) 

𝑖𝑖 ≜ 𝑖𝑖0 ⋅ √𝑐𝑖max𝑐𝑖 (11) 

Last, the laws of charge and energy conservation are incorporated 
to ensure a zero-sum transport of charge and a balance in energy 
conversion within the battery model. This is achieved during simulation 
by cross-checking overpotential and ionic conductivity at each time step, 
thus maintaining consistency with the fundamental principles of physics. 
These two parameters directly influence the efficiency of charge transport 
and energy conversion [55, 56, 57]. The outputs of the presented DFN model 
are then used in setting up SEI layer model in Section 2.2. 
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Figure 3: SEI layer formation model flowchart, which mainly consists of two sub-parts: 

(a) SEI intermediate variables, and (b) SEI formation model for state space equations 

construction. 

 

2.2. SEI Layer Formation 

The SEI formation process is often viewed as a side effect of battery 
operation. From a modeling standpoint, the DFN model and SEI sub-models 
are integrated and function in a complementary manner. The SEI layer 
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formation model is built upon the DFN framework but is not merely an 
extension of the latter. The purpose behind developing this coupled model is 
to offer a detailed insight into the battery’s operational processes. However, 
due to the static nature of the model, it focuses on capturing the initial 
formation of the SEI layer, without exploring the underlying factors that 
lead to battery degradation and capacity loss. The formation process can be 
streamlined in terms of essential features of the SEI, by using three common 
assumptions: 

(1) The SEI layer conductivity and electrolyte diffusivity are assumed to be 
constant, this is justified in [14, 38, 58, 59], allowing a straightforward 
calculation for fast convergence on battery operation. 

(2) The SEI layer accumulation is modeled per layer over the electrode 
surface despite the particle agglomeration effect [58, 60, 61]. 

(3) Under regular test conditions, the SEI layer is assumed to grow 
uniformly at the entire contacting surface with respect to time [59, 62]. 

The overall flowchart of the SEI model is shown in Figure 3, where in 
(a), the model calculates the necessary SEI intermediate variables. The 

SEI layer growth-rate coefficient SEI𝛼 indicates the rate at which the 
SEI forms on the electrode surface, which is derived from the kinetics 
of electrochemical reactions and the diffusion of reactants, depending on 

overpotentials, Li+ concentration, and reaction rates at both the solid and 
electrolyte phases [38]. Meanwhile, current density-dependent growth 
rate SEI𝛾 explains how SEI growth varies with current density, which is 
calculated by modeling the impact of current density on reaction rates and 
SEI formation [38]. 

Furthermore, the permittivity SEI𝜀 is calculated to understand the 
dielectric properties of the SEI, indicating the SEI layer’s ability to store 

electrical energy within an electric field [39]. The conductivity SEI𝜎 
measures the easiness of ionic movement through the SEI layer, impacting 

the battery’s overall ionic transport efficiency [40]. Similarly, resistivity SEI𝜌 
quantifies the SEI layer’s resistance to ionic movement, which is crucial for 
understanding the SEI’s impact on battery internal resistance [39]. 

Based on the works presented in [38, 39, 40], the calculations of these 
intermediate variables are validated through comparisons with experimental 
measurements, including electrochemical impedance spectroscopy and direct 
SEI property measurements, this is to ensure accurate modeling of the SEI 
layer physical and chemical behavior. 
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The intermediate variables are then used in the SEI formation model for 

constructing the state space equations to calculate SEI layer features, namely 

thickness, resistance, and capacitance (SEI-𝑑𝑅𝐶), this forms a state vector 

denoted as [𝑑.
SEI,𝑝 , 𝑑.

SEI,𝑛, 𝑅.SEI,𝑝 , 𝑅.SEI,𝑛, 𝐶.
SEI,𝑝 , 𝐶.

SEI,𝑛]
⊤, respectively. 

The SEI layer grows on the surface of the anode due to the effect 
of the Li+ loss during the reduced reaction at SEI. The model shown 
in Figure3(b) discretizes the positive and negative electrode in terms of 
operation time and layer depth, then calculates the layer growth from the 
initial thickness, growth rate, and position. The discretization process based 
on the assumptions, the change in thickness Δ𝑑SEI can be calculated as – 

Δ𝑑SEI(𝑥, 𝑡) = 𝑑SEI,ini +
d𝑥

d𝑡
⋅ SEI𝛾 (12) 

where 𝑥 and 𝑡 are the discretized electrode position and cycling time; 
𝑑SEI,ini is the initial thickness [37], and SEI𝛾 is the SEI layer growth 
rate, which is an intrinsic property based on the membrane material 
and electrolyte composition, usually determined empirically or fit from 
experimental observations [38].  The battery under test in this model 

is a lithium-nickel-manganese-cobalt-oxide (LiNi𝑥Mn𝑦Co1−𝑥−𝑦O2 or NMC) 
battery, where SEI𝛾 can vary greatly but typically falls within 5–20 nm/cycle 
[63]. On the other hand, for lithium-iron-phosphate (LiFePO4 or LFP) 

batteries, SEI𝛾 was observed to be in the range of 1–5 nm/cycle under certain 
conditions [64]. 

Note that the “discretization” process in this context involves breaking 
down the gradual evolution of the SEI layer growth on the electrode surface 
into discrete steps. While each step represents a specific moment in time 
and a specific layer thickness. By doing this, the SEI layer formation can be 
analyzed step by step, which helps understanding the effect of the SEI layer 
and its impact on the battery’s capacity fade. 

The functions computing the SEI-𝑑𝑅𝐶 are represented in (13)–(18), where 

𝑅SEI,disc and 𝐶SEI,disc are the discretized SEI resistance and capacitance, 
respectively; 𝜎𝑥 is the electrode conductivity, the SEI𝑥 are several inherent 
properties of the layer, as provided in Table 1. The subscript 𝑥 here represents 
variables associated with either the positive 𝑝 or negative 𝑛 electrode. 
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d [
𝑅SEI,𝑝

𝑅SEI,𝑛
] = [

𝜎𝑝𝑑SEI,𝑝 ⋅ SEI𝜌,𝑝 0

0 𝜎𝑛𝑑SEI,𝑛 ⋅ SEI𝜌,𝑛
]  

× [
1 + 𝑑SEI,𝑝 ⋅ SEI𝛾 0

0 1 + 𝑑SEI,𝑛 ⋅ SEI𝛾
]

−SEI𝛼

  

× d [
𝑑SEI,𝑝

𝑑SEI,𝑛
] (13) 

𝑅SEI,disc = 𝑅SEI,𝑝 + 𝑅SEI,𝑛 (14) 

d [
𝐶SEI,𝑝

𝐶SEI,𝑛
] = −𝐴 [

SEI𝜖,𝑝 0

0 SEI𝜖,𝑛
]  

× [
𝑑SEI,𝑝

2 0

0 𝑑SEI,𝑛
2 ]

−1

× d [
𝑑SEI,𝑝

𝑑SEI,𝑛
] (15) 

𝐶SEI,disc =
𝐶SEI,𝑝 ⋅ 𝐶SEI,𝑛

𝐶SEI,𝑝 + 𝐶SEI,𝑛
 (16) 

d [
𝑑SEI,𝑝

𝑑SEI,𝑛
] = [

𝑑SEI,𝑝,ini

𝑑SEI,𝑛,ini
] + 𝐴𝑱 ⋅ SEI𝛾 × d [

𝑅SEI,𝑝

𝑅SEI,𝑛
] (17) 

𝑑SEI = 𝑑SEI,𝑝 + 𝑑SEI,𝑛 (18) 

The thickness of the SEI layer 𝑑SEI is directly related to the change in SEI 
resistance, Li+ concentration 𝑐𝑠, current density-dependent SEI growth rate 

SEI𝛾, and current density 𝑖𝑠. Comprehensive insights into the electrochemical 
reactions driving SEI layer formation are detailed in previous studies [38, 65]. 
The SEI resistor is treated physically as the increment in resistance to the flow 

of Li+ between the electrode and electrolyte. It subsequently influences the 
battery’s charge transfer efficiency. Note that an increase in SEI resistance 
yields degraded battery performance, especially in terms of reduced capacity, 
slower charge rates, and accelerated aging [65, 66]. On the other hand, when 
calculating SEI capacitance, it is important to consider the permittivity and 
thickness of the SEI layer [39], as is shown in (15) and (16), describing an 
interconnected relationship between both electrodes’ behaviors. The results 

are then adjusted by incorporating the Brüggeman coefficient 𝐵𝑟 [43]. 

The overall SEI output is the discretized SEI-𝑑𝑅𝐶 with respect to time. 

At the current state, the model is equipped with prediction ability for battery 
discharge quantification. 
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At this point, the two important subparts of the model have been 

introduced. Note that the model is specifically parameterized based on the 
intrinsic properties of the battery, with the only geometric constraint being 
that it must be a cylindrical jelly-roll design. Consequentially, collecting 
the necessary data for the specific battery becomes a challenging task. 
However, the parameterization setup ensures that, with carefully selected 
parameter inputs, the model is scalable and can be applied to any cylindrical 
jelly-roll battery. In the upcoming sections, it will be demonstrated that the 
comprehensive model is capable of accurately tracking discharge behavior and 
characterizing the EIS profile of a specific battery under various conditions. 

 
3. Model Simulation & Validation 

The battery selected for the modeling and simulation is the LG MJ1 
INR-18650, with its specifications listed in Table 2 and referenced in [23, 
24]. The LG MJ1 battery, because of its high energy density and reliable 
performance, has become a frequently used research subject. The well-
documented studies and operation records are publicly accessible, and 
datasets from various test purposes are readily obtainable. These resources 
are essential for validating and benchmarking the model [47, 67, 68, 69]. 

The discharge behaviors of a fresh battery under various charge rates are 
simulated in MATLAB version 2022b. The processor and operating system 
used are 4 GHz Quad-Core Intel Core i7, and MacOS Monterey version 
12.6.2. The installed memory is 32 GB 1867 MHz DDR3. Figure 4 shows 

the simulation result for when the charge rate 𝐶rate is swept from -1C to -8C 
(negative sign indicates discharge). The first observation is that, the voltage 
change over time shows a quasi-linear response from the very beginning of 
the discharge process, this further corresponds to a constant state-of-charge 

(SOC) decrement. The slope of the curve is more sensitive to the 𝐶rate, where 
higher discharge rate leads to a steeper voltage drop, whiis is as expected. 

When 𝐶rate = −2C, the simulation result is in good agreement with the 
empirical result for the same battery at acceptance reported by Iannello et 

al. [68] and Krause et al. [69]. The disagreement in the slope changes 

between time 𝑡0 and 𝑡1 could be due to variations in the internal resistance, 
or discrepancies in the environmental conditions during testing. 

Another observation is the rapid voltage drop occurring at the “inflection 
point,” as labeled in Figure 4, indicating the voltage cut-off. During battery 

discharge, Li+’s move from the anode to the cathode through the electrolyte. 
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Table 2: LG MJ1 battery specifications. 

Parameter Location Value Unit Reference 
 

size 
cathode 

anode 
membrane 

nom. capacity 
nom. voltage 

disch. cutoff volt. 
charge voltage 

max disch. curr. 
Brüggeman coeff. 

conductivity cathode 
anode 
membrane 
electrolyte 

INR-18650 – [23] 
NMC-811 – [23] 

silicon graphite – [23] 
polyethylene – [24] 

3.50 Ah [23] 
3.635 V [23] 
2.50 V [24] 

4.2 ± 0.05 V [23] 
10 A [24] 

1.5 – [43] 

1.58 S/m [25] 
1.04 S/m [25] 

0.344 S/m [28] 
1.1 S/m [25] 

diffusivity cathode 5.35×10−7 m2/s [25] 

anode 5.37×10−7 m2/s [25] 
membrane 1.68×10−7 m2/s [28] 

electrolyte 5.34×10−10 m2/s [25] 

reaction rate negative 6.48×10−7 A/m2 [25] 

positive 3.59×10−6 A/m2 [25] 

Li+ concentration negative 33429 mol/m3 [36] 
 positive 63104 mol/m3 [36] 

 

A higher discharge rate exacerbates the collision of Li+’s with the cathode’s 

crystal lattice structure, causing the material to undergo distortions or 
rearrangements [70, 71, 8]. This makes the cathode reach its capacity limit 
faster. At the inflection point, the cathode reaches its capacity limit and can 
no longer store more Li+’s, resulting in a rapid voltage drop. This explains 
why fast charging/discharging can shorten battery life, as the structural 
stress on the cathode accelerates degradation. 

Note that the voltage response of NMC batteries during discharge only 
has one inflection point occurring at low SOC. In contrast, LFP batteries 
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Figure 4: Discharge behaviors of a fresh battery under various charge rates, where the 

case 𝐶rate = −2 is compared against the results in [68, 69]. 

 

have a more distinct voltage plateau due to the two-phase reaction in the 
LFP cathode material [12, 72], thus comparatively the slope of the linear 

region in LFP batteries is less sensitive to 𝐶rate [72, 73]. 

 
4. Experiments 

After repeated simulation and characterization, the EIS profile for LG 
MJ1 battery is presented in Figure 5, in the form of the Nyquist plots under 

variant test ambient temperatures. The 𝑥- and 𝑦-axes denote the real- and 
negative-imaginary-part of impedance, respectively. 

To begin with, it is observed that the size of EIS arches becomes larger 
when the temperature changes from 50 to 5°C, presented by the increment at 
both real- and imaginary-impedance values. This observation is consistent 

with previous works and results in the literature [22, 74, 75], since the Li+ 
diffusion becomes slower at lower temperature values. As per Brownian 
motion, the reduced kinetic energy of molecules slows down the reactions, 
therefore leading to increased impedance. 
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Figure 5: The sweep of EIS of LG MJ1 battery at acceptance, under different test ambient 

temperatures. The result is compared against the experimental characterization of the 

same battery. Experimental results © NASA 2019 [68]. 

 

Moreover, when 𝑇 = 20°C, the model shows a good match against NASA 
EIS qualification [68, 69]. The comparison between simulation and empirical 
result is zoomed-in at the top-left corner in Figure 5. However, a 5mΩ real 
impedance offset between the simulated and experimental results is observed. 
Upon close inspection, this could reasonably be attributed to a few factors 
such as: 

• The simplifications in the SEI model, though necessary, can yield slight 
differences between the model result and the experimentally measured 
data. 

• Discrepancies could arise from slight differences in the test conditions, 
under which the simulation is conducted, such as temperature or 
current rate, when compared to the conditions of NASA’s experiments. 

The EIS curve provides valuable insights into the electrical properties 
of the battery under study. One insight is that it can be used to populate 
the circuit elements within a predefined ECM setup [76]. In Figure 6, a 
detailed layout of the ECM and a flowchart illustrating the calculation for 
specific circuit elements are also provided [77]. The ECM comprises four 
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Figure 6: A pre-determined ECM structre of a typical Li-ion battery 

 

primary circuit segments connected in series: 1) a series resistor-inductor 
(RL) pair, 2) a high-frequency (HF) parallel resistor-capacitor (RC) pair, 
3) a low-frequency parallel RC pair, and 4) a Warburg impedance element. 
These four segments represent various electrochemical processes occurring 
within the battery during operation. 

The series RL represents the ohmic resistance 𝑅ohmic and inductive 

behavior 𝐿𝑠. The ohmic resistance corresponds to the immediate voltage 
drop when a current is applied to the battery. The inductive behavior 
of a battery mainly accounts for a small inductive loop attributed to the 
inductive nature of the current collectors or electromagnetic interactions 
between battery components, such as cell winding. 

The HF parallel RC pair is used to model the charge transfer resistance 
𝑅CT and the double layer capacitance 𝐶DL at the SEI layer. This is a rapid 
process that incurs instantaneous impedance changes in response to current 
or voltage variations. Hence, they occur in the high-frequency region of the 

impedance spectrum, usually in the range of 100Hz to 10𝑘Hz [15, 78]. During 
operation, the charge transfer involves the oxidized or reduced reactions at 
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the electrode surface, which can be inhibited by this resistance [79, 80]. On 
the other hand, when a potential is applied across the electrode-electrolyte 
interphase, the separation of charges creates a capacitive effect, which results 

in double layer capacitance 𝐶DL. 
In contrast to the HF response, the parallel SEI RC pair (𝑅SEI and 𝐶SEI) 

is associated with the mass transport processes at the SEI, such as diffusion 

of Li+ in the electrode materials, which occur only on slower time scales, 

thus they become more prominent in the low-frequency spectrum of the EIS 
profile, typically within the range of 10Hz to 100Hz [9, 10, 39]. 

In the calculation of this RC pair, the time- and layer position-dependent 
discretization process in the SEI model prevent their immediate use. Thus, 

a de-discretization process needs to be performed on both 𝑅SEI and 𝐶SEI, 
separately. 

The calculation of 𝑅SEI employs a dynamic averaged model, involving the 
selection of a time interval Δ𝑡 within the linear region of battery discharge 

response, shown in Figure 4, from 𝑡0 to 𝑡1, while 𝑡1 − 𝑡0 ≥ Δ𝑡. A mathematical 

representation of 𝑅SEI de-discretization is shown in (19), where 𝑅SEI,tot is the 
total SEI resistance after the culmination of the said process. 

𝑅SEI,tot = ∑
∫ 𝑅SEI,𝑑d𝑡

𝑡0+Δ𝑡

𝑡0

Δ𝑡

𝑡1

𝑡=𝑡0

|

𝑡0+Δ𝑡≤𝑡1

 (19) 

In the meantime, the SEI capacitance de-discretization is an accumulative 
process, addressing spatial and time dependencies, which is closely related 

to the SEI layer growth process, denoted as 𝑑SEI. Revised from [81, 82], for 

a long-term SEI layer growth, the calculation of 𝐶SEI,tot is given in (20). 

𝐶SEI,tot = √
𝑱 ⋅ 𝑑SEI

2𝑐𝑖𝐷𝑖ℱ2𝑒−𝜂𝑖
𝜂𝑖

−1 ∑ ∫ 𝐶SEI,𝑑d𝑡
𝑡0+Δ𝑡

𝑡0

𝑡1

𝑡=𝑡0

|

𝑡0+Δ𝑡≤𝑡1

 (20) 

In the physical interpretation of battery behavior, the Warburg element 

𝑍𝑤 is associated with the time-dependent impedance due to Li+ diffusion 

within the electrode material [38, 83]. Since this diffusion process is relatively 
slow compared to the other electrochemical processes in the battery, its 
impact on the EIS is more pronounced at lower frequencies below 1 Hz [79]. 
It’s impedance can be calculated by (21). 

𝑍𝑤(𝑤𝜎) =
𝑤𝜎

√2𝜋𝑓
(1 − 𝑗) (21) 
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where 𝑤𝜎 is the Warburg coefficient. The value of which can be calculated 
from the redox processes within the battery given in (22), where 𝐷 and 𝑐 
are the diffusivity and concentration coefficients with subscripts 𝑜 and 𝑟 for 
oxidation or reduction reactions, respectively. 

𝑤𝜎 =
𝑅𝑇

√2𝐴𝑠
2ℱ2

(
1

√𝐷𝑜𝑐𝑜

+
1

√𝐷𝑟𝑐𝑟

) (22) 

With properly quantified circuit elements {𝑅SEI,tot, 𝐶SEI,tot, 𝑤𝜎}, the 
remainder components in the ECM are then curve-fitted from the EIS 
result in Figure 5, when 𝑇 = 20°C. The ECM fitting process utilizes 
nonlinear multivariable optimization function, searching for minimum value 

specified as min𝑥 L, where L is the cost function defined as the sum of 

root-mean-square error of difference between the fitted and simulated EIS. 
The process constructing L is described as follows – 

(1) Given quantified {𝑅SEI,tot, 𝐶SEI,tot, 𝑤𝜎}; 

(2) Given frequency range 𝑓 = [0.1, 3𝑘] Hz; 

(3) Initial guess {𝑅ohmic, 𝐿𝑠, 𝑅CT, 𝐶DL}; 
(4) Calculate total frequency-domain impedance 𝑍tot in (23), where s is 

Laplace transform operator, s ≜ 𝑗 · 2𝜋 𝑓 ; 
 

𝑍tot = 𝑅ohmic + s𝐿𝑠 +
𝑅CT ⋅

1
𝑠𝐶DL

𝑅CT +
1

𝑠𝐶DL

+
𝑅SEI ⋅

1
𝑠𝐶SEI

𝑅SEI +
1

𝑠𝐶SEI

+ 𝑍𝑤 (23) 

 

(5) Construct the cost function L in (24), where 𝑍sim is the simulated total 
impedance, which is given in Figure 5; num( 𝑓 ) returns the number of 
elements in frequency vector 𝑓 . 

𝐿 = √
Σnum(𝑓)(𝑍tot − 𝑍sim)2

num(𝑓)
 (24) 

After careful fitting and characterization, the populated ECM component 
values are listed in Table 3. Note that since the impedance 𝑍𝑤 is frequency-
dependent, it is more reasonable to list the Warburg coefficient as the 
result in ECM. 
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Table 3: Estimated circuit elements of the predetermined ECM. 

 

 

 

 

 

 

 

 

34.98 mF curvefit 

 

 
5. Conclusion 

In this paper, a physics-based LIB mathematical model is presented in 
details, regarding the different sub-models including DFN framework, SEI 
layer formation, and ECM population. The novelty of this approach is to 
enable the derivation of ECM circuit components directly from the 
battery’s physical properties. The simulation and characterization of battery 
discharging behavior and EIS profile under diverse conditions are presented 
with validation comparing to NASA’s empirical data [68, 69]. This proves the 
accuracy and predictive capabilities of the presented model. The interaction 
between the physical model and the ECM captures the battery’s real-time 
behavior in both time- and frequency-domains. The ECM parameters and 
EIS data provide valuable insight into the electrical properties of the battery 
under study. This information is crucial for understanding the battery’s 
behavior under different operating conditions and developing effective battery 
management strategies. Although not exhaustive, the model is adaptable for 
tracking battery operation status. It also paves the way for future studies to 
focus on visualizing degradation mechanisms and evaluating state of health, 
contributing to enhanced battery performance and longevity. 

 
Data Availability 

Data will be made available on request. 

Parameter Value Unit Calculation 

𝐿𝑠 29.56 𝜇H curvefit 
𝑅ohmic 5.85 mΩ curvefit 
𝑅SEI 12.84 mΩ (19) 
𝐶SEI 0.19 F (20) 
𝑅CT 23.78 mΩ curvefit 
𝐶DL  

𝑤𝜎 56.91 μΩ/√𝑠 (22) 
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