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ABSTRACT. We introduce classical and quantum no-signalling bicorre-
lations and characterise the different types thereof in terms of states on
operator system tensor products, exhibiting connections with bistochas-
tic operator matrices and with dilations of quantum magic squares. We
define concurrent bicorrelations as a quantum input-output generalisa-
tion of bisynchronous correlations. We show that concurrent bicorrela-
tions of quantum commuting type correspond to tracial states on the
universal C*-algebra of the projective free unitary quantum group, show-
ing that in the quantum input-output setup, quantum permutations of
finite sets must be replaced by quantum automorphisms of matrix al-
gebras. We apply our results to study the quantum graph isomorphism
game, describing the game C*-algebra in this case, and make precise
connections with the algebraic notions of quantum graph isomorphism,
existing presently in the literature.
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1. INTRODUCTION

In recent years, many fruitful interactions have emerged between entan-
glement and non-locality in quantum systems, on one hand, and the theory
of operator algebras and operator systems, on the other. At a high level, this
connection stems from the laws of quantum mechanics, which dictate that
the input-output behaviour of local measurements on (bipartite) quantum
systems is encoded by non-commutative operator algebras of observables
and their state spaces. This provides powerful means to translate between
questions of a physical nature and questions formulated in the language of
non-commutative analysis. At the base of these developments lie the work of
Junge, Navascues, Palazuelos, Perez-Garcia, Scholz and Werner [29], where
the relation between the Tsirelson Problem in quantum physics and the
Connes Embedding Problem in operator algebra theory was first noticed
(see also [44]), and that of Paulsen, Severini, Stahlke, Winter and the third
author [46], where the notion of synchronous no-signalling correlation was
first defined and characterised. The fruitfulness of these connections has
been borne out by many recent works; see [44, 35, 37, 36, 39, 38, 1, 40, 9]
for an incomplete list. We specifically single out Sloftsra’s ground-breaking
work [50, 49], which injected ideas from geometric group theory into the
theory of non-local games, showing that the set of bipartite quantum corre-
lations is not closed, and the work of Helton, Meyer, Paulsen and Satriano
[26], in which an algebraic approach to non-local games was formulated. All
of these ideas recently culminated in the resolution of the weak Tsirelson
problem and Connes Embedding problem in the preprint [28] by Ji, Natara-
jan, Vidick, Wright and Yuen.

In the present work, we are primarily interested in investigating the struc-
ture of quantum input-quantum output bipartite correlations which gener-
alise the bisynchronous correlations introduced by Paulsen and Rahaman
in [47]. Recall that a no-signalling bipartite correlation over the quadru-
ple (X, X, A, A), where X and A are finite sets, is a family of conditional
probability distributions

p={p(a,blz,y) : (z,y) € X x X,(a,b) € A x A}

that has well-defined marginals (see e.g. [35]). Operationally, in the com-
muting operator model of quantum mechanics, p describes the input-output
behaviour of a bipartite quantum system, given by a Hilbert space H in
state &, interpreted as a unit vector in H, on which local measurements are
jointly performed: for each x,y € X, two non-communicating parties Alice
and Bob have access to mutually commuting local measurement systems
E; = (Eza)aca € B(H) (for Alice) and F, = (Fyp)peca € B(H) (for Bob).
Given input x, Alice uses the system F, to measure £, and similarly, given
y, Bob uses F, to measure {; the resulting outcomes of Alice and Bob’s
measurements are (a,b) € A x A with probability

p(a, b‘ﬂj, y) = <Ex,aFy,b€7 5)
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We say that a correlation p is synchronous if p(a, bz, z) = 0 for all z € X and
a # b. Heuristically, Alice and Bob’s behaviour is synchronised in that they
appear to invoke the same “virtual function” X — A to obtain their outputs,
depending on the given inputs. A correlation p is called bisynchronous [47]
if it is synchronous and has the additional property that p(a,alz,y) = 0 for
all a € A and = # y. In this case, the “virtual function” X — A behaves as
though it were in addition injective.

Using the language of operator algebras and non-commutative geometry,
one can make the intuition, highlighted in the previous paragraph, precise.
Let Ax a = *x|{°°(A) be the unital free product of [X| copies of the [A|-
dimensional abelian C*-algebra ¢>°(A). The C*-algebra Ax 4 is a C*-cover
of the universal operator system Sx 4 with generators e;,, where x € X
and a € A, subject to the relations e, , = e%ﬁa =€y and Y cpezq =1,
x € X. Within the framework of non-commutative geometry, Ax 4 can be
regarded as a quantisation of the finite-dimensional C*-algebra C(F (X, A))
of complex-valued functions on the set F(X, A) of functions f : X — A. It
was shown in [46] that a no-signalling correlation p of quantum commuting
type is synchronous if and only if there is a tracial state 7 on Ax 4 such
that

(1) pla,blz,y) = 7(erayp), =,y € X, a,be A.

If the correlation p is bisynchronous (and | X | = |A]), then [47] p arises via (1)
from a tracial state 7 on the C*-algebra C (5’;) of the quantum permutation
group [56]. Similarly to Ax 4, the C*-algebra C(S%) is the universal unital
C*-algebra with generators e, , x,a € X, further satisfying the additional
relations > .y €za = 1, a € A. Note that C(S¥) is a free analogue of the
algebra C'(Sx) of complex functions on the permutation group Sx of X,
and is itself a C*-algebraic quantum group [56].

Bisynchronous correlations arise in the analysis of certain classes of non-
local games, most notably the graph isomorphism game [1, 36, 38, 9] and the
related metric isometry game [22]. Here, deep and unexpected connections
emerged between quantum permutation groups, no-signalling correlations
and graph theory. At the same time, connections were established between
graph isomorphism games and quantum graphs [40, 41, 9]. In particular, in
the aforementioned works, a natural (operator) algebraic notion of a quan-
tum isomorphism between quantum graphs was introduced.

One of the main motivations behind the present work is the desire to
provide an operational characterisation of quantum isomorphisms between
quantum graphs in terms of bipartite correlations. As the term suggests,
the description of a quantum graph (in any of its many guises [51, 40, 9, 11])
requires a suitable quantum version of the notion of a vertex or edge, using
the language of bipartite quantum systems. Hence one is naturally led to
consider bipartite no-signalling correlations which allow quantum states as
inputs and outputs.
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Quantum input-quantum output no-signalling (QNS) correlations were
introduced by Duan and Winter [20], and subsequently systematically stud-
ied in [52, 7, 11]. Given finite sets X and A, and denoting by Mx (resp.
M,) the full matrix algebra over the | X|-dimensional Hilbert space, a QNS
correlation over the quadruple (X, X, A, A) is a quantum channel

D' MxQQMxy — MagQ My

satisfying a pair of additional constraints, equivalent to the existence of
marginal channels (see equations (5) and (6), and the article [20] for further
details). Since any classical no-signalling correlation p over (X, X, A, A)
can be regarded as a QNS correlation I',, that preserves the corresponding
diagonal subalgebras, QNS correlations constitute a genuine generalisation
of their classical counterparts (see also equation (8)).

The main purpose of the present work is to develop a notion, and find
(operational and operator algebraic) characterisations, of bisynchronicity in
the quantum input-output setting. In parallel with the classical setting,
here we focus our attention on the case where the input and output sys-
tems are of the same size, that is, |[A| = |X|. In this case, it is natural to
consider “bistochastic” correlations I' : Mx ® Mx — Ma ® M4, that is,
unital QNS correlations with the additional property that the dual channels
I'* are also QNS correlations; these channels are referred to as QNS bicorre-
lations (see Definition 5.1). A quantisation of bisynchronicity must involve
a suitable quantum counterpart of the property of sending identical inputs
to identical outputs. In bipartite quantum systems, this is naturally cap-
tured by how I' (and I'*) acts on the canonical maximally entangled state.
More precisely, if (€;y)zycx is the canonical matrix unit system of My,
and Jy = ﬁ > zyex oy @ €y is the maximally entangled state, then it is
natural to impose the condition

(2) I(Jx)=Jg4.

Condition (2) on a QNS correlation I" was introduced and studied in de-
tail in our previous work [11], where it was called concurrency. For a QNC
bicorrelation I, its concurrency is equivalent to concurrency for I'* (see Re-
mark 6.2). From an operational viewpoint, concurrent bicorrelations I" are
characterised by the property that I' and I'* preserve the perfect correlation
of local measurements in both directions: the input state Jx is characterised
by the property that local measurements performed on Jx in any fixed basis
are always perfectly correlated with uniformly random outcomes. Concur-
rent bicorrelations thus respect this perfect correlative structure, and hence
rightfully can be interpreted as fully quantum versions of bisynchronous
correlations.

We study the various types of QNS bicorrelations (quantum commuting,
quantum approximate, quantum and local) in detail, providing operator
system/algebra characterisations thereof. After providing necessary prelim-
inaries in Section 2, in Section 3 we exhibit operator bistochastic matrices,
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which can be viewed as quantum and operator-valued generalisations of clas-
sical bistochastic matrices. Operator bistochastic matrices turn out to be
the suitable mathematical objects encoding each of the parties of a QNS
bicorrelation. We characterise concretely the universal operator system Tx
of an operator bistochastic matrix as the subspace spanned by natural or-
der two products associated with the entries of a universal block operator
bi-isometry V : C¥l@ H — CI¥l @ K (that is, an isometry V for which the
transpose V! is also an isometry). We further identify the dual operator sys-
tem of Tx and establish several properties of Tx and its universal C*-algebra
Cx. At the heart of our arguments is a factorisation result for bistochas-
tic operator matrices (Theorem 3.2). Our results should be compared to
those of [52], where a similar development was undertaken for the univeral
operator system Tx 4 of a block operator isometry, and the corresponding
C*-algebra Cx 4.

The diagonal expectations (intuitively, the classical components) of bis-
tochastic operator matrices coincide with quantum magic squares, intro-
duced by De Las Cuevas, Drescher and Netzer in [16]; contrapositively, bis-
tochastic operator matrices can be viewed as quantum versions of quantum
magic squares. In Section 4, we build up on this connection and rephrase
some of the results of [16] in the language of operator systems. Indeed,
one of the main results in [16] is the fact that not every quantum magic
square admits a dilation to a quantum permutation. In Theorem 4.5, we
characterise the dilatability of a quantum magic square in terms of the com-
plete positivity of natural maps, associated with the given quantum magic
square, and defined on the operator system Px C C (S;E) spanned by the
coefficients of a quantum permutation matrix. We demonstrate that the
non-dilatability of quantum magic squares is due to the distinction between
different operator system structures.

In Section 5, we introduce the types of quantum no-signalling bicorrela-
tions, corresponding to different physical models (local, quantum, approxi-
mately quantum, quantum commuting and general no-signalling), and char-
acterise them in terms of states on the various operator system structures,
with which the algebraic tensor product Tx ® 7x can be endowed. Here
we rely on the tensor product theory developed in [32]. We pay a sepa-
rate attention to classical no-signalling bicorrelations, showing that their
corresponding encoding operator system Sx is the universal operator sys-
tem spanned by the entries of an X X X-quantum magic square studied
in Section 4, and obtaininig similar characterisations in terms of states on
operator system tensor products on the algebraic tensor product Sx ® Sx.

In Section 6, we focus our attention on concurrent bicorrelations, estab-
lishing in Theorem 6.7 a characterisation of concurrent quantum commuting
bicorrelations in terms of tracial states. We show that the C*-algebra, whose
tracial states are of interest here, is the C*-algebra C(PUy) of functions on
projective free unitary quantum group. Recall that the C*-algebra of the
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free unitary quantum group C(U5:) is the universal unital C*-algebra gen-
erated by the entries u; , of an X x X bi-unitary matrix U = (ug,q)z,q. The
C*-algebra C(PUx+) is the C*-subalgebra of C(Uy), generated length two
words of the form u} ,u, .. Note that the C*-algebra C(Uy) is the free
analogue of C'(Ux), the C*-algebra of continuous complex functions on the
unitary group Ux. Similarly, C'(PU5;) is the free analogue of the algebra of
continuous complex functions on the projective unitary group PUx = Ux /T.
Recall that the natural action of Ux on Mx by conjugation induces an iso-
morphism of PUx and the group Aut(Mx) of *-automorphisms of the matrix
algebra M. In this way, C(PUx) can be regarded as the quantum version
of the automorphism group of Mx. In fact, using quantum group theory,
this reasoning can be made precise as, by [3, Corollary 4.1] and [2, Theorem
1], C(PUY;) is the quantum automorphism group of the tracial C*-algebra
Mx in the sense of Wang [56].

Thus, from an operator algebraic point of view, Theorem 6.7 provides yet
another justification for our definition of concurrent bicorrelations as the ap-
propriate quantum versions of bisynchronous correlations; indeed, at a cor-
relation level, quantisation of bisynchronicity amounts to replacing classical
channels on Dx ® Dx with quantum channels on My ® Myx. At the level of
tracial states encoding these channels, Theorem 6.7 shows that this quanti-
sation amounts to replacing C(S¥) (that is, quantum automorphisms of Dx)
with C(PU5;) (that is, quantum automorphisms of My). We remark here
that the C*-algebras C(S¥) and C(PUY) are indeed distinct C*-algebras,
as can be seen from the K-theory computations in [54, Theorem 4.5]. In
summary, the operational and the algebraic notions of quantisation are in
agreement. Our results complement a series of operator characterisations in
the literature, part of which we summarise in the following table:

Correlation type: Encoded by states on:
Classical NS correlations Cyg Sx,4 Omax Sx,4 [35, Theorem 3.1]
Classical ge-correlations Cqc Sx,4 ®c Sx,4 [35, Theorem 3.1]
Classical qa-correlations Cqa Sx,4 ®min Sx,4 [35, Theorem 3.1]
Synchronous ge-correlations Cg. Ax, a (tracial) [46, Theorem 5.5]
Bisynchronous qc-correlations Cg® | C(S%) (tracial) [47, Theorem 2.2]
QNS correlations Ons Tx,A @max Tx,4 [52, Theorem 6.2]
QNS ge-correlations Qqe Tx,A ®c Tx,a [52, Theorem 6.3]
QNS qa-correlations Qqa Tx,A ®min Tx,a [52, Theorem 6.5]
QNS bicorrelations QP! Tx ®max Tx [Theorem 5.4]

QNS gc-bicorrelations Qgic Tx ®c Tx [Theorem 5.5]

QNS qa-bicorrelations Qg Tx ®min Tx [Theorem 5.6]
Classical NS bicorrelations Cr. Sx Qmax Sx [Theorem 5.10]
Classical qc-bicorrelations C};é Sx ®c Sx [Theorem 5.10]
Classical qa-bicorrelations Cg}i Sx ®min Sx [Theorem 5.10]
Concurrent qc-correlations Qg Cx,a (tracial) [11, Theorem 4.1]
Concurrent ge-bicorrelations Qv | C(PUy;) (tracial) [Theorem 6.7]

In Section 7, we apply concurrent bicorrelations to study quantum graph
isomorphisms. We consider quantum graphs with respect to My, viewed
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as symmetric skew subspaces Y C CX ® CX [8, 51, 19, 52, 11]. We define
quantum isomorphisms between quantum graphs in terms of perfect QNS
strategies for a suitable quantum graph isomorphism game, building up
on the approach to quantum graph homomorphisms followed in [52]. In
Theorem 7.4, we characterise quantum commuting isomorphisms between
quantum graphs ¢,V € C¥ ® C¥ in terms of the existence of a bi-unitary
matrix U = (Ugz,q)z,a € Mx(B(H)) such that C(PUx+) admits a tracial
state 7, and

(3) USy®1U*CSy®B(H) and UYSy ® 1)UY™ C Sy @ B(H),

where S, and S’V are the traceless, symmetric subspaces, canonically as-
sociated to U and V), respectively. Note that condition (3) is a quantum
counterpart of the characterisation [1] of quantum isomorphisms of classical
graphs in terms of quantum permutations matrices that intertwine the rele-
vant adjacency matrices, through the replacement of quantum permutations
by bi-unitaries (see Remark 7.6). We further formalise the relations (3) in
Theorem 7.10, where we introduce a natural game algebra Ap g whose tra-
cial states encode the perfect quantum commuting strategies for the (U, V)-
isomorphism game. We note, in particular, that when &/ = V), the algebra
Ap o admits the structure of a compact quantum group, which seems to
generalise the quantum automorphism group of a classical graph. We leave
the study of these quantum groups for future work.

Finally, in Section 8, we compare the operational notion of quantum graph
isomorphism of Section 7 to the operator algebraic notions that have ap-
peared previously in the literature, and which have been based mainly on
adjacency matrices [40, 41, 9, 15]. We show, in Theorem 8.9, that the al-
gebraic quantum isomorphisms considered in the aforementioned works fit
into our framework as special cases. The arguments and ideas for the proof
of this theorem rely on the recent work of Daws on quantum graphs [15].
In Theorem 8.14, we establish a partial converse, exhibiting the precise con-
ditions, under which the algebraic and the operational notions of quantum
graph isomorphism coincide.

Acknowledgements. M.B. was partially supported by an NSERC discov-
ery grant. S.H. was partially supported by an NSERC Postdoctoral Fel-
lowship. I.G.T. was partially supported by NSF grants CCF-2115071 and
DMS-2154459. L.T. thanks the Wenner-Gren Foundation which supported
the visit of I.T. to Gothenburg in May 2022, and also Stiftelsen Lars Hiertas
Minne which supported the visit of L.T. to the University of Delaware in
October 2022.

2. PRELIMINARIES

In this section, we collect basic preliminaries on quantum no-signalling
correlations, set notation and introduce terminology. Let H be a Hilbert
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space. As usual, we denote by B(H) the space of all bounded linear operators
on H and sometimes write £(H) if H is finite dimensional. We denote by
I the identity operator on H and, if £,n € H, we let £én* be the rank one
operator given by (£7*)(¢) = (¢,n)¢. In addition to inner products, (-,-)
will denote the duality between a vector space and its dual. We let B(H)™"
be the cone of positive operators in B(H), and further denote by 7 (H) its
ideal of trace class operators and by Tr — the trace functional on 7 (H).

An operator system is a selfadjoint subspace S C B(H ), for some Hilbert
space H, containing Iy. If S is an operator system, the universal C*-cover
of S [34] is a pair (C}:(S), ), where C(S) is a unital C*-algebra and ¢ : § —
C7(S) is a unital complete order embedding, such that «(S) generates C;(S)
as a C*-algebra and, whenever K is a Hilbert space and ¢ : S — B(K) is a
unital completely positive map, there exists a *-representation 7y : Cji(S) —
B(K) such that my 0t = ¢. If S is a finite dimensional operator system then
its Banach space dual S¢ can be viewed as an operator system [14, Corollary
4.5]. We refer the reader to [45] for information and background on operator
systems and completely positive maps.

We denote by | X| the cardinality of a finite set X, let HY = @,cx H and
write Mx for the space of all complex matrices of size | X| x | X|; we identify
My with £(CX) and set Ix = Icx. For n € N, we let [n] = {1,...,n}
and M,, = M,). We write (e;)zex for the canonical orthonormal basis of
CX, (€z,2')z,z’ex for the canonical matrix unit system in My, and denote
by Dx the subalgebra of Mx of all diagonal matrices with respect to the
basis (ez)zex. If V is a vector space, we write Mx (V) for the space of all
X x X matrices with entries in V; we note that there is a canonical linear
identification between Mx (V) and Mx ® V. Here, and in the sequel, we use
the symbol ® to denote the algebraic tensor product of vector spaces.

For an element w € My, we denote by w' the transpose of w in the
canonical basis, and write @ for the complex conjugate of w; thus, @ = (w')*.
The canonical complete order isomorphism from My onto its dual operator
system M;i( maps an element w € Mx to the linear functional f, : Mx — C
given by f,(T) = Tr(Tw"); see e.g. [48, Theorem 6.2]. We will thus consider
Mx as self-dual with the pairing

(4) (p.w) = (pw) = Tr(pu).

On the other hand, note that the Banach space predual B(H ). can be canon-
ically identified with 7 (H); every normal functional ¢ : B(H) — C thus
corresponds to a (unique) operator S, € T(H) such that ¢(T") = Tr(T'Sy),
T € B(H). In the case where X is a fixed finite set (which will sometimes
come in the form of a Cartesian product), we will use a mixture of the two
dualities just discussed: if w,p € Mx, S € T(H) and T € B(H), it will be
convenient to continue writing

(p@T,w®S) = Tr(pw") Tr(TS).
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If X and Y are finite sets, we identify Mx ® My with Mx«y and write
Mxy in its place. Similarly, we set Dxy = Dx ® Dy. For an element
wx € Mx and a Hilbert space H, we let L, : Mx ® B(H) — B(H) be the
linear map given by L, (S ® T) = (S,wx)T. If H = CY and wy € My,
we thus have linear maps L, : Mxy — My and L, : Mxy — Mx; note
that

(Lux (R), py) = (R,wx @ py), R€E Mxy,py € My,
and a similar formula holds for L, . We let Trx : Mxy — My (resp. Try :
Mxy — Mx) be the partial trace; thus, Trx = Ly, (resp. Try = Lyz,.).

Let X, Y, A and B be finite sets. A quantum channel from Mx into M4
is a completely positive trace preserving map ® : Mx — M4. A quantum
correlation over (X,Y, A, B) (or simply a quantum correlation if the sets are
understood from the context) is a quantum channel I" : Mxy — Map. Such
a I' is called a quantum no-signalling (QNS) correlation [20] if

(5) Tral'(px ® py) =0 whenever Tr(px) =0
and
(6) Trpl'(px ® py) =0 whenever Tr(py) = 0.

We denote by Qs the set of all QNS correlations.

A stochastic operator matriz over (X, A), acting on a Hilbert space H, is
a positive block operator matrix E = (Era' aa)aa aa € Mxa(B(H)) such
that Tr4 E=1 A QNS correlation I' : Mxy — Mapg is quantum commuting
if there exist a Hilbert space H, a unit vector £ € H and stochastic operator
matrices F = (Er2' a0 )ea a0 and F= (Fyybp )yy b o0 H such that

Ex7x/7a?a// Fy7y/ 7b7b/ = Fy’y/7b7bl E:E’m,7a7a,

forall z,2/ € X, y,y/ €Y, a,d € A, b,V € B, and
(7) F(EI@/ X €y?y/) = Z Z <Em,:p’,a,a’Fy,y’,b,b’§a £> €a,a’ X €l

a,a’ €AbYEB

for all x,2’ € X and all y,y € Y. Quantum QNS correlations are defined
as in (7), but requiring that H has the form Hy ® Hp, for some finite
dimensional Hilbert spaces Hy and Hp, and Ej 3/ 4 0 = Ez@/,a’a/ ® Ip and
Fyyppy = IA®Fy’yr’b7br, for some stochastic operator matrices (Ex,m',a,a') and
(Fy,y’,b,b’)a acting on H 4 and H g, respectively. Approzimately quantum QNS
correlations are the limits of quantum QNS correlations, while local QNS
correlations are the convex combinations of the form I' = Zle NP @ Uy,
where ®; : Mx — M4 and ¥; : My — Mp are quantum channels, ¢ =
1,...,k.

We write Qqe (resp. Qqa, Qq; Qioc) for the (convex) set of all quantum
commuting (resp. approximately quantum, quantum, local) QNS correla-
tions, and note the inclusions

Qloc - Qq - Qqa - Qqc c Qns-
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Recall that a (classical) no-signalling (NS) correlation is a family p =
{(p(a,blz,y))ap : (x,y) € X x Y} of probability distributions over A x B,
such that

> p(a,blz,y) = pla,blz,y), ©€X,y,y €Y,a€ A,
beB beB

and

> pla,bla,y) =D plabla’,y), 2’ € X,yeY,beB
acA acA

(see e.g. [35, 46]). We denote the (convex) set of all NS correlations by Cps.
With a correlation p € C,s, we associate the classical information channel
I'y : Dxy — Dag, given by

(8) Fp(eﬂfyx ® €y7y) = Z Zp(a” b|‘T’ y)ea,a & €bb-

acAbeB

The subclasses C;, of Cys, for t € {loc, q, qa, qc}, are defined as in the previous
paragraph, but using classical stochastic operator matrices, that is, stochas-
tic operator matrices of the form F = ZIGX EaEA €ra ® €q,qa @ By o. Note
that the condition for E being stochastic is equivalent to the requirement
that (Ey.q)aca is a positive operator-valued measure (POVM) for all z € X.
We note the inclusions

Cloc c C‘q C an c ch c Cns>

all of which are strict: Cjoc # Cq is the Bell Theorem [4], Cq # Cqa is a
negative answer to the weak Tsirelson Problem [49] (see also [21, 50]), and
Cqa # Cqc — in view of [25, 29, 44], a negative answer to the announced
solution of the Connes Embedding Problem [28].

3. BISTOCHASTIC OPERATOR MATRICES

In this section we define and examine bistochastic operator matrices,
which constitute a specialisation of stochastic operator matrices [52, Sec-
tion 3] to the new context to be considered herein. Let X be a finite set,
and set A = X. The distinct symbols X and A will continue to be used
to indicate the variable with respect to which a partial trace is taken; the
symbol X usually refers to the domain of a quantum channel, while A — to
its codomain.

Definition 3.1. Let H be a Hilbert space. A block operator matrix £ =
(Em’z@a,a/)x oo € (MxA®B(H))" is called a bistochastic operator matrix

if
TraFE =Ix®Ig and TrxFE =14 Ig.
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3.1. Factorisation. A block operator matrix V' = (Vg 4)qzex, where V, 5 €
B(H, K) for some Hilbert spaces H and K, will be called a bi-isometry if V'
and V' := (V,4)awex are isometries as operators in B(HX,KX).

Theorem 3.2. Let H be a Hilbert space and E € (Mxa @ B(H))". The
following are equivalent:

(i) E is a bistochastic operator matriz;
(ii) there exist a Hilbert space KK and operators Vy , € B(H,K), z,a € X,
such that (Vo g)azex is a bi-isometry and

(9) Ex,:v’,a,a V Va ) JZ',.CE/, a, a e X.

Proof. (ii)=-(i) Since V is an isometry,

Zme aa—z am’—ézx’IH7

aeX aeX

and hence Tr oE = Ix ® Iyy. Since V' = (Vo z)z,q is an isometry,

Zszaa’—Z ax—éaa’IH7

zeX zeX
and hence Tr xF =1 ® Ig.

(i)=(ii) Suppose that E = (E; 4 a.a/)z.a'.a,a’ 15 & bistochastic operator
matrix acting on H and set E, o = (Eyy a4/ )zas @, 0 € A; thus, E, o €
Mx @ B(H). Let ® : Mgy — Mx ® B(H) be the linear map, given by
P(eqq) = Equ, a,a’ € A. By Choi’s Theorem, ® is a unital completely
positive map and, by Stinespring’s Theorem, there exist a Hilbert space K,
an isometry V : (CX ® H — K and a unital *-homomorphism 7 : M4 —
B(K) such that ®(T) = V*7(T)V, T € M4. Up to unitary equivalence,
K = CA® K for some Hilbert space K and 7(T) = T® I, T € M4. Write
Vag : H = K, a € A, x € X, for the entries of V, when V is considered
as a block operator matrix. As in [52, Theorem 3.1], we conclude that
Ey o aa = V Val ol T, e X, ad €A

Note that

(TrX o (I)) (6(1,(1’) =Trx (Ea,a’) = Z Ea:,:c,a,a’ = 5a,a’IH;
zeX
hence
(Trx o ®@) (p) = Tr(p) L, p€ Ma.
Thus, if w € T(H) and p € M4 then
(1) (pTr@)la) = (Tra(p® In),w) = (Trx 0 @) (p),w)
= (Trx (Vi (p @ Ig)V),w).

On the other hand, writing p = (pg,¢/)a,a’cx, We have

Vip®Ik)V = Z PaaV (€aw @ IK)V = Z Pa,a’V;xVa’,x' )
a,a’€X a,a’eX ,
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implying
(Trx (Vi@ Ix)V),w) = D > paa Tr(VegVarow)
zeX a,a’eX
= Z Paar Tr (Z Vafoa/,mw> :
a,a’€X zeX

Now (10) implies that

" (Z Vaﬁxv“"ww> =0 Tr(w), a,d € X.

zeX
The latter equality holds for every w € T (H); thus,

*
Z Va,:pva’,x = 5a,a’IK>
rzeX

that is, V' is an isometry. O

3.2. The universal operator system. Recall [27, 58] that a ternary ring
is a complex vector space V, equipped with a ternary operation [-,-,-] :
Y xV xV — V, linear on the outer variables and conjugate linear in the
middle variable, such that

[s,t, [u,v,w]] = [s, [v,u, t],w] = [[s, t,u],v,w], s,t,u,v,w e V.

A ternary representation of V is a linear map 6 : V — B(H, K), for some
Hilbert spaces H and K, such that

0 ([u,v,w]) = 0(u)f(v) O(w), u,v,we .
We call § non-degenerate if span{€(u)*n: v € V,n € K} is dense in H. A
(concrete) ternary ring of operators (TRO) [58] is a subspace U C B(H, K)
for some Hilbert spaces H and K such that S,T, R € U implies ST*R € U.
We refer the reader to [6, Section 4.4] for details about TRO’s and their
abstract versions that will be used in the sequel.

Let Vg)( be the ternary ring, generated by elements v, ;, a,z € X, satis-
fying the relations
(11)
5 [Ua”,x”vva,xava,x’] :6x,m’va”,m” and § {Ua”,w”uva,xava’,a:] = 5a,a’va”,a:”,
acX zeX

for all z,2’, 2", a,a’,a” € X. Note that relations (11) are equivalent to

(12) Z[u,va’z,va@/] =0gu and Z[uava,x,va’,x] =0q,0/U,

acX zeX
for all z,2’,a,a’ € X and all v € V$. Conditions (12) imply that the
non-degenerate ternary representations 6 : V% — B(H, K) correspond to
bi-isometries V' = (V, 2)a, via the assignment V, , = 6(v,z); in this case,
we write § = 0y . Following [52, Section 5], we let 6 = ®y 6y, where in the
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direct sum we have chosen one representative from each unitary equivalence
class of bi-isometries and the cardinality of the underlying Hilbert spaces are
bounded by that of V. The assignment ||ul| := [|0(u)| defines a semi-norm
on Vg(; we set Vx = V&/ker é, observe that Vx is a TRO, and continue
to write v, for the images of the canonical generators of V% under the
quotient map q : VQ( — Vx. The maps 6 and Oy (for a bi-isometry V) give
rise to corresponding ternary representations of Vx, which we denote in the

same way.
Let Cx be the right C*-algebra of the TRO Vx (so that, up to a *-

~ ~

~

isomorphism, Cx = span(0(Vx)*0(Vx))), write e o/ a0 = Vs 1Va/ar, and
let

/ /
Tx =span{ez o/ g0 : @, 2 a,a" € X},

viewed as an operator subsystem of Cx. It is immediate that

(13) (ez,x’,a,a’)x,m’,a,a’ S MXX (CX)Jr

and that the relations

(14) Z €x.a’bb = 6z,x’1 and Z €yy,a,a’ = 5a,a’17 Z, :E/, a, a’ S X,
beA yeX

hold true. For a bi-isometry V', acting on the Hilbert space H, we write
my : Cx — B(H) for the *-representation of Cx, given by

(15) 7wy (S*T) = 0y (S)*0v(T), S,T € Vx.
Lemma 3.3. The following hold true:

(i) Every non-degenerate ternary representation of Vx has the form 6y,
for some bi-isometry V.
(ii) The map 0 is a faithful ternary representation of Vx.
(iii) Fvery unital *-representation m of Cx has the form my, for some
bi-isometry V.

Proof. The arguments are similar to the ones in [52, Lemma 5.1] where
a version of our current setup is considered for isometries (that are not
necessarily bi-isometries). We address (iii) for the convenience of the reader.
Let 7 : Cx — B(H) be a unital *-representation. Then there exists a
ternary representation 6 : Vx — B(H, K) such that =(S*T) = 0(S)*0(T),
S, T € Vx4 (see e.g. [5, Theorem 3.4] and [23, p. 1636]). Since 7 is unital,
6 is non-degenerate. By the universality of Vx described in (i), there exists
an operator matrix V' = (V, ;), whose entries satisfy the relations (11), such
that = 0y, and hence ™ = my. O

Let Vx 4 be the universal TRO of an isometry (044 )q,2zex, defined sim-
ilarly to the TRO Vx [52, Section 5]. Thus, the TRO Vx 4 arises from a
ternary ring, whose canonical generators 9, ,, *,a € X, are required to sat-
isfy only the first of the relations (11). We let Cx, 4 be the right C*-algebra
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of Tx a. Letting € o a0 = U} ;0o 0, T, 2',a,0" € X, we write
~ / /
(16) TX,A = Span{ea:,x’,a,a’ 1T, T,a,a € X}a

viewed as an operator subsystem of Cx 4 [52]. It was shown in [52, Theorem
5.2] that, for a Hilbert space H, the unital completely positive maps ¢ :
Tx,a — B(H) correspond to stochastic operator matrices (Ey 1 q.0/)a.2' 0.0’
via the assignment ¢(eg a2/ aa/) = Fra/aa- We next provide a bistochastic
version of this fact, to be used subsequently.

Theorem 3.4. Let H be a Hilbert space and ¢ : Tx — B(H) be a linear
map. Consider the conditions

(i) ¢ is a unital completely positive map;
(ii) (¢(€x,x',a,a’))$@/’a7a/ € Mxa®B(H) is a bistochastic operator matriz;
(iii) there exists a unital *-representation m: Cx — B(H) such that ¢ =
|75 5
and
(i) ¢ is a completely positive map;
(i) (Dleraaa))yar aw € (Mxa @ B(H))T.
Then (i)& (ii)< (iit) and (i’)<(ii’). Thus, the pair (Cx,t), where ¢ is the
inclusion map of Tx into Cx, is the universal C*-cover of Tx.
Moreover, if (Ew,x/’aﬂ/)xm, ad! 1s a bistochastic operator matrix acting on
a Hilbert space H then there exists a (unique) unital completely positive map
¢ : Tx — B(H) such that ¢(eg o a,0') = Fua aa for al z, 2’ a,d .

Proof. (1)=-(ii) By Arveson’s Extension Theorem and Stinespring’s Theo-
rem, there exist a Hilbert space K, a *-representation 7 : Cx — B(K)
and an isometry W € B(H, K), such that ¢(u) = W*r(u)W, u € Tx.
By Lemma 3.3, @ = 7y for some bi-isometry V = (Vyz)a2- By (13),
E = (7T(€x7a;/7a,a/))x’x,’a’a, € (Mxa®B(K))", and hence

((ﬁ(e;p’z/’a,al)) = (IX QRIs® W)*E(IX QRIp® W) < (MXA & B(H))+ .
In addition,
Z W*%Tx%,m’w = 5$,$/W*W = 5x,x’la x,x/ € X,

beX

and
S WV Vg W =000 W*W =601, ad €X,
yeX

that is, the operator matrix (qﬁ(ex’x/,a’a/))x’m,’a,a, is bistochastic.

(ii)=-(iii) By Theorem 3.2, there exist a Hilbert space K and a bi-isometry
V= (Va,x)a,x S B(HX, KX) such that

¢(e:r:,x’,a,a’) = Vayia;va’,x’v L, wla a, adeX.
Recalling (15), we have

7I-V(ex,x’,a,a’) = QV(Ua,x)*eV(Ua’,:L") = Vc:xVa/,:E = ¢(€m,x’,a,a’)7
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and hence the *-representation my of Cx is an extension of ¢.

(iii)=(i) is trivial.

(i’)=(i1") is a direct consequence of (13) and the fact that Tx is an oper-
ator subsystem of Cx.

(ii’)=(i’) Let T' = ¢(1) and note that, for any x,a € X, we have

(17) Z E:(:,x,b,b = Z (b(ex,m,b,b) =T= Z ¢<ey,y,a,a) = Z Ey,y,a,a-

beX beX yeX yeX

Assume first that T is invertible. Following the proof of [52, Proposition
5.4], let ¢ : Tx — B(H) be the map given by

(18) Yu) =TV 2pw) T2, weTx.
Setting F' = (w(em,m/,a@/)) we have that

z,x’ a,a’’
F= (IXA ® T’1/2> E (IXA ® T’1/2> >0,

and (17) shows that F' is a bistochastic operator matrix. By the implication
(ii)=(i), ¥ is completely positive, and hence so is ¢, as ¢(-) = T/ 2ep(-)T/2.
Now relax the assumption that T be invertible. Using the implication
(ii)=(), let f : Tx — C be the state given by f(ey s/ aa’) = ﬁéw,x/éa,a/
and, for € > 0, let ¢ : Tx — B(H) be given by ¢c(u) := ¢(u) + ef (u)l.
Then ‘
(¢E(exvxlvava,»x,x’,a,a’ =E+ m
and ¢.(I) = T+el is invertible. By the previous paragraph, ¢, is completely
positive and, since ¢, —¢—0 ¢ in the point-norm topology, we conclude that
¢ is completely positive.

Ixx

Finally, suppose that E = (Ex,x/’aﬂ/) is a bistochastic operator

z,x’ a,a’
matrix acting on H. Letting V' be the bi-isometry, associated with E via
Theorem 3.2, we have that the completely positive map ¢ := 7y |7, satisfies

the equalities ¢(€z 47 0.0/) = Ep o ae for all z,2',a,d. O

We note that, if S is an operator system, its Banach space dual S can
be equipped with a natural matricial order structure. To this end, we recall
[14, Section 4] that any matrix ¢ = (¢ ;);';—; € M, (S89) gives rise to a linear
map Fy : S — M, defined by letting

(19) Fy(u) =Y dij(u)eiy,

ij=1
and set
M (SHT = {p € M, (S%) : F, is completely positive}.

It was shown in [14, Corollary 4.5] that, if S is a finite dimensional opera-
tor system then the (matrix ordered) dual S is an operator system, when
equipped with a suitable faithful state as an Archimedean order unit. It is
straightforward to verify that, in this case, Sdd~ 8.
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We identify an element T € Mx 4 with its matrix (A; 2/ 4.0/ ).z’ ,a,a’» Where
Nea'aa = (Tew @eq), e @eq), z,2' € X,a,d € A
Let

ﬁX,A = {()\%33/,(1’(1/) €EMxa:3dceCs.t. Z Aol aa = (Sz@/C, x,x’ S X}
acA

and consider L£x 4 as an operator subsystem of My 4. It was shown in [52,
Proposition 5.5] that the linear map A : 7}1, 4 — Lx, 4, given by

Ag) = (¢(éx,x’,a,a’))m7zl7a’a/€X )
is a unital complete order isomorphism between ’7}} 4 and Lx 4. Let

Lx ={( e a0 )es aa € Mxx : there exists c € C s.t.

E Aza/ bp = Oz qaC and E Ayy,a.a0 = Oa.arc, for all z, 2 a,a" € X}.
beX yeX

Remark 3.5. If C = (A\; 2/ 0.4/ )za/ a0 € Mxa is a matrix and ci,cp are
scalars such that >y v Ay o pp = Oz orc1 forallz, o’ € X and 35 oy Ay =
da,arC2 for all a,a’ € A, then

Proposition 3.6. The linear map A : 7}1 — Lx, given by
(20) A(d)) = (¢(e$v$/:“ﬂal))x,x’,a,a/GX

is a well-defined complete order isomorphism.

Proof. The arguments follow the proof of [52, Proposition 5.5, and we only
highlight the required modifications. Using Theorem 3.4, we see that the
map Ay : (7}})Jr — LT, given by

A (8) = (Beast o))y a0 (TR)

is well-defined; by additivity and homogeneity, Ay extends to a (C-)linear
map A : ’7}%1 — Lx. A further application of Theorem 3.4, combined with
Theorem 3.2, shows that A is completely positive and bijective.

Let ¢;; € T4, 4,5 = 1,...,m, be such that the matrix (A(gf)i,j))z}:l is
a positive element of M,, (Lx). Let ® : Tx — M,, be given by ®(u) =
(¢i,5(w)i%=1- Then (®(exar,a,a)) € M, (Lx)". By Theorem 3.4, ® is com-
pletely positive, that is, (¢i7j)?7j:1 e M, (’T;})Jr. Thus, A~! is completely
positive, and the proof is complete. O

Corollary 3.7. The linear map | : Tx — Tx, given by f(€r s/ aa) =
€' z.al,a, 15 a complete order automorphism.
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Proof. The map ® : Mxx — Mxx, given by ®(ep0 ® €¢/) = €0/ ®
€x,a, 1 a (unitarily implemented) complete order automorphism. Further,
®(Lx) = Lx, and hence ® induces a complete order automorphism @ :
Lx — Lx. Using Proposition 3.6, we have that its dual ®; a complete
order automorphism of 7x. For z,2',a,d’ € X and T = (A 0a’) € Lx,
we have

<(I)Ek](6w,x’,a,a’)’ T> = <€:C,J:’,a,a” CI)D(T)> = )‘x’,x,a’,a = <f(€x,x’,a,a’)’ T> 5

and the proof is complete. O
Write
@) Femsnd X e —fod s € X |
yeX

thus, Jx is a linear subspace of the operator system Tx 4 defined in (16).
Let J. x be the closed ideal of Cx 4, generated by Jx. Write gx for the
quotient map from Tx 4 onto Tx a/Jx.

Recall that, if S is an operator system, a subspace J C § is called a
kernel [33, Definition 3.2] if there exist an operator system R and a unital

completely positive map (equivalently, a completely positive map) ¢ : & —
R such that J = ker(¢).

Proposition 3.8. The space Jx is a kernel in Tx 4 and the linear map ¢,
given by

(22) 2 (QX (éx,m’,a,a’)) = €xa'aas T .’El, a, a e X,

is a well-defined complete order isomorphism from Tx a/Jx onto Tx. In
addition, Cx a/Jx = Cx, up to a canonical *-isomorphism.

Proof. Let o : Lx — Lx a be the inclusion map. Since Lx and Lx o are
operator subsystems of Mx x, we have that « is a complete order embedding.
By [24, Proposition 1.15], [52, Proposition 5.5] and Proposition 3.6, its dual

o : Tx,a — Tx is a complete quotient map. Note that, if 7" € Lx and
a,a’ € X then

<a* Z €yy.aa ~ Oaal 7T> = <Z Cyy.aa 5a,a’1’a(T)> =0,

yeX yeX
that is, Jx C ker(a*).
Consider the canonical linear mappings
Tx.a— Tx,.a/TIx — Tx a/ ker(a) = Tx,

of which the first two are surjective linear maps whose composition is com-
pletely positive, while the third is a complete order isomorphism (note that
the quotient Tx 4/Jx is linear algebraic). Dualising and using Proposition
3.6, we obtain the chain of maps

(23) Lx = (Tx.a/ker(a*)* = (Tx.a/Tx)* = Lx.a.
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By the definition of Jx (see (21)), the elements of (Tx 4/Jx)" correspond,
via the last of the three maps in (23), to elements of the subspace Lx of Lx 4.
It now follows that the middle map in (23) is a linear isomorphism, and hence
ker(a*) = Jx. In particular, Jx is a kernel in Tx 4 and (TX,A/jX)d =
Lx complete order isomorphically. Dualising, we see that Tx a/Jx = Tx
complete order isomorphically via the map ¢ defined in (22).

By the universal property of Cx, there exists a unital *-epimorphism 7 :
Cx,a — Cx such that 7(€; 4 4.0/) = €z 0/ .0.0’, T, 2" a,a’ € X. Let J = ker(n)
and 7 : Cx,a/J — Cx be the induced *-isomorphism. We have

™ (5a,a’1 - § ex,:c,a,a’) = 5a,a’1 - E €x,x,a,0’ = 0;

zeX rzeX

thllS, jX - \.7
The block operator matrix (é%x/,aﬂ, + jX> is bistochastic, and

z,x’ a,a’
hence it gives rise, via Theorem 3.4, to a canonical unital surjective *-
homomorphism 7’ : Cx — Cx,a/Jx. We thus have a chain of unital *-
homomorphisms

Cx =5 Cxoa/Tx — Cxa)T = Cx,

whose composition is the identity. It follows that J = Jx, and the proof is
complete. O

In the sequel, write ¢x : Cx .4 — Cx for the quotient map arising from
Proposition 3.8, and continue to write gx for the quotient map from Tx 4
onto Tx. Before formulating the next corollary, we recall that an operator
system § is said to possess the local lifting property [33, Section 8] if for every
finite dimensional operator subsystem Sy C S, C*-algebra A, and closed
ideal J C A, every unital completely positive map ¢g : So — A/J admits
a lifting to a completely positive map ¢ : Sp — A (that is, if ¢ : A — A/ T
denotes the quotient map, the identity ¢ o ¢ = ¢ holds).

Corollary 3.9. The operator system Tx has the local lifting property.

Proof. By [52, Corollary 5.6], Tx, 4 is an operator system quotient of Mxx
while, by Proposition 3.8, Tx is an operator system quotient of Tx 4. It
follows that 7Ty is an operator system quotient of Mx x. The statement is
now a consequence of [31, Theorem 6.8]. (]

Realising the commuting tensor product of operator systems as an opera-
tor subsystem of maximal tensor products has been of importance from the
beginning of the tensor product theory in the operator system category [32].
By Theorem 3.4 and [32, Theorem 6.4], for an arbitrary operator system R,
we have Ty ®c R Ceoi. Cx @max Oy (R); the next proposition establishes a
stronger inclusion.
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Proposition 3.10. Let R be an operator system. Then Tx ®c R Ccoi
CX Qmax R.

Proof. Let + : Tx — Cx be the inclusion map. By the functioriality of
the commuting tensor product and the fact that the commuting and the
maximal tensor products coincide provided one of the terms is a C*-algebra
[32, Theorem 6.7], t ®id : Tx ® R — Cx ®max R is a (unital) completely
positive map. Assume that

w e Mn (TX & R) N Mn (CX Qmax R)Jr y

let H be a Hilbert space, and ¢ : Tx — B(H) and ¢ : R — B(H) be
unital completely positive maps with commuting ranges. By Theorem 3.4,
¢ extends to a *-homomorphism 7 : Cx — B(H). Since Cx is generated by
Tx as a C*-algebra, 7(u) € ¥(R)’ for every u € Cx; thus,

(¢ )™ (w) = (- ¢)"™ (w) € M, (B(H))™,

and hence w € M, (Tx ®¢ R)+. It follows that ¢ ® id is a complete order
embedding. O

4. QUANTUM MAGIC SQUARES

In [16], the concept of a quantum magic square was defined and studied,
exhibiting examples which show that not every quantum magic square di-
lates to a magic unitary. The aim of this section is to present an operator
system viewpoint on this result, linking the dilation properties of a quantum
magic square to complete positivity of canonical maps, associated with it.
The universal operator system of a quantum magic square and its properties
will further be used in Section 5.

Recall [16] that a block operator matrix E = (E; 4)zecx, Where Ey o €
B(H), z,a € X, is called a quantum magic square if E;, > 0 and

> Ewp=)» Eya=1 foralzacX.
beX yeX

The quantum magic square E is called a magic unitary (or a quantum per-
mutation) if E;, is a projection for all z,a € X (see e.g. [36, Definition
2.3]). Noting that Dxx @ B(H) C Mxx ® B(H), we have that F is a quan-
tum magic square precisely when Zx acx €x,z @ €aa @ Ey 4 is a bistochastic
operator matrix in Mxx ® B(H).

Two subclasses of quantum magic squares were singled out in [16] (see
[16, Definition 5 and Example 8]). We will call a quantum magic square
(Ez.a)z.a, acting on a Hilbert space H, dilatable if there exists a Hilbert
space K, an isometry V : H — K, and a quantum permutation (Py4)z.q
acting on K, such that

(24) Epo=V*PooV, z,0a€X.

The quantum magic square (Ey q)zq Will be called locally dilatable if (24)
holds for a commuting family {P; ¢} q that forms a quantum permutation.
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It is clear that, up to unitary identifications, condition (24) can be replaced
by the conditions E, , = QP; ,Q, where we have assumed that # C K, and
Q) : K — H is the orthogonal projection.

For z,a € X, we set e; 4 1= €3 4.4, and

Sx :=span{e, : x,a € X},
viewed as an operator subsystem of Tx.
Theorem 4.1. Let H be a Hilbert space and ¢ : Sx — B(H) be a linear

map. Consider the conditions

(i) ¢ is a unital completely positive map;

(i) (¢(exa)), , 15 a quantum magic square,
and

(i) ¢ is a completely positive map;

(i) (¢(era)),q € (Pxx ©B(H)) .
Then (i) (ii) and ()& (i°). Moreover, if (Era),,
square acting on a Hilbert space H then there exists a (unique) unital com-
pletely positive map ¢ : Sx — B(H) such that ¢(eyq) = Ezq for all
r,a € X.

1S a quantum magic

Proof. (1)=(ii) Let ¢ : Sx — B(H) be a unital completely positive map, for
some Hilbert space H. By Arveson’s Extension Theorem, ¢ has a completely
positive extension ¢ : Tx — B(H). Setting Ey 4 q.a := &(ex,x/7a7a/), Theo-
rem 3.4 implies that (E; 4 4.4/ )z,2’ 0,0’ 15 @ bistochastic matrix. In particular,
(gg(ex,a))mja, that is, (¢(€z.4))z,q, IS & quantum magic square.

(ii)=(i) Set Ey 4 := ¢(es,q) and EIJ/,a’a/ =0y 4000 Epa, x,2',a,d € X.
Then (E’x7mr7a,a/)x7x/7a7a/ is a bistochastic operator matrix and, by Theorem
3.4, there exists a (unital) completely positive map ¢ : Tx — B(H) such
that gg(ex’xga’a/) = E‘x,x/,aﬂ/, z, 2’ a,a € X. As ¢ = d|sy, the map ¢ is
completely positive.

(i’)=(il") is a direct consequence of Theorem 3.4 and Arveson’s Extension
Theorem.

(ii")=(") Set Eyq = ¢(€za), v,a € X. Forx € X, let T'= ) 5 Ey;
then T € B(H)". Assume first that T is invertible. Then the matrix
(Tﬁl/zEw,anl/Q)%a is a quantum magic square; by the implication (ii)=-(i),
the linear map ¢ : Sx — B(H), given by v¥(ezq) = T*1/2Em7aT*1/2, is
completely positive. Since ¢(u) = TY2p(u)T?, v € Sy, the map ¢ is
completely positive. If T is not invertible, we fix a state f : Sx — C and,
for € > 0, consider the map ¢, : Sx — B(H), given by ¢(u) = ¢(u)+ef(u)l.
The proof now proceeds similarly to the proof of the implication (ii’)=(i")
of Theorem 3.4.

The last statement in the theorem follows from the proof of the implication

(i)=(i). O
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Let
Mx =A{(tz,a)ea €EDXX : Dpex Mr,b:Zyex Py T,a € X},

considered as an operator subsystem of Dx x. Since every operator system
is spanned by its positive elements, M x is the operator system spanned by
the scalar bistochastic matrices in Dxx.

Corollary 4.2. We have that S& = Mx, up to a canonical unital complete
order isomorphism.

Proof. Let M}J be the convex set of all scalar bistochastic matrices, that
is, matrices T' = (t3.4)z,a € M} with Y, cx tza = 1, # € X. By Theorem
4.1,if T € M},l then the map v(T) : Sx — C, given by v(T)(ez.a) = tza,
is a (well-defined) state on Sx. Writing an arbitrary element T' € Mx
as a linear combination T = Zle AT, where T; € M}J, i=1,...,k,
set y(T) := Zle Aiv(T;). The map « is (linear and) well-defined: if T; =
(t5h) € My, i=1,....k and X5 | A Ti = 0, then -5 | At = 0 for all
x,a € X, which implies that Zle Xiy(T;) = 0.

Let E = (E("’j))%:1 € M,,(Mx)*t and, using the canonical shuffle, write
E = (Eyy)z,y, where E, , € M, z,y € X, are such that

(25) > Euy =Y Ewvy zyeX

yeX 'eX
Using Theorem 4.1, we see that there exists a completely positive map ¢ :
Sx — M, such that ¢(eyy) = Ezy, z,y € X. On the other hand, the
element 7" (E) of M, (S$) gives rise, via (19), to a linear map Fomypy -
Sx — M,,. We have that

n
FA/(n)(E) (ea:,a) = Z Y (E(z’])> (ez,a>€i,j = Ew,y = ¢(6x,a)7 T,a < X:
ij=1
that is, Fw‘”)( B = ¢. In particular, Fﬂ/m)( B) is completely positive, and it
follows that the map v is completely positive.

It follows from Theorem 4.1 that the (linear) map ~ is surjective; thus,
it is injective. We show that y~! is completely positive. Assume that W €
Mn(Sgi()J’; this means that the linear map Fy : Sx — M,, canonically
associated with W, is completely positive. Set E, , := Fyy(egy), 2,y € X;
by Theorem 4.1, E := (Egy)ey € (M, ® Mx)". This, in turns, means
that (y~1)"™(W) € (M,, ® Mx)*t. Since relations (25) are satisfied for the
matrices E, ,, we have that, in fact, (y~1)™ (W) € (M,, ® Mx)*, and the
proof is complete. O

Let
j;f = span {€; /a0 T # T oraFadl;

note that J ;f is a linear subspace of the operator system Tx.
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Proposition 4.3. The space j;f is a kernel in Tx and, up to a unital
complete order isomorphism, Sx = TX/j;;.

Proof. By Theorem 3.4, there exists a unital completely positive map g :
Tx — Sx, such that 8(ey o a,0/) = 03,2000/ €z,0, T, 2" a,a’ € X. Tt is clear
that J. ;{é C ker(f). On the other hand, by Proposition 3.6 and Corollary
4.2, we have a chain of four canonical linear maps

(26)  Mx =S — (Te/ka(®) — (Tx/TF)" — Th= Lx:

of which the first, the second and the fourth are completely positive. In
addition, the image of Mx in Lx under the composition of these maps
coincides with itself; thus, ker(8) C J. ;(é and hence J )7; is a kernel in Tx.
Dualising the second map in (26), we further obtain a chain

Tx/j;(é - Sx = Tx = Tx/JL

of completely positive maps, whose composition is the identity map on
Tx/J ;; . On the other hand, we have a chain of canonical completely positive
maps

Sx = Tx = Tx/J% — Sx,

whose composition is the identity map on Sx. It follows that Sx = Tx /J- )7; ,
up to a canonical complete order isomorphism. O

In Theorem 4.5 below, we characterise the dilatable and locally dilatable
quantum magic squares in operator system terms. Let C (S}E) be the univer-
sal C*-algebra generated by projections p, o, z,a € X, with the properties

pr,bz Zpy,azl, z,a € X

beX yeX

(thus, C(S%) is the universal C*-algebra of functions on the quantum per-
mutation group on X; see e.g. [9]). Write

Px =span{pzq: z,a € X},

viewed as an operator subsystem of C(S%).
Recall [48, Section 3] that the minimal operator system based on Px has
matricial cones M,,(OMIN(Px))*, given by

n
M, (OMIN(Px))" = {(ti;)ij € Ma(Px): Y Aidjti; € P,
ij=1
for all A\; € C,i € [n]},
and that the corresponding mazimal operator system based on Px has ma-
tricial cones M, (OMAX(Px))" generated, as cones with an Archimedean

order unit, by the elementary tensors of the form T'®u, where T' € M,I and
u € 73;.
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Proposition 4.4. There exist canonical unital completely positive maps
(27) OMAX(P_)() — Sx — Px.

Proof. By Theorem 4.1, the linear map q : Sx — Px, given by q(ezq) =
Dza, T,a € X, is (unital and) completely positive.

Suppose that ¢ € (S%)ﬂ by Proposition 4.3, ¢ can be canonically iden-
tified with a matrix (A\z,q)z,q i M;} By Birkhoff’s Theorem and the argu-
ment in the proof of Corollary 4.2, we can further assume that there exists
a permutation f : X — X such that A\; s = 0f(3).0, z,a € X. By the
universal property of C(Sy), the permutation f gives rise to a canonical
*-representation 7 : C(S%) — C. It follows that 7|p, : Px — C is (com-
pletely) positive. We thus obtain a canonical positive map r : S}i( — P%
which, by the universal property of the minimal operator system structure,
gives rise to a canonical completely positive map 831( — OMIN (P}i(); dualis-
ing, we have a canonical completely positive map OMAX(Px) — Sx.

Note that the composition of the maps in (27) is the identity map on Px;
hence q is invertible. Since q~! = r, we have that q~! is positive, completing
the proof. O

Theorem 4.5. Let H be a Hilbert space and E = (Eyq)zq be a quantum
magic square acting on H. Then

(i) E is dilatable if and only if there exists a completely positive map
¢:Px — B(H), such that ¢(pz.a) = Eza, ,0a € X;

(ii) E is locally dilatable if and only if there exists a completely positive
map ¢ : OMIN(Px) — B(H), such that ¢(pz.q) = Eza, x,a € X.

Proof. (i) Let P = (Py,4)z,q be a magic unitary on a Hilbert space K contain-
ing H such that, if Q) is the projection from K onto H, then E, , = QF; (),
x,a € X. By the universal property of C(S;;), there exists a unital *-
homomorphism 7 : C(S¥) — B(K) such that 7(pyq) = Pya, ¥,a € X. Let
¢ : Px — B(H) be the linear map, defined by ¢(u) = Qn(u)Q, u € Px.
As a compression of a completely positive map, ¢ is completely positive; by
construction, ¢(pz.q) = Eya, z,a € X.

For the converse direction, let ¢ : C (S%) — B(H) be a unital completely
positive extension of ¢, whose existence is guaranteed by Arveson’s Ex-
tension Theorem. Using Stinespring’s Theorem, let K be a Hilbert space,
7 : C(S%) — B(K) be a unital *-representation, and V : H — K be an
isometry, such that ¢(u) = V*r(u)V, u € C(SE). Letting Py, = m(pr.a),
we have that (Py4)z, iS a magic unitary that dilates E.

(ii) We first consider the case where n := dim(H) is finite. Identifying
B(H) with M,,, suppose that ¢ : OMIN(Px) — M, is a unital completely
positive map. Let

fo : M,(OMIN(Px)) — C
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be the canonical functional, associated with ¢ as in [45, Chapter 6]; thus,

Jo((wis)ig) = L > (blwij)ej e, (wig)ij € Ma(Px).

n

By [45, Theorem 6.1], fy is positive. By [48, Theorem 4.8], f, can be
canonically identified with an element of M,,(OMAX(P$))" (see [48, Section
3]). By Proposition 4.4, Corollary 4.2 and the definition of the maximal
operator system structure,

T
(28) fo=) aap,
=1
where oy € M and 8 € M,, 1 € [ry).
Assume that the representation (28) has the form fy = o ® 3, where
a € Mx and 8 € M,. In this case, ¢ is given by

(Z)(pm,y) = a%yﬁ, T,y € X.

In particular, if Py is the permutation unitary corresponding to the permu-
tation ¢ on X, and fy = Py ® 8, where 8 € M,,, then

0 otherwise,

Returning to the representation (28), use Birkhoff’s Theorem to write
ar =7y )\g)Pg, where the summation is over the permutation group of X,

the coefficients /\((f) are non-negative. Thus,

(29) fs= Py,
0

where 79 € M,I and the summation is over the permutation group of X. By
the previous paragraph,

Ery= {w:0(x) =y}, zacX.

Now [16, Theorem 12 and Remark 7] implies that (¢(psz,a))a,q is locally di-
latable, after noticing that the matrix convex hull of the set denoted cpIXD
therein coincides with the locally dilatable magic quantum squares over M,,.
The converse direction follows by reversing the given arguments.

We now relax the assumption on the finite dimensionality of H. For
simplicity, we consider only the case where H is separable. Fix a se-
quence (Qn)nen of projections of finite rank such that @, —p—0o [ in
the strong operator topology. Assuming that £ is locally dilatable, so is
(Ix ® Qn)E(Ix ® Q) for every n € N and hence, by the assumption, the
map ¢, : OMIN(Px) — B(QnH), given by QZ)n(px,a) = QnEraQn, z,0 € X,
i € I, is completely positive. Since ¢(u) = limy, o0 ¢n(u), in the weak
operator topology, u € Px, we have that ¢ is completely positive.
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Conversely, assuming that ¢ : OMIN(Px ) — B(H) is completely positive,
let ¢, : OMIN(Px) — B(QnH) be the (completely positive) map, given by
On(u) = Qnd(u)Qn, u € Px. Write fy, = > Py ® 'y(gn), where ’y(gn) €
B(QnH)" and the summation is over the permutation group of X. Let
Eéng = Z{'y@n) : 0(z) = y}; then EfJQ = QnE5;yQn. Since ||Egy || <1 for

every z,y € X, we therefore have that ||7én) | <1 for every n € N. We can

now choose successively weak™* cluster points of the sequences (vén)) ,
neN

and assume that

0

where 5 € B(H)™" for every permutation § of X, in the weak* topology of
Mx ® B(H). We further have that E,, = > {7 : 6(z) = y}. The proof
of the implication (a)=-(b) of [16, Theorem 12] implies, after replacing the
identity operator denoted I therein with Iz, that F is locally dilatable. [J

5. REPRESENTATIONS OF BICORRELATIONS

In this section, we define the notion of a bicorrelation and obtain repre-
sentations of the different bicorrelation types in terms of operator system
tensor products. We will use the main operator system tensor products,
introduced in [32]: the minimal (min), the commuting (c), and the maximal
(max). If 7 € {min, c, max} and ¢; : S; — T; are completely positive maps
between operator systems, ¢ = 1,2, we write ¢1 ®, ¢o for the correspond-
ing tensor product map from S§; ®; Sz into 71 @, T2 (note that this map is
well-defined by [32, Theorems 4.6, 5.5. and 6.3]).

We fix throughout this section finite sets X and Y, and let A = X and
B =Y. The symbols A and B will continue to be used for clarity, as needed.

5.1. Quantum bicorrelations. If I' : Mxy — Mxy is a unital quantum
channel then, after the canonical identification M)d(y = Mxy, its dual I'* :
Mxy — Mxy, defined via the formula

<F*(W)>P> - <w7r(:0>> =Tr (wp(p)t) y W,pE MXY7
is also a (unital) quantum channel.

Definition 5.1. A QNS correlation T' : Mxy — Mxy is called a QNS
bicorrelation if I'(Ixy) = Ixy and I is a QNS correlation.

We let QP be the set of all QNS bicorrelations. We next define different
types of QNS bicorrelations, motivated by the analogous definitions of QNS
correlation types. A QNS bicorrelation I' : Mxy — Mxy is quantum com-
muting if there exist a Hilbert space H, a unit vector £ € H and bistochastic
operator matrices F = (B2’ a0 w2 a0 a0d F= (Fyy' bt )yy by o0 H with
mutually commuting entries, such that the Choi matrix of I' coincides with

(30) (<Ex,:c’,a,a’Fy,y’,b7b’£a 5>)§::ZC:IZZ,
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(equivalently, relation (7) holds true). Quantum QNS bicorrelations are
defined similarly, but requiring that H has the form H4® Hp, for some finite
dimensional Hilbert spaces Hy and Hp, and E; ;40 = Ey 41 00 @ Ip, and

Iy

and (F), v pp), acting on H4 and Hp, respectively. Approzimately quantum
QNS bicorrelations are the limits of quantum QNS bicorrelations, while local
QNS bicorrelations are the convex combinations of the form I' = Zle ANiP;®
W;, where ®; : Mx — M4 and ¥; : My — Mp are unital quantum channels,
i=1,... .k

For t € {loc, q, qa, qc}, we let QP! be the set of all QNS bicorrelations of
type t.

ybpy =1a®Fy v, for some bistochastic operator matrices (Ey 4 q.47)

Remark 5.2. If t € {loc,q,qa,qc,ns} and I' € QP! then I'* € QPl. The
claim is part of the definition in the case where t = ns and straight-
forward in the case where t = loc. For the case t = qc, suppose that
E = (Epu a0 )z aa a0d F = (Fy )y are bistochastic operator
matrices with mutually commuting entries, such that the Choi matrix of
I" coincides with (30) Let Ea,a/,z,:p’ = E:r,x’,a,a’ and Fb,b/,y,y’ = Ly b
and set F = (Ea,a/@,x/)a’a/,x@r and F = (Fb,b’,%y’)b,b’,y,y/. We have that
E = Zx,x/’aﬂ, €a,a0 D€z ar @ Fy 4 o and hence Fisa unitary conjugation of
FE, implying that E > 0; similarly, F > 0. The claim now follows from the

- - bby.y
fact that the Choi matrix of I'* is equal to (<Ea,a/’x7x/Fb7b/7y,y/£, §>)a o

The case t = q is analogous, while t = ga is a consequence of the continuity
of taking the dual channel.

Remark 5.3. Suppose that I' € Q). is unital. Write

k
(31) r=Y ae e,
=1

as a convex combination, where ®; : Mx — Mx and V¥; : My — My are
quantum channels, i = 1,...,k. We have that 3% \®;(Ix) © Uy(ly) =
Ixy. It follows that 0 < ®;(Ix) ® ¥;(Iy) < Ixy; since Ixy is an extreme
point in the unit ball of My, we have that ®;(Ix) ® V;(Iy) = Ixy, for
every i = 1,...,k. Thus, there exist ¢; > 0 such that ®;(Ix) = ¢;Ix and
Ui(Iy) = Lly, for all i = 1,...,k. Replacing ®; (resp. ;) with S ®;
(resp. ¢;V;), we conclude that the representation (31) can be chosen with
the property that ®; and ¥; are unital quantum channels, : = 1,..., k, that
is, I' is automatically a local bicorrelation.

We write f, /5 (resp. fy7y/7b,b/), v,y ,b, b €Y, for the canonical gener-
ators of the operator system Ty (resp. Ty,p). If s is a linear functional on
Tx ® Ty or on Cx ® Cy, we write I'y : Mxy — Mxy for the linear map,



QUANTUM NO-SIGNALLING BICORRELATIONS 27

given by
(32)  Ts(ew ®@epy) = D > s(Cowan ® fyybt)an @ ey
a,a’€X bb'eY

We note that I'} is given by the identities

(33)  T%(eaw @)= >, D> s(Cosaw @ fyybw) e @ eyy-
zx'e€X yy' €Y

Clearly, the correspondence s — I'y is a linear map from the vector space
dual (Tx.a ® Ty,p)? into the space £L(Mxy) of all linear transformations on
Mxy.

Theorem 5.4. Let X and Y be finite sets and I’ : Mxy — Mxy be a linear
map. The following are equivalent:

(i) T is a QNS bicorrelation;

(ii) there exists a state s : Tx @max Ty — C such that T' = T.

Proof. (ii)=-(i) Suppose that s is a state of Tx ®max Ty such that I' = T,
and let § = s 0 (¢x ®max qv), where gx : Tx,a — Tx (resp. qv : Ty, = Ty)
is the quotient map (see the paragraph of equation (21)); we have that § is
a state of Tx 4 @max Ty,B. Since I' = I's, by [52, Theorem 6.2], I € Q5. In
addition,

F(IXY) = Z Z 5(€m,$,a,a’ & fy,y,b,b’)ea,a’ & €bb

z,a,0’€X y,bb'€Y

= Z Z 5a,a’5b7b’6a,a’ X ey = Ixy.

a,a’eX bb ey

We verify that I'* is no-signalling: for any wx = (Ag,¢/)a,er € Mx and any
wy = (o )ory € My with Tr(wy) = 0, by (33) we have

TryIT* (wX X wy)

= Try g E Aaa by S(€xar a0 @ fyy by )enar © €y
z,x’ a0’ €X y,y' bl €Y

= Z Z /\a,a/ﬂb,b’ Z 5(€:p,x’,a,a’ & fy,y,b,b’)ﬁx,x’

z,z’',a,a’'€X b €Y yey

= g § Aa,a’ﬂb,b’éb,b’S(em,:ﬂ’,a,a’ & 1)6r,m’

z,x’ a0’ €X bb €Y
= ( E ,Ufb,b> E Aa,aL’S(ea:,:c’,a,a/ ® 1)6z,ax’ =0.
beY z,x’ a0’ €X

Similarly, if wx € Myx has trace zero and wy € My is arbitrary then
TrxI™(wx ® wy) = 0 and hence I'* is no-signalling.
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a,a’ bbb’
) be the Choi matrix of I'; thus, the

(i)=(ii) Let C = (C;‘;Z:;z’f;,
entries of C' are given by
’ b b/
Cﬂ(ﬂz:z’:y:y’ = <F(€x,w/ ® €y ) €aa ® 6b,b’> :
By [52, Theorem 6.2], C' € (Lx,4 ®min Ly.B)+-
- AN X R TR
Let €' = (c“ vy ) be the Choi matrix of I'*. As both ' and I'*

! /
a,a’ ,b,b
e a,a’,b,b’

. . . bt ~
are no-signalling, there exists scalars Cylyr di:‘;,, c

’ ’
x?"z ’y’y

/ !
b and d;%,, such that

Yy
~ / /
z,TY,Y ~b,b / /
Z Ca,a’,b,b’ - 5(176,‘/Cy’y,7 Y,y 7b, b < Y,
zeX
~z,xl Ly, ja,a’ / /
E Ca’a,ibz,’ = (5b7brd$7z,, z, 7 ,a,a € X,
yey
I7$/7y’y/ b7b/ / /
Z Ca,a,b,b’ = 55E,33/cy7y/> Y,y 7b7 beY
acX
and
z,z' Y,y a,a’ / /
E Ca7a,7é/,by =0y yd, s, =,7,a,d €X.
bey
43 ~x’,x,y,y’ — ava,7bvb, 3
Observe that the equalities Ca,a/,b,b/ = Cx,x’,y,y/ hold. The relations, to-

gether with Remark 3.5, now imply that L,(C) € Lx and L,/ (C) € Ly for
all w € Myy and all W' € My x (recall that L, denotes the slice map along
a functional o). Thus, C' € (Lx ®min Ly )+. Statement (ii) now follows from
the canonical identification (Tx ®max Ty)? = Lx @min Ly O

Theorem 5.5. Let X andY be finite sets and I' : Mxy — Mxy be a linear
map. The following are equivalent:

(i) T € QbL;
(ii) there exists a state s : Tx ®c Ty — C such that T' =T;

(iii) there exists a state s : Cx @max Cy — C such that T' = T.

Proof. By Theorem 3.4 and [32, Theorem 6.4], Tx ®: Ty € Cx ®max Cy
completely order isomorphically and hence, by Krein’s Extension Theorem,
(ii) and (iii) are equivalent.

(i)=(iii) follows from the universal property of Cx detailed in Theorem
3.4 and arguments, similar to the ones in [52, Theorem 6.3].

(iii)=(i) The GNS representation of s and the universal property of the
maximal C*-algebraic tensor product yield *-representations wx : Cx —
B(H) and 7y : Cy — B(H) with commuting ranges, and a unit vector
¢ € H, such that s(u®v) = (rx(u)my (v)§,§), u € Cx, v € Cy. The claim
follows by setting Ey v aa = ﬂx(em@/,a’a/) and Fy 3/ 00 = WY(fy,y’,b,b’); and
appealing to Theorem 3.4. O

Theorem 5.6. Let X and Y be finite sets and ' : Mxy — Mxy be a linear
map. The following are equivalent:
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(i) T e QN;
(ii) there exists a state s : Tx @min Ty — C such that T' = T'y;
(iii) there exists a state s : Cx ®@min Cy — C such that T' = T's.

Proof. (ii)<(iii) follows from the injectivity of the minimal tensor product.

(i)=(ili) Given € > 0, let E and F' be bistochastic operator matrices
acting on finite dimensional Hilbert spaces Hx and Hy, respectively, and
¢ € Hx ® Hy be a unit vector, such that

{<F(Ez7az’ ® Ey,y/)a €a,a’ X Eb,b/> - <(Em,x’,a,a/ & Fy,y/,b,b/) ga £>‘ <e¢g,
*

for all z,2',a,a’ € X, y,y,b,b/ € Y. By Lemma 3.3, there exists a *-
representation wx (resp. my) of Cx (resp. Cy) on Hx (resp. Hy) such
that Em,z’,a,a’ = WX(em,m’,a,a’) (resp. Fy,y’,b,b’ = 7I'Y(fy,y’,b,b’))y x,x’,a, deX
(resp. y,9,b,b/ €Y). Let s. be the state on Cx ®min Cy given by

se (u®v) = ((rx(u) @ 1y (v)) €, ),

and s be a cluster point of the sequence {sy /, }» in the weak™ topology. Then

s (ez,:p’,a,a’ ® fy7y/7b7b/) = nll_{{.lo 81/n (ezv,z/,a,a’ ® fy7y/7b7b/)

= <I‘(e$e;, ® eyey), ealar ® ebeZ/> ,
giving I' = T;.
(iii)=(i) Let s be a state satisfying (iv) and ¢ > 0. By [30, Corol-
lary 4.3.10], there exist faithful *-representations 7x : Cx — B(Hx) and

my : Cy — B(Hy), unit vectors &1, ...,&, € Hx ® Hy and positive scalars
Aly.oy Ap, with D% 0 A = 1 such that

n
3(6x,m’,a,a’ b2y fy,y’,b,b’) - Z )‘z <(7rX(em,:v’,a,a’) & WY(fy,y’,b,b’)) 52'7 £Z> <g,
i=1

for all z,2',a,d’ € X, y, 9/, 0,0 € Y. Let £ = @' 1V \i& € C"® (Hx ® Hy );
then [|£]| = 1. Set Er v ga =1In® 71')((6175/7(17@/) and Fy vy = 7Ty(fy7y/7b,b/).
Then (Egaiaa)za a0 (resp.  (Fyy b )yy bp) is a bistochastic operator
matrix on C" ® Hx (resp. Hy), and

|5 (ex,x’,a,a’ ® fy,y’,b,b’) - <Ex,x’a,a/ & Fy,y’,b,b’€7 §>‘ <E.

Let (Py)qa (resp. (Qg)p) be anet of finite rank projections on Hx (resp. Hp),
converging to the identity in the strong operator topology. Set H, = P,H4
(resp. Kg = QpHp), Eo = (I ® P,)E(I ® P,) (resp. Fz = (I ® Qp)F(I ®
Qp)), and &y 5 = m(Pa ® Qp)E (note that &, g is eventually well-
defined). Then E, and Fp are bistochastic operator matrices acting on
P,H and QgK, respectively, and the QNS correlation associated with the
the triple (Eq, F3,&q,3) is a quantum bicorrelation. O

Remark 5.7. By Remark 5.2,
(34) Qe € QaeN Qi
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We do not know if equality holds in (34). The problem reduces to a question
about the equality of canonical operator system structures. Indeed, it is not
difficult to verify that the subspace Jxy := Tx,4 ® Jy + Jx ® Ty, of the
operator system Tx a4 ®c Ty B is a kernel, and that the states on (Tx 4 ®c
Tyv.B)/Jxy correspond precisely to the elements of Qg N QE;. However,
while there is a canonical bijective unital completely positive map (7x, 4 ®c
TyB)/Ixy — Tx @ Ty, it is unclear whether its inverse is completely
positive. If this is the case then Theorem 5.5 will imply the reverse inclusion
in (34).

5.2. Classical bicorrelations. In this subsection, we consider a class of
correlations that constitute a natural classical counterpart of the quantum
bicorrelations defined in Subsection 5.1. We fix finite sets X and Y, and set
A=Xand B=Y.

Definition 5.8. An NS correlation p = {(p(a,b|z,y))ap : (x,y) € X x Y}
over the quadruple (X,Y,X,Y) is called an NS bicorrelation if the family

p* = {(p(a,b|z,y))zy : (a,b) € X X Y}
is an NS correlation.

We let A : Mxy — Dxy be the canonical diagonal expectation. Given an
NS correlation p over (X, Y, X,Y), welet £, : Dxy — Dxy be the (classical)
information channel, given by

EP(EI,I b2y Ey,y) = Z Zp(a) b‘ﬂ?, y)ea,a & €b,b-
aeX beY

Further, for a given classical information channel £ : Dxy — Dxy, let
T'e: Mxy — Mxy be the quantum channel, given by

le(w) = (E0A)(w), we Mxy,

and set I, = I'g, for brevity. In the reverse direction, given a quantum
channel I' : Mxy — Mxy, let & : Dxy — Dxy be the classical information
channel, defined by letting &r(w) = (A o T')(w), w € Dxy. We note the
relation &r, = £.

Proposition 5.9. Let p be an NS bicorrelation over (X,Y,X,Y). Then
Iy« =T, Thus, if p € CE; then I, € QE‘S.

Proof. For x,a € X and y,b € Y, we have

(Eplera @ eyy)i€an @ evp) = (era ® €y, Epl€an @ enp))
= p(x,y]a, b) :p*(a7 b\:c,y)
= (Epr (€2 D €yy),€aa @ €np)



QUANTUM NO-SIGNALLING BICORRELATIONS 31

implying that &,» = £7. For wi,ws € Mxy, we thus have

<F;(w1),w2> = (w1, (& o A)(w2)) = (w1, (Ao & 0 A)(w2))

= (A(w1), (Ep 0 A)(w2)) = (&) 0 A)(w1), Alw))
(Ep 0 A)(w1), A(w2)) = (T'p+(w1), Awz))
Ly (w1), w2) 5

o~ o~ o~ ——

completing the proof. ([l

For t € {loc, q,qa,qc}, let
cii={pecii:T, e},

It is straightforward to verify that an NS bicorrelation p over (X,Y, X,Y)
belongs to Cg(‘: precisely when there exist a Hilbert space H, a unit vector £ €
H and quantum magic squares (E; q)zaex and (Fyp)ypey with commuting

entries, such that
(35) p(a,b|x,y) = <Ez,aFy,b£,§>7 T,a € X’y>b €Y.

Similarly, p € Cgi precisely when the representation (35) is achieved for
H = Hy ® Hp, where H4 and Hp are finite dimensional Hilbert spaces,
Eio = E,,® Iy, and Fyp = Iy, ® Fé,w r,a € X, y,b € Y. Finally,
pE CPOiC precisely when p is the convex combinations of correlations of the
form p™ (alz)p® (b]y), where (pV)(a|z)).q and (p3)(bly)),» are (scalar) bis-
tochastic matrices.

For a linear functional s : Sx ® Sy - C, let ps : X XY x X xY — C be
the function given by

ps(a,b|aj,y) :3(€x,a®ey,b)a m,an,y,beY.

Theorem 5.10. Let X and Y be finite sets and p be an NS correlation over
(X,Y, X,Y). Consider the statements
(i

11

(
(i

p is an NS bicorrelation;
there exists a state s : Sx Qmax Sy — C such that p = ps;

peCy;
(ii’) there exists a state s : Sx ®. Sy — C such that p = ps;
(i”) pe Cé’;;

~— O ' O

(ii”) there exists a state s : Sx Qmin Sy — C such that p = ps.
Then (i)< (i), (i’)<(ii’) and (i7)&(i07).

Proof. (1)< (ii) By Proposition 4.3 and [24, Proposition 1.16], the states of
the maximal tensor product Sx ®maxSy correspond in a canonical fashion to
the elements of M x ®pin My . The proof of the claim can now be completed
using a straightforward modification of the proof of Theorem 5.4.

(i")=-(ii’) Write tx : Sx — Tx and vy : Sy — Ty for the inclusion maps
and let p € Cgé. By Theorem 5.5, there exists a state s : Tx ®. Ty — C such
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that I') = I';. Let § = so (tx ®ty); then 5 is a state on Sy ®. Sy for which
P = Dps.

(ii’)=(i’) Let s : Sx®.Sy — C be such that p = pg, and let Sx : Tx — Sx
(resp. By : Ty — Sy) be the quotient map, as defined in the proof of
Proposition 4.3. We have that

S:=s0(Bx®@Py): Tx @ Ty — C

is a state. By Theorem 5.5, the map I's : Mxy — Mxy, corresponding to
§ via (32), is a quantum commuting QNS bicorrelation. Since I's = T'p, we
have that p € Cgé.

(i”)<(ii”) follows in a similar way as the equivalence (i’)<(ii’), using
Theorem 5.6 in the place of Theorem 5.5. O

6. CONCURRENT BICORRELATIONS

Throughout the section, let X be a finite set and Y = A = B = X. Let
Jx = ﬁ Ez,yeX €x,y @ €44 be the canonical maximally entangled state in

Mxx. We specialise the definition of a concurrent QNS correlation from
[11]:

Definition 6.1. A QNS bicorrelation I : Mxx — Maa is called concurrent
if T'(Jx) = Ja.

For t € {loc,q,qa,qc,ns}, we let QP be the set of all concurrent bicor-
relations that belong to QP!

Remark 6.2. Note that if T' € QP then I'* € QP as well. Indeed,

since I' is unital, its dual map I'* : M 4 — Mxx is trace-preserving; thus,
Tr(I'*(Ja)) = 1. Therefore

1= (T(Jx),Ja) = (Jx,I"(Ja)) = |[(Jx,T"(Ja))|
< [[Ix 2T (Ja)ll2 < IT*(Ja)llr = 1.

The equality clause in the Cauchy-Schwarz inequality now implies that
I'*(J4) is a multiple of Jx. If T"(J4) = aJx for some o € C, then
alJx, Jx) = (T*(Ja),Jx) = (Ja,[(Jx)) = (Ja, Ja), giving o = 1.

The universal C*-algebra generated by the entries of a unitary matrix
(Ta,z)a,zex (known as the Brown algebra) was first studied by L. G. Brown
[12]. We will introduce a subquotient of the Brown algebra, whose traces
will be shown to represent concurrent bicorrelations of different types. First,
set

ﬁr,z’,a,a’ = ﬁz’xaa’,:ﬂ? x, a;', a, a S X,
and let Ux 4 be the C*-subalgebra of the Brown algebra, generated by the
set {Uy 4 a0 @ ¢, 2 0,0’ € X}

Lemma 6.3. If 7 : Ux o — B(H) is a unital *-representation then there ex-
ists a block operator unitary U = (U z)az such that m(tiy e a.ar) = Ug yUat o,
z,7',a,a € X.
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Proof. Let Vx 4 be the universal TRO of an isometry (vq,z)a,z, as defined in
[52, Section 5]. In the sequel, we will consider products vg! , vz2 . -+ vgk
where ¢; is either the empty symbol or *, and ¢; # ;41 for all 4, as elements
of either Vx 4, V% 4, Cx, 4 or the left C*-algebra corresponding to the TRO

Vx,a. Let J be the closed ideal of Cx 4, generated by the elements

Z éy,x,b,aéa:,y,a,b - é’y,y,b,ba Yy,a, be X.

zeX
By [11, Lemma 4.2], the map p : €5 4/ q.0/ = Ug o/ 0,0 T, ¢, a,a’ € X extends
to a surjective *-homomorphism p : Cx 4 — Ux,a with kerp = J. Let
7 :Ux,a — B(H) be a *-representation. Then mop:Cx a — B(H) is a *-
representation that annihilates 7. By [52, Lemma 5.1], there exists a block
operator isometry U = (Uy z)a,zcx, Where Uy, € B(H, K) for some Hilbert
space K, 2,a € X, such that (70 p)(€ze a,0) = Us oUsr o, 2,2’ 0,0" € X.

By the definition of Vx 4, the operator matrix U gives rise to a canonical

ternary representation 0y : Vx 4 — B(H, K). Without loss of generality, we
can assume that K = span(fy(Vx a)H). The fact that (7o p)(J) = {0}
now implies that

(36) Uz, (I -3 anU;’x> Upy =0, y,a,beX.
reX

Since UU* < I, we have that [ — > - U, .Uy, > 0, and hence (36) reads

1/2
<I -> UWU;I> Upy =0, y,a,be X,
zeX

showing further that

<<I - Z Ua,mU;,z> T£7T£> - 07 a € X:£ S HaT € QU(VX,A)'
zeX

By polarisation, we have ) v Ua Uy, = I,a € X. As [-UU" is a positive

block-diagonal operator with the zero diagonal, I — UU* = 0; thus, U is

unitary. Since U; ,Upy = T(tgy,ab), T, Y, a,b € X, the proof is complete. [

Recall that €, . 4 are the canonical generators of the C*-algebra Cx 4
(so that the matrix (éx’m/ﬂ,a/) is a universal stochastic operator ma-

trix). Let

z,x’ a,a’

~(L’,Zl‘/ . 6 ~ o ~ ~
gy,Z,b,C - ZB,(E’ey,Z,b,C 6y,x,b,a6x’,z,a,c
acX

and /
7a,a o ~ 2 : ~ ~
hy,z,b,c - 6a7a/ ey,Z,b,C - ey,x,b,aem,z,a’,w
rzeX
- ~ X ~x,z’
and J; (resp. J2) be the closed ideal of Cx,a, generated by Gy b (resp.

7 a,a’
hyyz’b@), y,2,b,c,x, 2" € X (resp. y,2,b,¢,a,a" € X).
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Lemma 6.4. Up to a canonical *-isomorphism, CX7A/‘7~2 ~Ux A.

Proof. Denote by jzo the closed ideal of Cx 4, generated by the elements
h%® . where a,b,y € X. It was shown in [11, Lemma 4.2] that

Y,y,0,07
Cx.a)Jy ~Ux.a.
Let p: Cx.a — B(K) be a unital *-representation that annihilates J3, with
the property that the corresponding induced representation of Cx 4/ J s
faithful. By Lemma 6.3, there exists a unitary U = (Ug4)acex such that,
if Ux,m/,a,a’ = U Ua s then
p(ém,x’,a,a/) = Ux,m/,a,a’a z, 33‘,, a, a € X.

But then, since U is unitary,

7a,a
p (hy,ZJ?,C) = a CL/ vaz b c : Uy Zz, b a .73 42, a’ ,C
reX
~ ~ ~ -
= 6(1,(1’ y,Z,b,C - E Ub7yUlZ,fE CLI7$UC7Z
zeX

= 5a,,a’ﬁy,z,b,c - 6a,a’01iyﬁc,z = 0.
Thus, p automatically annihilates Jo. The proof is complete. O

We say that a block operator matrix U = (ugz)ar € Mx(B(H)) is a
bi-unitary if both U and U® are unitary. Let C(U5) be the universal C*-
algebra, generated by the entries of a bi-unitary (uqz)azex, and C(PUY)
be the subalgebra of C (L{;) generated by the length two words of the form

e ¥ / /
Uz ol a0 = UggUd a/s T, T ,0,4 € X.

Further, recall that e, 4/ 4.4/, ©,2",a,a’ € X, denote the canonical generators
of the C*-algebra Cx (so that (eg s a.a/)z.a’ ., 18 @ universal bistochastic
operator matrix), set

x,x’
(37) gy7z be = 6x,a:’€y,z,b,c - E €y,x,b,a€x’ 2,a,c
aceX
and
a,a’
(38) h’y:z,b,c = 5a7a/6y7zvbvc - E : €y,z,b,aCz,z,a' s
zeX

and let J; (resp. J2) be the closed ideal of Cx, generated by the elements

a

QZzbc (resp. hyzbc) where y, z,b,¢,x,2' € X (resp. y, z,b,¢,a,a’ € X).
We note that the universal C*-algebra C(U5;) and its subalgebra C(PU:)
have been well-studied in the compact quantum group literature. The C*-
algebra C(Uy) was introduced by Wang in [55], where it was shown to
have the structure of a C*-algebraic compact quantum group. In particu-
lar, C(Uy;) comes equipped with a co-associative comultiplication making it
into a non-commutative analogue of the C*-algebra of continuous functions
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of the unitary group Ux. The structure of the quantum group C (Z/l;g) was
later studied in detail by Banica in [2]. On the other hand, the subalge-
bra C(PUy) C C(Ux) can be naturally interpreted as a non-commutative
version of the space of continuous functions on the projective unitary group
PUx /T. In the classical setting, the conjugation action of L{;g on Mx in-
duces a group isomorphism PUx = Aut(Mx), where Aut(Mx) is the group
of x-automorpohisms of My .

In the quantum setting, it is natural to expect that a similar identification
between IP’Z/{;(r and quantum automorphisms of Mx should hold, and indeed
this is the case: In [56], the quantum automorphism group Aut™(My) was
introduced by Wang (via an abstract universal C*-algebra C(Aut™(Mx))
with generators and relations), and later Banica showed in [3] that the nat-
ural quantum group C*-algebra morphism C'(Aut™(My)) — C(PUY) is ac-
tually an isomorphism. In Lemma 6.5 below, we extend Banica’s result by
showing that in fact any “concrete” quantum automorphism of My (that
is, a *-homomorphism 7 : C(Aut™(Mx)) = C(PUy) — B(H)) is imple-
mented by a “concrete” conjugation of Mx by a bi-unitary (that is, 7 is the
restriction of a representation C(Uy) — B(H)).

Lemma 6.5. (i) We have Cx/Jh + T2 ~ C(BUY).
(ii) If 7 : C(PUY) — B(H) is a unital *-representation then there ex-
ists a bi-unitary (Usg)ax € Mx(B(H)) such that (U qq0) =
Us U g

Proof. (i) Set J = J1 + Jo, recall that Jx is the closed ideal of Cx.A gen-
erated by the elements

~ /
E €yy.a,a’ 5a,a’17 a,a € X
yeX

(see the paragraph containing equation (21)) and, recalling the ideals Ji
and Js of Cx 4 defined before Lemma 6.4, let

(39) J=Jx+ T+ Do
According to Proposition 3.8, CX7A/jX ~ Cx; thus, CX7A/j ~Cx/J.
Recall that Ux 4 is the universal C*-algebra with generators i, ;7 4 q/ :=
Uy lg o5 T, 7' a,a" € X, where the matrix (@g,.)a, is unitary. By Lemma
6.4, we have the canonical *-isomorphism Cx 4/ jg ~Ux A
We have that Cx.a/J =~ (Cx.a/J2)/(T/J). Using the identification in
Lemma 6.4, we have that J / Jo is generated by the elements

~ /
§ Uy,y,a,a’ — 5a,a’1a a,a € X,
yeX
and

- ~ ~ /
5 Uy,x,b,alz’ z,a,c — 5m,m’uy,z,b,m Y, z, b, C,T, X € X.
acX
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Let p : Ux A =~ CX7A/j2 — B(K) be a unital *-representation that anni-
hilates J/J>. By Lemma 6.3, there exists a unitary U = (Uq z)q,2 such that
Py 2 a.ar) = U Ua 2,2 ad € X,

(40) Z 0;,yﬁa’,y = 5a,(l’17 a, a/ € X7
yeX

and

(41) Uby <Z UaCCU* - xac’I> UC’Z:07 Jj)x/ay)Z?b)ceX'
acX

By (40), U* = (Uy.a)ay is an isometry. But then UY(U')* < I, implying,

by comparing the (z,r)-entries of the matrices, that » .y Us.Us, < I,

x € X. On the other hand, (41) implies Uy, (Zae < UanU, — 1) 0y = 0.

Thus,

1/2
(I -> Ua,m0;,z> Uy, =0

acX

and hence (ZaEX Uaxf];m - I) Uy, = 0. Since U is unitary, this implies

_ (Z Guals, z) S 00,07, = Y Gusls — 1

aceX yeX acX

Now,
(42) (Giy 1) (1-00") (Ghy 1)

is a positive block matrix in Mx (B(H)) and has zeros on its main diagonal.
It follows that the matrix (42) is zero and hence

(43) (1-0t0*)" (Ghy 9 1) =0. byex

Multiplying (43) by Ug‘ , @1 on the right and adding up along the variable y,
we obtain UtUY = I; thus, U is unitary. Therefore, U gives rise to a unital
*_representation of C' (Z/{;g) and, after restriction, to a unital *-representation
of C (IP)L{;). We have thus shown that every unital *-representation p :
Cx.4/J> — B(K) that annihilates J/J> induces a unital +-homomorphism
from C(PUY) to B(K).

By [52, Theorem 5.2], there exists a *—homomorphism ¢ :Cx,a — C(PUY),
such that ¢(€; 4/ a.a/) = Uz2'a als T x',a,a’ € X. A straightforward verifica-
tion shows that ¢ annihilates J» and hence gives rise to a *x-homomorphism
o :Cx A/jg — C(PUY), Eraraw + Jo Uz o/ a0~ 1t is easy to see that
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J / Jo C ker @. The previous paragraph shows that if 7' € Cx a/ Jo then
IT+T/Jl = sup{llp(T)| : p a *rep. of Cx,a/To with p(J /To) = 0}
< eI,
giving the inclusion ker(¢) C J/J» and hence the equality ker(@) = J /Jo.
As ¢ is surjective we obtain the statement.

(ii) Let = : C(PU%;) — B(H) be a unital *-representation. Letting p :
Cxa—Cx.a/ J be the quotient map, the proof of (i) allows us to consider p
as a *-epimorphism from Cx 4 onto C(PUy). It further exhibits a bi-unitary
U = (Uaz)ax such that (70 p)(Epuraa) = U;mﬁa/,x/, z, 2’ a,a € X. We
now see that m(ug gy aa) = U;,xﬁa/w/, z,7',a,a’ € X, and the proof is
complete. O

We recall that the opposite C*-algebra A°P of a C*-algebra A has the
same set, linear structure and involution as A, and multiplication given by
uPv°P = (vu)°P, where u°? denotes the element u € A when viewed as an
element of A°P. Given a Hilbert space H, let H4 denote its dual Banach
space and, for an operator T € B(H), let T9 : HY — HY be its dual. We
note the identity
(44) (T =14,

If 7: A— B(H) is a faithful *-representation, then the map 7°P : A% —
B(HY), given by 7°P(u°P) = m(u)d, is a faithful *-representation.

The following result can be proved using the existence of the antipode for
compact quantum groups together with the fact that P, the antipode is
known to be a x-anti-automorphism of C(PUY) (see e.g., [42, Proposition

1.7.9]). For the sake of those unacquainted with quantum group technicali-
ties, we supply a self-contained proof.

Lemma 6.6. Let X be a finite set. The map

op
z',x,a’,a’

extends to a *-isomorphism 0 : C(PU%) — C(PUL)°P.

Proof. Let m : C(PUY;) — B(H) be a faithful *-representation and U =

(Uaz)ax € Mx(B(H)) be a bi-unitary such that m(uz e aa) = Uy Us 2

z,7',a,d € X.
Set Vo oz = U;i, xz,a € X. We observe that V := (V, 3)a, is a bi-unitary.

Indeed, using (44), we have

d
> ViVaw =Y UL U, = (Z U;7$,Ua,x> = 0y Ipa

aceX aeX acX

/ /
a(uwvxl:a»a/) =u T,T,a,a € X,

and

d
> ViVae=> ULUS, = (Z U;;,@Ua,x> = 00T pya,

zeX reX zeX
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that is, V*V = I and V¥V = I; the relations VV* = I and V*V%* = [ fol-
low analogously. It follows that there exists a *-representation p : C(PU) —
B(HY) such that p(uy 4 ar.0) = 7P (WX, ), 2,2 a,a’ € X;note that pis a

well-defined) *-homomorphism from C(PU7) into C(PUL)°P. By symmetr
( P B X y sy y
considerations, p is a *-isomorphism. ([

Before formulating the next theorem, we introduce some notation and
terminology. If ® : My — My is a quantum channel, we write ®f : My —
Mx for the quantum channel given by

P (w) = d(wh)t, we My.

We call a channel ® : Mx — Mx a unitary channel if there exists a unitary
U = (Aaz)azex € Mx, such that ®(w) = U*wU, w € M. Finally, a trace
7 : B — C of a C*-algebra B is called abelian if there exists an abelian
C*-algebra A, a *~homomorphism 7 : B — A and a state ¢ : A — C such
that 7 = ¢ om.

Theorem 6.7. Let X be a finite set and I' : Mxx — Mxx be a QNS
bicorrelation. Then

(i) T e Qg(if if and only if there exists a trace T : C(PUY) — C such
that

(45) F(ecc,ac’ & 6y,y’) = (T(ux,x’,a,a’uy’,y,b’,b))a,a’,b,b’a x, 1:/7 Y, y/ € X;
(i) T' e Qgic if and only if (45) holds for a trace of C(PUY.) that factors

through a finite dimensional C*-algebra;
(iii) T € Q%g if and only if (45) holds for an abelian trace of C(PUY), if
and only if there exist unitary channels ®;, ¢ = 1,...,k, such that

I'= Zle D ® <I>§ as a convex combination.

Proof. (i) Let U := (uqg)a, be the universal bi-unitary and I' : Mxx —
Mx x be given via (45). There exists a state v : C(IP’L{;) Omax C(IP’Z/{;E)OP —
C, given by

(46) v(u®vP) = 1(w), u,v e CPUL)

(see [13, p. 219]). Let s = v o (id®J); thus, s is a state on C(PUY) @max
C(PU5). We have

S(Um,m’,a,a’ ® uy,y’,b,b’) = V(ur,m’,a,a’ ® U’Z?,y,b’,b) = T(”x,z’,a,a’”y’,y,b’,b)y
implying that I' = I';. By Lemma 6.5 (i) and Theorem 5.5, I" € Qgic. Since
U is unitary, by the proof of [11, Theorem 4.3], I" is concurrent.

Conversely, let I" € Qgicc. By Theorem 5.5, there exists a state s : Cx ®max
Cx — Csuch that I' = I';. Let V = (v44)a,0 be a universal bi-isometry (see
Subsection 3.2) and denote by f;, ./ 4 the canonical generators of the second
copy of Cx in the tensor product. The concurrency of I' implies the validity



QUANTUM NO-SIGNALLING BICORRELATIONS 39

of the condition
(47) Z s (€xyab @ foryap) =1, abeX.
z'yeX
Let 7 : Cx — C be the functional, given by 7(u) = s(u® 1), u € Cx. By

[11, Lemma 4.2], there exists a canonical *-epimorphism 7 : Cx 4 — Cx; let
7 = 7tom. Letting 5 : Cx A®maxCx,a4 — C be given by 5(w) = (so(r®@m))(w),

we have that
: : g (éxl7y/7a7b ® fx’,y’,a,b) = 17
z'y'eX

and now, by the proof of [11, Theorem 4.1], that

s (éa:,y,a,b o2y fx,y,a,b) =S (éx,y,a,béy,x,b,a o2y 1) y LY, a, be Xa
and that 7 is a tracial state. After passing to quotients, we conclude that
(48) S (ex7y7a7b ® fmy%“l’) =S (emvy7a7beyzx»b’a ® 1> ? x’ y’ a’ b S X7

and that 7 is a tracial state.
Recalling notation (37) and (38), set

_ x,z’ _ a,a
G?/az7b70 - (gy,z,b,c> , and Hy,z,b,c - (hy,z b c) ;"
x,T a,a
We claim that

= G Gy obe
(49) Gyobe = [ y,y7b,z y,2,b, ] € M, (MX(CX))JF
Z7y7c7 Z’Z7C7C
Vpy & Ix 0
0 Ve,z @ Ix
shuflle Mg(Mx(CX)) ~ Mx(Mg(Cx)), we obtain

/
A Gygbp Iy, zbc
Gyebe= Z‘Z 4
2,y,c,b gzzcc v

Indeed, set Z, .. = ] After applying the canonical

_ 655713'6317%17117 - Za Cy,x,b,aC2’ y,a,b 613,90/ €y,z,b,c — Za Cy,x,b,aC2’ z,a,c
5x,x’ €zy,c,b — Z €z2,z,c,ax’ y,a,b 590 2'€z,z,cc — Z €zx,c,ax z,a,c] 4 1

% |:;rz’1 Z Uamvax a;:n’l Z Uaxvax]

z,b,c
Y20, Za Ua,xva’x x e Z Va xva z’

Since V' is an isometry, V'V* < I and hence ( vl = D4 Va4 ) >0,

,CC

implying (49), along with the relations )y va2v; , <1, z € X. Identity
(49) now shows that Gy, 55 € Mx(Cx)", and hence

Zy,Z,b,C'

X
(50) T (Gyypp) € MY
We have that
(51) Z ey7$7b7ae$,y;a,b - Z vg,yvavxv;7va7y S €y7y»b’b

aeX aeX
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and hence
(52) Z Z ey7x,b,a6x7y7a7b S Z Zey,y@b = |X|21’
z,yeX a,beX z,yeX beA
similarly,
(53) Z Z fﬂf,y,a,bfy,x,b,a < ’X‘Ql-
z,yeX a,beX

By (47), (52) and (53),

0 S Z S ((em7y)a7b ® 1 - 1 ® fy7$7b7a)* (ervyaayb ® 1 - 1 ® fy7$7b’a))
z,y,a,b

= Z S ((ey@,b,a ® 1 - 1 ® fx’yya’b) (€I7y7a7b ® 1 - 1 ® fyvxzb:a))
z,y,a,b

= Z S (ey7r7b7a6x’y7a’b ® 1 + 1 ® f$7y7a7bfy’z7b7a)
T,y,a,b

B Z & (ey71',b,(l ® fyyx»b’a + 6$7y7a’b ® f%y,(lyb) S 2‘X|2 - 2|X’2 = 0'

z,y,a,b

Applying 7 to (52), we have
2 2 T(evapacayan) € D D leyyn) = X

z,yeX a,beX z,yeX beA

On the other hand, by (48),
> > Tlepmbatoyas) = X[
z,yeX a,beX

Using (51), we now have that

T (ey,y7b7b — E ey,%b’ae%y’a’b) =0 forall z,y,be X.
aceX

Thus the diagonal entries of 7(X) (Gyybp) are zero; the positivity condition
(50) implies that the off-diagonal entries of 7(X) (G, , ;5) are also zero. Now
the positivity condition (49) implies that

7(2X) (Gy,zb#) =0, y,z,bceX.

Condition (49) and the Cauchy-Schwarz inequality imply 73%) (Qéll/ j’by c) =
0, for all Q € Ms(Mx(Cx)), and hence 7(X) annihilates the closed ideal
of Ma(Mx(Cx)) generated by G’;f’bﬁ.
closed ideal of Ma(Mx(Cx)) generated by Gy . ; since Cx is unital, this
implies that 7 annihilates the closed ideal of Cx generated by the elements
9;’:,,{;,(:7 x,7',y,2,bc€ X, that is, J;.

In particular, 73%) annihilates the
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Similarly, observe that

* *
: : ey7x’b)a€$7y’a7b = : : Ub,yvayxva,vaﬂ S e%y,bub’ y7 a, b € X'
zeX zeX

By Remark 6.2,

: : § (6x,y,a’,b’ ® fx,y,a’,b’) = 1’ .'L‘, y € X
a YeX

Using (48) yields similarly

T (ey,y,bb - Z ey,x,b,aeaz,y,a,b> =0 =z,y,b€ X,

rzeX

leading to the relations

(2X) (fly@bjc) =0, wy,z,bceX.

It follows that 7 annihilates the ideal Js, generated by h;’zlb > Where a,d’,
y,2,b,c € X, and hence it annihilates J; + J2. Hence 7 induces a tracial
state (denoted in the same fashion) on the quotient Cx/J. An application

of Lemma 6.5 (i) completes the proof.

(ii) Suppose that I' : Mxx — Mxx is a quantum concurrent QNS bi-
correlation. By [11, Theorem 4.3|, there exists a finite dimensional C*-
algebra A, a trace t on A, and a *-homomorphism « : Ux 4 — A, such
that I' = I'o. After taking a quotient, we may assume that t is faithful.
Let p : Cx,a — Ux, a be the canonical quotient map, whose existence is
guaranteed by [11, Lemma 4.2]. Let 7 : Cx 4 — C be the functional, given
by 7(u) = (toaop)(u), u € Cx,a; clearly, 7 is a trace on Cx 4. Note, fur-
ther, that I' = I'; (for brevity here, and in the sequel, I'; is used to denote
I's., where s; is the state, canonically associated with the trace 7). By the
proof of (i), 7 annihilates the ideal J defined in (39); thus, as t is faithful,
(a0 p)(J) = 0 and hence we get a *-homomorphism j : C(PU%) — A and
the trace 7 = to p on C(PU5;) which factors through A.

Conversely, suppose that B is a finite dimensional C*-algebra. Let 7 :
C(PUy;) — B be a unital *-homomorphism and 7 : B — C be a trace
such that, if 7 = 7o, then I' = I';. By Lemma 6.5 (ii), there exists a
finite dimensional Hilbert space K and a bi-unitary matrix U = (U z)a,q €
Mx(B(K)), such that W(um,x’,a,a’) = U;,an’,ac’a r,2',a,a’ € X. Now a
straightforward verification shows that I' € Qgic.

(iii) Suppose that I' € QP. By [11, Theorem 4.3 (iii)], there exists
an abelian C*-algebra A, a *-homomorphism 7 : Ux 4 — A and a state
¢+ A — C such that, if 7 = ¢ o 7 then (7 is a trace on Ux, 4 such that)
I' = T';. Realise A = C(Q2) for some compact Hausdorff space €2 and let

v be a regular Borel measure on Q such that ¢(h) = [, hdp. Writing
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Upa' aa = T(Ugzaa) T, 2'a,a € X, we have

gb(Umvr/va’a,ﬁy,’y:b/:b) = / Ux,m’,a,a’ (t)ﬁy/7y7b/7b(t)du(t)7 1.7 m/7 a7 a/ e X'
Q

As u can be approximated by convex combinations of point mass evaluations,
I" can be approximated by convex combinations Ele Ail';, where

() (4) / le X
Fi(€x7$/®€y7y/)— < z:p’aa/ﬂy/yb’b 3 T,T,Y,Y S )
I 2y s s a7a/7b7b/

(%)

for some scalar matrices M; = (ux’x,,ma/

) - Since the matrices M; give
z,x’,b,b

rise to (one-domensional) *-representations of Ux 4, by Lemma 6.3, they
admit factorisations of the form ,ugf?,p, aal = 5\21,)9;)\8,) v

unitary matrix U; = (AE}L)M, i=1,...,k. Notethat I'; = <I>i®(I>§, where ®;
is the (unital) quantum channel with Choi matrix (u(z) ) . By the
z,x’a,a’

z,x’ a,a’

xz,7',a,a € X, for a

Carathéodory Theorem and compactness, we have that I is itself a convex
combination of this form. We further have that

®;(w) = U*wUf, we My, i=1,...,k,

and in particular ®; is a unitary channel, i =1,... k.

Suppose that ® : My — My is a unitary channel. Let U = (Aqz)az €
Mx be a unitary (and hence a bi-unitary) such that ®(w) = U*wU, w € Mx.
We have that

1

(2@ ) (1x) = X 37 Bleny) ® Pleya)’
z,yeX
1

= = 3 (Uren)(Utey)* @ (U'ey)(Utes))!
z,yeX

= |)(1| Z Z Z )\yvax7a)\$7a/Xy,b’(€a,b X ea’,b’)
1

z,yeX a,beX o/ b eX

= W Z Z 6a,a/5b,b’(6a,b & 6a’,b’) = Jx.

abeX a’ b eX

Thus, ® ® ®* is a concurrent correlation and, since ® is unital, it is a
concurrent bicorrelation. Since QPi¢ is convex, we have that all convex

loc )
combinations of elementary tensors of the form ® @ ®* belong to Qpic,

Now assume that I' = Zle NP, ® <I>§ as a convex combination, where ®;
is a unitary channel, i = 1,..., k. Assume that ®;(w) = U/wU;, w € My,
where U; € Mx is a unitary. Since U; has scalar entries, it is automatically
a bi-unitary, and hence gives rise to a canonical (one-dimensional) unital
*_representation of C(PU5;). A standard argument now shows that I' = T';
for a trace on the (finite dimensional) abelian C*-algebra Dy.

Finally, if I' = T';, where 7 factors through an abelian C*-algebra then
the argument in the first paragraph of (iii) shows that T' € QPi¢ O

loc*
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Remark 6.8. Assume that 7 is an amenable trace of C(PUy). By [13,
Theorem 6.2.7], the functional y : C(PUY) @min C(PUL)°P — C, given by
pw(u ® v°P) = 7(uv), is a well-defined state. Letting s = p o (id ®09) (a state
on C(PU) @min C(PU)P), one can proceed similarly to the first paragraph
of the proof of Theorem 6.7 to conclude that I' € Qg;f. We do not know if,
i

Recall [47] that an NS correlation p over (X, X, X, X) is called bisyn-
chronous if

conversely, every I' € QPI¢ arises from an amenable trace on C(PU;).

pla,blz,z) #0 = a=0b and p(a,alr,y) #0 = x=y.

It was shown in [47, Remark 2.1] that bisynchrounous correlations of type
t # ns are (classical) bicorrelations. The next statement describes the rela-
tion between bisynchronicity and concurrency.

Proposition 6.9. Let t € {loc,q,qc}. If p € C; is a bisynchronous NS
correlation over the quadruple (X, X, X, X) then there exists T € QEIC such
that

(54) &p=Ao F|DXX‘

Proof. We consider first the case t = qc. Let p € Cqc be a bisynchronous
correlation. By [47, Theorem 2.2], there exists a tracial state 7 : C(S%) — C
such that

(55) p(a,b]a:,y) = T(pa,pr,y)’ z,y,a,b e X.
Let
Pz a'aa = pz,xpa’,z’ = Pa,xPa’x's T, xlv a, d e X,

and let C(PSY) be the subalgebra of C(S¥), generated by the elements of
the form py 4 4.4/, ©,2',a,a’ € X. Since every quantum permutation is a
bi-unitary, there exists a unital *-homomorphism 7 : C(PUY) — C(PSY)
with

7"-(ea:,ac’,a,a’) =Pz’ a0 L 1‘/7 a, aeXx.
Let 7 = 7o ; thus, 7 is a tracial state on C(PU5;) and hence, by Theorem

6.7, ['; is a quantum commuting concurrent QNS bicorrelation. Moreover,
if x,y € X then

(A © Fi’)(ex,x ® 62/71/) = Z %(6x7x7a7a6y)y7b7b)€ava’ ® Eb’b
a,beX

= E T(px,:ma,apy,y,b,b)ea,a X €pp
a,beX

= Z T(pz,mpa,xpaypb,y)ea,a X €pp
a,beX

= > T(Paaby)ean ® by = Eplens ® €yy),
a,beX
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and (54) follows.
The cases t = q and t = loc are similar. O

7. THE QUANTUM GRAPH ISOMORPHISM GAME

In this section, we view the concurrent bicorrelations studied in Section
6 as strategies for the non-commutative graph isomorphism game. This
allows us to define quantum information versions of quantum isomorphisms
of non-commutative graphs of different types, which we characterise in terms
of relations arising from the underlying graphs.

7.1. Quantum commuting isomorphisms. Several related concepts of
quantum graphs have been studied in the literature (see [9, 15, 20]). Here
we work with the notion that is used in [52], [51] and [11]. Let X be a finite
set, H = CX, and recall that H9 stands for the dual (Banach) space of H.
Note that, as an additive group, H9 can be identified with H; we write ¢ for
the element of H9, corresponding to the vector ¢ in H (so that ¢ : H — C
is given by C(&) = (£,¢)). Let 0 : H® H — L(HY, H) be the linear map
given by

0 ®n)(C) = On ¢ H.
We have

(56) ((S®T)) =T0()SY, ¢cH®H, S,T € L(H).
For a subspace U C CX ® CX, set
Su=10(¢) : ¢ €U}
We let Ox : ((CX)d~—> CX be the linear mapping given by Jx(€;) = ey,
z € X, and we set Sy := Sua;(l; thus, Sy C L£(CX).
We denote by m : CX @ CX — C the map, given by

m(() = <C,Zem®ex>, (eCXoCk.

reX
Let also f : CX®@CX — CX®CX be the flip operator, given by f(£@n) = n®¢.
Definition 7.1. A quantum graph with vertexr set X is a linear subspace

U C CX @ CX that is skew in that m(U) = {0} and symmetric in that
) = u.

In the sequel, for a subspace U C C¥ ® CX, we denote by Py the orthog-
onal projection from CX @ CX onto U; thus, Py € Mxyx. For a classical
(simple, undirected) graph G with vertex set X, we use ~ (or ~g when a
clarification is needed) to denote the adjacency relation of G. The graph G
gives rise to the quantum graph

Ug = spanfe,; @ e, 1 & ~ y},
and we write Pg = Py, ; note that Py € Dxx, and that

SL{G = span{e;, : & ~ y}
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is a traceless self-adjoint subspace of My. More generally, Sy C Mx is
always a traceless transpose-invariant subspace for any quantum graph U;
this is the suitable version arising in our setting of Stahlke’s quantum graphs
[51], where tracelessness and self-adjointness are assumed as part of the
definition.

To motivate Definition 7.2 below, we first recall the graph isomorphism
game [1] for graphs G and H, both with vertex set X. For elements z,y € X,
we denote by relg(x,y) the element of the set {=, ~, £}, which describes the
adjacency relation in the pair (x,y), in the graph G. A correlation p € Cy is
said to be a perfect t-strategy for the (G, H)-isomorphism game, provided
p is bisynchronous and

(57) p(a’ b|$, y) = Oa if I'elg(ﬂj‘, y) 7é relH(a, b) or I'GIH($, y) 7& I'GIG(CL, b)

We note that, for a given correlation type t, two graphs G and H with
vertex set X are t-isomorphic [1] if and only if there exists a bisynchronous
bicorrelation p of type t over the quadruple (X, X, X, X), such that

(58) w € DYy and w = PawPy = I'(w) = Pyl (w)Py
and
(59) 0 € DYy and 0 = PyoPy = I'*(0) = PoI™(0)Ps.

Indeed, condition (58) is equivalent to requiring that p(a,blz,y) = 0 if x ~g
y but a g b, while (59) is equivalent to requiring that p(a,blz,y) = 0 if
a ~p b but z #4¢ y, in conjunction, these two conditions are equivalent to
(57).

Recall [52, 11] that, if i/ € CX¥ @ CX and V € CX @ C¥ are quantum
graphs, and P = Py and Q = Py, then the perfect strategies for the quantum
homomorphism game U — V are the QNS correlations I' : Mxx — Mxx
such that

w€ My and w = PwP = D'(w) = QT'(w)Q.

Definition 7.2. Let t € {loc,q,qa,qc,ns}. We say that U and V are t-
isomorphic, and write U = V), if there exists T' € Q' such that

(i) T is a perfect strategy ford — V, and
(ii) T* is a perfect strategy for V — U.

Remark 7.3. Although our main interest in this section lies in quantum
graphs, it is important to note, for the development in Section 8, that Def-
inition 7.2 can be stated in a greater generality, involving subspaces U/ and
Y of CX ® CX that are not necessarily quantum graphs.

In the next theorem, we give an operator algebraic characterisation of
the relation U =, V. We recall the leg numbering notation: if § : Mxx ®
B(H) - Mxx ® B(H) is the (unitarily implemented) isomorphism, given
by

FSSORTQR) =T®S®R, STe¢cMx,RcB(H),
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for U = (Upz)ax € Mx ® B(H), we write Uz = Ix @ U, and U3 =
S(Ix ® U). Note that U 3,U1 3 € Mxx ® B(H) and

(60) UlsUss = D €wa® ey ®Uaaly,
z,y,a,beX
For the formulation of the next theorem, we set A = A", and call a
von Neumann algebra tracial if it admits a tracial state. If H is a Hilbert

space and N' C B(H) is a von Neumann algebra, an operator matrix U =
(Uaz)azex will be called N-aligned if Uy Uy, € N for all z,y,a,b € X.

Theorem 7.4. LetU andV be quantum graphs in CX@CX, and set P = Py
and Q = Py.
The following are equivalent:
(1) u gqc V;
(ii) there exists a tracial von Neumann algebra N C B(H) and an N -
aligned bi-unitary U = (Uyz)ax € Mx(B(H)) such that
(PR IUT3Us5(Q @ 1) =0 and (PT®I)Ui3Us5(Q® 1) =0;

(iii) there exists a tracial von Neumann algebra N C B(H) and an N -
aligned bi-unitary U = (Uyz)ax € Mx(B(H)) such that

U(Sy ® 1)U* C Sy @ B(H) and UY(Sy @ 1)U C Sy @ B(H).

Proof. (i)=(ii) For a vector £ = >,y qzyes @€y € CX ®@CX, let £ =
Ex,yex 0y yer ® ey and set

r,yeX

note that Y¢ € Mx (and that the use of the notation £ agrees, up to a canon-
ical identification, with the definition in the beginning of Subsection 7.1).
Let I' : Mxx — Mxx be a concurrent quantum commuting bicorrelation
satisfying conditions (i) and (ii) in Definition 7.2.

By Theorem 6.7, there exists a tracial state 7 : C(PUy) — C such that

F(ea:,x’ ® ey,y’) = (T(ux,:c’,a,a’Uy/,y,b’,b))ma/’b’b/ y X {L‘/, Y, y/ € X.

Let 7, be the *-representation, associated with 7 via the GNS construction,
and let ¢ be the corresponding cyclic vector. Then N = m (C(PUY))" is a
finite von Neumann algebra, on which the vector state corresponding to ¢
is faithful and tracial.

Let E = (7r(Uga' a,a’))z,a’ a0’ - As in the proof of [11, Theorem 5.5], we
have that

(e n ) = (Trer) (B 0 Y, @ LOEYE @ Yy © 1)
implying, by the faithfulness of 7, that
E(Y;®Y,®)E=0, {cU,necV"
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By Lemma 6.5 (ii), there exists a bi-unitary U = (U 4)a,., such that E =

(U Ut ot - WHNG € = Y, 00y @y a0 7 = Xy e Buin ©
ep, we calculate

EYV;oY,e)E=| Y @ybuyUsUuwUsyUsy

oyl a' b eX _
Hence >, v oy Qo Bar iy Ug o Uar 2 Uy Upy = 0 for any z, y, a, b. Letting
Ren =20y ary @y Bar v Uat Uy, We have

UpiRenUpy =0, z,9,0,b€ X.
It follows that
(61) Ren=Y UauUs o RenUsyUs, = 0.
zyeX

Let F := Uf3Us3; thus, F € Mxx ® B(H). By (61), the operator F
satisfies the conditions

(Fln®h),E®g)=0, h,geH,

which imply (P ® I)F(Q+ ® 1) = 0.
Let E := (U; ,Ua’ 2)a,a’ w2~ By symmetry,
EVa®Yy®DE=0, {eV.necUt.
Setting
F=U3023 = Z €ap ® €y @ Vaalyy,
z,y,a,beEX
we similarly obtain that
(Fof @h), &' ®g)=0, ¢ eV el hygeH,
and hence
(62) Qe DF(PteI)=0.

Let t : Mx — Mx be the map, given by t(T') = T*. Since the operators
P+ and Q are self-adjoint, (t® t)(Q) = Q and (t® t)(Pf) = PL; Thus,
applying the map t®t®id to the relation (62), we obtain (Pt ®1)F(Q®I) =
0

(ii)=-(i) Assume that (P®I)Uf73U2*’3(QL®I) = 0 and (PL®I)U£3U§"’3(Q®
I) = 0. By Theorem 6.7 (i), the linear map I, given by I'(e; v ® €,,/) =
(F(W2 UV V)
relation. Reversing the aréﬁﬁaents from the previous paragraphs and using

the proof of [11, Theorem 5.5], we obtain that, if E' = (U; Uy o')ee’ aa’
then

, is a concurrent quantum commuting bicor-
/

(T(€€%), 77") = (Tr &) <E(Yg ® Y, ® NE(Y; @Y} ® I)) —0,
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for all £ € U and all n € V*. Similarly,
(T ™), ') =0 for all & € V, ' e U*.

It follows that U =, V via I
(ii)=(iii) For each £ €U, n € V*, h, g € H, we have

(63) (Ui 3Us3(n @ h),£ @ g) = (n @ h,Uz3U15(€ @ g)) = 0.
Consider Uz 3U7 3 as a linear operator on CX* @ B(H) by letting

(U23T1,3)( @T):=)  (€hy ® €ap)é @ UaalUs, T, £ € CYX, T € B(H).

z,y,a,beEX
Fix ¢ € CX¥X. We have
(0 ®id)(Ua3U13(€E @ 1))
=D U(y ® €an)f) @Uaaliy =Y €aud(&)ehy, ® Uals,
z,y,a,beX z,y,a,beX

= Z €a,x @ Ua,r (9(£> X I) Z eg,y ® Ul;k,y

a,c€X byeX

Note that 8Xebdy8)_<1 = €. Therefore,

(0 ®id)(Uz 301 3(¢ ® I))(@}l ® )

64) = | D caa®Uaa | (0O @ 1) [ D Oxef,0x @ Uy,

a,xeX byeX
= U0&)dx' @ I)U*.

To see that U(Sy ® 1)U* C Sy ® B(H), let £ € U, and fix orthonormal
bases (1;)icr and ({;);ey of V and V1, respectively. Then

U)oy @ DU* = 0(n)dx' @ Ri+ > _0(()0x' @ 8,

i€l 7€l

for some R;, S; € B(H), i € I, j € J. From the previous arguments we
obtain

(0 ®id)(UzsU13E @) = @2id) [ Y noR+Y oS8,
i€l jel

and

Ul 3(E® 1) = Zm@R +ZCJ®S
i€l Jjel

Let wq,n be the vector functional on B(H), given by w,yn(T) = (T'g, h) and,
for n € C*X, let £, be the linear functional on C*X, given by £,(&) = (£,n).
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Then
(67} ® wg,h)(UZ?)Ul,?)(g ® I))) = Z <(6z,a & fy,b)ga 77) <Ua,zUl;k,yg7 h>
z,y,a,be X
= (Uz3U13(E®g),n®h),
while
(£n®wg,h) Zni®Ri+Z Cj®5‘ :Z<77u zga +Z Cja ]g,

1€l j€J i€l jel
Taking now 7 = (; we obtain from (63) that

(ly @ wgp) (UaU13(E @ 1)) =0
and that

E ®wgh ZUZ(X)R +ZC]®S HCJH (S 79, h);

i€l 7€l

thus, (Sjg,h) = 0. As g and h can be chosen arbitrarily, S; = 0 for all j € J.
Therefore

U)oy @ NU* = 0(n;)dx' @ R; € Sy @ B(H).

i€l

Similar arguments applied to (Q ® INF(P+ ® I) = 0, where F = Uy 3Us 3,
give

U Sy @ )(U")" C Sy @ B(H).
(iii)=(ii) follows, using (64), by reversing the arguments in the implication
(if)=> (ii). O

Remarks. (i) The arguments in the proof of Theorem 7.4 can be used to
conclude that & —9°¢ V if and only if there exists a tracial von Neumann
algebra N’ C B(H) and an N -aligned isometry V = (V, 2)a,2, Vaz € B(H),
such that
V(Sy®1)V* C Sy ® B(H).
This complements the characterisation obtained in [11, Theorem 5.7].
(ii) Similar results to those of Theorem 7.4 hold for U =~y V, in which

case the space H is finite-dimensional. A treatment of the case U ~j,c V is
presented in Subsection 7.2 below.

Corollary 7.5. Let G and H be graphs with vertex set X. The following
are equivalent:
(i) Ug Zqc Un;
(ii) there exists a tracial von Neumann algebra N C B(H) and an N -
aligned bi-unitary U = (Ug g)ae € Mx (B(H)) such that Ua,xUl:y =0
if either x ~qg y and a #g b, or x ¥qy and a ~g b;
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(ili) there exists a tracial von Neumann algebra N C B(H) and an N -
aligned bi-unitary U = (Uyz)ax € Mx(B(H)) such that

(Pe ® DU} 3U5 3 = Uy 3Us 5(Prr @ I);
(iv) there exists a tracial von Neumann algebra N C B(H) and a bi-

unitary U = (Uaz)ax € Mx(B(H)) such that Uy Uy, € N, 2,y,a,b €
X, and

U(Sq® 1)U* C Sy @ B(H) and U'(Sy @ 1) U™ C Sg @ B(H).

Proof. We have Ug = {e; ® ey 1z ~g y} and Uy = {eq @ ey : a ~p b}. As
Pg = Pg and Py = Py, the conditions

(65) (Pe® Ui 3Us3(Pg ®1) =0 and (Pg ® I)Uj 3Us 3(Pg @ 1) =0

are equivalent to (Pg ® I)U} 3Us 3 = Uy 3Us 3(Pr ® I), and also equivalent
to Ua,mUZ:y = 0 if either x ~g y and a %y b or x #¢ y and a ~p b. The
statement now follows from Theorem 7.4. O

Remark 7.6. The conditions on the bi-unitary U contained in Corollary
7.5 are equivalent to the conditions Age * U(Ag ® [)U* = 0 and Age *
Ut(Ag®I)U = 0, where G€ is the complement to G and * denotes the Schur
product. We can formulate a similar characterisation for types loc and q.
In the case when the bi-unitary U is actually a quantum permutation (that
is, the entries u; ; of U are all orthogonal projections), these conditions are
equivalent to the condition that U(Ag ® I)U* = Ag ® I. Indeed, if U is
a quantum permutation satisfying Age * U(Ag ® I)U* = 0, then whenever
1 # j and i %4pr §, we have

= (U(Ag @ N)U")i; = Z Ui kU L
krol
Multiplying on the left by u; for any fixed £ satisfying k ~g ¢, we obtain
u;iruje = 0 whenever @ ¢y j, 1 # j and k ~g . Similarly, if ¢ = j and
k ~g ¢, then k # £, so that u; pu;e = 0.

Next, if we interchange the roles of G and H in the above argument and
replace U with the magic unitary U®, the identity Age * U (Ay @ 1)U = 0
yields uy jug; = 0 whenever ¢ %¢g j, ¢ # j and k ~p £ or whenever i = j,
and k ~p /.

It follows that, if i ~p j, then (assuming that n = |X|) we have

(LT@4G(X>I ,]-— j{: Us kU; .0

kwgf
= § ulku3k+ § ulku],€+ § Uj kUj.0
k~gt kgl
k+#l

> = (e (o) = 1= (o
/=1

k=1
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Similarly, if ¢ o4 7, then either ¢ = j or i ~pgc j, and we obtain in either
case
(U(Ag@ )U");; = Z uikuje = 0= (An)i;-
kgl
It follows that U(Ag ® I)U* = Ay ® I. The converse is immediate.

7.2. Local isomorphisms. In this subsection, we restrict our attention to
quantum graph isomorphisms of local type.

Proposition 7.7. Let X be a finite set, and U and V be quantum graphs in
CX ® CX. The following are equivalent:

(1) U Zioc V5 _

(ii) there exists a unitary U € Mx such that (U@ U)U) = V.

Proof. (i)=(ii) Let I' € QP is a correlation satisfying the conditions of

loc

Definition 7.2 for quantum graphs & and V. By Theorem 6.7 (iv), ' =
Zle D, ®<I>§»t as a convex combination, where ®; : Mx — My is a unitary

quantum channel, ¢ = 1,..., k. Conditions (i) and (ii) in Definition 7.2 are
equivalent to
(66) (T(Pa), P ) =0 and (T*(Py), B ) =0.

The monotonicity of the trace functional now implies that ®; ® <I>§ satisfies
the conditions in Definition 7.2 for every ¢ = 1, ..., k. We may thus assume
that T = ® ® ®f, where ® : My — My, is a unitary quantum channel.
Let U € Mx be a unitary such that ®(w) = U*wU, w € Myx. A direct
verification shows that

(W) = U*wl, we My.

Thus,

Nw)=UU)'wlUeU), we Mxx.
The first condition in (66) now implies that, for every £ € U, we have

(Ue0)€) (Uel)€) =Uel)(E)Ual)< Py,

that is, (U ® U)*(U4) C V. On the other hand,

IMw =Ue)wlUeU)*, weMxx,
and arguing by symmetry implies that (U @ U)(V) C U; thus, (ii) follows.

(il)=(i) Given a unitary U € My, let ®(w) = U*wU, w € My, and

I' = & @ ®'. Then the arguments in the first part of the proof imply that
U = Vvia I O

Remark. Proposition 7.7 can equivalently be seen as a consequence

of Theorem 7.4. Indeed, note that, by Theorem 6.7 (iv) and its proof,
I e QE}E if and only if I' = Zle AL as a convex combination, where
Li(ega ® eyy) = (Mi(Uz g a0/ Uy b/ b) )a,al by TOr SOMe *-representation ; :

C(PU;;) — C. Using the fact that all T'; are positive, it can be easily seen
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that one can assume that k = 1. Let U = (ugq)ax € Mx be the unitary
that corresponds to m as in the proof of the implication (i)=-(ii); we have
that U satisfies the corresponding conditions (ii) and (iii). In particular,
USuU* C Sy and U'Sy(UY)* C Sy. As S); = Sy and S}, = Sy, we obtain
that U*SyU C &y, which implies U*SyU = &y. This gives in particular
that (U U)U) =V.
Proposition 7.8. Let G and H be graphs with vertex set X. Then Ug =Zoc
Ur if and only if G = H.
Proof. A graph isomorphism ¢ : X — X between G and H gives rise to a
permutation unitary operator U, : CX — C¥; letting ® : Mx — M4 be
the conjugation by U,, we have that the correlation ® ® ®f implements an
isomorphism Ug =i U .

Conversely, suppose that Ug Zjoc Up. By Proposition 7.7, there exists a
unitary U € Mx such that (U @ U)(Ug) = Up. Letting

S = span{ez , : v ~ y or =y},

we now have that USqU™* = Sy. By [43, Proposition 3.1], G = H. O

Corollary 7.9. There exist quantum graphs U and V such that U =,V but
Uu %loc V.

Proof. By [1, Theorem 6.4], there exists graphs G and H such that G =4 H
but G %, H. By Proposition 7.8, Ug %ioc Ur; to complete the proof,
we show that Ug =4 Ug. By [36, Theorem 2.1], there exists a quantum
permutation matrix (Py q)z.q, acting on a finite dimensional Hilbert space
H, such that

ProPyp=0 ifz~gy&astyb or ztgy&a~pgh.
By Remark 7.6, Ug =, Uy O
7.3. The quantum isomorphism algebra. Let X be a finite set, and
U C CX¥X and V € C¥X be quantum graphs. We will introduce a C*-
algebra whose tracial properties reflect the properties of the isomorphism

game U = V. Let P (resp. @) be the projection from CXX onto U (resp.
from CXX onto V). For matrices S,T € Mxx, define a linear map

Vs : Mxx @ C(PUL) @ Mxx ® C(PUL)P — C(PUY)
by letting
Ysr(w@u®v?®) =Tr(w(S®T))uw, we Mxx® Mxx, u,ve CPBUL).
Set W = (U st a0 )t aa € Mxx ® C(PUY), and let
Zpq = (vpor (W @ W) yp1 o (W @ WP))

be the closed ideal in C(PUy), generated by the elements YpoL (W @ W°P)
and vp1 o(W @ W). Set Apg = C(PUY)/Ipq. We write 4 for the image
of an element u € C(PUY) in Apg under the quotient map.
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Theorem 7.10. Let X be a finite set, U C CXX (resp. V C CX¥X) be a
quantum graph and P € Mxx (resp. Q € Mxx ) be the projection onto U

(resp. V). The following are equivalent for a QNS bicorrelation ' : Mxx —
MXX.'
(i) T is a perfect quantum commuting (resp. quantum/local) strategy for
the isomorphism game U = V;
(ii) there exists a trace T (resp. a trace T that factors through a finite
dimensional/abelian *-representation) of Ap g such that

(67) F(ex,z’ 0y 6y,y’) = (T(u:t,m’,a,a’uy’,y,b’,b))a’a/7b7b/ 5 x, x,a Y, y, e X.

Proof. (i)=-(ii) We consider first the quantum commuting case. By Theorem
6.7, there exists a tracial state 7 : C(PU5) — C such that I' = I'-. Writing

W = (U 1 a0ty 1 ) € Mxxxx ® C(PUY),
we thus have
(Dleaar @ €yy ), €an @ evyy) = T(Ug ol a,0 Uy b b)
= Tr(((a @ €yy) @ (€a,0r @ o)) T XXX (W)
T(Vey ar@e, 41 sy (W © WP)).

By linearity,
(68) (L(S), T) =7 (ysp(W @ WP)), ST € Mxx.
Since T is a perfect strategy for the game U =V, equation (68) implies that
T (fyple(W QWP)) =1 (’}/PL’Q(W ® WOP)) = 0.
Set g = vp oL (W @ WP); we claim that g € C(PU)T. To see this, let
m s Mxx (C(PUy)) @max Mxx (C(PU))*P — Mxx(C(PUy))
be the multiplication map, and note that, if u € ]\/.I'XX(C(]P’Z/{;g))Jr and v°P €
Mx x (C(PU))°PT then
m(u ® v°P) € Mxx(C(PUT))T

(this can be seen by realising My x (C(PU5)) and Mx x (C(PU;))°P as mutu-
ally commuting C*-algebras acting on the same Hilbert space). We have that
W € Mxx(C(PU%))T and, by Lemma 6.6, that WP € Mx x (C(PU5;))°PT.
It follows that
W e Mxxxx(C(]P)u;(—))Jr.
Taking partial trace against the positive matrix P ® Q' yields a positive
operator; the claim is now proved after noticing that the latter operator
coincides with g.
Similarly,
hi=ypLo(WeWP) e C(IP’L{;)J“.

We have that
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by a straightforward application of the Cauchy-Schwartz inequality, 7 an-
nihilated Zp and hence induces a trace (denoted in the same way) 7 :
Apg — C. The validity of equation (67) persists on Apg.

Now consider the case where I' is a quantum correlation. By Theorem 6.7,
there exists a trace 7 : C'(PU5;) — C that factors through a finite dimensional
C*-algebra, such that I' = I';.. By the previous paragraphs, 7 annihilates
Jp,g- Thus 7 induces a trace (denoted in the same way) 7 : Apg — C that
factors through a finite dimensional C*-algebra and, as before, I' = I";. The
case where I' is of local type are similar.

(ii)=(i) follows in a straightforward way from relation (68). O

Remark 7.11. It follows from identity (68) and the proof of Theorem 7.4
that Ap g is the universal C*-algebra generated by elements uy, ,uy .7, where
U = (Uaz)aq is a bi-unitary matrix, subject to the relations

(69) (PoDULU5(Q 0D =0 & (PreDU,Us5(Qo1)=0.

Remark 7.12. Let us consider the special case P = @Q; this is the case
of quantum automorphisms U — U. We would like to interpret App as a
quantum group of automorphisms of the quantum graph ¢/ C C¥ @ CX.
This intuition can be made precise by equipping App with a natural co-
associative comultiplication Ap : App = App ® App, which turns it into
a C*-algebraic compact quantum group.

To construct such a comultiplication Ap on Ap p, we first consider C (Z/{;(r),
the universal C*-algebra generated by the entries of a bi-unitary U = (ugz,) €
Mx(C(UY)). The C*-algebra C(Uy) is well-known to be a compact matrix
quantum group when equipped with the comultiplication A : C(L{;) —
CUE) ® CUY), given by Auze) = Y pcy Une ® Ucq on CU) [55].
Define a new C*-algebra B obtained from C(Uy) by quotienting by the
relations given in (69). Denote the canonical matrix of generators of B
by V = (vge) € Mx(B). (Note that, by definition, V is the universal
X x X bi-unitary satisfying the relations (69).) We claim that the assign-
ment Ag(vgq) = D . VUzc @ Vcq, (z,a € X), determines a co-associative
co-multiplication Ag : B — B ® B, turning (B, Ap) into a compact matrix
quantum group. To see this, it suffices to check that matrix V € Mx @B B,

given by
‘7 = <Z VUg,e & Uc,a) = ‘/1,2‘/1,37
ceX z,0€X

satisfies the defining relations for V' (that is, V is bi-unitary and satisfies the
equations (69) in Mx ®@Mx ®@B®B). Indeed, if the above is verified, then the
co-multiplication A on C' (L{;(') will have been shown to factor the quotient
C (Z/l;g) — B, proving that Ap is well defined and induces a quantum group
structure on B.

First note that fact that V is bi-unitary follows immediately from the
formula for V and the bi-unitarity of V. To check (69), we first note that in
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Myx ® Mx ® (B® B) we have
‘71t,3‘~/2f3 = (V1,3V1,4)t(‘@,3‘@,4)* = V1t74V1t,3V2f4V2f3 = V1t,4V2)t4V1t,3V2f37
and hence
(P® I)fflt,:af/if:z(PL ®l)=(PI® I)V1t74v2*,4V1t,3V2f3(PL ®I®I)
= (PRIQDVI Vo (PRI DVVis(PreI®l) =0,

where in the last line we have used relation (69) for V' to insert the extra
copy of (P® I ®I) in the middle. This shows that the first relation in (69)
holds for V. The second relation in (69) is verified similarly.

Finally, we note that App is, by construction, the C*-subalgebra of B
generated by order two elements of B of the form v} vy o, T, ' a,a € X.
The natural co-multiplication Ap on Ap p is then the restriction of Ag to
.APJD (note that AB(AP’P> - .Apyp X -AP,P)-

Remark 7.13. Note that, by Proposition 7.7, any character on Ap p cor-
responds to a unitary U € Ux such that (U ® U)U = U. In other words,
the abelianisation of Ap p corresponds via Gelfand duality to the classical
compact group of unitary matrices

G={UU:UcUxand UU)U=U} C Mx ® Mx.

The pair (Ap,p, Ap) is therefore the quantisation of this very natural matrix
group of automorphisms of U.

8. CONNECTION WITH ALGEBRAIC QUANTUM ISOMORPHISMS

The purpose of this section is to clarify the connection between the notion
of a quantum graph isomorphism defined and characterised in Section 7 and
the notion, defined and studied in [9]. Our main reference for the latter
concept will be [15], and we follow its notation as closely as possible.

8.1. Algebraic isomorphism as a tighter equivalence. We fix through-
out the section a finite set X and let n = | X|. We denote by tr the normalised
trace on Mx; thus, tr = ﬁTr. In order to simplify the notation, we will
write 1 in the place of Ix.

Denote by L?(Mx) the Hilbert space with underlying linear space Mx
and inner product arising from the GNS construction applied to the pair
(Mx, tr). More specifically, if A : Mx — L?(Mx) is the GNS map, we set
(A(a), A(b)) = tr(a*b) (note that the inner product is linear in the second
variable). In what follows, we view Mx as a subalgebra of B(L?(My)),
where an element a € Mx gives rise to the operator (denoted in the same
way and given by)

al(b) = A(ab), a,be Mx.
Note that A(a) = aA(1), a € Mx.

Let m : L?(Mx) ® L?>(Mx) — L?*(Mx) be the multiplication map, that

is, the map, defined by letting m(A(a) @ A(b)) = A(ab), and m* : L?(Mx) —
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L?*(Mx) ® L?*(Mx) be its Hilbert space adjoint. For notational simplicity,
we will often suppress the use of A, and consider m (resp. m*) as a map
from Mx ® Mx to Mx (resp. from Mx to Mx ® Mx). We note that

n

(70) m*(em-) =n Z €k @ €k j-
k=1
Indeed, for p,q,s,t =1,...,n, we have
(71) (m*(€i,j), €pq @ €s,t) = (€i,s Ep,g€sit) = tr(€ji€pq€sit),
while
n n
(72) <n Z €ik & €5, Epqg @ 681t> = n Z tr(€x,i€p,q) tr(€) k€5 t)
k=1 k=1

= ntr(esicpg) tr(ej)-
The right hand sides of (71) and (72) are thus equal, establishing (70) which,
further, implies that

n
(73) m (1) =n  €;® ¢
ij=1

Let n : C — L?(My) be the map, given by n(\) = AA(1). Recall [15,
Definition 2.4] that a selfadjoint linear map A : L?(My) — L?*(Mx) is called
a quantum adjacency matriz if it has the following properties:

(1) m(A® A)ym* = A;

(2) ([den'm)(1® A®1)(m*n®id) = A4;

(3) m(A®1)m* =0.
We stress that condition (3) reflects the fact that we work with a quantum
version of graphs without loops (graphs with loops are quantised in this
context by requiring the condition m(A ® 1)m* = 1 instead of (3) [15, p.
6]). A triple G = (Mx,tr, A), where A is a quantum adjacency matrix, is
called in [9, 15] a quantum graph. In order to distinguish this notion from
the one used in the present paper, we will hereafter refer to it as an algebraic
quantum graph.

We fix an algebraic quantum graph G = (Mx,tr, A). We associate with
G the Mx-bimodule S’ in B(L?(Mx)) generated by A (its dependence on
G is suppressed for notational simplicity); thus, recalling that the elements
of Mx are viewed as operators on L?(Mx), we have that

(74) S" = span {aAb:a,be Mx}.
If 2,y € Mx, we write ©(,) a(y) for the rank one operator, given by
O A (&) = (M), &) Aly), &€ L*(My).
Let W : B(L*(Mx)) = Mx ® Mx be the linear map, given by
U (Opw)aw) =" @y, =,y € Mx;
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by finite dimensionality, ¥ is bijective. Set e = (1 ® A)(m*(1)); recalling
(73), we have that

(75) e=n Z €5 & A(Ej,i)-

ij=1
Lemma 8.1. Let G = (Mx,tr, A) be an algebraic quantum graph. Then
(i) W(A4) =e,
(il) e =e*, and
(iii) U(S") =span{(1®a)e(b®1):a,be Mx} C Mx ® Mx.
Proof. (i) Note that {y/nA(e; ;) }1<i j<n is an orthonormal basis for L?(Mx);
thus,

A=Y O ()it (Ale,):
ij=1

and the claim now follows from (75).

(ii) Let R = ©p(a),ap), @5 b € My, and T := (id@n*m)(1@ R@1)(m" n®
id). For notational simplicity write m*n(1) = m*(1) = >/, & @ n. If «,
y € Mx, then

(A(x), TA(y))

m

= Z(A(x) @ A(1), (1@ m)(1® Or@)ap) @ 1)(& @m @ Ay))
=1

= > (A@) @ A1), 1 @m)(&® (Aa), m)AD) ® Aly))
i=1

= S (A@) ® A1), & © Aby)){A(a), m)
=1

= > (A@), &) (M), m) (A1), Aby))
i=1
= (A(@) ® Ala),m"(1))(A(b"), A(y)) = (A(za), A(1)){A(b7), Aly))
= (A(z), A(a”))(A(D), Ay)),
showing that T' = ©(+) a(a+), and hence that ¥(T) = b ® a* = f(¥(R)),
where f is the flip map. By linearity, we obtain
U(idon'm)(1® A®1)(m*n®id)) = f(¥(A4))

and therefore by (i) and condition (2), e = f(e).
Furthermore,

A" = (Z GﬁA(EZ,])v\/ﬁA(A(ez,]))) - Z ENINVICE) WINCEE

i,j=1 i,j=1
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and therefore

e=T(A)=TV(A") =n Y Aley) @ey=fe),
ij=1

giving e = e* = f(e).
(iii) The claim follows from the fact that

(76) )\ (a@A(I)A(y)b) =v (@A(b*x),A(ay)) =2 ® ay, a,b,xr,y€ Mx.

0

We set A®? = A ® A and write Ug = A®?(U(S")); thus, Ug C L*(Mx) ®
L?*(Mx) (we note that, in the case G is classical, the space Ug is closely
related to, although not identical, to the space denoted in the same way in
Section 7). Throughout this section, we fix an orthonormal basis {A(f;) ;Lil
of L2(Mx); we note that {A(fF)}™, is also an orthonormal basis. Let
0: L?*(Mx) — L%*(My) be the linear operator with

(77) O(A(f) =Afy), G=1,....n%

and set Ug = (0®1)(Ug). We next record the properties of the spaces of the
form Ug, akin to the properties of quantum graphs in the sense of Definition
7.1. We write d for the conjugate-linear map on L?*(Myx) ® L?(My), given
by

0 Z OZZ‘J‘A(‘]CZ‘) ®A(fj> = Z dz‘,jA(fi) ®A(fj)

i,j=1 i,j=1

and recall that f is the flip map on L?(Mx) ® L?(Myx). We note that the
definitions of the maps 9 and ? depend on the basis, but the concrete basis
we are working with will be fixed or clear from the context. The same
comment applies for the notion we define next.

Definition 8.2. A subspace W C L*(Mx) ® L*(Mx) is called a quantum
pseudo-graph if W is skew and (0 o f)(W) = W.

Let Jo : L?(Mx)® L?(My) — L*(Mx) ® L?(Mx) be the anti-linear map
given by Jo(A(z) ® A(y)) = A(y*) ® A(z”).

Lemma 8.3. Let W C L?>(Mx) ® L*>(Mx) and U = (07" @ 1)(W). The
following are equivalent:
(i) (0of)(W) =W;
(ii) Jo(U) =U;
(iii) ¥=1(U) is selfadjoint.
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Proof. Let x, y € Mx. Then
(Joo (07" @ 1))(A(z) @ Ay))

= (Joo (071 ®1)) (Z<A(fi), Az)A(fi) ® A(y))

i=1

=Jo ( (A(fa), A(w)>A(fi*)®A(y9 => (A(f), A@) Ay ) @A (i)

=1

Therefore,

((9 ® 1o Joo (07 ®1))(Ax) ® A(y))

= Z (A(F), Aw))A(f) @ A(fi)

2,7=1

(Z (A(f5), Aw))A(f:) ®A(fj>)

= (00 f)(Alz) @ Ay)),
giving the equivalence (i)<(ii). A
VOhwaw) = YOuswaw) =Ay") ®A)
= Jo(A(z") @ A(y)) = Jo(¥(On()Aw)):
we obtain the equivalence (ii)< (iii). O

Proposition 8.4. Let G = (Mx,tr,A) be an algebraic quantum graph.
Then Ug is a quantum pseudo-graph.

Proof. As A is selfadjoint, there exist x; € Mx and A; € R such that A =
2
Y im1 AiOA(2:),A(xy)- Using (76), we have

(0 ®1)((A®% 0 ¥)(aAb)) Z)\ 0 ® 1)(A(z;b) @ Alax;))

2

=D Ai0®1) ( D (A, A@ib)) (A(f7), Alaza))A(f) © A(fj))

J.k=1

=2 A ) (AU) Ar2i))(A(f;), Aazi))Afi) @ A(f;).
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Hence
(20f)((0 @ 1)((A®? 0 ¥)(adb)) = (8 ® 1)(((A®? 0 ¥)(b*Aa®)),

implying the condition (3 o §)(Ug) = Ug.
Using (73), we have

=m(A®1)m* () fnZA elk)e;“fnZ)\ tr(z}ein)Tjer,i,

7,k=1
and hence, for all y € Mx, we have
TL2

0=n Z Ajtr(zjer) tr(zjer y)

i,k =1

TL2 'fl2
=n Y Atr(@fer) e yzs) =n Y A2y, €p) €k, ys)

ik j=1 ik, j=1

n

Z)\] T, Yr;) Z)\ tr( ya?j =tr yZ)\ x]
7j=1

Therefore, Zﬁl )\jxja:j = 0. By the previous paragraph, we have

<(3 ® 1)(((A%? 0 ¥)(aAb)), Z A(fr) @ A(fk)>

3 Z A=) (Afi), Alo:))
i=1 =

—Z)\ A(az;)) = tr Z)\a:ﬁ,xb =0,

=1

showing that Ue is skew. O

Remark 8.5. Proposition 8.4 shows that an algebraic quantum graph G =
(My, tr, A) gives rise to a canonical quantum pseudo-graph Ug C L2(Mx)®
L?(Mx). The reason we are led to work with quantum pseudo-graphs in-
stead of quantum graphs in the sense of our Definition 7.1 lies in the setup
of QNS correlations, which is borrowed from [20]. In defining QNS correla-
tions, instead of no-signalling quantum channels I' : Mx @ My — M4 ® Mp,
one could start with no-signalling quantum channels I" : My ® My? —
Ma ® M. For the class of quantum commuting no-signalling correlations,
this would lead to Choi matrices of the form (7(eg 2/ 4,0’ €y, b)), as Opposed
to the matrices (7(eg a2 /.0y yp/,b)) that arise through the current setup. As
we will shortly see, in order to obtain a neat connection between the two
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types of quantum isomorphisms, one also needs to work with a slightly dif-
ferent concept of quantum isomorphism than the one employed in Section
7. We make this discussion rigorous in Theorem 8.9.

Let G, = (Mx,tr, A,) be an algebraic quantum graph, » = 1,2. Let
O(G1,G2) be the universal (unital) C*-algebra with generators p; ;, i,j =
1,...,n%, and relations that turn the map p : My — Mx®O(G1, G2), given
by

,n2

(78) p(f) =Y fi®pjin i=1,...,n%
j=1

into a unital x-homomorphism such that

(79) (A2 ®@id)op=po Ay,

and

(80) (tr®id) o p = tr(-)1

Remark 8.6. It follows from the proof of [18, Theorem 4.7] that the matrix
P = (p,~7j)2;:1 € M,2(O(G1,G2)) is automatically unitary. Identifying A;
with its corresponding matrix in M,» with respect to the basis { f;}"
can further check that equation (79) is equivalent to

(81) (A2 ®@ 1oG,,a0)) P = P(A1 @ 1oGy,a2))-
Indeed, we have that

= 1,one

n2

(po AD)(fi) = D (ADkilj @ pjs = ij P(A1 ® In))ji

k,j=1

and

»

(A2 ® Lo(a,aq))P(fi)= )  Aa(fk) @ pr.i

??‘
,_\

n2

AQ kay@gpkz j{:j} 442@DIH)}UjJ
7j=1

H[V1 N

Identity (81) now follows by comparing the corresponding coefficients. We
note that reversing these arguments shows that relations (81) and (79) are
equivalent.

Note that if {A(gj)}?il C L*(Mx) is another orthonormal basis and
U € M, is unitary such that UA(g;) = A(f;), 7 =1,...,n?, then

i) = Zgj @ (U@ 1)P(U®1))j
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For the remainder of this section, we make the underlying assumption
that the C*-algebra O(G1,G3) is non-trivial.

Proposition 8.7. Let G, = (Mx,tr, A;) be an algebraic quantum graph,
r =1,2. Then the matrizc P € M,» @ O(G1,G2) is bi-unitary.
Proof. We verify that P* = (pj,i)Zj‘:l is unitary. By the previous remark we
may assume that {A(f;) ?:21 is {v/nA(€i )} = Following the proof of [15,
Lemma 9.4], let W € M,2 be the matrix with entries
Wiy =1 (Aleig), Alein)) = Tr(ejaere) = 05105k
Then
n
W W) o) = D Wipa)ia Wepa) (i) = 1
pq=1

if (i,7) = (k,l) and zero otherwise; thus, W*W = I,2. As p is x-preserving,
we obtain

S RN AF)) Py =D A A p(f)
Jl=1 j=1

= p(f)=p(f) =D _frop= > (M AF)) P
Jj=1 Jl=1
Thus

n2

Zpl,jo,i = n)Y (M), A7) oy
j=1

<
Il
—

3
[§]

= n) (A AD) P =D Wiph
j=1

<
Il
R

for all i,0 = 1,...,n?; equivalently, P(W ® 1) = (W ® 1)P*. It follows that
P* = (W1 ®1)P(W ®1), and hence
P*P' = (Wle)P(Wel)(W*e1)P*(W*) 1)
= W le@l)PP (W) 'el)=1
and
P'P* = (W*e@l)P*(WH 'a)(Wlel)P(Wel)
(W*@1)P*P(W®1) = 1.
O
Let G, = (Mx,tr, A,) be an algebraic quantum graph, r = 1,2. We will
write S!. for the space corresponding to G, via (74), r = 1,2. We say [9,

Definition 4.4] that G; and G9 are quantum commauting isomorphic, denoted
G1 ~qc Go, if the C*-algebra O(G1, G2) admits a tracial state, say 7. We
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note that by [9, Corollary 4.8], this is equivalent to (the seemingly weaker)
assumption that O(G1,G2) # 0. We assume, unless specified otherwise,
that G1 ~q. G2. Let H be the Hilbert space, arising from the GNS con-
struction applied to 7 and, by abuse of notation, continue to write p; ; for

the image of the corresponding canonical generator of O(G1, G3) under the
x-representation arising from 7. By (81), we have

(82) AQ@IH:P(Al(X)IH)P*.

We view P = (Pi,j)Zj-:l as an operator on L?(My) ® H and note that, by
(78), we have

(83) P(A(D) ® &) = p(b)(A(1) ®E), be Mx,§€H.
Moreover, for a,d € Mx and £ € H we have

Pla®@1)P*P(A(d) @ &) = P(a®1)(A(d) @ £) = P(A(ad) ® §)
= p(ad)(A(1) ® §) = p(a)(p(d)(A(1) ® §) = p(a)P(A(d) ® &),

and hence
(84) Pla®1)P* = p(a),a € Mx,

as maps on L%(MX) ® B(H).
We define P € B(L?(Mx) ® H) by letting

n?

PA(fH) @n) = A(ff) @piym n€ H.
k=1

Using leg-notation, we write P> 3 and Py 3 for the corresponding operators
on L?(Mx) ® L*(Mx) ® H, arising from P.

Lemma 8.8. We have ((A®? 0 ¥) @ id)(P(S} ® 1)P*) = Py 3P 3(Ug, @ 1).
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Proof. Let x,y € Mx. We have
P (®a@) @ @ 1) P*(A(fr) @ n)

n2
=P (Op@)a@) ©1) (Z A(f5) ®p?§,j?7)

Jj=1

= (Z<A($)7A(fj)>1\(y)®P72,j77>

J=1

=P (Z( (@), A(F5)) (A(Si), A(y)>A(fi)®pZ,jn)

1,7=1

=Z A(fm) ® <Z<A(fi),/\(y)>pm,¢Z<A(x),f\(fj)>p2,j> (n)
i=1

J=1

—Z Oa(a)A (Z< (fi), ()>pm,iZ<A(x)7A(fj)>p7,g)(A(fk)®77>

I,m=1 =1 j=1
and hence

P(Op@)a@) ®1)P*

ZZ @A(fl),A(fm X ( sz)<Z(A($)aA(fj)>PZj>'

I,m=1 =1
It follows that
((A®2 o ‘I’) X id) (P(@A(E)J\(y) X 1)P*)

=3 AU @A) ® (2<A<fi>,A<y>>pm,i) (Z<A<x>,A<fj>>p7,j).

lm=1 i=1 j=1

As P(A(y) @ €) = X7 ey (A(£), AW)A(fn) © i i€ and

n2

PA@) @n) = P(A), M) (A(f) @ 1))

Il
—

[
e

(M), AN © prgn,

j,l=1

we obtain
(A% 0 ) @ id)(P(Op(a)a(y) ® 1)P*) = PasPr3(A(z*) @ Aly) @ 1).

The statements now follow by linearity from the definition of Ug,.
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Let N C B(H) be a von Neumann algebra, equipped with a faithful trace
7, and let U = (uj;)i; € My2(N) be a bi-unitary block operator matrix
(with entries in N'). Suppose that T': M, 2 ® M,2 — M, ® M, is a QNS
correlation, given by

(85) D(eii @ €j,50) = (T(upjunr gy i) ik 10

We let T : M2 ® M,> — M,2 ® M,2 be the unital completely positive map,
given by

Dlerr @ erpr) = (7(uf juniug g o)) j g
If fio kv = Uk, iufs  then I has Choi matrix (7(fu k4t frr.1575)) and is hence
a quantum commuting QNS correlation. We remark that, as can be verified
in a straightforward way, if o : M,2 @ M,2 — M,2 @ M,2 is the map, given
by o(exp @€ ) =€) @ ep g, then ' =00l o0,

We call two quantum pseudo-graphs W; and Ws qc-pseudo-isomorphic if
there exists I' € QS;C of the form described in the previous paragraph, such
that

(i) T is a perfect strategy for Wi — W, and
(ii) T is a perfect strategy for Wy — W).

Theorem 8.9. Let G, = (Mx,tr, A,), r = 1,2, be algebraic quantum graphs
with G1 ~qc G2. Then the quantum pseudo-graphs Ug, and Ug, are qc-
pseudo-isomorphic.

Proof. Set U, = LN{GT for brevity, » = 1,2. By assumption, the C*-algebra
O(G1,G2) has a tracial state, say 7. Let N' C B(H) be the von Neumann
algebra associated with 7 via the GNS construction, and 7 be the (faithful)
trace on N, corresponding to 7. Write u; ; for the images of the canonical

generators p; ; under the Gelfand map, and let U and U be the matrices,

corresponding to P and P, respectively. Let I' be the QNS correlation given
by (85). Note that, by (84) P(a ® 1)P* = p(a), a € Mx, and, by (82),
P(Al X I)P* = Ay ® 1; thus,

PlaAb® 1)P* = Pla®1)(4, ®1)(b® 1)P*
— P(a®1)P*P(A, ® 1)P*P(b® 1)P*
pla)(Az @ 1)p(b).
It now follows from (78) that U(S] @ 1)U* C S}, ® B(H). By Lemma 8.8,
(86) UssUy 3ty @ 1) C Uy @ B(H).
Recalling the map 0 defined in (77), note that

O21)T(OR1)(A(fi)@n)=(01)| d_A(fH)@upn|=>_ Alfe)®ufm,
k=1 k=1

that is, 3
PeNUO®1)=U"=T.
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Let PZII,. be the projection onto U,, r = 1,2. Then condition (86) implies
that

(87) (Pg, ® )Uz3013(FPy, ©1) =0.

The arguments in the proof of Theorem 7.4 (see also the subsequent Remark)
now imply that I' is a perfect strategy for the quantum graph homomorphism
game 1;{1 — Z;{Q.

Relation (82) implies U*(A2 ® 1)U = A; ® 1. By symmetry, we obtain
the relation

(88) (Py © )U53U75(Pg, 1) =0,

We now show that T is a perfect strategy for Us — U;. Let £ = 223:1 g fk®
~ 2 ~
freUpand n =371, Bijfi® f; € Ui-; then

n? n?
<F(§€*)77, T]> =T Z Z akJawfu;luk,iuzlvi/ul/’j/Bi/7j/ﬁ7j

kvlvklvl/:]- ivilvjvjl:]-

cps 2 —_— * T- * ~ *
Writing R , = Zz,l,i,jzl ak,lﬁi,juk,iul,j, we have (I'(£6*)n,m) = T(Rg,nRE,n)v
and using the fact that 7 is faithful, this implies that

(D(&")m,m) =0 <= Re, =0.

Taking into account (60), we now have
(Ref,h) = (Ui 3Us3(n® f),E@h), f,heH,
and therefore
(P, ® 1)C71,3,U2,3(Pj1 ®1) =0 <= T is a perfect strategy for Uy — Uj.
The proof is complete in view of (88). O

Remark 8.10. For a classical graph G with vertex set X, let Ag : Mx —
Mx be Schur multiplication map against the adjacency matrix of G. Then
(Mx,tr, Ag) is an algebraic quantum graph. Let

Wea =spanf{eg, ®eyy:x~yin G} € Mx ® Mx.

Then Wg is a quantum pseudo-graph in L?(Mx) ® L?(Mx).
Let G1, G2 be classical graphs with vertex set X. We have the following
three types of quantum commuting isomorphism for the graphs G and Ga:

(a) quantum commuting isomorphism in the sense of classical non-local
games [1];

(b) quantum commuting isomorphism of the algebraic quantum graphs
(Mx,tr,Agl) and (My, tr, AGQ);

(¢) quantum commuting isomorphism in the sense of quantum non-local
games (Section 7), employing the quantum pseudo-graphs W and
Wo.
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We have that (a) implies (b), and that (b) implies (¢). We do not know if
these implications are reversible.

8.2. A partial converse. In the remainder of this section, we discuss to
what extent the implication established in Theorem 8.9 can be reversed.
We first note that the quantum pseudo-graphs of the form U = Ug, for an
algebraic quantum graph G = (Mx,tr, A), automatically have some extra
structure, and hence a full reversal of Theorem 8.9 cannot be expected.
Indeed, let ¢ = (87! ® 1)(U), and recall that S' = U—1(i) C B(L?*(Mx))
is an Mx-bimodule. We first show that any quantum pseudo-graph U, for
which ¥~1(U) is a Myx-bimodule, arises in this way. In what follows we fix
a basis {A(f;)}; in L?*(Mx) when define pseudo-graphs U.

Let M3’ be the opposite algebra to Mx. For notational simplicity, we will
consider M as having the same underlying vector space as My, and will
denote its product by -op; thus, a op b = ba, a,b € Mx. Let (L*(My’), A°P)
be the GNS construction applied to (M3, tr). As

(A%P(a), A%P(D)) = tr(a” -op b) = tr(ba®) = (A(a), A(D)),

we have that L2(M) ® L?*(Mx) and L*(Mx) ® L*(Mx) can be identified
also as Hilbert spaces. Recall that L?(Myx)? is the Banach space dual of
L?*(Mx) (equivalently, the conjugate Hilbert space to L?(My)). If A C
B(L?(Myx)) is a *-subalgebra, then the map T - T9, where T9¢ = T*¢,
¢ € L?(Mx), is a x-isomorphism. In what follows we will often identify
T°P with T, For a linear operator T : L?>(Myx) — L?(Mx), we define
T : L*(Mx)? — L*(Mx)d, by letting T¢ = TE, € € L*(Myx).

Lemma 8.11. Let G = (Mx,tr, A) be an algebraic quantum graph. Then
e = (1®A)(m*(1)) is a projection when considered as element in My @ Mx .

Proof. By Lemma 8.1, we only have to show that e is an idempotent. Using
(75), we have

n n
e = n? Z € @ A(€ji) Z €r1 ® Aler )

ij=1 k=1
n
= n® > eijop et @ Alej ) Aler)
ik l=1

= n? Z €k,j & A(Gj,i>A(6i7k) =n Z €k,j & m(A X A)m*(ejk)
i,5,k=1 Jk=1

n
= n Z €r; @ Alejr) = e.
k=1
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Remark 8.12. We remark that reversing the arguments of Lemmas 8.1
and 8.11, we can easily see that any projection e € My ® My, such that
e = f(e), gives rise to selfadjoint operator A : L?(Mx) — L*(Mx) satisfying
the conditions (1) and (2) of quantum adjacency matrix and linked to e
through the identity (75).

Let J : L?>(Mx) — L?(Mx) be the conjugate-linear map, given by
J(A(a)) = A(a*), and the map s : B(L?*(Mx)) — B(L*(My)) be given
by k(xz) = Jz*J. We have that x is an anti-x-homomorphism such that
k? = id; writing 7 : L?(My) — L?*(Mx) for the *-homomorphism given by

A

m(x)A(a) = A(za), we have that k(r(Mx)) = n(Mx)'.

Prqposnlon 8.13. Let U be a quantum pseudo-graph such that U~1((071®
1)(U)) is an Mx-bimodule. Then there exists an algebraic quantum graph
G = (Mx,tr,A) such that U = Ug.

Proof. Let U = (' ® 1)(U) and S’ = U~1(Uf). By assumption, S’ is an
Mx-bimodule and hence x(S’) is a w(Mx)'-bimodule. Under the canon-
ical bijection between B(L?(Mx)) and L?(Mx)Y ® L?(Mx), the n(Mx)'-
bimodule x(S’) corresponds to the (m(Myx)')°P ® m( My )'-invariant subspace
U'. Thus it gives rise to the projection e € M;)(p ® Mx onto U’. By Lemma
8.3, S’ is selfadjoint and hence so is x(S’), which implies, again by Lemma
8.3, that e = f(e) and Jo(U') =U".

Let A : L?(Mx) — L?>(My) be the linear map corresponding to e as
in Remark 8.12. We have that x(S’) is the m(Mx)’-bimodule generated
by A. Tt follows that S is the w(Mx)-bimodule generated by A. In fact,
since k(m(Mx)") = m(Mx), it suffices to verify that JA*J = A. Write
A= Zzﬂil Ai@A(xi),A(mi)a Ni €R, ;€ Mx,i=1,...,m. Then e = V(A4) =
Yo Az ® ;. On the other hand,

m
JAYT = JAT =) MOnn) A@r)-
i=1
Thus U(JA*J) = Y7 Nizs @ xf = f(e). As e = f(e), we get U(JA*J) =
U(A), implying that JA*J = A.
Finally, reversing arguments in Proposition 8.4 we see that skewness of
U implies that m(A ® 1)m* = 0, showing that A is a quantum adjacency
matrix. Letting G = (My, A, tr), we have that U = Ug. O

We now fix a quantum pseudo-graph U, in L?(My) ® L?(My), for which
the corresponding space S’. is an Mx-bimodule, and let U, := (9~ @ 1)(U,),
r = 1,2. We assume that ¢/, and Us are qc-pseudo-isomorphic, and let A
be a von Neumann algebra with trace 7, and U = (um)Zi:l be a bi-unitary,
with u; € N, k,i = 1,...,n?, such that U gives rise, via (85), to a QNS
correlation implementing a qc-pseudo-isomorphism between Z;{Gl and Z;IGT
The proof of Theorem 8.9 implies that

(%(%@Wﬂ%%@ﬂﬂwﬂ%@%ﬂ%%ﬁmﬂ;
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reversing the arguments in its proof, we obtain the equivalent conditions
(90) US| ®1)U*C SN and U*(S,® 1)U C S N.

Note that the map ay : B(L*(My)) — B(L?*(Mx)) ® N, given by
ay(z) = U(x ® 1)U*, is trace preserving, that is, satisfies the identities
(tr@id)(ay(z)) = tr(z)I, » € B(L?(Mx)). Indeed, for i,j € X x X, we
have

(tr@id)(av(ey)) = (treid)((uriv;)k) Zulm Up, ;

1
= Eéi’jl = tr(ei’j)I.

Assume that there exists a *-homomorphism p : Mx — Mx ® N, such that
UA(D) ® &) = (r®id)(p(b))(A(1) ® £). According to [15, Section 9.1] (see
also (84)),

ap(r(a)) = (r®id)(p(a)) S7(Mx) N, a€ Mx;

we call U the unitary implementation of p. Writing p(f;) = Y f; ® v, we

have
2

UA(fi) &) = ZA fi)®@ut, i=1,2,.
J=1
and hence v; ; = u; ; for all ¢, j. The elements u; ; satisfy all of the relations of
the generators of O(G1, G2), except for, possibly, relation (79) (equivalently,
(81)). The following theorem establishes this last relation.

Theorem 8.14. Let G, = (Mx,tr, A,) be an algebraic quantum graph,
r=1,2. Let N be a tracial von Neumann algebra and U be a bi-unitary with
entries in N giving rise, via (85), to a QNS correlation T that implements a
gc-pseudo-isomorphism between Z;l(;l and Z:IG2. Assume that U is the unitary
implementation of a trace-preserving x-homomorphism p : Mx — Mx QN
Then U(A1 ® I) = (A2 ® I)U and hence G ~gc Go.

The proof of Theorem 8.14 uses arguments from [15] and some auxiliary
statements which we now establish. Set H = L?(Mx) (equipped with the
inner product associated with tr). We identify L?(M) with L*(Mx)? via
the unitary map A°P(x) — A(x*).

We write A : B(H) — L*(B(H)) for the GNS-map corresponding to (non-
normalised trace) Tr. We have

(R(Oaw W) AOAEAw))) = T (On)awOriaw))
= (AW, AW (A@) A@)) y = (AW, AWy (A AG) -
Hence the linear map w : L?>(B(H)) — HY® H, defined by
w (MOA@Aw)) = A@) @ Aly),
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is a unitary operator.

We now fix algebraic quantum graphs, G, = (Mx,tr, A,), r = 1,2, a von
Neumann algebra A and a bi-unitary U as in the statement of Theorem
8.14. Assume that N acts on a Hilbert space K. Let e, € M;)(p ® Mx be
the projection associated with the adjacency matrix A, : Mx — Mx of
G, via (75), r = 1,2 (see the paragraph after the proof of Theorem 8.9),
and let p, be the orthogonal projections from the Hilbert space L?(B(H))
(equipped with the inner product corresponding to Tr) onto its subspace
A(S!), r = 1,2. The following lemma specialises [15, Lemma 9.17]; we
include a direct proof for the convenience of the reader.

Lemma 8.15. The following hold:
(1) (woA)(Ar) = (AP @ A)(er);
(ii) wprw* = (J @ J)e(J ® J);
(it}) prw* (A1) @ A(1)) = A(A,).
Proof. (1) Let T = @A(x),A(y)v x,y € Mx. Then
w(A(T)) = A(z) @ Aly) = (AP @ A) (2" ©y).
As Ar =130 1 On(e ) A A (er,)) We have

(wol)(A) = n Y (AP @A) (e, @ Areiy))
ij=1
= 13 (AP © A)(e; ® Arery) = (AP © A)(er).
ij=1
(ii) Using (76), for a,b € Mx we have
w(A(aTh)) = W(A(Oppra)a(ay) = Ab*T) © A(ay)

A% (27b) @ Aay) = (b® a)(A°P(27) @ A(y)),

where the latter action is that of MY ® Mx on L*(My) ® L*(Mx). Thus

(91) w(A(S)) = (MY © Mx) (A @ A)(ey).

As e, € M;p ® My, identifying it with its image under the map 7°° ® 7
(which acts on L2(Mx){® L?(My)), for a®b,r®@y € MY ® Mx, we obtain
that
(92) (JoJ)(zey)(JeJ)(AP @A) (a®D))

= (J @ J)(x@y)(JA(a*) ® A7) = (J @ J)(x @ y)(AP(a") @ A(b"))
= (J & J)(AP(a"z) @ A(yb")) = JA(z*a) @ A(by")
= A%(z%a) @ A(by") = (a @ b)(AP @ A)(z* ® y¥)

which, together with the fact that e, is selfadjoint (see Lemma 8.11), implies
that, for any u € M}p ® My, we have

(93) (J® J)er(J @ J) (A @ A)(u)) = u(A @ A)(er).
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In particular, using (91),
ran ((J ® J)e,(J @ J)) = (MY @ Mx)(A® @ A)(e;) = (wo A)(S).

Statement (ii) now follows.
(iii) Using (i), (ii), (93) and the calculation (92) for a = b = 1, we have

(wpr)AM @A) = (T@ J)er(J @ J)(A1) @ A(1))
— (A ® A)(e,) = (wo A)(A4,).

Let U : L*(B(H)) ® K — L*(B(H)) ® K be the operator, given by
UA) ®€) = av(b)(AM1) ©€), €K,

For a Hilbert space L, let j : L — L9 the anti-linear isomorphism, given
by j(g) = g, and R : B(L) — B(L?) be the map, given by R(z) = jz*j,
x € B(L). Note that, if (g;); is an orthonormal basis for L, ¢; ; € B(L) are
the matrix units corresponding to (g;);, and {€;;} is the matrix unit system
for B(LY) with respect to the orthonormal basis (g;);, then

Reij) = j(9i97) 7 = j(9597)7 = 3(9;)3(9:)" = &;.-
In the following, we let V = (R ® 1)(U*). Thus, if U = (u;;)7;_; with

respect to the orthonormal basis {A/X(f,)}:‘:z1 of L?(Mx), then V is the oper-

ator on L?(Mx)? ® K whose matrix with respect to the orthonormal basis
2

(R} s (o)t = (i)
Lemma 8.16. We have that (w ® I)U(w* ®1) =Uz3Vi3.
Proof. For 1 < s,t <n? and ¢ € K we have
(w® 1)0( F@ D(A(f) @ Afs) @ €)
(we HUA (@A (F)A()) @ E)
= (W Dau (O a¢)) A1) @)
(w® DU (O acs) @ DUTA(1) @)

= (w® 1)(2 6i,j®ui,j)(@/\(ft),/\(f5)®1)(Z 6l,k®uz,l) (A(1)®§)

ij=1 k=1

n2
= (w ® 1) ( Z ei,jGA(ft),A(fs)ek,l &® ui,juzk> (A(l) &® f)

i,j,k,1=1
= > Af) @A(f) ® wisuf & = U sVis(A(fr) ® A(fs) ® €)
i,l=1

The statement follows by linearity. O
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Proof of Theorem 8.14. We recall that the von Neumann algebra N acts on
the Hilbert space K, and that p, is the orthogonal projections from the
Hilbert space L?(B(H)) (equipped with the inner product coming from Tr)
onto A(S%). By (90),

(99) UMb @8 =ar(b)(A1)®€) € AM(S) @ NE be s,
and hence

Up1®1) = (2@ 1)U (p1 @1),
Similarly, U*(pa ® 1) = (p1 ® 1)U*(p2 ® 1), from which we get

(pp@ 1)U =U(p1 ®1).
Using Lemmas 8.15 and 8.16, for £ € B(K') we therefore have

OZUEAl)(]\(l) €)= U(A(A1) ®¢)

= U(pw* (A1) @ A(1)) ® €) = (p2 @ DT (w* (A1) ® A(1)) ® €))
= (paw* @ 1)U23V1 3(A(1) ® A(1) ® €).

From the definition of U, we have
(95) UML) ®&) =p(1)(A(1) ® &) = A(l) ®&.
Observe that
(96) V=F'e)UF®o1)

where F : HY — H is the unitary given by FA(z) = A(z*). Indeed, to
establish (96), we note that F~! = F* and, for ¢ € K and i = 1,...,n?, we
compute:

(Fe)UF 2 1)A(f) @€ = (F @ DUA(f) ®§)
= (F' @) (r@id)(p(f)) (A1) ® )

n2

= (P enEei)( D £ eu,)(h1) o)

j=1

(ZA ®uﬂf)

= ZW@U% — VA © ).
j=1

By (96), and the identities F(A(1)) = A(1) and F~(A(1)) = A(1), we have

(97) VA1) ©&) = A1) ©&.
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Using (94), (95), (97), and Lemmas 8.15 and 8.16, we finally obtain

ap(A)(A1) @ §) = UA(A) ®§)
= (pow* @ )Us3Vi3(A(1) ® A1) ® &)

(2 © DD © A1) 96)

= AA)®@E=(AI)(AM1)®E),

where we consider Ag in the left regular representation of B(L?(Mx)), that
is, as an operator on L?(B(L?(Mx))). Thus,

(av(A1) — 4@ A1) © ) =0, €K
This implies that
(id ®@Lgy< ) (o (A1) — A2 @ 1)A(1) =0, &,n€ K;

thus,

(1d®L§n*)(<aU(A1)—A2®I)) =0, &neK.
Hence ay(A;) = A2 ® I which, in turn, means that U(A; ®I) = (A2 @ I)U.
The proof is complete. O
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