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Abstract. We introduce classical and quantum no-signalling bicorre-
lations and characterise the different types thereof in terms of states on
operator system tensor products, exhibiting connections with bistochas-
tic operator matrices and with dilations of quantum magic squares. We
define concurrent bicorrelations as a quantum input-output generalisa-
tion of bisynchronous correlations. We show that concurrent bicorrela-
tions of quantum commuting type correspond to tracial states on the
universal C*-algebra of the projective free unitary quantum group, show-
ing that in the quantum input-output setup, quantum permutations of
finite sets must be replaced by quantum automorphisms of matrix al-
gebras. We apply our results to study the quantum graph isomorphism
game, describing the game C*-algebra in this case, and make precise
connections with the algebraic notions of quantum graph isomorphism,
existing presently in the literature.
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1. Introduction

In recent years, many fruitful interactions have emerged between entan-
glement and non-locality in quantum systems, on one hand, and the theory
of operator algebras and operator systems, on the other. At a high level, this
connection stems from the laws of quantum mechanics, which dictate that
the input-output behaviour of local measurements on (bipartite) quantum
systems is encoded by non-commutative operator algebras of observables
and their state spaces. This provides powerful means to translate between
questions of a physical nature and questions formulated in the language of
non-commutative analysis. At the base of these developments lie the work of
Junge, Navascues, Palazuelos, Perez-Garcia, Scholz and Werner [29], where
the relation between the Tsirelson Problem in quantum physics and the
Connes Embedding Problem in operator algebra theory was first noticed
(see also [44]), and that of Paulsen, Severini, Stahlke, Winter and the third
author [46], where the notion of synchronous no-signalling correlation was
first defined and characterised. The fruitfulness of these connections has
been borne out by many recent works; see [44, 35, 37, 36, 39, 38, 1, 40, 9]
for an incomplete list. We specifically single out Sloftsra’s ground-breaking
work [50, 49], which injected ideas from geometric group theory into the
theory of non-local games, showing that the set of bipartite quantum corre-
lations is not closed, and the work of Helton, Meyer, Paulsen and Satriano
[26], in which an algebraic approach to non-local games was formulated. All
of these ideas recently culminated in the resolution of the weak Tsirelson
problem and Connes Embedding problem in the preprint [28] by Ji, Natara-
jan, Vidick, Wright and Yuen.

In the present work, we are primarily interested in investigating the struc-
ture of quantum input-quantum output bipartite correlations which gener-
alise the bisynchronous correlations introduced by Paulsen and Rahaman
in [47]. Recall that a no-signalling bipartite correlation over the quadru-
ple (X,X,A,A), where X and A are finite sets, is a family of conditional
probability distributions

p = {p(a, b|x, y) : (x, y) ∈ X ×X, (a, b) ∈ A×A}
that has well-defined marginals (see e.g. [35]). Operationally, in the com-
muting operator model of quantum mechanics, p describes the input-output
behaviour of a bipartite quantum system, given by a Hilbert space H in
state À, interpreted as a unit vector in H, on which local measurements are
jointly performed: for each x, y ∈ X, two non-communicating parties Alice
and Bob have access to mutually commuting local measurement systems
Ex = (Ex,a)a∈A ¦ B(H) (for Alice) and Fy = (Fy,b)b∈A ¦ B(H) (for Bob).
Given input x, Alice uses the system Ex to measure À, and similarly, given
y, Bob uses Fy to measure À; the resulting outcomes of Alice and Bob’s
measurements are (a, b) ∈ A×A with probability

p(a, b|x, y) = ïEx,aFy,bÀ, Àð.
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We say that a correlation p is synchronous if p(a, b|x, x) = 0 for all x ∈ X and
a ̸= b. Heuristically, Alice and Bob’s behaviour is synchronised in that they
appear to invoke the same “virtual function”X → A to obtain their outputs,
depending on the given inputs. A correlation p is called bisynchronous [47]
if it is synchronous and has the additional property that p(a, a|x, y) = 0 for
all a ∈ A and x ̸= y. In this case, the “virtual function” X → A behaves as
though it were in addition injective.

Using the language of operator algebras and non-commutative geometry,
one can make the intuition, highlighted in the previous paragraph, precise.
Let AX,A = ⋆|X|ℓ∞(A) be the unital free product of |X| copies of the |A|-
dimensional abelian C*-algebra ℓ∞(A). The C*-algebra AX,A is a C*-cover
of the universal operator system SX,A with generators ex,a, where x ∈ X
and a ∈ A, subject to the relations ex,a = e2x,a = e∗x,a and

∑

a∈A ex,a = 1,
x ∈ X. Within the framework of non-commutative geometry, AX,A can be
regarded as a quantisation of the finite-dimensional C∗-algebra C(F(X,A))
of complex-valued functions on the set F(X,A) of functions f : X → A. It
was shown in [46] that a no-signalling correlation p of quantum commuting
type is synchronous if and only if there is a tracial state Ä on AX,A such
that

p(a, b|x, y) = Ä(ex,aey,b), x, y ∈ X, a, b ∈ A.(1)

If the correlation p is bisynchronous (and |X| = |A|), then [47] p arises via (1)
from a tracial state Ä on the C*-algebra C(S+

X) of the quantum permutation

group [56]. Similarly to AX,A, the C*-algebra C(S+
X) is the universal unital

C*-algebra with generators ex,a, x, a ∈ X, further satisfying the additional
relations

∑

x∈X ex,a = 1, a ∈ A. Note that C(S+
X) is a free analogue of the

algebra C(SX) of complex functions on the permutation group SX of X,
and is itself a C∗-algebraic quantum group [56].

Bisynchronous correlations arise in the analysis of certain classes of non-
local games, most notably the graph isomorphism game [1, 36, 38, 9] and the
related metric isometry game [22]. Here, deep and unexpected connections
emerged between quantum permutation groups, no-signalling correlations
and graph theory. At the same time, connections were established between
graph isomorphism games and quantum graphs [40, 41, 9]. In particular, in
the aforementioned works, a natural (operator) algebraic notion of a quan-
tum isomorphism between quantum graphs was introduced.

One of the main motivations behind the present work is the desire to
provide an operational characterisation of quantum isomorphisms between
quantum graphs in terms of bipartite correlations. As the term suggests,
the description of a quantum graph (in any of its many guises [51, 40, 9, 11])
requires a suitable quantum version of the notion of a vertex or edge, using
the language of bipartite quantum systems. Hence one is naturally led to
consider bipartite no-signalling correlations which allow quantum states as
inputs and outputs.
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Quantum input-quantum output no-signalling (QNS) correlations were
introduced by Duan and Winter [20], and subsequently systematically stud-
ied in [52, 7, 11]. Given finite sets X and A, and denoting by MX (resp.
MA) the full matrix algebra over the |X|-dimensional Hilbert space, a QNS
correlation over the quadruple (X,X,A,A) is a quantum channel

Γ :MX ¹MX →MA ¹MA

satisfying a pair of additional constraints, equivalent to the existence of
marginal channels (see equations (5) and (6), and the article [20] for further
details). Since any classical no-signalling correlation p over (X,X,A,A)
can be regarded as a QNS correlation Γp that preserves the corresponding
diagonal subalgebras, QNS correlations constitute a genuine generalisation
of their classical counterparts (see also equation (8)).

The main purpose of the present work is to develop a notion, and find
(operational and operator algebraic) characterisations, of bisynchronicity in
the quantum input-output setting. In parallel with the classical setting,
here we focus our attention on the case where the input and output sys-
tems are of the same size, that is, |A| = |X|. In this case, it is natural to
consider “bistochastic” correlations Γ : MX ¹MX → MA ¹MA, that is,
unital QNS correlations with the additional property that the dual channels
Γ∗ are also QNS correlations; these channels are referred to as QNS bicorre-
lations (see Definition 5.1). A quantisation of bisynchronicity must involve
a suitable quantum counterpart of the property of sending identical inputs
to identical outputs. In bipartite quantum systems, this is naturally cap-
tured by how Γ (and Γ∗) acts on the canonical maximally entangled state.
More precisely, if (ϵx,y)x,y∈X is the canonical matrix unit system of MX ,

and JX = 1
|X|
∑

x,y∈X ϵx,y ¹ ϵx,y is the maximally entangled state, then it is

natural to impose the condition

Γ(JX) = JA.(2)

Condition (2) on a QNS correlation Γ was introduced and studied in de-
tail in our previous work [11], where it was called concurrency. For a QNC
bicorrelation Γ, its concurrency is equivalent to concurrency for Γ∗ (see Re-
mark 6.2). From an operational viewpoint, concurrent bicorrelations Γ are
characterised by the property that Γ and Γ∗ preserve the perfect correlation
of local measurements in both directions: the input state JX is characterised
by the property that local measurements performed on JX in any fixed basis
are always perfectly correlated with uniformly random outcomes. Concur-
rent bicorrelations thus respect this perfect correlative structure, and hence
rightfully can be interpreted as fully quantum versions of bisynchronous
correlations.

We study the various types of QNS bicorrelations (quantum commuting,
quantum approximate, quantum and local) in detail, providing operator
system/algebra characterisations thereof. After providing necessary prelim-
inaries in Section 2, in Section 3 we exhibit operator bistochastic matrices,
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which can be viewed as quantum and operator-valued generalisations of clas-
sical bistochastic matrices. Operator bistochastic matrices turn out to be
the suitable mathematical objects encoding each of the parties of a QNS
bicorrelation. We characterise concretely the universal operator system TX
of an operator bistochastic matrix as the subspace spanned by natural or-
der two products associated with the entries of a universal block operator
bi-isometry V : C|X| ¹H → C|X| ¹K (that is, an isometry V for which the
transpose V t is also an isometry). We further identify the dual operator sys-
tem of TX and establish several properties of TX and its universal C*-algebra
CX . At the heart of our arguments is a factorisation result for bistochas-
tic operator matrices (Theorem 3.2). Our results should be compared to
those of [52], where a similar development was undertaken for the univeral
operator system TX,A of a block operator isometry, and the corresponding
C*-algebra CX,A.

The diagonal expectations (intuitively, the classical components) of bis-
tochastic operator matrices coincide with quantum magic squares, intro-
duced by De Las Cuevas, Drescher and Netzer in [16]; contrapositively, bis-
tochastic operator matrices can be viewed as quantum versions of quantum
magic squares. In Section 4, we build up on this connection and rephrase
some of the results of [16] in the language of operator systems. Indeed,
one of the main results in [16] is the fact that not every quantum magic
square admits a dilation to a quantum permutation. In Theorem 4.5, we
characterise the dilatability of a quantum magic square in terms of the com-
plete positivity of natural maps, associated with the given quantum magic
square, and defined on the operator system PX ¦ C(S+

X) spanned by the
coefficients of a quantum permutation matrix. We demonstrate that the
non-dilatability of quantum magic squares is due to the distinction between
different operator system structures.

In Section 5, we introduce the types of quantum no-signalling bicorrela-
tions, corresponding to different physical models (local, quantum, approxi-
mately quantum, quantum commuting and general no-signalling), and char-
acterise them in terms of states on the various operator system structures,
with which the algebraic tensor product TX ¹ TX can be endowed. Here
we rely on the tensor product theory developed in [32]. We pay a sepa-
rate attention to classical no-signalling bicorrelations, showing that their
corresponding encoding operator system SX is the universal operator sys-
tem spanned by the entries of an X × X-quantum magic square studied
in Section 4, and obtaininig similar characterisations in terms of states on
operator system tensor products on the algebraic tensor product SX ¹ SX .

In Section 6, we focus our attention on concurrent bicorrelations, estab-
lishing in Theorem 6.7 a characterisation of concurrent quantum commuting
bicorrelations in terms of tracial states. We show that the C*-algebra, whose
tracial states are of interest here, is the C*-algebra C(PU+

X) of functions on
projective free unitary quantum group. Recall that the C*-algebra of the
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free unitary quantum group C(U+
X) is the universal unital C*-algebra gen-

erated by the entries ux,a of an X×X bi-unitary matrix U = (ux,a)x,a. The
C*-algebra C(PUX+) is the C*-subalgebra of C(U+

X), generated length two

words of the form u∗x,aux′,a′ . Note that the C*-algebra C(U+
X) is the free

analogue of C(UX), the C*-algebra of continuous complex functions on the
unitary group UX . Similarly, C(PU+

X) is the free analogue of the algebra of
continuous complex functions on the projective unitary group PUX = UX/T.
Recall that the natural action of UX on MX by conjugation induces an iso-
morphism of PUX and the group Aut(MX) of ∗-automorphisms of the matrix
algebra MX . In this way, C(PUX) can be regarded as the quantum version
of the automorphism group of MX . In fact, using quantum group theory,
this reasoning can be made precise as, by [3, Corollary 4.1] and [2, Theorem
1], C(PU+

X) is the quantum automorphism group of the tracial C*-algebra
MX in the sense of Wang [56].

Thus, from an operator algebraic point of view, Theorem 6.7 provides yet
another justification for our definition of concurrent bicorrelations as the ap-
propriate quantum versions of bisynchronous correlations; indeed, at a cor-
relation level, quantisation of bisynchronicity amounts to replacing classical
channels on DX ¹DX with quantum channels on MX ¹MX . At the level of
tracial states encoding these channels, Theorem 6.7 shows that this quanti-
sation amounts to replacing C(S+

X) (that is, quantum automorphisms of DX)

with C(PU+
X) (that is, quantum automorphisms of MX). We remark here

that the C∗-algebras C(S+
X) and C(PU+

X) are indeed distinct C∗-algebras,
as can be seen from the K-theory computations in [54, Theorem 4.5]. In
summary, the operational and the algebraic notions of quantisation are in
agreement. Our results complement a series of operator characterisations in
the literature, part of which we summarise in the following table:

Correlation type: Encoded by states on:

Classical NS correlations Cns SX,A ⊗max SX,A [35, Theorem 3.1]

Classical qc-correlations Cqc SX,A ⊗c SX,A [35, Theorem 3.1]

Classical qa-correlations Cqa SX,A ⊗min SX,A [35, Theorem 3.1]

Synchronous qc-correlations Cs
qc AX,A (tracial) [46, Theorem 5.5]

Bisynchronous qc-correlations Cbis
qc C(S+

X) (tracial) [47, Theorem 2.2]

QNS correlations Qns TX,A ⊗max TX,A [52, Theorem 6.2]

QNS qc-correlations Qqc TX,A ⊗c TX,A [52, Theorem 6.3]

QNS qa-correlations Qqa TX,A ⊗min TX,A [52, Theorem 6.5]

QNS bicorrelations Qbi
ns TX ⊗max TX [Theorem 5.4]

QNS qc-bicorrelations Qbi
qc TX ⊗c TX [Theorem 5.5]

QNS qa-bicorrelations Qbi
qa TX ⊗min TX [Theorem 5.6]

Classical NS bicorrelations Cbi
ns SX ⊗max SX [Theorem 5.10]

Classical qc-bicorrelations Cbi
qc SX ⊗c SX [Theorem 5.10]

Classical qa-bicorrelations Cbi
qa SX ⊗min SX [Theorem 5.10]

Concurrent qc-correlations Qc
qc CX,A (tracial) [11, Theorem 4.1]

Concurrent qc-bicorrelations Qbic
qc C(PU+

X) (tracial) [Theorem 6.7]

In Section 7, we apply concurrent bicorrelations to study quantum graph
isomorphisms. We consider quantum graphs with respect to MX , viewed
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as symmetric skew subspaces U ¦ CX ¹ CX [8, 51, 19, 52, 11]. We define
quantum isomorphisms between quantum graphs in terms of perfect QNS
strategies for a suitable quantum graph isomorphism game, building up
on the approach to quantum graph homomorphisms followed in [52]. In
Theorem 7.4, we characterise quantum commuting isomorphisms between
quantum graphs U ,V ¦ CX ¹ CX in terms of the existence of a bi-unitary
matrix U = (ux,a)x,a ∈ MX(B(H)) such that C(PUX+) admits a tracial
state Ä , and

U(S̃U ¹ 1)U∗ ¦ S̃V ¹ B(H) and U t(S̃V ¹ 1)U t∗ ¦ S̃U ¹ B(H),(3)

where S̃U and S̃V are the traceless, symmetric subspaces, canonically as-
sociated to U and V, respectively. Note that condition (3) is a quantum
counterpart of the characterisation [1] of quantum isomorphisms of classical
graphs in terms of quantum permutations matrices that intertwine the rele-
vant adjacency matrices, through the replacement of quantum permutations
by bi-unitaries (see Remark 7.6). We further formalise the relations (3) in
Theorem 7.10, where we introduce a natural game algebra AP,Q whose tra-
cial states encode the perfect quantum commuting strategies for the (U ,V)-
isomorphism game. We note, in particular, that when U = V, the algebra
AP,Q admits the structure of a compact quantum group, which seems to
generalise the quantum automorphism group of a classical graph. We leave
the study of these quantum groups for future work.

Finally, in Section 8, we compare the operational notion of quantum graph
isomorphism of Section 7 to the operator algebraic notions that have ap-
peared previously in the literature, and which have been based mainly on
adjacency matrices [40, 41, 9, 15]. We show, in Theorem 8.9, that the al-
gebraic quantum isomorphisms considered in the aforementioned works fit
into our framework as special cases. The arguments and ideas for the proof
of this theorem rely on the recent work of Daws on quantum graphs [15].
In Theorem 8.14, we establish a partial converse, exhibiting the precise con-
ditions, under which the algebraic and the operational notions of quantum
graph isomorphism coincide.

Acknowledgements. M.B. was partially supported by an NSERC discov-
ery grant. S.H. was partially supported by an NSERC Postdoctoral Fel-
lowship. I.G.T. was partially supported by NSF grants CCF-2115071 and
DMS-2154459. L.T. thanks the Wenner-Gren Foundation which supported
the visit of I.T. to Gothenburg in May 2022, and also Stiftelsen Lars Hiertas
Minne which supported the visit of L.T. to the University of Delaware in
October 2022.

2. Preliminaries

In this section, we collect basic preliminaries on quantum no-signalling
correlations, set notation and introduce terminology. Let H be a Hilbert
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space. As usual, we denote by B(H) the space of all bounded linear operators
on H and sometimes write L(H) if H is finite dimensional. We denote by
IH the identity operator on H and, if À, ¸ ∈ H, we let À¸∗ be the rank one
operator given by (À¸∗)(·) = ï·, ¸ðÀ. In addition to inner products, ï·, ·ð
will denote the duality between a vector space and its dual. We let B(H)+

be the cone of positive operators in B(H), and further denote by T (H) its
ideal of trace class operators and by Tr – the trace functional on T (H).

An operator system is a selfadjoint subspace S ¦ B(H), for some Hilbert
space H, containing IH . If S is an operator system, the universal C*-cover
of S [34] is a pair (C∗

u(S), º), where C∗
u(S) is a unital C*-algebra and º : S →

C∗
u(S) is a unital complete order embedding, such that º(S) generates C∗

u(S)
as a C*-algebra and, whenever K is a Hilbert space and ϕ : S → B(K) is a
unital completely positive map, there exists a *-representation Ãϕ : C∗

u(S) →
B(K) such that Ãϕ ◦ º = ϕ. If S is a finite dimensional operator system then

its Banach space dual Sd can be viewed as an operator system [14, Corollary
4.5]. We refer the reader to [45] for information and background on operator
systems and completely positive maps.

We denote by |X| the cardinality of a finite set X, let HX = ·x∈XH and
write MX for the space of all complex matrices of size |X|× |X|; we identify
MX with L(CX) and set IX = ICX . For n ∈ N, we let [n] = {1, . . . , n}
and Mn = M[n]. We write (ex)x∈X for the canonical orthonormal basis of

CX , (ϵx,x′)x,x′∈X for the canonical matrix unit system in MX , and denote
by DX the subalgebra of MX of all diagonal matrices with respect to the
basis (ex)x∈X . If V is a vector space, we write MX(V) for the space of all
X ×X matrices with entries in V; we note that there is a canonical linear
identification between MX(V) and MX ¹V. Here, and in the sequel, we use
the symbol ¹ to denote the algebraic tensor product of vector spaces.

For an element É ∈ MX , we denote by Ét the transpose of É in the
canonical basis, and write É for the complex conjugate of É; thus, É = (Ét)∗.
The canonical complete order isomorphism from MX onto its dual operator
system Md

X maps an element É ∈MX to the linear functional fÉ :MX → C

given by fÉ(T ) = Tr(TÉt); see e.g. [48, Theorem 6.2]. We will thus consider
MX as self-dual with the pairing

(4) (Ä, É) → ïÄ, Éð := Tr(ÄÉt).

On the other hand, note that the Banach space predual B(H)∗ can be canon-
ically identified with T (H); every normal functional ϕ : B(H) → C thus
corresponds to a (unique) operator Sϕ ∈ T (H) such that ϕ(T ) = Tr(TSϕ),
T ∈ B(H). In the case where X is a fixed finite set (which will sometimes
come in the form of a Cartesian product), we will use a mixture of the two
dualities just discussed: if É, Ä ∈ MX , S ∈ T (H) and T ∈ B(H), it will be
convenient to continue writing

ïÄ¹ T, É ¹ Sð = Tr(ÄÉt) Tr(TS).
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If X and Y are finite sets, we identify MX ¹MY with MX×Y and write
MXY in its place. Similarly, we set DXY = DX ¹ DY . For an element
ÉX ∈MX and a Hilbert space H, we let LÉX

:MX ¹B(H) → B(H) be the
linear map given by LÉX

(S ¹ T ) = ïS, ÉXðT . If H = CY and ÉY ∈ MY ,
we thus have linear maps LÉX

: MXY → MY and LÉY
: MXY → MX ; note

that

ïLÉX
(R), ÄY ð = ïR,ÉX ¹ ÄY ð, R ∈MXY , ÄY ∈MY ,

and a similar formula holds for LÉY
. We let TrX :MXY →MY (resp. TrY :

MXY →MX) be the partial trace; thus, TrX = LIX (resp. TrY = LIY ).
Let X, Y , A and B be finite sets. A quantum channel from MX into MA

is a completely positive trace preserving map Φ : MX → MA. A quantum
correlation over (X,Y,A,B) (or simply a quantum correlation if the sets are
understood from the context) is a quantum channel Γ :MXY →MAB. Such
a Γ is called a quantum no-signalling (QNS) correlation [20] if

(5) TrAΓ(ÄX ¹ ÄY ) = 0 whenever Tr(ÄX) = 0

and

(6) TrBΓ(ÄX ¹ ÄY ) = 0 whenever Tr(ÄY ) = 0.

We denote by Qns the set of all QNS correlations.
A stochastic operator matrix over (X,A), acting on a Hilbert space H, is

a positive block operator matrix Ẽ = (Ex,x′,a,a′)x,x′,a,a′ ∈ MXA(B(H)) such

that TrA Ẽ = I. A QNS correlation Γ :MXY →MAB is quantum commuting
if there exist a Hilbert space H, a unit vector À ∈ H and stochastic operator
matrices Ẽ = (Ex,x′,a,a′)x,x′,a,a′ and F̃ = (Fy,y′,b,b′)y,y′,b,b′ on H such that

Ex,x′,a,a′Fy,y′,b,b′ = Fy,y′,b,b′Ex,x′,a,a′

for all x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B, and

(7) Γ(ϵx,x′ ¹ ϵy,y′) =
∑

a,a′∈A

∑

b,b′∈B

〈

Ex,x′,a,a′Fy,y′,b,b′À, À
〉

ϵa,a′ ¹ ϵb,b′ ,

for all x, x′ ∈ X and all y, y′ ∈ Y . Quantum QNS correlations are defined
as in (7), but requiring that H has the form HA ¹ HB, for some finite

dimensional Hilbert spaces HA and HB, and Ex,x′,a,a′ = Ẽx,x′,a,a′ ¹ IB and

Fy,y′,b,b′ = IA¹F̃y,y′,b,b′ , for some stochastic operator matrices (Ẽx,x′,a,a′) and

(F̃y,y′,b,b′), acting onHA andHB, respectively. Approximately quantum QNS
correlations are the limits of quantum QNS correlations, while local QNS

correlations are the convex combinations of the form Γ =
∑k

i=1 ¼iΦi ¹ Ψi,
where Φi : MX → MA and Ψi : MY → MB are quantum channels, i =
1, . . . , k.

We write Qqc (resp. Qqa, Qq, Qloc) for the (convex) set of all quantum
commuting (resp. approximately quantum, quantum, local) QNS correla-
tions, and note the inclusions

Qloc ¦ Qq ¦ Qqa ¦ Qqc ¦ Qns.
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Recall that a (classical) no-signalling (NS) correlation is a family p =
{(p(a, b|x, y))a,b : (x, y) ∈ X × Y } of probability distributions over A × B,
such that

∑

b∈B
p(a, b|x, y) =

∑

b∈B
p(a, b|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A,

and
∑

a∈A
p(a, b|x, y) =

∑

a∈A
p(a, b|x′, y), x, x′ ∈ X, y ∈ Y, b ∈ B

(see e.g. [35, 46]). We denote the (convex) set of all NS correlations by Cns.
With a correlation p ∈ Cns, we associate the classical information channel
Γp : DXY → DAB, given by

(8) Γp(ϵx,x ¹ ϵy,y) =
∑

a∈A

∑

b∈B
p(a, b|x, y)ϵa,a ¹ ϵb,b.

The subclasses Ct of Cns, for t ∈ {loc, q, qa, qc}, are defined as in the previous
paragraph, but using classical stochastic operator matrices, that is, stochas-
tic operator matrices of the form E =

∑

x∈X
∑

a∈A ϵx,x ¹ ϵa,a ¹ Ex,a. Note
that the condition for E being stochastic is equivalent to the requirement
that (Ex,a)a∈A is a positive operator-valued measure (POVM) for all x ∈ X.
We note the inclusions

Cloc ¦ Cq ¦ Cqa ¦ Cqc ¦ Cns,

all of which are strict: Cloc ̸= Cq is the Bell Theorem [4], Cq ̸= Cqa is a
negative answer to the weak Tsirelson Problem [49] (see also [21, 50]), and
Cqa ̸= Cqc – in view of [25, 29, 44], a negative answer to the announced
solution of the Connes Embedding Problem [28].

3. Bistochastic operator matrices

In this section we define and examine bistochastic operator matrices,
which constitute a specialisation of stochastic operator matrices [52, Sec-
tion 3] to the new context to be considered herein. Let X be a finite set,
and set A = X. The distinct symbols X and A will continue to be used
to indicate the variable with respect to which a partial trace is taken; the
symbol X usually refers to the domain of a quantum channel, while A – to
its codomain.

Definition 3.1. Let H be a Hilbert space. A block operator matrix E =
(

Ex,x′,a,a′
)

x,x′,a,a′
∈ (MXA¹B(H))+ is called a bistochastic operator matrix

if

TrAE = IX ¹ IH and TrXE = IA ¹ IH .
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3.1. Factorisation. A block operator matrix V = (Va,x)a,x∈X , where Va,x ∈
B(H,K) for some Hilbert spaces H and K, will be called a bi-isometry if V
and V t := (Vx,a)a,x∈X are isometries as operators in B(HX ,KX).

Theorem 3.2. Let H be a Hilbert space and E ∈ (MXA ¹ B(H))+. The
following are equivalent:

(i) E is a bistochastic operator matrix;
(ii) there exist a Hilbert space K and operators Va,x ∈ B(H,K), x, a ∈ X,

such that (Va,x)a,x∈X is a bi-isometry and

(9) Ex,x′,a,a′ = V ∗
a,xVa′,x′ , x, x′, a, a′ ∈ X.

Proof. (ii)⇒(i) Since V is an isometry,
∑

a∈X
Ex,x′,a,a =

∑

a∈X
V ∗
a,xVa,x′ = ¶x,x′IH ,

and hence TrAE = IX ¹ IH . Since V t = (Va,x)x,a is an isometry,
∑

x∈X
Ex,x,a,a′ =

∑

x∈X
V ∗
a,xVa′,x = ¶a,a′IH ,

and hence TrXE = IA ¹ IH .
(i)⇒(ii) Suppose that E = (Ex,x′,a,a′)x,x′,a,a′ is a bistochastic operator

matrix acting on H and set Ea,a′ = (Ex,x′,a,a′)x,x′ , a, a′ ∈ A; thus, Ea,a′ ∈
MX ¹ B(H). Let Φ : MA → MX ¹ B(H) be the linear map, given by
Φ(ϵa,a′) = Ea,a′ , a, a

′ ∈ A. By Choi’s Theorem, Φ is a unital completely

positive map and, by Stinespring’s Theorem, there exist a Hilbert space K̃,
an isometry V : CX ¹ H → K̃ and a unital *-homomorphism Ã : MA →
B(K̃) such that Φ(T ) = V ∗Ã(T )V , T ∈ MA. Up to unitary equivalence,

K̃ = CA¹K for some Hilbert space K and Ã(T ) = T ¹ IK , T ∈MA. Write
Va,x : H → K, a ∈ A, x ∈ X, for the entries of V , when V is considered
as a block operator matrix. As in [52, Theorem 3.1], we conclude that
Ex,x′,a,a′ = V ∗

a,xVa′,x′ , x, x′ ∈ X, a, a′ ∈ A.
Note that

(TrX ◦ Φ)
(

ϵa,a′
)

= TrX
(

Ea,a′
)

=
∑

x∈X
Ex,x,a,a′ = ¶a,a′IH ;

hence
(TrX ◦ Φ) (Ä) = Tr(Ä)IH , Ä ∈MA.

Thus, if É ∈ T (H) and Ä ∈MA then

ïÄ,Tr(É)IAð = ïTrA(Ä¹ IH), Éð = ï(TrX ◦ Φ) (Ä), Éð(10)

= ïTrX (V ∗(Ä¹ IK)V ) , Éð .
On the other hand, writing Ä = (Äa,a′)a,a′∈X , we have

V ∗(Ä¹ IK)V =
∑

a,a′∈X
Äa,a′V

∗(ϵa,a′ ¹ IK)V =





∑

a,a′∈X
Äa,a′V

∗
a,xVa′,x′





x,x′

,
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implying

ïTrX (V ∗(Ä¹ IK)V ) , Éð =
∑

x∈X

∑

a,a′∈X
Äa,a′ Tr(V

∗
a,xVa′,xÉ)

=
∑

a,a′∈X
Äa,a′ Tr

(

∑

x∈X
V ∗
a,xVa′,xÉ

)

.

Now (10) implies that

Tr

(

∑

x∈X
V ∗
a,xVa′,xÉ

)

= ¶a,a′ Tr(É), a, a′ ∈ X.

The latter equality holds for every É ∈ T (H); thus,
∑

x∈X
V ∗
a,xVa′,x = ¶a,a′IK ,

that is, V t is an isometry. □

3.2. The universal operator system. Recall [27, 58] that a ternary ring
is a complex vector space V, equipped with a ternary operation [·, ·, ·] :
V × V × V → V , linear on the outer variables and conjugate linear in the
middle variable, such that

[s, t, [u, v, w]] = [s, [v, u, t], w] = [[s, t, u], v, w], s, t, u, v, w ∈ V.
A ternary representation of V is a linear map ¹ : V → B(H,K), for some
Hilbert spaces H and K, such that

¹ ([u, v, w]) = ¹(u)¹(v)∗¹(w), u, v, w ∈ V.
We call ¹ non-degenerate if span{¹(u)∗¸ : u ∈ V, ¸ ∈ K} is dense in H. A
(concrete) ternary ring of operators (TRO) [58] is a subspace U ¦ B(H,K)
for some Hilbert spaces H and K such that S, T,R ∈ U implies ST ∗R ∈ U .
We refer the reader to [6, Section 4.4] for details about TRO’s and their
abstract versions that will be used in the sequel.

Let V0
X be the ternary ring, generated by elements va,x, a, x ∈ X, satis-

fying the relations
(11)
∑

a∈X
[va′′,x′′ ,va,x,va,x′ ]=¶x,x′va′′,x′′ and

∑

x∈X
[va′′,x′′ ,va,x,va′,x]= ¶a,a′va′′,x′′ ,

for all x, x′, x′′, a, a′, a′′ ∈ X. Note that relations (11) are equivalent to

(12)
∑

a∈X
[u,va,x,va,x′ ]= ¶x,x′u and

∑

x∈X
[u,va,x,va′,x]= ¶a,a′u,

for all x, x′, a, a′ ∈ X and all u ∈ V0
X . Conditions (12) imply that the

non-degenerate ternary representations ¹ : V0
X → B(H,K) correspond to

bi-isometries V = (Va,x)a,x via the assignment Va,x = ¹(va,x); in this case,

we write ¹ = ¹V . Following [52, Section 5], we let ¹̂ = ·V ¹V , where in the
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direct sum we have chosen one representative from each unitary equivalence
class of bi-isometries and the cardinality of the underlying Hilbert spaces are
bounded by that of V. The assignment ∥u∥ := ∥¹̂(u)∥ defines a semi-norm

on V0
X ; we set VX := V0

X/ ker ¹̂, observe that VX is a TRO, and continue
to write va,x for the images of the canonical generators of V0

X under the

quotient map q : V0
X → VX . The maps ¹̂ and ¹V (for a bi-isometry V ) give

rise to corresponding ternary representations of VX , which we denote in the
same way.

Let CX be the right C*-algebra of the TRO VX (so that, up to a *-

isomorphism, CX ∼= span(¹̂(VX)∗¹̂(VX))), write ex,x′,a,a′ = v∗a,xva′,x′ , and
let

TX = span{ex,x′,a,a′ : x, x
′, a, a′ ∈ X},

viewed as an operator subsystem of CX . It is immediate that

(13) (ex,x′,a,a′)x,x′,a,a′ ∈MXX(CX)+

and that the relations

(14)
∑

b∈A
ex,x′,b,b = ¶x,x′1 and

∑

y∈X
ey,y,a,a′ = ¶a,a′1, x, x′, a, a′ ∈ X,

hold true. For a bi-isometry V , acting on the Hilbert space H, we write
ÃV : CX → B(H) for the *-representation of CX , given by

(15) ÃV (S
∗T ) = ¹V (S)

∗¹V (T ), S, T ∈ VX .

Lemma 3.3. The following hold true:

(i) Every non-degenerate ternary representation of VX has the form ¹V ,
for some bi-isometry V .

(ii) The map ¹̂ is a faithful ternary representation of VX .
(iii) Every unital *-representation Ã of CX has the form ÃV , for some

bi-isometry V .

Proof. The arguments are similar to the ones in [52, Lemma 5.1] where
a version of our current setup is considered for isometries (that are not
necessarily bi-isometries). We address (iii) for the convenience of the reader.
Let Ã : CX → B(H) be a unital *-representation. Then there exists a
ternary representation ¹ : VX → B(H,K) such that Ã(S∗T ) = ¹(S)∗¹(T ),
S, T ∈ VX,A (see e.g. [5, Theorem 3.4] and [23, p. 1636]). Since Ã is unital,
¹ is non-degenerate. By the universality of VX described in (i), there exists
an operator matrix V = (Va,x), whose entries satisfy the relations (11), such
that ¹ = ¹V , and hence Ã = ÃV . □

Let VX,A be the universal TRO of an isometry (ṽa,x)a,x∈X , defined sim-
ilarly to the TRO VX [52, Section 5]. Thus, the TRO VX,A arises from a
ternary ring, whose canonical generators ṽa,x, x, a ∈ X, are required to sat-
isfy only the first of the relations (11). We let CX,A be the right C*-algebra
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of TX,A. Letting ẽx,x′,a,a′ = ṽ∗a,xṽa′,x′ , x, x′, a, a′ ∈ X, we write

(16) TX,A = span{ẽx,x′,a,a′ : x, x
′, a, a′ ∈ X},

viewed as an operator subsystem of CX,A [52]. It was shown in [52, Theorem
5.2] that, for a Hilbert space H, the unital completely positive maps ϕ :
TX,A → B(H) correspond to stochastic operator matrices (Ex,x′,a,a′)x,x′,a,a′

via the assignment ϕ(ex,x′,a,a′) = Ex,x′,a,a′ . We next provide a bistochastic
version of this fact, to be used subsequently.

Theorem 3.4. Let H be a Hilbert space and ϕ : TX → B(H) be a linear
map. Consider the conditions

(i) ϕ is a unital completely positive map;
(ii)

(

ϕ(ex,x′,a,a′)
)

x,x′,a,a′
∈MXA¹B(H) is a bistochastic operator matrix;

(iii) there exists a unital *-representation Ã : CX → B(H) such that ϕ =
Ã|TX ,

and

(i’) ϕ is a completely positive map;
(ii’)

(

ϕ(ex,x′,a,a′)
)

x,x′,a,a′
∈ (MXA ¹ B(H))+.

Then (i)ô(ii)ô(iii) and (i’)ô(ii’). Thus, the pair (CX , º), where º is the
inclusion map of TX into CX , is the universal C*-cover of TX .

Moreover, if
(

Ex,x′,a,a′
)

x,x′,a,a′
is a bistochastic operator matrix acting on

a Hilbert space H then there exists a (unique) unital completely positive map
ϕ : TX → B(H) such that ϕ(ex,x′,a,a′) = Ex,x′,a,a′ for all x, x′, a, a′.

Proof. (i)⇒(ii) By Arveson’s Extension Theorem and Stinespring’s Theo-
rem, there exist a Hilbert space K, a *-representation Ã : CX → B(K)
and an isometry W ∈ B(H,K), such that ϕ(u) = W ∗Ã(u)W , u ∈ TX .
By Lemma 3.3, Ã = ÃV for some bi-isometry V = (Va,x)a,x. By (13),
E :=

(

Ã(ex,x′,a,a′)
)

x,x′,a,a′
∈ (MXA ¹ B(K))+, and hence

(

ϕ(ex,x′,a,a′)
)

= (IX ¹ IA ¹W )∗E(IX ¹ IA ¹W ) ∈ (MXA ¹B(H))+ .

In addition,
∑

b∈X
W ∗V ∗

b,xVb,x′W = ¶x,x′W ∗W = ¶x,x′I, x, x′ ∈ X,

and
∑

y∈X
W ∗V ∗

a,yVa′,yW = ¶a,a′W
∗W = ¶a,a′I, a, a′ ∈ X,

that is, the operator matrix
(

ϕ(ex,x′,a,a′)
)

x,x′,a,a′
is bistochastic.

(ii)⇒(iii) By Theorem 3.2, there exist a Hilbert spaceK and a bi-isometry
V = (Va,x)a,x ∈ B(HX ,KX) such that

ϕ(ex,x′,a,a′) = V ∗
a,xVa′,x′ , x, x′, a, a′ ∈ X.

Recalling (15), we have

ÃV (ex,x′,a,a′) = ¹V (va,x)
∗¹V (va′,x′) = V ∗

a,xVa′,x′ = ϕ(ex,x′,a,a′),
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and hence the *-representation ÃV of CX is an extension of ϕ.
(iii)⇒(i) is trivial.
(i’)⇒(ii’) is a direct consequence of (13) and the fact that TX is an oper-

ator subsystem of CX .
(ii’)⇒(i’) Let T = ϕ(1) and note that, for any x, a ∈ X, we have

(17)
∑

b∈X
Ex,x,b,b =

∑

b∈X
ϕ(ex,x,b,b) = T =

∑

y∈X
ϕ(ey,y,a,a) =

∑

y∈X
Ey,y,a,a.

Assume first that T is invertible. Following the proof of [52, Proposition
5.4], let È : TX → B(H) be the map given by

(18) È(u) = T−1/2ϕ(u)T−1/2, u ∈ TX .
Setting F =

(

È(ex,x′,a,a′)
)

x,x′,a,a′
, we have that

F =
(

IXA ¹ T−1/2
)

E
(

IXA ¹ T−1/2
)

g 0,

and (17) shows that F is a bistochastic operator matrix. By the implication

(ii)⇒(i), È is completely positive, and hence so is ϕ, as ϕ(·) = T 1/2È(·)T 1/2.
Now relax the assumption that T be invertible. Using the implication

(ii)⇒(i), let f : TX → C be the state given by f(ex,x′,a,a′) = 1
|X|¶x,x′¶a,a′

and, for ϵ > 0, let ϕϵ : TX → B(H) be given by ϕϵ(u) := ϕ(u) + ϵf(u)I.
Then

(

ϕϵ(ex,x′,a,a′)
)

x,x′,a,a′
= E +

ϵ

|X|IXX

and ϕϵ(I) = T+ϵI is invertible. By the previous paragraph, ϕϵ is completely
positive and, since ϕϵ →ϵ→0 ϕ in the point-norm topology, we conclude that
ϕ is completely positive.

Finally, suppose that E =
(

Ex,x′,a,a′
)

x,x′,a,a′
is a bistochastic operator

matrix acting on H. Letting V be the bi-isometry, associated with E via
Theorem 3.2, we have that the completely positive map ϕ := ÃV |TX satisfies
the equalities ϕ(ex,x′,a,a′) = Ex,x′,a,a′ for all x, x

′, a, a′. □

We note that, if S is an operator system, its Banach space dual Sd can
be equipped with a natural matricial order structure. To this end, we recall
[14, Section 4] that any matrix ϕ = (ϕi,j)

n
i,j=1 ∈Mn(Sd) gives rise to a linear

map Fϕ : S →Mn, defined by letting

(19) Fϕ(u) =

n
∑

i,j=1

ϕi,j(u)ϵi,j ,

and set

Mn(Sd)+ = {ϕ ∈Mn(Sd) : Fϕ is completely positive}.
It was shown in [14, Corollary 4.5] that, if S is a finite dimensional opera-
tor system then the (matrix ordered) dual Sd is an operator system, when
equipped with a suitable faithful state as an Archimedean order unit. It is
straightforward to verify that, in this case, Sdd ∼=c.o.i. S.



16 M. BRANNAN, S. J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

We identify an element T ∈MXA with its matrix (¼x,x′,a,a′)x,x′,a,a′ , where

¼x,x′,a,a′ = ïT (ex′ ¹ ea′), ex ¹ eað, x, x′ ∈ X, a, a′ ∈ A.

Let

LX,A =

{

(¼x,x′,a,a′) ∈MXA : ∃ c ∈ C s.t.
∑

a∈A
¼x,x′,a,a = ¶x,x′c, x, x′ ∈ X

}

and consider LX,A as an operator subsystem of MXA. It was shown in [52,

Proposition 5.5] that the linear map Λ̃ : T d
X,A → LX,A, given by

Λ̃(ϕ) =
(

ϕ(ẽx,x′,a,a′)
)

x,x′,a,a′∈X ,

is a unital complete order isomorphism between T d
X,A and LX,A. Let

LX = {(¼x,x′,a,a′)x,x′,a,a′ ∈MXX : there exists c ∈ C s.t.
∑

b∈X
¼x,x′,b,b = ¶x,x′c and

∑

y∈X
¼y,y,a,a′ = ¶a,a′c, for all x, x

′, a, a′ ∈ X}.

Remark 3.5. If C = (¼x,x′,a,a′)x,x′,a,a′ ∈ MXA is a matrix and c1, c2 are
scalars such that

∑

b∈X ¼x,x′,b,b = ¶x,x′c1 for all x, x
′ ∈ X and

∑

y∈X ¼y,y,a,a′ =

¶a,a′c2 for all a, a′ ∈ A, then

c1 =
1

|X|Tr(C) = c2.

Proposition 3.6. The linear map Λ : T d
X → LX , given by

(20) Λ(ϕ) =
(

ϕ(ex,x′,a,a′)
)

x,x′,a,a′∈X

is a well-defined complete order isomorphism.

Proof. The arguments follow the proof of [52, Proposition 5.5], and we only
highlight the required modifications. Using Theorem 3.4, we see that the

map Λ+ :
(

T d
X

)+ → L+
X , given by

Λ+(ϕ) =
(

ϕ(ex,x′,a,a′)
)

x,x′,a,a′
, ϕ ∈

(

T d
X

)+
,

is well-defined; by additivity and homogeneity, Λ+ extends to a (C-)linear
map Λ : T d

X → LX . A further application of Theorem 3.4, combined with
Theorem 3.2, shows that Λ is completely positive and bijective.

Let ϕi,j ∈ T d
X , i, j = 1, . . . ,m, be such that the matrix (Λ(ϕi,j))

m
i,j=1 is

a positive element of Mm (LX). Let Φ : TX → Mm be given by Φ(u) =
(ϕi,j(u))

m
i,j=1. Then

(

Φ(ex,x′,a,a′)
)

∈Mm (LX)+. By Theorem 3.4, Φ is com-

pletely positive, that is, (ϕi,j)
m
i,j=1 ∈ Mm

(

T d
X

)+
. Thus, Λ−1 is completely

positive, and the proof is complete. □

Corollary 3.7. The linear map f : TX → TX , given by f(ex,x′,a,a′) =
ex′,x,a′,a, is a complete order automorphism.
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Proof. The map Φ : MXX → MXX , given by Φ(ϵx,a ¹ ϵx′,a′) = ϵx′,a′ ¹
ϵx,a, is a (unitarily implemented) complete order automorphism. Further,
Φ(LX) = LX , and hence Φ induces a complete order automorphism Φ0 :
LX → LX . Using Proposition 3.6, we have that its dual Φ∗

0 a complete
order automorphism of TX . For x, x′, a, a′ ∈ X and T = (¼x,x′,a,a′) ∈ LX ,
we have

〈

Φ∗
0(ex,x′,a,a′), T

〉

=
〈

ex,x′,a,a′ ,Φ0(T )
〉

= ¼x′,x,a′,a =
〈

f(ex,x′,a,a′), T
〉

,

and the proof is complete. □

Write

(21) JX = span







∑

y∈X
ẽy,y,a,a′ − ¶a,a′1 : a, a′ ∈ X







;

thus, JX is a linear subspace of the operator system TX,A defined in (16).

Let J̃X be the closed ideal of CX,A, generated by JX . Write qX for the
quotient map from TX,A onto TX,A/JX .

Recall that, if S is an operator system, a subspace J ¦ S is called a
kernel [33, Definition 3.2] if there exist an operator system R and a unital
completely positive map (equivalently, a completely positive map) ϕ : S →
R such that J = ker(ϕ).

Proposition 3.8. The space JX is a kernel in TX,A and the linear map º,
given by

(22) º
(

qX
(

ẽx,x′,a,a′
))

= ex,x′,a,a′ , x, x′, a, a′ ∈ X,

is a well-defined complete order isomorphism from TX,A/JX onto TX . In

addition, CX,A/J̃X
∼= CX , up to a canonical *-isomorphism.

Proof. Let ³ : LX → LX,A be the inclusion map. Since LX and LX,A are
operator subsystems ofMXX , we have that ³ is a complete order embedding.
By [24, Proposition 1.15], [52, Proposition 5.5] and Proposition 3.6, its dual
³∗ : TX,A → TX is a complete quotient map. Note that, if T ∈ LX and
a, a′ ∈ X then
〈

³∗





∑

y∈X
ẽy,y,a,a′ − ¶a,a′1



 , T

〉

=

〈

∑

y∈X
ẽy,y,a,a′ − ¶a,a′1, ³(T )

〉

= 0,

that is, JX ¦ ker(³∗).
Consider the canonical linear mappings

TX,A → TX,A/JX → TX,A/ ker(³
∗) → TX ,

of which the first two are surjective linear maps whose composition is com-
pletely positive, while the third is a complete order isomorphism (note that
the quotient TX,A/JX is linear algebraic). Dualising and using Proposition
3.6, we obtain the chain of maps

(23) LX
∼= (TX,A/ ker(³

∗))d ↪→ (TX,A/JX)d → LX,A.
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By the definition of JX (see (21)), the elements of (TX,A/JX)d correspond,
via the last of the three maps in (23), to elements of the subspace LX of LX,A.
It now follows that the middle map in (23) is a linear isomorphism, and hence

ker(³∗) = JX . In particular, JX is a kernel in TX,A and (TX,A/JX)d ∼=
LX complete order isomorphically. Dualising, we see that TX,A/JX

∼= TX
complete order isomorphically via the map º defined in (22).

By the universal property of CX , there exists a unital *-epimorphism Ã :
CX,A → CX such that Ã(ẽx,x′,a,a′) = ex,x′,a,a′ , x, x

′, a, a′ ∈ X. Let J = ker(Ã)
and Ã̃ : CX,A/J → CX be the induced *-isomorphism. We have

Ã

(

¶a,a′1−
∑

x∈X
ẽx,x,a,a′

)

= ¶a,a′1−
∑

x∈X
ex,x,a,a′ = 0;

thus, J̃X ¦ J .

The block operator matrix
(

ẽx,x′,a,a′ + J̃X

)

x,x′,a,a′
is bistochastic, and

hence it gives rise, via Theorem 3.4, to a canonical unital surjective *-
homomorphism Ã′ : CX → CX,A/J̃X . We thus have a chain of unital *-
homomorphisms

CX Ã′

−→ CX,A/J̃X −→ CX,A/J Ã̃−→ CX ,

whose composition is the identity. It follows that J = J̃X , and the proof is
complete. □

In the sequel, write q̂X : CX,A → CX for the quotient map arising from
Proposition 3.8, and continue to write qX for the quotient map from TX,A

onto TX . Before formulating the next corollary, we recall that an operator
system S is said to possess the local lifting property [33, Section 8] if for every
finite dimensional operator subsystem S0 ¦ S, C*-algebra A, and closed
ideal J ¦ A, every unital completely positive map ϕ0 : S0 → A/J admits
a lifting to a completely positive map ϕ : S0 → A (that is, if q : A → A/J
denotes the quotient map, the identity q ◦ ϕ = ϕ0 holds).

Corollary 3.9. The operator system TX has the local lifting property.

Proof. By [52, Corollary 5.6], TX,A is an operator system quotient of MXX

while, by Proposition 3.8, TX is an operator system quotient of TX,A. It
follows that TX is an operator system quotient of MXX . The statement is
now a consequence of [31, Theorem 6.8]. □

Realising the commuting tensor product of operator systems as an opera-
tor subsystem of maximal tensor products has been of importance from the
beginning of the tensor product theory in the operator system category [32].
By Theorem 3.4 and [32, Theorem 6.4], for an arbitrary operator system R,
we have TX ¹c R ¦c.o.i. CX ¹max C

∗
u(R); the next proposition establishes a

stronger inclusion.
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Proposition 3.10. Let R be an operator system. Then TX ¹c R ¦c.o.i.

CX ¹max R.
Proof. Let º : TX → CX be the inclusion map. By the functioriality of
the commuting tensor product and the fact that the commuting and the
maximal tensor products coincide provided one of the terms is a C*-algebra
[32, Theorem 6.7], º ¹ id : TX ¹c R → CX ¹max R is a (unital) completely
positive map. Assume that

w ∈Mn (TX ¹R) ∩Mn (CX ¹max R)+ ,

let H be a Hilbert space, and ϕ : TX → B(H) and È : R → B(H) be
unital completely positive maps with commuting ranges. By Theorem 3.4,
ϕ extends to a *-homomorphism Ã : CX → B(H). Since CX is generated by
TX as a C*-algebra, Ã(u) ∈ È(R)′ for every u ∈ CX ; thus,

(ϕ · È)(n)(w) = (Ã · È)(n)(w) ∈Mn (B(H))+ ,

and hence w ∈ Mn (TX ¹c R)+. It follows that º ¹ id is a complete order
embedding. □

4. Quantum magic squares

In [16], the concept of a quantum magic square was defined and studied,
exhibiting examples which show that not every quantum magic square di-
lates to a magic unitary. The aim of this section is to present an operator
system viewpoint on this result, linking the dilation properties of a quantum
magic square to complete positivity of canonical maps, associated with it.
The universal operator system of a quantum magic square and its properties
will further be used in Section 5.

Recall [16] that a block operator matrix E = (Ex,a)x,a∈X , where Ex,a ∈
B(H), x, a ∈ X, is called a quantum magic square if Ex,a g 0 and

∑

b∈X
Ex,b =

∑

y∈X
Ey,a = I for all x, a ∈ X.

The quantum magic square E is called a magic unitary (or a quantum per-
mutation) if Ex,a is a projection for all x, a ∈ X (see e.g. [36, Definition
2.3]). Noting that DXX ¹B(H) ¦MXX ¹B(H), we have that E is a quan-
tum magic square precisely when

∑

x,a∈X ϵx,x ¹ ϵa,a ¹Ex,a is a bistochastic

operator matrix in MXX ¹ B(H).
Two subclasses of quantum magic squares were singled out in [16] (see

[16, Definition 5 and Example 8]). We will call a quantum magic square
(Ex,a)x,a, acting on a Hilbert space H, dilatable if there exists a Hilbert
space K, an isometry V : H → K, and a quantum permutation (Px,a)x,a
acting on K, such that

(24) Ex,a = V ∗Px,aV, x, a ∈ X.

The quantum magic square (Ex,a)x,a will be called locally dilatable if (24)
holds for a commuting family {Px,a}x,a that forms a quantum permutation.
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It is clear that, up to unitary identifications, condition (24) can be replaced
by the conditions Ex,a = QPx,aQ, where we have assumed that H ¦ K, and
Q : K → H is the orthogonal projection.

For x, a ∈ X, we set ex,a := ex,x,a,a and

SX := span{ex,a : x, a ∈ X},
viewed as an operator subsystem of TX .

Theorem 4.1. Let H be a Hilbert space and ϕ : SX → B(H) be a linear
map. Consider the conditions

(i) ϕ is a unital completely positive map;
(ii) (ϕ(ex,a))x,a is a quantum magic square,

and

(i’) ϕ is a completely positive map;
(ii’) (ϕ(ex,a))x,a ∈ (DXX ¹ B(H))+.

Then (i)ô(ii) and (i’)ô(ii’). Moreover, if (Ex,a)x,a is a quantum magic

square acting on a Hilbert space H then there exists a (unique) unital com-
pletely positive map ϕ : SX → B(H) such that ϕ(ex,a) = Ex,a for all
x, a ∈ X.

Proof. (i)⇒(ii) Let ϕ : SX → B(H) be a unital completely positive map, for
some Hilbert spaceH. By Arveson’s Extension Theorem, ϕ has a completely
positive extension ϕ̃ : TX → B(H). Setting Ex,x′,a,a′ := ϕ̃(ex,x′,a,a′), Theo-
rem 3.4 implies that (Ex,x′,a,a′)x,x′,a,a′ is a bistochastic matrix. In particular,

(ϕ̃(ex,a))x,a, that is, (ϕ(ex,a))x,a, is a quantum magic square.

(ii)⇒(i) Set Ex,a := ϕ(ex,a) and Ẽx,x′,a,a′ := ¶x,x′¶a,a′Ex,a, x, x
′, a, a′ ∈ X.

Then (Ẽx,x′,a,a′)x,x′,a,a′ is a bistochastic operator matrix and, by Theorem

3.4, there exists a (unital) completely positive map ϕ̃ : TX → B(H) such

that ϕ̃(ex,x′,a,a′) = Ẽx,x′,a,a′ , x, x
′, a, a′ ∈ X. As ϕ = ϕ̃|SX

, the map ϕ is
completely positive.

(i’)⇒(ii’) is a direct consequence of Theorem 3.4 and Arveson’s Extension
Theorem.

(ii’)⇒(i’) Set Ex,a := ϕ(ex,a), x, a ∈ X. For x ∈ X, let T =
∑

a∈X Ex,a;
then T ∈ B(H)+. Assume first that T is invertible. Then the matrix
(

T−1/2Ex,aT
−1/2

)

x,a
is a quantum magic square; by the implication (ii)⇒(i),

the linear map È : SX → B(H), given by È(ex,a) = T−1/2Ex,aT
−1/2, is

completely positive. Since ϕ(u) = T 1/2È(u)T 1/2, u ∈ SX , the map ϕ is
completely positive. If T is not invertible, we fix a state f : SX → C and,
for ϵ > 0, consider the map ϕϵ : SX → B(H), given by ϕϵ(u) = ϕ(u)+ϵf(u)I.
The proof now proceeds similarly to the proof of the implication (ii’)⇒(i’)
of Theorem 3.4.

The last statement in the theorem follows from the proof of the implication
(ii)⇒(i). □
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Let

MX = {(µx,a)x,a∈DXX :
∑

b∈X µx,b=
∑

y∈X µy,a, x, a ∈ X},
considered as an operator subsystem of DXX . Since every operator system
is spanned by its positive elements, MX is the operator system spanned by
the scalar bistochastic matrices in DXX .

Corollary 4.2. We have that Sd
X

∼= MX , up to a canonical unital complete
order isomorphism.

Proof. Let M+
X,1 be the convex set of all scalar bistochastic matrices, that

is, matrices T = (tx,a)x,a ∈ M+
X with

∑

a∈X tx,a = 1, x ∈ X. By Theorem

4.1, if T ∈ M+
X,1 then the map µ(T ) : SX → C, given by µ(T )(ex,a) = tx,a,

is a (well-defined) state on SX . Writing an arbitrary element T ∈ MX

as a linear combination T =
∑k

i=1 ¼iTi, where Ti ∈ M+
X,1, i = 1, . . . , k,

set µ(T ) :=
∑k

i=1 ¼iµ(Ti). The map µ is (linear and) well-defined: if Ti =

(t
(i)
x,a) ∈ M+

X,1, i = 1, . . . , k, and
∑k

i=1 ¼iTi = 0, then
∑k

i=1 ¼it
(i)
x,a = 0 for all

x, a ∈ X, which implies that
∑k

i=1 ¼iµ(Ti) = 0.

Let E = (E(i,j))ni,j=1 ∈Mn(MX)+ and, using the canonical shuffle, write

E = (Ex,y)x,y, where Ex,y ∈Mn, x, y ∈ X, are such that

(25)
∑

y′∈X
Ex,y′ =

∑

x′∈X
Ex′,y, x, y ∈ X.

Using Theorem 4.1, we see that there exists a completely positive map ϕ :
SX → Mn such that ϕ(ex,y) = Ex,y, x, y ∈ X. On the other hand, the

element µ(n)(E) of Mn(Sd
X) gives rise, via (19), to a linear map Fµ(n)(E) :

SX →Mn. We have that

Fµ(n)(E)(ex,a) =
n
∑

i,j=1

µ
(

E(i,j)
)

(ex,a)ϵi,j = Ex,y = ϕ(ex,a), x, a ∈ X,

that is, Fµ(n)(E) = ϕ. In particular, Fµ(n)(E) is completely positive, and it

follows that the map µ is completely positive.
It follows from Theorem 4.1 that the (linear) map µ is surjective; thus,

it is injective. We show that µ−1 is completely positive. Assume that W ∈
Mn(Sd

X)+; this means that the linear map FW : SX → Mn, canonically
associated with W , is completely positive. Set Ex,y := FW (ex,y), x, y ∈ X;
by Theorem 4.1, E := (Ex,y)x,y ∈ (Mn ¹ MX)+. This, in turns, means

that (µ−1)(n)(W ) ∈ (Mn ¹MX)+. Since relations (25) are satisfied for the

matrices Ex,y, we have that, in fact, (µ−1)(n)(W ) ∈ (Mn ¹MX)+, and the
proof is complete. □

Let

J ̸=
X = span

{

ex,x′,a,a′ : x ̸= x′ or a ̸= a′
}

;

note that J ̸=
X is a linear subspace of the operator system TX .
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Proposition 4.3. The space J ̸=
X is a kernel in TX and, up to a unital

complete order isomorphism, SX
∼= TX/J ̸=

X .

Proof. By Theorem 3.4, there exists a unital completely positive map ´ :
TX → SX , such that ´(ex,x′,a,a′) = ¶x,x′¶a,a′ex,a, x, x

′, a, a′ ∈ X. It is clear

that J ̸=
X ¦ ker(´). On the other hand, by Proposition 3.6 and Corollary

4.2, we have a chain of four canonical linear maps

(26) MX
∼= Sd

X −→ (TX/ ker(´))d −→
(

TX/J ̸=
X

)d
−→ T d

X
∼= LX ;

of which the first, the second and the fourth are completely positive. In
addition, the image of MX in LX under the composition of these maps

coincides with itself; thus, ker(´) ¦ J ̸=
X and hence J ̸=

X is a kernel in TX .
Dualising the second map in (26), we further obtain a chain

TX/J ̸=
X → SX → TX → TX/J ̸=

X

of completely positive maps, whose composition is the identity map on

TX/J ̸=
X . On the other hand, we have a chain of canonical completely positive

maps

SX → TX → TX/J ̸=
X → SX ,

whose composition is the identity map on SX . It follows that SX
∼= TX/J ̸=

X ,
up to a canonical complete order isomorphism. □

In Theorem 4.5 below, we characterise the dilatable and locally dilatable
quantum magic squares in operator system terms. Let C(S+

X) be the univer-
sal C*-algebra generated by projections px,a, x, a ∈ X, with the properties

∑

b∈X
px,b =

∑

y∈X
py,a = 1, x, a ∈ X

(thus, C(S+
X) is the universal C∗-algebra of functions on the quantum per-

mutation group on X; see e.g. [9]). Write

PX = span{px,a : x, a ∈ X},
viewed as an operator subsystem of C(S+

X).
Recall [48, Section 3] that the minimal operator system based on PX has

matricial cones Mn(OMIN(PX))+, given by

Mn(OMIN(PX))+ = {(ti,j)i,j ∈Mn(PX) :

n
∑

i,j=1

¼i¼jti,j ∈ P+
X ,

for all ¼i ∈ C, i ∈ [n]},
and that the corresponding maximal operator system based on PX has ma-
tricial cones Mn(OMAX(PX))+ generated, as cones with an Archimedean
order unit, by the elementary tensors of the form T ¹u, where T ∈M+

n and
u ∈ P+

X .
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Proposition 4.4. There exist canonical unital completely positive maps

(27) OMAX(PX) −→ SX −→ PX .

Proof. By Theorem 4.1, the linear map q : SX → PX , given by q(ex,a) =
px,a, x, a ∈ X, is (unital and) completely positive.

Suppose that ϕ ∈ (Sd
X)+; by Proposition 4.3, ϕ can be canonically iden-

tified with a matrix (¼x,a)x,a in M+
X . By Birkhoff’s Theorem and the argu-

ment in the proof of Corollary 4.2, we can further assume that there exists
a permutation f : X → X such that ¼x,a = ¶f(x),a, x, a ∈ X. By the

universal property of C(S+
X), the permutation f gives rise to a canonical

*-representation Ã : C(S+
X) → C. It follows that Ã|PX

: PX → C is (com-

pletely) positive. We thus obtain a canonical positive map r : Sd
X → Pd

X
which, by the universal property of the minimal operator system structure,
gives rise to a canonical completely positive map Sd

X → OMIN(Pd
X); dualis-

ing, we have a canonical completely positive map OMAX(PX) → SX .
Note that the composition of the maps in (27) is the identity map on PX ;

hence q is invertible. Since q−1 = r, we have that q−1 is positive, completing
the proof. □

Theorem 4.5. Let H be a Hilbert space and E = (Ex,a)x,a be a quantum
magic square acting on H. Then

(i) E is dilatable if and only if there exists a completely positive map
ϕ : PX → B(H), such that ϕ(px,a) = Ex,a, x, a ∈ X;

(ii) E is locally dilatable if and only if there exists a completely positive
map ϕ : OMIN(PX) → B(H), such that ϕ(px,a) = Ex,a, x, a ∈ X.

Proof. (i) Let P = (Px,a)x,a be a magic unitary on a Hilbert spaceK contain-
ing H such that, if Q is the projection from K onto H, then Ex,a = QPx,aQ,
x, a ∈ X. By the universal property of C(S+

X), there exists a unital *-

homomorphism Ã : C(S+
X) → B(K) such that Ã(px,a) = Px,a, x, a ∈ X. Let

ϕ : PX → B(H) be the linear map, defined by ϕ(u) = QÃ(u)Q, u ∈ PX .
As a compression of a completely positive map, ϕ is completely positive; by
construction, ϕ(px,a) = Ex,a, x, a ∈ X.

For the converse direction, let ϕ̃ : C(S+
X) → B(H) be a unital completely

positive extension of ϕ, whose existence is guaranteed by Arveson’s Ex-
tension Theorem. Using Stinespring’s Theorem, let K be a Hilbert space,
Ã : C(S+

X) → B(K) be a unital *-representation, and V : H → K be an

isometry, such that ϕ̃(u) = V ∗Ã(u)V , u ∈ C(S+
X). Letting Px,a = Ã(px,a),

we have that (Px,a)x,a is a magic unitary that dilates E.
(ii) We first consider the case where n := dim(H) is finite. Identifying

B(H) with Mn, suppose that ϕ : OMIN(PX) → Mn is a unital completely
positive map. Let

fϕ :Mn(OMIN(PX)) → C
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be the canonical functional, associated with ϕ as in [45, Chapter 6]; thus,

fϕ((wi,j)i,j) =
1

n

∑

ïϕ(wi,j)ej , eið, (wi,j)i,j ∈Mn(PX).

By [45, Theorem 6.1], fϕ is positive. By [48, Theorem 4.8], fϕ can be

canonically identified with an element ofMn(OMAX(Pd
X))+ (see [48, Section

3]). By Proposition 4.4, Corollary 4.2 and the definition of the maximal
operator system structure,

(28) fϕ ≡
rφ
∑

l=1

³l ¹ ´l,

where ³l ∈ M+
X and ´l ∈M+

n , l ∈ [rϕ].
Assume that the representation (28) has the form fϕ ≡ ³ ¹ ´, where

³ ∈ MX and ´ ∈Mn. In this case, ϕ is given by

ϕ(px,y) = ³x,y´, x, y ∈ X.

In particular, if P¹ is the permutation unitary corresponding to the permu-
tation ¹ on X, and fϕ ≡ P¹ ¹ ´, where ´ ∈Mn, then

ϕ(px,y) =

{

´ if ¹(x) = y

0 otherwise,
x, y ∈ X.

Returning to the representation (28), use Birkhoff’s Theorem to write

³l =
∑

¹ ¼
(l)
¹ P¹, where the summation is over the permutation group of X,

the coefficients ¼
(l)
¹ are non-negative. Thus,

(29) fϕ ≡
∑

¹

P¹ ¹ µ¹,

where µ¹ ∈M+
n and the summation is over the permutation group of X. By

the previous paragraph,

Ex,y =
∑

{µ¹ : ¹(x) = y}, x, a ∈ X.

Now [16, Theorem 12 and Remark 7] implies that (ϕ(px,a))x,a is locally di-

latable, after noticing that the matrix convex hull of the set denoted CP(|X|)

therein coincides with the locally dilatable magic quantum squares overMn.
The converse direction follows by reversing the given arguments.

We now relax the assumption on the finite dimensionality of H. For
simplicity, we consider only the case where H is separable. Fix a se-
quence (Qn)n∈N of projections of finite rank such that Qn →n→∞ I in
the strong operator topology. Assuming that E is locally dilatable, so is
(IX ¹ Qn)E(IX ¹ Qn) for every n ∈ N and hence, by the assumption, the
map ϕn : OMIN(PX) → B(QnH), given by ϕn(px,a) = QnEx,aQn, x, a ∈ X,
i ∈ I, is completely positive. Since ϕ(u) = limn→∞ ϕn(u), in the weak
operator topology, u ∈ PX , we have that ϕ is completely positive.
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Conversely, assuming that ϕ : OMIN(PX) → B(H) is completely positive,
let ϕn : OMIN(PX) → B(QnH) be the (completely positive) map, given by

ϕn(u) = Qnϕ(u)Qn, u ∈ PX . Write fϕn
=
∑

¹ P¹ ¹ µ
(n)
¹ , where µ

(n)
¹ ∈

B(QnH)+ and the summation is over the permutation group of X. Let

E
(n)
x,y =

∑{µ(n)¹ : ¹(x) = y}; then E(n)
x,y = QnEx,yQn. Since ∥Ex,y∥ f 1 for

every x, y ∈ X, we therefore have that ∥µ(n)¹ ∥ f 1 for every n ∈ N. We can

now choose successively weak* cluster points of the sequences
(

µ
(n)
¹

)

n∈N
,

and assume that

fϕn
→ f :=

∑

¹

P¹ ¹ µ¹,

where µ¹ ∈ B(H)+ for every permutation ¹ of X, in the weak* topology of
MX ¹ B(H). We further have that Ex,y =

∑{µ¹ : ¹(x) = y}. The proof
of the implication (a)⇒(b) of [16, Theorem 12] implies, after replacing the
identity operator denoted Is therein with IH , that E is locally dilatable. □

5. Representations of bicorrelations

In this section, we define the notion of a bicorrelation and obtain repre-
sentations of the different bicorrelation types in terms of operator system
tensor products. We will use the main operator system tensor products,
introduced in [32]: the minimal (min), the commuting (c), and the maximal
(max). If Ä ∈ {min, c,max} and ϕi : Si → Ti are completely positive maps
between operator systems, i = 1, 2, we write ϕ1 ¹Ä ϕ2 for the correspond-
ing tensor product map from S1 ¹Ä S2 into T1 ¹Ä T2 (note that this map is
well-defined by [32, Theorems 4.6, 5.5. and 6.3]).

We fix throughout this section finite sets X and Y , and let A = X and
B = Y . The symbols A and B will continue to be used for clarity, as needed.

5.1. Quantum bicorrelations. If Γ : MXY → MXY is a unital quantum
channel then, after the canonical identification Md

XY ≡ MXY , its dual Γ∗ :
MXY →MXY , defined via the formula

ïΓ∗(É), Äð = ïÉ,Γ(Ä)ð = Tr
(

ÉΓ(Ä)t
)

, É, Ä ∈MXY ,

is also a (unital) quantum channel.

Definition 5.1. A QNS correlation Γ : MXY → MXY is called a QNS
bicorrelation if Γ(IXY ) = IXY and Γ∗ is a QNS correlation.

We let Qbi
ns be the set of all QNS bicorrelations. We next define different

types of QNS bicorrelations, motivated by the analogous definitions of QNS
correlation types. A QNS bicorrelation Γ : MXY → MXY is quantum com-
muting if there exist a Hilbert space H, a unit vector À ∈ H and bistochastic
operator matrices Ẽ = (Ex,x′,a,a′)x,x′,a,a′ and F̃ = (Fy,y′,b,b′)y,y′,b,b′ onH with
mutually commuting entries, such that the Choi matrix of Γ coincides with

(30)
(〈

Ex,x′,a,a′Fy,y′,b,b′À, À
〉)y,y′,b,b′

x,x′,a,a′
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(equivalently, relation (7) holds true). Quantum QNS bicorrelations are
defined similarly, but requiring that H has the form HA¹HB, for some finite
dimensional Hilbert spaces HA and HB, and Ex,x′,a,a′ = Ẽx,x′,a,a′ ¹ IB, and

Fy,y′,b,b′ = IA ¹ F̃y,y′,b,b′ , for some bistochastic operator matrices (Ẽx,x′,a,a′)

and (F̃y,y′,b,b′), acting on HA and HB, respectively. Approximately quantum
QNS bicorrelations are the limits of quantum QNS bicorrelations, while local

QNS bicorrelations are the convex combinations of the form Γ =
∑k

i=1 ¼iΦi¹
Ψi, where Φi :MX →MA and Ψi :MY →MB are unital quantum channels,
i = 1, . . . , k.

For t ∈ {loc, q, qa, qc}, we let Qbi
t be the set of all QNS bicorrelations of

type t.

Remark 5.2. If t ∈ {loc, q, qa, qc, ns} and Γ ∈ Qbi
t then Γ∗ ∈ Qbi

t . The
claim is part of the definition in the case where t = ns and straight-
forward in the case where t = loc. For the case t = qc, suppose that
E = (Ex,x′,a,a′)x,x′,a,a′ and F = (Fy,y′,b,b′)y,y′,b,b′ are bistochastic operator
matrices with mutually commuting entries, such that the Choi matrix of
Γ coincides with (30). Let Ẽa,a′,x,x′ := Ex,x′,a,a′ and F̃b,b′,y,y′ := Fy,y′,b,b′ ,

and set Ẽ = (Ẽa,a′,x,x′)a,a′,x,x′ and F̃ = (F̃b,b′,y,y′)b,b′,y,y′ . We have that

Ẽ =
∑

x,x′,a,a′ ϵa,a′ ¹ ϵx,x′ ¹Ex,x′,a,a′ and hence Ẽ is a unitary conjugation of

E, implying that Ẽ g 0; similarly, F̃ g 0. The claim now follows from the

fact that the Choi matrix of Γ∗ is equal to
(〈

Ẽa,a′,x,x′F̃b,b′,y,y′À, À
〉)b,b′,y,y′

a,a′,x,x′
.

The case t = q is analogous, while t = qa is a consequence of the continuity
of taking the dual channel.

Remark 5.3. Suppose that Γ ∈ Qloc is unital. Write

(31) Γ =
k
∑

i=1

¼iΦi ¹Ψi

as a convex combination, where Φi : MX → MX and Ψi : MY → MY are

quantum channels, i = 1, . . . , k. We have that
∑k

i=1 ¼iΦi(IX) ¹ Ψi(IY ) =
IXY . It follows that 0 f Φi(IX) ¹ Ψi(IY ) f IXY ; since IXY is an extreme
point in the unit ball of M+

XY , we have that Φi(IX) ¹ Ψi(IY ) = IXY , for
every i = 1, . . . , k. Thus, there exist ci > 0 such that Φi(IX) = ciIX and
Ψi(IY ) = 1

ci
IY , for all i = 1, . . . , k. Replacing Φi (resp. Ψi) with 1

ci
Φi

(resp. ciΨi), we conclude that the representation (31) can be chosen with
the property that Φi and Ψi are unital quantum channels, i = 1, . . . , k, that
is, Γ is automatically a local bicorrelation.

We write fy,y′,b,b′ (resp. f̃y,y′,b,b′), y, y
′, b, b′ ∈ Y , for the canonical gener-

ators of the operator system TY (resp. TY,B). If s is a linear functional on
TX ¹ TY or on CX ¹ CY , we write Γs : MXY → MXY for the linear map,
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given by

(32) Γs

(

ϵx,x′ ¹ ϵy,y′
)

=
∑

a,a′∈X

∑

b,b′∈Y
s
(

ex,x′,a,a′ ¹ fy,y′,b,b′
)

ϵa,a′ ¹ ϵb,b′ .

We note that Γ∗
s is given by the identities

(33) Γ∗
s

(

ϵa,a′ ¹ ϵb,b′
)

=
∑

x,x′∈X

∑

y,y′∈Y
s
(

ex,x′,a,a′ ¹ fy,y′,b,b′
)

ϵx,x′ ¹ ϵy,y′ .

Clearly, the correspondence s → Γs is a linear map from the vector space
dual (TX,A ¹TY,B)d into the space L(MXY ) of all linear transformations on
MXY .

Theorem 5.4. Let X and Y be finite sets and Γ :MXY →MXY be a linear
map. The following are equivalent:

(i) Γ is a QNS bicorrelation;
(ii) there exists a state s : TX ¹max TY → C such that Γ = Γs.

Proof. (ii)⇒(i) Suppose that s is a state of TX ¹max TY such that Γ = Γs,
and let s̃ = s ◦ (qX ¹max qY ), where qX : TX,A → TX (resp. qY : TY,B → TY )
is the quotient map (see the paragraph of equation (21)); we have that s̃ is
a state of TX,A ¹max TY,B. Since Γ = Γs̃, by [52, Theorem 6.2], Γ ∈ Qns. In
addition,

Γ(IXY ) =
∑

x,a,a′∈X

∑

y,b,b′∈Y
s(ex,x,a,a′ ¹ fy,y,b,b′)ϵa,a′ ¹ ϵb,b′

=
∑

a,a′∈X

∑

b,b′∈Y
¶a,a′¶b,b′ϵa,a′ ¹ ϵb,b′ = IXY .

We verify that Γ∗ is no-signalling: for any ÉX = (¼a,a′)a,a′ ∈ MX and any
ÉY = (µb,b′)b,b′ ∈MY with Tr(ÉY ) = 0, by (33) we have

TrY Γ
∗(ÉX ¹ ÉY )

= TrY
∑

x,x′,a,a′∈X

∑

y,y′,b,b′∈Y
¼a,a′µb,b′s(ex,x′,a,a′ ¹ fy,y′,b,b′)ϵx,x′ ¹ ϵy,y′

=
∑

x,x′,a,a′∈X

∑

b,b′∈Y
¼a,a′µb,b′

∑

y∈Y
s(ex,x′,a,a′ ¹ fy,y,b,b′)ϵx,x′

=
∑

x,x′,a,a′∈X

∑

b,b′∈Y
¼a,a′µb,b′¶b,b′s(ex,x′,a,a′ ¹ 1)ϵx,x′

=

(

∑

b∈Y
µb,b

)

∑

x,x′,a,a′∈X
¼a,a′s(ex,x′,a,a′ ¹ 1)ϵx,x′ = 0.

Similarly, if ÉX ∈ MX has trace zero and ÉY ∈ MY is arbitrary then
TrXΓ∗(ÉX ¹ ÉY ) = 0 and hence Γ∗ is no-signalling.
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(i)⇒(ii) Let C =
(

Ca,a′,b,b′

x,x′,y,y′

)a,a′,b,b′

x,x′,y,y′
be the Choi matrix of Γ; thus, the

entries of C are given by

Ca,a′,b,b′

x,x′,y,y′ =
〈

Γ(ϵx,x′ ¹ ϵy,y′), ϵa,a′ ¹ ϵb,b′
〉

.

By [52, Theorem 6.2], C ∈ (LX,A ¹min LY,B)+.

Let C̃ =
(

C̃x,x′,y,y′

a,a′,b,b′

)x,x′,y,y′

a,a′,b,b′
be the Choi matrix of Γ∗. As both Γ and Γ∗

are no-signalling, there exists scalars c̃b,b
′

y,y′ , d̃
a,a′

x,x′ , c
b,b′

y,y′ and d
a,a′

x,x′ , such that
∑

x∈X
C̃x,x,y,y′

a,a′,b,b′ = ¶a,a′ c̃
b,b′

y,y′ , y, y′, b, b′ ∈ Y,

∑

y∈Y
C̃x,x′,y,y
a,a′,b,b′ = ¶b,b′ d̃

a,a′

x,x′ , x, x′, a, a′ ∈ X,

∑

a∈X
Cx,x′,y,y′

a,a,b,b′ = ¶x,x′cb,b
′

y,y′ , y, y′, b, b′ ∈ Y

and
∑

b∈Y
Cx,x′,y,y′

a,a′,b,b = ¶y,y′d
a,a′

x,x′ , x, x′, a, a′ ∈ X.

Observe that the equalities C̃x′,x,y,y′

a,a′,b,b′ = Ca,a′,b,b′

x,x′,y,y′ hold. The relations, to-

gether with Remark 3.5, now imply that LÉ(C) ∈ LX and LÉ′(C) ∈ LY for
all É ∈MY Y and all É′ ∈MXX (recall that LÃ denotes the slice map along
a functional Ã). Thus, C ∈ (LX ¹minLY )+. Statement (ii) now follows from
the canonical identification (TX ¹max TY )d ∼= LX ¹min LY . □

Theorem 5.5. Let X and Y be finite sets and Γ :MXY →MXY be a linear
map. The following are equivalent:

(i) Γ ∈ Qbi
qc;

(ii) there exists a state s : TX ¹c TY → C such that Γ = Γs;
(iii) there exists a state s : CX ¹max CY → C such that Γ = Γs.

Proof. By Theorem 3.4 and [32, Theorem 6.4], TX ¹c TY ¦ CX ¹max CY
completely order isomorphically and hence, by Krein’s Extension Theorem,
(ii) and (iii) are equivalent.

(i)⇒(iii) follows from the universal property of CX detailed in Theorem
3.4 and arguments, similar to the ones in [52, Theorem 6.3].

(iii)⇒(i) The GNS representation of s and the universal property of the
maximal C*-algebraic tensor product yield *-representations ÃX : CX →
B(H) and ÃY : CY → B(H) with commuting ranges, and a unit vector
À ∈ H, such that s(u ¹ v) = ïÃX(u)ÃY (v)À, Àð, u ∈ CX , v ∈ CY . The claim
follows by setting Ex,x′,a,a′ = ÃX(ex,x′,a,a′) and Fx,x′,a,a′ = ÃY (fy,y′,b,b′), and
appealing to Theorem 3.4. □

Theorem 5.6. Let X and Y be finite sets and Γ :MXY →MXY be a linear
map. The following are equivalent:
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(i) Γ ∈ Qbi
qa;

(ii) there exists a state s : TX ¹min TY → C such that Γ = Γs;
(iii) there exists a state s : CX ¹min CY → C such that Γ = Γs.

Proof. (ii)ô(iii) follows from the injectivity of the minimal tensor product.
(i)⇒(iii) Given ε > 0, let E and F be bistochastic operator matrices

acting on finite dimensional Hilbert spaces HX and HY , respectively, and
À ∈ HX ¹HY be a unit vector, such that

∣

∣

〈

Γ(ϵx,x′ ¹ ϵy,y′), ϵa,a′ ¹ ϵb,b′
〉

−
〈(

Ex,x′,a,a′ ¹ Fy,y′,b,b′
)

À, À
〉∣

∣ < ε,

for all x, x′, a, a′ ∈ X, y, y′, b, b′ ∈ Y . By Lemma 3.3, there exists a *-
representation ÃX (resp. ÃY ) of CX (resp. CY ) on HX (resp. HY ) such
that Ex,x′,a,a′ = ÃX(ex,x′,a,a′) (resp. Fy,y′,b,b′ = ÃY (fy,y′,b,b′)), x, x

′, a, a′ ∈ X
(resp. y, y′, b, b′ ∈ Y ). Let sε be the state on CX ¹min CY given by

sε (u¹ v) = ï(ÃX(u)¹ ÃY (v)) À, Àð ,
and s be a cluster point of the sequence {s1/n}n in the weak* topology. Then

s
(

ex,x′,a,a′ ¹ fy,y′,b,b′
)

= lim
n→∞

s1/n
(

ex,x′,a,a′ ¹ fy,y′,b,b′
)

=
〈

Γ(exe
∗
x′ ¹ eye

∗
y′), eaea′ ¹ ebe

∗
b′
〉

,

giving Γ = Γs.
(iii)⇒(i) Let s be a state satisfying (iv) and ε > 0. By [30, Corol-

lary 4.3.10], there exist faithful *-representations ÃX : CX → B(HX) and
ÃY : CY → B(HY ), unit vectors À1, . . . , Àn ∈ HX ¹HY and positive scalars
¼1, . . . , ¼n, with

∑n
i=1 ¼i = 1 such that

∣

∣

∣

∣

∣

s(ex,x′,a,a′ ¹ fy,y′,b,b′)−
n
∑

i=1

¼i
〈(

ÃX(ex,x′,a,a′)¹ ÃY (fy,y′,b,b′)
)

Ài, Ài
〉

∣

∣

∣

∣

∣

< ε,

for all x, x′, a, a′ ∈ X, y, y′, b, b′ ∈ Y . Let À = ·n
i=1

√
¼iÀi ∈ Cn¹ (HX ¹HY );

then ∥À∥ = 1. Set Ex,x′,a,a′ = In ¹ ÃX(ex,x′,a,a′) and Fy,y′,b,b′ = ÃY (fy,y′,b,b′).
Then (Ex,x′a,a′)x,x′,a,a′ (resp. (Fy,y′,b,b′)y,y′,b,b′) is a bistochastic operator
matrix on Cn ¹HX (resp. HY ), and

∣

∣s
(

ex,x′,a,a′ ¹ fy,y′,b,b′
)

−
〈

Ex,x′a,a′ ¹ Fy,y′,b,b′À, À
〉∣

∣ < ε.

Let (P³)³ (resp. (Q´)´) be a net of finite rank projections onHX (resp. HB),
converging to the identity in the strong operator topology. Set H³ = P³HA

(resp. K´ = Q´HB), E³ = (I ¹ P³)E(I ¹ P³) (resp. F´ = (I ¹Q´)F (I ¹
Q´)), and À³,´ = 1

∥(Pα¹Qβ)À∥(P³ ¹ Q´)À (note that À³,´ is eventually well-

defined). Then E³ and F´ are bistochastic operator matrices acting on
P³H and Q´K, respectively, and the QNS correlation associated with the
the triple (E³, F´ , À³,´) is a quantum bicorrelation. □

Remark 5.7. By Remark 5.2,

(34) Qbi
qc ¦ Qqc ∩ Qbi

ns.
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We do not know if equality holds in (34). The problem reduces to a question
about the equality of canonical operator system structures. Indeed, it is not
difficult to verify that the subspace JXY := TX,A ¹ JY + JX ¹ TY,B of the
operator system TX,A ¹c TY,B is a kernel, and that the states on (TX,A ¹c

TY,B)/JXY correspond precisely to the elements of Qqc ∩ Qbi
ns. However,

while there is a canonical bijective unital completely positive map (TX,A ¹c

TY,B)/JXY → TX ¹c TY , it is unclear whether its inverse is completely
positive. If this is the case then Theorem 5.5 will imply the reverse inclusion
in (34).

5.2. Classical bicorrelations. In this subsection, we consider a class of
correlations that constitute a natural classical counterpart of the quantum
bicorrelations defined in Subsection 5.1. We fix finite sets X and Y , and set
A = X and B = Y .

Definition 5.8. An NS correlation p = {(p(a, b|x, y))a,b : (x, y) ∈ X × Y }
over the quadruple (X,Y,X, Y ) is called an NS bicorrelation if the family

p∗ := {(p(a, b|x, y))x,y : (a, b) ∈ X × Y }

is an NS correlation.

We let ∆ :MXY → DXY be the canonical diagonal expectation. Given an
NS correlation p over (X,Y,X, Y ), we let Ep : DXY → DXY be the (classical)
information channel, given by

Ep(ϵx,x ¹ ϵy,y) =
∑

a∈X

∑

b∈Y
p(a, b|x, y)ϵa,a ¹ ϵb,b.

Further, for a given classical information channel E : DXY → DXY , let
ΓE :MXY →MXY be the quantum channel, given by

ΓE(É) = (E ◦∆)(É), É ∈MXY ,

and set Γp = ΓEp for brevity. In the reverse direction, given a quantum
channel Γ :MXY →MXY , let EΓ : DXY → DXY be the classical information
channel, defined by letting EΓ(É) = (∆ ◦ Γ)(É), É ∈ DXY . We note the
relation EΓE

= E .

Proposition 5.9. Let p be an NS bicorrelation over (X,Y,X, Y ). Then
Γp∗ = Γ∗

p. Thus, if p ∈ Cbi
ns then Γp ∈ Qbi

ns.

Proof. For x, a ∈ X and y, b ∈ Y , we have

〈

E∗
p (ϵx,x ¹ ϵy,y), ϵa,a ¹ ϵb,b

〉

= ïϵx,x ¹ ϵy,y, Ep(ϵa,a ¹ ϵb,b)ð
= p(x, y|a, b) = p∗(a, b|x, y)
= ïEp∗(ϵx,x ¹ ϵy,y), ϵa,a ¹ ϵb,bð ,
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implying that Ep∗ = E∗
p . For É1, É2 ∈MXY , we thus have

〈

Γ∗
p(É1), É2

〉

= ïÉ1, (Ep ◦∆)(É2)ð = ïÉ1, (∆ ◦ Ep ◦∆)(É2)ð
= ï∆(É1), (Ep ◦∆)(É2)ð =

〈

(E∗
p ◦∆)(É1),∆(É2)

〉

= ï(Ep∗ ◦∆)(É1),∆(É2)ð = ïΓp∗(É1),∆(É2)ð
= ïΓp∗(É1), É2ð ,

completing the proof. □

For t ∈ {loc, q, qa, qc}, let

Cbi
t =

{

p ∈ Cbi
ns : Γp ∈ Qbi

t

}

.

It is straightforward to verify that an NS bicorrelation p over (X,Y,X, Y )
belongs to Cbi

qc precisely when there exist a Hilbert space H, a unit vector À ∈
H and quantum magic squares (Ex,a)x,a∈X and (Fy,b)y,b∈Y with commuting
entries, such that

(35) p(a, b|x, y) = ïEx,aFy,bÀ, Àð, x, a ∈ X, y, b ∈ Y.

Similarly, p ∈ Cbi
q precisely when the representation (35) is achieved for

H = HA ¹ HB, where HA and HB are finite dimensional Hilbert spaces,
Ex,a = E′

x,a ¹ IHB
and Fy,b = IHA

¹ F ′
y,b, x, a ∈ X, y, b ∈ Y . Finally,

p ∈ Cbi
loc precisely when p is the convex combinations of correlations of the

form p(1)(a|x)p(2)(b|y), where (p(1)(a|x))x,a and (p(2)(b|y))y,b are (scalar) bis-
tochastic matrices.

For a linear functional s : SX ¹SY → C, let ps : X × Y ×X × Y → C be
the function given by

ps(a, b|x, y) = s(ex,a ¹ ey,b), x, a ∈ X, y, b ∈ Y.

Theorem 5.10. Let X and Y be finite sets and p be an NS correlation over
(X,Y,X, Y ). Consider the statements

(i) p is an NS bicorrelation;
(ii) there exists a state s : SX ¹max SY → C such that p = ps;

(i’) p ∈ Cbi
qc;

(ii’) there exists a state s : SX ¹c SY → C such that p = ps;

(i”) p ∈ Cbi
qa;

(ii”) there exists a state s : SX ¹min SY → C such that p = ps.

Then (i)ô(ii), (i’)ô(ii’) and (i”)ô(ii”).

Proof. (i)ô(ii) By Proposition 4.3 and [24, Proposition 1.16], the states of
the maximal tensor product SX¹maxSY correspond in a canonical fashion to
the elements of MX¹minMY . The proof of the claim can now be completed
using a straightforward modification of the proof of Theorem 5.4.

(i’)⇒(ii’) Write ºX : SX → TX and ºY : SY → TY for the inclusion maps
and let p ∈ Cbi

qc. By Theorem 5.5, there exists a state s : TX ¹c TY → C such
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that Γp = Γs. Let s̃ = s ◦ (ºX ¹ ºY ); then s̃ is a state on SX ¹c SY for which
p = ps̃.

(ii’)⇒(i’) Let s : SX¹cSY → C be such that p = ps, and let ´X : TX → SX

(resp. ´Y : TY → SY ) be the quotient map, as defined in the proof of
Proposition 4.3. We have that

s̃ := s ◦ (´X ¹ ´Y ) : TX ¹c TY → C

is a state. By Theorem 5.5, the map Γs̃ : MXY → MXY , corresponding to
s̃ via (32), is a quantum commuting QNS bicorrelation. Since Γs̃ = Γp, we

have that p ∈ Cbi
qc.

(i”)ô(ii”) follows in a similar way as the equivalence (i’)ô(ii’), using
Theorem 5.6 in the place of Theorem 5.5. □

6. Concurrent bicorrelations

Throughout the section, let X be a finite set and Y = A = B = X. Let
JX = 1

|X|
∑

x,y∈X ϵx,y ¹ ϵx,y be the canonical maximally entangled state in

MXX . We specialise the definition of a concurrent QNS correlation from
[11]:

Definition 6.1. A QNS bicorrelation Γ :MXX →MAA is called concurrent
if Γ(JX) = JA.

For t ∈ {loc, q, qa, qc, ns}, we let Qbic
t be the set of all concurrent bicor-

relations that belong to Qbi
t .

Remark 6.2. Note that if Γ ∈ Qbic
ns , then Γ∗ ∈ Qbic

ns as well. Indeed,
since Γ is unital, its dual map Γ∗ : MAA → MXX is trace-preserving; thus,
Tr(Γ∗(JA)) = 1. Therefore

1 = ïΓ(JX), JAð = ïJX ,Γ∗(JA)ð = |ïJX ,Γ∗(JA)ð|
f ∥JX∥2∥Γ∗(JA)∥2 f ∥Γ∗(JA)∥1 = 1.

The equality clause in the Cauchy-Schwarz inequality now implies that
Γ∗(JA) is a multiple of JX . If Γ∗(JA) = ³JX for some ³ ∈ C, then
³ïJX , JXð = ïΓ∗(JA), JXð = ïJA,Γ(JX)ð = ïJA, JAð, giving ³ = 1.

The universal C*-algebra generated by the entries of a unitary matrix
(ũa,x)a,x∈X (known as the Brown algebra) was first studied by L. G. Brown
[12]. We will introduce a subquotient of the Brown algebra, whose traces
will be shown to represent concurrent bicorrelations of different types. First,
set

ũx,x′,a,a′ = ũ∗a,xũa′,x′ , x, x′, a, a′ ∈ X,

and let UX,A be the C∗-subalgebra of the Brown algebra, generated by the
set {ũx,x′,a,a′ : x, x

′, a, a′ ∈ X}.
Lemma 6.3. If Ã : UX,A → B(H) is a unital *-representation then there ex-
ists a block operator unitary U = (Ua,x)a,x such that Ã(ũx,x′,a,a′) = U∗

a,xUa′,x′,
x, x′, a, a′ ∈ X.
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Proof. Let VX,A be the universal TRO of an isometry (va,x)a,x, as defined in
[52, Section 5]. In the sequel, we will consider products vε1a1,x1

vε2a2,x2
· · · vεkak,xk

,
where εi is either the empty symbol or ∗, and εi ̸= εi+1 for all i, as elements
of either VX,A, V∗

X,A, CX,A or the left C*-algebra corresponding to the TRO
VX,A. Let J be the closed ideal of CX,A, generated by the elements

∑

x∈X
ẽy,x,b,aẽx,y,a,b − ẽy,y,b,b, y, a, b ∈ X.

By [11, Lemma 4.2], the map Ä : ẽx,x′,a,a′ 7→ ũx,x′,a,a′ , x, x
′, a, a′ ∈ X extends

to a surjective *-homomorphism Ä : CX,A → UX,A with ker Ä = J . Let
Ã : UX,A → B(H) be a *-representation. Then Ã ◦ Ä : CX,A → B(H) is a *-
representation that annihilates J . By [52, Lemma 5.1], there exists a block
operator isometry U = (Ua,x)a,x∈X , where Ua,x ∈ B(H,K) for some Hilbert
space K, x, a ∈ X, such that (Ã ◦ Ä)(ẽx,x′,a,a′) = U∗

a,xUa′,x′ , x, x′, a, a′ ∈ X.
By the definition of VX,A, the operator matrix U gives rise to a canonical

ternary representation ¹U : VX,A → B(H,K). Without loss of generality, we

can assume that K = span(¹U (VX,A)H). The fact that (Ã ◦ Ä)(J ) = {0}
now implies that

(36) U∗
b,y

(

I −
∑

x∈X
Ua,xU

∗
a,x

)

Ub,y = 0, y, a, b ∈ X.

Since UU∗ f I, we have that I −∑x∈X Ua,xU
∗
a,x g 0, and hence (36) reads

(

I −
∑

x∈X
Ua,xU

∗
a,x

)1/2

Ub,y = 0, y, a, b ∈ X,

showing further that
〈(

I −
∑

x∈X
Ua,xU

∗
a,x

)

TÀ, TÀ

〉

= 0, a ∈ X, À ∈ H,T ∈ ¹U (VX,A).

By polarisation, we have
∑

x∈X Ua,xU
∗
a,x = I, a ∈ X. As I−UU∗ is a positive

block-diagonal operator with the zero diagonal, I − UU∗ = 0; thus, U is
unitary. Since U∗

a,xUb,y = Ã(ũx,y,a,b), x, y, a, b ∈ X, the proof is complete. □

Recall that ẽx,x′,a,a′ are the canonical generators of the C*-algebra CX,A

(so that the matrix
(

ẽx,x′,a,a′
)

x,x′,a,a′
is a universal stochastic operator ma-

trix). Let

g̃x,x
′

y,z,b,c = ¶x,x′ ẽy,z,b,c −
∑

a∈X
ẽy,x,b,aẽx′,z,a,c

and
h̃a,a

′

y,z,b,c = ¶a,a′ ẽy,z,b,c −
∑

x∈X
ẽy,x,b,aẽx,z,a′,c,

and J̃1 (resp. J̃2) be the closed ideal of CX,A, generated by g̃x,x
′

y,z,b,c (resp.

h̃a,a
′

y,z,b,c), y, z, b, c, x, x
′ ∈ X (resp. y, z, b, c, a, a′ ∈ X).
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Lemma 6.4. Up to a canonical *-isomorphism, CX,A/J̃2 ≃ UX,A.

Proof. Denote by J̃ 0
2 the closed ideal of CX,A, generated by the elements

h̃a,ay,y,b,b, where a, b, y ∈ X. It was shown in [11, Lemma 4.2] that

CX,A/J̃ 0
2 ≃ UX,A.

Let Ä : CX,A → B(K) be a unital *-representation that annihilates J̃ 0
2 , with

the property that the corresponding induced representation of CX,A/J̃ 0
2 is

faithful. By Lemma 6.3, there exists a unitary Ũ = (Ũa,x)a,x∈X such that,

if Ũx,x′,a,a′ = Ũ∗
a,xŨa′,x′ , then

Ä(ẽx,x′,a,a′) = Ũx,x′,a,a′ , x, x′, a, a′ ∈ X.

But then, since Ũ is unitary,

Ä
(

h̃a,a
′

y,z,b,c

)

= ¶a,a′Ũy,z,b,c −
∑

x∈X
Ũy,x,b,aŨx,z,a′,c

= ¶a,a′Ũy,z,b,c −
∑

x∈X
Ũ∗
b,yŨa,xŨ

∗
a′,xŨc,z

= ¶a,a′Ũy,z,b,c − ¶a,a′Ũ
∗
b,yŨc,z = 0.

Thus, Ä automatically annihilates J̃2. The proof is complete. □

We say that a block operator matrix U = (ua,x)a,x ∈ MX(B(H)) is a
bi-unitary if both U and U t are unitary. Let C(U+

X) be the universal C*-

algebra, generated by the entries of a bi-unitary (ua,x)a,x∈X , and C(PU+
X)

be the subalgebra of C(U+
X) generated by the length two words of the form

ux,x′,a,a′ := u∗a,xua′,x′ , x, x′, a, a′ ∈ X.

Further, recall that ex,x′,a,a′ , x, x
′, a, a′ ∈ X, denote the canonical generators

of the C*-algebra CX (so that (ex,x′,a,a′)x,x′,a,a′ is a universal bistochastic
operator matrix), set

(37) gx,x
′

y,z,b,c = ¶x,x′ey,z,b,c −
∑

a∈X
ey,x,b,aex′,z,a,c

and

(38) ha,a
′

y,z,b,c = ¶a,a′ey,z,b,c −
∑

x∈X
ey,x,b,aex,z,a′,c,

and let J1 (resp. J2) be the closed ideal of CX , generated by the elements

gx,x
′

y,z,b,c (resp. h
a,a′

y,z,b,c), where y, z, b, c, x, x
′ ∈ X (resp. y, z, b, c, a, a′ ∈ X).

We note that the universal C∗-algebra C(U+
X) and its subalgebra C(PU+

X)
have been well-studied in the compact quantum group literature. The C∗-
algebra C(U+

X) was introduced by Wang in [55], where it was shown to
have the structure of a C∗-algebraic compact quantum group. In particu-
lar, C(U+

X) comes equipped with a co-associative comultiplication making it
into a non-commutative analogue of the C∗-algebra of continuous functions
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of the unitary group UX . The structure of the quantum group C(U+
X) was

later studied in detail by Banica in [2]. On the other hand, the subalge-
bra C(PU+

X) ¦ C(U+
X) can be naturally interpreted as a non-commutative

version of the space of continuous functions on the projective unitary group
PUX/T. In the classical setting, the conjugation action of U+

X on MX in-
duces a group isomorphism PUX

∼= Aut(MX), where Aut(MX) is the group
of ∗-automorpohisms of MX .

In the quantum setting, it is natural to expect that a similar identification
between PU+

X and quantum automorphisms of MX should hold, and indeed
this is the case: In [56], the quantum automorphism group Aut+(MX) was
introduced by Wang (via an abstract universal C∗-algebra C(Aut+(MX))
with generators and relations), and later Banica showed in [3] that the nat-
ural quantum group C∗-algebra morphism C(Aut+(MX)) → C(PU+

X) is ac-
tually an isomorphism. In Lemma 6.5 below, we extend Banica’s result by
showing that in fact any “concrete” quantum automorphism of MX (that
is, a ∗-homomorphism Ã : C(Aut+(MX)) ∼= C(PU+

X) → B(H)) is imple-
mented by a “concrete” conjugation of MX by a bi-unitary (that is, Ã is the
restriction of a representation C(U+

X) → B(H)).

Lemma 6.5. (i) We have CX/J1 + J2 ≃ C(PU+
X).

(ii) If Ã : C(PU+
X) → B(H) is a unital *-representation then there ex-

ists a bi-unitary (Ua,x)a,x ∈ MX(B(H)) such that Ã(ux,x′,a,a′) =
U∗
a,xUa′,x′.

Proof. (i) Set J = J1 + J2, recall that J̃X is the closed ideal of CX,A gen-
erated by the elements

∑

y∈X
ẽy,y,a,a′ − ¶a,a′1, a, a′ ∈ X

(see the paragraph containing equation (21)) and, recalling the ideals J̃1

and J̃2 of CX,A defined before Lemma 6.4, let

(39) J̃ = J̃X + J̃1 + J̃2.

According to Proposition 3.8, CX,A/J̃X ≃ CX ; thus, CX,A/J̃ ≃ CX/J .
Recall that UX,A is the universal C∗-algebra with generators ũx,x′,a,a′ :=

ũ∗a,xũa′,x′ , x, x′, a, a′ ∈ X, where the matrix (ũa,x)a,x is unitary. By Lemma

6.4, we have the canonical *-isomorphism CX,A/J̃2 ≃ UX,A.

We have that CX,A/J̃ ≃ (CX,A/J̃2)/(J̃ /J̃2). Using the identification in

Lemma 6.4, we have that J̃ /J̃2 is generated by the elements
∑

y∈X
ũy,y,a,a′ − ¶a,a′1, a, a′ ∈ X,

and
∑

a∈X
ũy,x,b,aũx′,z,a,c − ¶x,x′ ũy,z,b,c, y, z, b, c, x, x′ ∈ X.
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Let Ä : UX,A ≃ CX,A/J̃2 → B(K) be a unital *-representation that anni-

hilates J̃ /J̃2. By Lemma 6.3, there exists a unitary Ũ = (Ũa,x)a,x such that

Ä(ũx,x′,a,a′) = Ũ∗
a,xŨa′,x′ , x, x′, a, a′ ∈ X,

(40)
∑

y∈X
Ũ∗
a,yŨa′,y = ¶a,a′I, a, a′ ∈ X,

and

(41) Ũ∗
b,y

(

∑

a∈X
Ũa,xŨ

∗
a,x′ − ¶x,x′I

)

Ũc,z = 0, x, x′, y, z, b, c ∈ X.

By (40), Ũ t = (Ũy,a)a,y is an isometry. But then Ũ t(Ũ t)∗ f I, implying,

by comparing the (x, x)-entries of the matrices, that
∑

a∈X Ũa,xŨ
∗
a,x f I,

x ∈ X. On the other hand, (41) implies Ũ∗
b,y

(

∑

a∈X Ũa,xŨ
∗
a,x − I

)

Ũb,y = 0.

Thus,
(

I −
∑

a∈X
Ũa,xŨ

∗
a,x

)1/2

Ũb,y = 0

and hence
(

∑

a∈X Ũa,xŨ
∗
a,x − I

)

Ũb,y = 0. Since Ũ is unitary, this implies

0 =

(

∑

a∈X
Ũa,xŨ

∗
a,x − I

)

∑

y∈X
Ũb,yŨ

∗
b,y =

∑

a∈X
Ũa,xŨ

∗
a,x − I.

Now,

(42)
(

Ũ∗
b,y ¹ I

)(

I − Ũ tŨ t∗
)(

Ũb,y ¹ I
)

is a positive block matrix in MX(B(H)) and has zeros on its main diagonal.
It follows that the matrix (42) is zero and hence

(43)
(

I − Ũ tŨ t∗
)1/2 (

Ũb,y ¹ I
)

= 0, b, y ∈ X.

Multiplying (43) by Ũ∗
b,y¹I on the right and adding up along the variable y,

we obtain Ũ tŨ t∗ = I; thus, U t is unitary. Therefore, U gives rise to a unital
*-representation of C(U+

X) and, after restriction, to a unital *-representation

of C(PU+
X). We have thus shown that every unital ∗-representation Ä :

CX,A/J̃2 → B(K) that annihilates J̃ /J̃2 induces a unital ∗-homomorphism

from C(PU+
X) to B(K).

By [52, Theorem 5.2], there exists a ∗-homomorphism φ : CX,A → C(PU+
X),

such that φ(ẽx,x′,a,a′) = ux,x′,a,a′ , x, x
′, a, a′ ∈ X. A straightforward verifica-

tion shows that φ annihilates J̃2 and hence gives rise to a ∗-homomorphism
φ̃ : CX,A/J̃2 → C(PU+

X), ẽx,x′,a,a′ + J̃2 7→ ux,x′,a,a′ . It is easy to see that
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J̃ /J̃2 ¦ ker φ̃. The previous paragraph shows that if T ∈ CX,A/J̃2 then

∥T + J̃ /J̃2∥ = sup{∥Ä(T )∥ : Ä a *-rep. of CX,A/J̃2 with Ä(J̃ /J̃2) = 0}
f ∥φ̃(T )∥,

giving the inclusion ker(φ̃) ¦ J̃ /J̃2 and hence the equality ker(φ̃) = J̃ /J̃2.
As φ̃ is surjective we obtain the statement.

(ii) Let Ã : C(PU+
X) → B(H) be a unital *-representation. Letting Ä :

CX,A → CX,A/J̃ be the quotient map, the proof of (i) allows us to consider Ä

as a *-epimorphism from CX,A onto C(PU+
X). It further exhibits a bi-unitary

Ũ = (Ũa,x)a,x such that (Ã ◦ Ä)(ẽx,x′,a,a′) = Ũ∗
a,xŨa′,x′ , x, x′, a, a′ ∈ X. We

now see that Ã(ux,x′,a,a′) = Ũ∗
a,xŨa′,x′ , x, x′, a, a′ ∈ X, and the proof is

complete. □

We recall that the opposite C*-algebra Aop of a C*-algebra A has the
same set, linear structure and involution as A, and multiplication given by
uopvop = (vu)op, where uop denotes the element u ∈ A when viewed as an
element of Aop. Given a Hilbert space H, let Hd denote its dual Banach
space and, for an operator T ∈ B(H), let T d : Hd → Hd be its dual. We
note the identity

(44) (T ∗d)∗ = T d.

If Ã : A → B(H) is a faithful *-representation, then the map Ãop : Aop →
B(Hd), given by Ãop(uop) = Ã(u)d, is a faithful *-representation.

The following result can be proved using the existence of the antipode for
compact quantum groups together with the fact that PU+

X , the antipode is

known to be a ∗-anti-automorphism of C(PU+
X) (see e.g., [42, Proposition

1.7.9]). For the sake of those unacquainted with quantum group technicali-
ties, we supply a self-contained proof.

Lemma 6.6. Let X be a finite set. The map

∂(ux,x′,a,a′) = uopx′,x,a′,a, x, x′, a, a′ ∈ X,

extends to a *-isomorphism ∂ : C(PU+
X) → C(PU+

X)op.

Proof. Let Ã : C(PU+
X) → B(H) be a faithful *-representation and U =

(Ua,x)a,x ∈ MX(B(H)) be a bi-unitary such that Ã(ux,x′,a,a′) = U∗
a,xUa′,x′ ,

x, x′, a, a′ ∈ X.
Set Va,x = U∗d

a,x, x, a ∈ X. We observe that V := (Va,x)a,x is a bi-unitary.
Indeed, using (44), we have

∑

a∈X
V ∗
a,xVa,x′ =

∑

a∈X
Ud
a,xU

∗d
a,x′ =

(

∑

a∈X
U∗
a,x′Ua,x

)d

= ¶x,x′IHd

and

∑

x∈X
V ∗
a,xVa′,x =

∑

x∈X
Ud
a,xU

∗d
a′,x =

(

∑

x∈X
U∗
a′,xUa,x

)d

= ¶a,a′IHd ,
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that is, V ∗V = I and V t∗V t = I; the relations V V ∗ = I and V tV t∗ = I fol-
low analogously. It follows that there exists a *-representation Ä : C(PU+

X) →
B(Hd) such that Ä(ux′,x,a′,a) = Ãop(uopx,x′,a,a′), x, x

′, a, a′ ∈ X; note that Ä is a

(well-defined) *-homomorphism from C(PU+
X) into C(PU+

X)op. By symmetry
considerations, Ä is a *-isomorphism. □

Before formulating the next theorem, we introduce some notation and
terminology. If Φ : MX → MX is a quantum channel, we write Φq : MX →
MX for the quantum channel given by

Φq(É) = Φ(Ét)t, É ∈MX .

We call a channel Φ :MX →MX a unitary channel if there exists a unitary
U = (¼a,x)a,x∈X ∈ MX , such that Φ(É) = U∗ÉU , É ∈ MX . Finally, a trace
Ä : B → C of a C*-algebra B is called abelian if there exists an abelian
C*-algebra A, a *-homomorphism Ã : B → A and a state ϕ : A → C such
that Ä = ϕ ◦ Ã.

Theorem 6.7. Let X be a finite set and Γ : MXX → MXX be a QNS
bicorrelation. Then

(i) Γ ∈ Qbic
qc if and only if there exists a trace Ä : C(PU+

X) → C such
that

(45) Γ(ϵx,x′ ¹ ϵy,y′) = (Ä(ux,x′,a,a′uy′,y,b′,b))a,a′,b,b′ , x, x′, y, y′ ∈ X;

(ii) Γ ∈ Qbic
q if and only if (45) holds for a trace of C(PU+

X) that factors
through a finite dimensional C*-algebra;

(iii) Γ ∈ Qbic
loc if and only if (45) holds for an abelian trace of C(PU+

X), if
and only if there exist unitary channels Φi, i = 1, . . . , k, such that

Γ =
∑k

i=1 ¼iΦi ¹ Φq
i as a convex combination.

Proof. (i) Let U := (ua,x)a,x be the universal bi-unitary and Γ : MXX →
MXX be given via (45). There exists a state ¿ : C(PU+

X)¹max C(PU+
X)op →

C, given by

(46) ¿(u¹ vop) = Ä(uv), u, v ∈ C(PU+
X)

(see [13, p. 219]). Let s = ¿ ◦ (id¹∂); thus, s is a state on C(PU+
X) ¹max

C(PU+
X). We have

s(ux,x′,a,a′ ¹ uy,y′,b,b′) = ¿(ux,x′,a,a′ ¹ uopy′,y,b′,b) = Ä(ux,x′,a,a′uy′,y,b′,b),

implying that Γ = Γs. By Lemma 6.5 (i) and Theorem 5.5, Γ ∈ Qbi
qc. Since

U is unitary, by the proof of [11, Theorem 4.3], Γ is concurrent.
Conversely, let Γ ∈ Qbic

qc . By Theorem 5.5, there exists a state s : CX¹max

CX → C such that Γ = Γs. Let V = (va,x)a,x be a universal bi-isometry (see
Subsection 3.2) and denote by fy,y′,b,b′ the canonical generators of the second
copy of CX in the tensor product. The concurrency of Γ implies the validity
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of the condition

(47)
∑

x′,y′∈X
s
(

ex′,y′,a,b ¹ fx′,y′,a,b

)

= 1, a, b ∈ X.

Let Ä : CX → C be the functional, given by Ä(u) = s(u ¹ 1), u ∈ CX . By
[11, Lemma 4.2], there exists a canonical *-epimorphism Ã : CX,A → CX ; let
Ä̃ = Ä ◦Ã. Letting s̃ : CX,A¹maxCX,A → C be given by s̃(w) = (s◦(Ã¹Ã))(w),
we have that

∑

x′,y′∈X
s̃
(

ẽx′,y′,a,b ¹ f̃x′,y′,a,b

)

= 1,

and now, by the proof of [11, Theorem 4.1], that

s̃
(

ẽx,y,a,b ¹ f̃x,y,a,b

)

= s̃ (ẽx,y,a,bẽy,x,b,a ¹ 1) , x, y, a, b ∈ X,

and that Ä̃ is a tracial state. After passing to quotients, we conclude that

(48) s (ex,y,a,b ¹ fx,y,a,b) = s (ex,y,a,bey,x,b,a ¹ 1) , x, y, a, b ∈ X,

and that Ä is a tracial state.
Recalling notation (37) and (38), set

Gy,z,b,c =
(

gx,x
′

y,z,b,c

)

x,x′
and Hy,z,b,c =

(

ha,a
′

y,z,b,c

)

a,a′
.

We claim that

(49) G̃y,z,b,c :=

[

Gy,y,b,b Gy,z,b,c

Gz,y,c,b Gz,z,c,c

]

∈M2 (MX(CX))+ .

Indeed, set Zy,z,b,c :=

[

vb,y ¹ IX 0
0 vc,z ¹ IX

]

. After applying the canonical

shuffle M2(MX(CX)) ≃MX(M2(CX)), we obtain

G̃y,z,b,c=

[

gx,x
′

y,y,b,b gx,x
′

y,z,b,c

gx,x
′

z,y,c,b gx,x
′

z,z,c,c

]

x,x′

=

[

¶x,x′ey,y,b,b −
∑

a ey,x,b,aex′,y,a,b ¶x,x′ey,z,b,c −
∑

a ey,x,b,aex′,z,a,c

¶x,x′ez,y,c,b −
∑

a ez,x,c,aex′,y,a,b ¶x,x′ez,z,c,c −
∑

a ez,x,c,aex′,z,a,c

]

x,x′

= Z∗
y,z,b,c

[

¶x,x′1−∑a va,xv
∗
a,x′ ¶x,x′1−∑a va,xv

∗
a,x′

¶x,x′1−∑a va,xv
∗
a,x′ ¶x,x′1−∑a va,xv

∗
a,x′

]

x,x′

Zy,z,b,c.

Since V t is an isometry, V tV t∗ f I and hence
(

¶x,x′1−∑a va,xv
∗
a,x′

)

x,x′
g 0,

implying (49), along with the relations
∑

a∈X va,xv
∗
a,x f 1, x ∈ X. Identity

(49) now shows that Gy,y,b,b ∈MX(CX)+, and hence

(50) Ä (X) (Gy,y,b,b) ∈M+
X .

We have that

(51)
∑

a∈X
ey,x,b,aex,y,a,b =

∑

a∈X
v∗b,yva,xv

∗
a,xvb,y f ey,y,b,b
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and hence

(52)
∑

x,y∈X

∑

a,b∈X
ey,x,b,aex,y,a,b f

∑

x,y∈X

∑

b∈A
ey,y,b,b = |X|21;

similarly,

(53)
∑

x,y∈X

∑

a,b∈X
fx,y,a,bfy,x,b,a f |X|21.

By (47), (52) and (53),

0 f
∑

x,y,a,b

s ((ex,y,a,b ¹ 1− 1¹ fy,x,b,a)
∗ (ex,y,a,b ¹ 1− 1¹ fy,x,b,a))

=
∑

x,y,a,b

s ((ey,x,b,a ¹ 1− 1¹ fx,y,a,b) (ex,y,a,b ¹ 1− 1¹ fy,x,b,a))

=
∑

x,y,a,b

s (ey,x,b,aex,y,a,b ¹ 1 + 1¹ fx,y,a,bfy,x,b,a)

−
∑

x,y,a,b

s (ey,x,b,a ¹ fy,x,b,a + ex,y,a,b ¹ fx,y,a,b) f 2|X|2 − 2|X|2 = 0.

Applying Ä to (52), we have
∑

x,y∈X

∑

a,b∈X
Ä(ey,x,b,aex,y,a,b) f

∑

x,y∈X

∑

b∈A
Ä(ey,y,b,b) = |X|2.

On the other hand, by (48),
∑

x,y∈X

∑

a,b∈X
Ä(ey,x,b,aex,y,a,b) = |X|2.

Using (51), we now have that

Ä

(

ey,y,b,b −
∑

a∈X
ey,x,b,aex,y,a,b

)

= 0 for all x, y, b ∈ X.

Thus the diagonal entries of Ä (X) (Gy,y,b,b) are zero; the positivity condition

(50) implies that the off-diagonal entries of Ä (X) (Gy,y,b,b) are also zero. Now
the positivity condition (49) implies that

Ä (2X)
(

G̃y,z,b,c

)

= 0, y, z, b, c ∈ X.

Condition (49) and the Cauchy-Schwarz inequality imply Ä (2X)
(

QG̃
1/2
y,z,b,c

)

=

0, for all Q ∈ M2(MX(CX)), and hence Ä (2X) annihilates the closed ideal

of M2(MX(CX)) generated by G̃
1/2
y,z,b,c. In particular, Ä (2X) annihilates the

closed ideal of M2(MX(CX)) generated by G̃y,z,b,c; since CX is unital, this
implies that Ä annihilates the closed ideal of CX generated by the elements

gx,x
′

y,z,b,c, x, x
′, y, z, b, c ∈ X, that is, J1.
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Similarly, observe that
∑

x∈X
ey,x,b,aex,y,a,b =

∑

x∈X
v∗b,yva,xv

∗
a,xvb,y f ey,y,b,b, y, a, b ∈ X.

By Remark 6.2,
∑

a′,b′∈X
s
(

ex,y,a′,b′ ¹ fx,y,a′,b′
)

= 1, x, y ∈ X.

Using (48) yields similarly

Ä

(

ey,y,b,b −
∑

x∈X
ey,x,b,aex,y,a,b

)

= 0 x, y, b ∈ X,

leading to the relations

Ä (2X)
(

H̃y,z,b,c

)

= 0, y, z, b, c ∈ X.

It follows that Ä annihilates the ideal J2, generated by ha,a
′

y,z,b,c, where a, a
′,

y, z, b, c ∈ X, and hence it annihilates J1 + J2. Hence Ä induces a tracial
state (denoted in the same fashion) on the quotient CX/J . An application
of Lemma 6.5 (i) completes the proof.

(ii) Suppose that Γ : MXX → MXX is a quantum concurrent QNS bi-
correlation. By [11, Theorem 4.3], there exists a finite dimensional C*-
algebra A, a trace t on A, and a *-homomorphism ³ : UX,A → A, such
that Γ = Γt◦³. After taking a quotient, we may assume that t is faithful.
Let Ä : CX,A → UX,A be the canonical quotient map, whose existence is
guaranteed by [11, Lemma 4.2]. Let Ä̃ : CX,A → C be the functional, given
by Ä̃(u) = (t ◦ ³ ◦ Ä)(u), u ∈ CX,A; clearly, Ä̃ is a trace on CX,A. Note, fur-
ther, that Γ = ΓÄ̃ (for brevity here, and in the sequel, ΓÄ̃ is used to denote
Γsτ̃ , where sÄ̃ is the state, canonically associated with the trace Ä̃). By the

proof of (i), Ä̃ annihilates the ideal J̃ defined in (39); thus, as t is faithful,

(³ ◦ Ä)(J̃ ) = 0 and hence we get a ∗-homomorphism Ä̃ : C(PU+
X) → A and

the trace Ä = t ◦ Ä̃ on C(PU+
X) which factors through A.

Conversely, suppose that B is a finite dimensional C*-algebra. Let Ã :
C(PU+

X) → B be a unital *-homomorphism and Ä̃ : B → C be a trace
such that, if Ä = Ä̃ ◦ Ã, then Γ = ΓÄ . By Lemma 6.5 (ii), there exists a
finite dimensional Hilbert space K and a bi-unitary matrix U = (Ua,x)a,x ∈
MX(B(K)), such that Ã(ux,x′,a,a′) = U∗

a,xUa′,x′ , x, x′, a, a′ ∈ X. Now a

straightforward verification shows that Γ ∈ Qbic
q .

(iii) Suppose that Γ ∈ Qbic
loc. By [11, Theorem 4.3 (iii)], there exists

an abelian C*-algebra A, a *-homomorphism Ã̃ : UX,A → A and a state
ϕ : A → C such that, if Ä̃ = ϕ ◦ Ã̃ then (Ä̃ is a trace on UX,A such that)
Γ = ΓÄ̃ . Realise A = C(Ω) for some compact Hausdorff space Ω and let
µ be a regular Borel measure on Ω such that ϕ(h) =

∫

Ω hdµ. Writing
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Ũx,x′,a,a′ = Ã̃(ũx,x′a,a′), x, x
′a, a′ ∈ X, we have

ϕ(Ũx,x′,a,a′Ũy′,y,b′,b) =

∫

Ω
Ũx,x′,a,a′(t)Ũy′,y,b′,b(t)dµ(t), x, x′, a, a′ ∈ X.

As µ can be approximated by convex combinations of point mass evaluations,

Γ can be approximated by convex combinations
∑k

i=1 ¼iΓi, where

Γi(ϵx,x′ ¹ ϵy,y′) =
(

µ
(i)
x,x′,a,a′µ

(i)
y′,y,b′,b

)

a,a′,b,b′
, x, x′, y, y′ ∈ X,

for some scalar matricesMi =
(

µ
(i)
x,x′,a,a′

)

x,x′,b,b′
. Since the matricesMi give

rise to (one-domensional) *-representations of UX,A, by Lemma 6.3, they

admit factorisations of the form µ
(i)
x,x′,a,a′ = ¼̄

(i)
a,x¼

(i)
a′,x′ , x, x′, a, a′ ∈ X, for a

unitary matrix Ui = (¼
(i)
a,x)a,x, i = 1, . . . , k. Note that Γi = Φi¹Φq

i , where Φi

is the (unital) quantum channel with Choi matrix
(

µ
(i)
x,x′,a,a′

)

x,x′,a,a′
. By the

Carathéodory Theorem and compactness, we have that Γ is itself a convex
combination of this form. We further have that

Φi(É) = U t∗
i ÉU

t
i , É ∈MX , i = 1, . . . , k,

and in particular Φi is a unitary channel, i = 1, . . . , k.
Suppose that Φ : MX → MX is a unitary channel. Let U = (¼a,x)a,x ∈

MX be a unitary (and hence a bi-unitary) such that Φ(É) = U∗ÉU , É ∈MX .
We have that
(

Φ¹ Φq
)

(JX) =
1

|X|
∑

x,y∈X
Φ(ϵx,y)¹ Φ(ϵy,x)

t

=
1

|X|
∑

x,y∈X
(U∗ex)(U∗ey)∗ ¹ ((U∗ey)(U∗ex)∗)t

=
1

|X|
∑

x,y∈X

∑

a,b∈X

∑

a′,b′∈X
¼y,b¼x,a¼x,a′¼y,b′(ϵa,b ¹ ϵa′,b′)

=
1

|X|
∑

a,b∈X

∑

a′,b′∈X
¶a,a′¶b,b′(ϵa,b ¹ ϵa′,b′) = JX .

Thus, Φ ¹ Φq is a concurrent correlation and, since Φ is unital, it is a
concurrent bicorrelation. Since Qbic

loc is convex, we have that all convex

combinations of elementary tensors of the form Φ¹ Φq belong to Qbic
loc.

Now assume that Γ =
∑k

i=1 ¼iΦi¹Φq
i as a convex combination, where Φi

is a unitary channel, i = 1, . . . , k. Assume that Φi(É) = U∗
i ÉUi, É ∈ MX ,

where Ui ∈MX is a unitary. Since Ui has scalar entries, it is automatically
a bi-unitary, and hence gives rise to a canonical (one-dimensional) unital
*-representation of C(PU+

X). A standard argument now shows that Γ = ΓÄ

for a trace on the (finite dimensional) abelian C*-algebra Dk.
Finally, if Γ = ΓÄ , where Ä factors through an abelian C*-algebra then

the argument in the first paragraph of (iii) shows that Γ ∈ Qbic
loc. □
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Remark 6.8. Assume that Ä is an amenable trace of C(PU+
X). By [13,

Theorem 6.2.7], the functional µ : C(PU+
X) ¹min C(PU+

X)op → C, given by
µ(u¹ vop) = Ä(uv), is a well-defined state. Letting s = µ ◦ (id¹∂) (a state
on C(PU+

X)¹minC(PU+
X)op), one can proceed similarly to the first paragraph

of the proof of Theorem 6.7 to conclude that Γ ∈ Qbic
qa . We do not know if,

conversely, every Γ ∈ Qbic
qa arises from an amenable trace on C(PU+

X).

Recall [47] that an NS correlation p over (X,X,X,X) is called bisyn-
chronous if

p(a, b|x, x) ̸= 0 =⇒ a = b and p(a, a|x, y) ̸= 0 =⇒ x = y.

It was shown in [47, Remark 2.1] that bisynchrounous correlations of type
t ̸= ns are (classical) bicorrelations. The next statement describes the rela-
tion between bisynchronicity and concurrency.

Proposition 6.9. Let t ∈ {loc, q, qc}. If p ∈ Ct is a bisynchronous NS
correlation over the quadruple (X,X,X,X) then there exists Γ ∈ Qbic

t such
that

(54) Ep = ∆ ◦ Γ|DXX
.

Proof. We consider first the case t = qc. Let p ∈ Cqc be a bisynchronous
correlation. By [47, Theorem 2.2], there exists a tracial state Ä : C(S+

X) → C

such that

(55) p(a, b|x, y) = Ä(pa,xpb,y), x, y, a, b ∈ X.

Let

px,x′a,a′ := p∗a,xpa′,x′ = pa,xpa′,x′ , x, x′, a, a′ ∈ X,

and let C(PS+
X) be the subalgebra of C(S+

X), generated by the elements of
the form px,x′,a,a′ , x, x

′, a, a′ ∈ X. Since every quantum permutation is a

bi-unitary, there exists a unital *-homomorphism Ã : C(PU+
X) → C(PS+

X)
with

Ã(ex,x′,a,a′) = px,x′,a,a′ , x, x′, a, a′ ∈ X.

Let Ä̃ = Ä ◦ Ã; thus, Ä̃ is a tracial state on C(PU+
X) and hence, by Theorem

6.7, ΓÄ̃ is a quantum commuting concurrent QNS bicorrelation. Moreover,
if x, y ∈ X then

(∆ ◦ ΓÄ̃ )(ϵx,x ¹ ϵy,y) =
∑

a,b∈X
Ä̃(ex,x,a,aey,y,b,b)ϵa,a ¹ ϵb,b

=
∑

a,b∈X
Ä(px,x,a,apy,y,b,b)ϵa,a ¹ ϵb,b

=
∑

a,b∈X
Ä(p∗a,xpa,xp

∗
b,ypb,y)ϵa,a ¹ ϵb,b

=
∑

a,b∈X
Ä(pa,xpb,y)ϵa,a ¹ ϵb,b = Ep(ϵx,x ¹ ϵy,y),
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and (54) follows.
The cases t = q and t = loc are similar. □

7. The quantum graph isomorphism game

In this section, we view the concurrent bicorrelations studied in Section
6 as strategies for the non-commutative graph isomorphism game. This
allows us to define quantum information versions of quantum isomorphisms
of non-commutative graphs of different types, which we characterise in terms
of relations arising from the underlying graphs.

7.1. Quantum commuting isomorphisms. Several related concepts of
quantum graphs have been studied in the literature (see [9, 15, 20]). Here
we work with the notion that is used in [52], [51] and [11]. Let X be a finite
set, H = CX , and recall that Hd stands for the dual (Banach) space of H.
Note that, as an additive group, Hd can be identified with H; we write ·̄ for
the element of Hd, corresponding to the vector · in H (so that ·̄ : H → C

is given by ·̄(À) = ïÀ, ·ð). Let ¹ : H ¹ H → L(Hd, H) be the linear map
given by

¹(À ¹ ¸)(·̄) = ïÀ, ·ð¸, · ∈ H.

We have

(56) ¹((S ¹ T )·) = T¹(·)Sd, · ∈ H ¹H, S, T ∈ L(H).

For a subspace U ¦ CX ¹ CX , set

SU = {¹(·) : · ∈ U}.
We let ∂X : (CX)d → CX be the linear mapping given by ∂X(ēx) = ex,

x ∈ X, and we set S̃U := SU∂
−1
X ; thus, S̃U ¦ L(CX).

We denote by m : CX ¹ CX → C the map, given by

m(·) =

〈

·,
∑

x∈X
ex ¹ ex

〉

, · ∈ C
X ¹ C

X .

Let also f : CX¹CX → CX¹CX be the flip operator, given by f(À¹¸) = ¸¹À.
Definition 7.1. A quantum graph with vertex set X is a linear subspace
U ¦ CX ¹ CX that is skew in that m(U) = {0} and symmetric in that
f(U) = U .

In the sequel, for a subspace U ¦ CX ¹CX , we denote by PU the orthog-
onal projection from CX ¹ CX onto U ; thus, PU ∈ MXX . For a classical
(simple, undirected) graph G with vertex set X, we use ∼ (or ∼G when a
clarification is needed) to denote the adjacency relation of G. The graph G
gives rise to the quantum graph

UG = span{ex ¹ ey : x ∼ y},
and we write PG = PUG

; note that PG ∈ DXX , and that

S̃UG
= span{ϵx,y : x ∼ y}
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is a traceless self-adjoint subspace of MX . More generally, S̃U ¦ MX is
always a traceless transpose-invariant subspace for any quantum graph U ;
this is the suitable version arising in our setting of Stahlke’s quantum graphs
[51], where tracelessness and self-adjointness are assumed as part of the
definition.

To motivate Definition 7.2 below, we first recall the graph isomorphism
game [1] for graphs G andH, both with vertex setX. For elements x, y ∈ X,
we denote by relG(x, y) the element of the set {=,∼, ̸≃}, which describes the
adjacency relation in the pair (x, y), in the graph G. A correlation p ∈ Ct is
said to be a perfect t-strategy for the (G,H)-isomorphism game, provided
p is bisynchronous and

(57) p(a, b|x, y) = 0, if relG(x, y) ̸= relH(a, b) or relH(x, y) ̸= relG(a, b).

We note that, for a given correlation type t, two graphs G and H with
vertex set X are t-isomorphic [1] if and only if there exists a bisynchronous
bicorrelation p of type t over the quadruple (X,X,X,X), such that

(58) É ∈ D+
XX and É = PGÉPG =⇒ Γ(É) = PHΓ(É)PH

and

(59) Ã ∈ D+
XX and Ã = PHÃPH =⇒ Γ∗(Ã) = PGΓ

∗(Ã)PG.

Indeed, condition (58) is equivalent to requiring that p(a, b|x, y) = 0 if x ∼G

y but a ̸∼H b, while (59) is equivalent to requiring that p(a, b|x, y) = 0 if
a ∼H b but x ̸∼G y, in conjunction, these two conditions are equivalent to
(57).

Recall [52, 11] that, if U ¦ CX ¹ CX and V ¦ CX ¹ CX are quantum
graphs, and P = PU and Q = PV , then the perfect strategies for the quantum
homomorphism game U → V are the QNS correlations Γ : MXX → MXX

such that

É ∈M+
XX and É = PÉP =⇒ Γ(É) = QΓ(É)Q.

Definition 7.2. Let t ∈ {loc, q, qa, qc, ns}. We say that U and V are t-
isomorphic, and write U ∼=t V, if there exists Γ ∈ Qbic

t such that

(i) Γ is a perfect strategy for U → V, and
(ii) Γ∗ is a perfect strategy for V → U .

Remark 7.3. Although our main interest in this section lies in quantum
graphs, it is important to note, for the development in Section 8, that Def-
inition 7.2 can be stated in a greater generality, involving subspaces U and
V of CX ¹ CX that are not necessarily quantum graphs.

In the next theorem, we give an operator algebraic characterisation of
the relation U ∼=qc V. We recall the leg numbering notation: if F : MXX ¹
B(H) → MXX ¹ B(H) is the (unitarily implemented) isomorphism, given
by

F(S ¹ T ¹R) = T ¹ S ¹R, S, T ∈MX , R ∈ B(H),
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for U = (Ua,x)a,x ∈ MX ¹ B(H), we write U2,3 = IX ¹ U , and U1,3 =
F(IX ¹ U). Note that U2,3, U1,3 ∈MXX ¹ B(H) and

(60) U t
1,3U

∗
2,3 =

∑

x,y,a,b∈X
ϵx,a ¹ ϵy,b ¹ Ua,xU

∗
b,y.

For the formulation of the next theorem, we set Ā = At∗, and call a
von Neumann algebra tracial if it admits a tracial state. If H is a Hilbert
space and N ¦ B(H) is a von Neumann algebra, an operator matrix U =
(Ua,x)a,x∈X will be called N -aligned if U∗

a,xUb,y ∈ N for all x, y, a, b ∈ X.

Theorem 7.4. Let U and V be quantum graphs in CX¹CX , and set P = PU
and Q = PV .

The following are equivalent:

(i) U ∼=qc V;
(ii) there exists a tracial von Neumann algebra N ¦ B(H) and an N -

aligned bi-unitary U = (Ua,x)a,x ∈MX(B(H)) such that

(P ¹ I)U t
1,3U

∗
2,3(Q

§ ¹ I) = 0 and (P̄§ ¹ I)U t
1,3U

∗
2,3(Q̄¹ I) = 0;

(iii) there exists a tracial von Neumann algebra N ¦ B(H) and an N -
aligned bi-unitary U = (Ua,x)a,x ∈MX(B(H)) such that

U(S̃U ¹ 1)U∗ ¦ S̃V ¹ B(H) and U t(S̃V ¹ 1)U t∗ ¦ S̃U ¹ B(H).

Proof. (i)⇒(ii) For a vector À =
∑

x,y∈X ³x,yex ¹ ey ∈ CX ¹ CX , let À =
∑

x,y∈X ³x,yex ¹ ey and set

YÀ =
∑

x,y∈X
³x,yϵx,y;

note that YÀ ∈MX (and that the use of the notation À agrees, up to a canon-
ical identification, with the definition in the beginning of Subsection 7.1).
Let Γ : MXX → MXX be a concurrent quantum commuting bicorrelation
satisfying conditions (i) and (ii) in Definition 7.2.

By Theorem 6.7, there exists a tracial state Ä : C(PU+
X) → C such that

Γ(ex,x′ ¹ ey,y′) =
(

Ä(ux,x′,a,a′uy′,y,b′,b)
)

a,a′,b,b′
, x, x′, y, y′ ∈ X.

Let ÃÄ be the *-representation, associated with Ä via the GNS construction,
and let · be the corresponding cyclic vector. Then N = ÃÄ (C(PU+

X))′′ is a
finite von Neumann algebra, on which the vector state corresponding to ·
is faithful and tracial.

Let E = (ÃÄ (ux,x′,a,a′))x,x′,a,a′ . As in the proof of [11, Theorem 5.5], we
have that

ïΓ(ÀÀ∗)¸, ¸ð = (Tr¹Ä)
(

E(YÀ̄ ¹ Y¸ ¹ 1A)E(Y ∗
À̄ ¹ Y ∗

¸ ¹ 1N )
)

,

implying, by the faithfulness of Ä , that

E
(

YÀ̄ ¹ Y¸ ¹ I
)

E = 0, À ∈ U , ¸ ∈ V§.
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By Lemma 6.5 (ii), there exists a bi-unitary U = (Ua,x)a,x, such that E =
(U∗

a,xUa′,x′)x,x′,a,a′ . Writing À =
∑

x,y∈X ³x,yex¹ey and ¸ =
∑

a,b∈X ´a,bea¹
eb, we calculate

E
(

YÀ̄ ¹ Y¸ ¹ I
)

E =





∑

x′,y′,a′,b′∈X
³x′,y′´a′,b′U

∗
a,xUa′,x′U∗

b′,y′Ub,y





x,y,a,b

.

Hence
∑

x′,y′,a′,b′ ³x′,y′´a′,b′U
∗
a,xUa′,x′U∗

b′,y′Ub,y = 0 for any x, y, a, b. Letting

RÀ,¸ =
∑

x′,y′,a′,b′ ³x′,y′´a′,b′Ua′,x′U∗
b′,y′ , we have

U∗
a,xRÀ,¸Ub,y = 0, x, y, a, b ∈ X.

It follows that

(61) RÀ,¸ =
∑

x,y∈X
Ua,xU

∗
a,xRÀ,¸Ub,yU

∗
b,y = 0.

Let F := U t
1,3U

∗
2,3; thus, F ∈ MXX ¹ B(H). By (61), the operator F

satisfies the conditions

ïF (¸ ¹ h), À ¹ gð = 0, h, g ∈ H,

which imply (P ¹ I)F (Q§ ¹ I) = 0.

Let Ẽ := (U∗
a,xUa′,x′)a,a′,x,x′ . By symmetry,

Ẽ(YÀ̄′ ¹ Y¸′ ¹ I)Ẽ = 0, À′ ∈ V, ¸′ ∈ U§.

Setting

F̃ := U1,3Ū2,3 =
∑

x,y,a,b∈X
ϵa,x ¹ ϵb,y ¹ Ua,xU

∗
b,y,

we similarly obtain that

ïF̃ (¸′ ¹ h), À′ ¹ gð = 0, À′ ∈ V, ¸′ ∈ U§, h, g ∈ H,

and hence

(62) (Q¹ I)F̃ (P§ ¹ I) = 0.

Let t : MX → MX be the map, given by t(T ) = T t. Since the operators
P§ and Q are self-adjoint, (t ¹ t)(Q) = Q̄ and (t ¹ t)(P§) = P̄§. Thus,
applying the map t¹t¹id to the relation (62), we obtain (P̄§¹I)F (Q̄¹I) =
0

(ii)⇒(i) Assume that (P¹I)U t
1,3U

∗
2,3(Q

§¹I) = 0 and (P̄§¹I)U t
1,3U

∗
2,3(Q̄¹

I) = 0. By Theorem 6.7 (i), the linear map Γ, given by Γ(ϵx,x′ ¹ ϵy,y′) =
(

Ä((U∗
a,xUa′,x′U∗

b′,y′Ub,y)
)

a,a′,b,b′
, is a concurrent quantum commuting bicor-

relation. Reversing the arguments from the previous paragraphs and using
the proof of [11, Theorem 5.5], we obtain that, if E = (U∗

a,xUa′,x′)x,x′,a,a′

then

ïΓ(ÀÀ∗), ¸¸∗ð = (Tr¹Ä)
(

E(YÀ̄ ¹ Y¸ ¹ I)E(Y ∗
À̄ ¹ Y ∗

¸ ¹ I)
)

= 0,
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for all À ∈ U and all ¸ ∈ V§. Similarly,

ïΓ∗(À′À′∗), ¸′¸′∗ð = 0 for all À′ ∈ V, ¸′ ∈ U§.

It follows that U ∼=qc V via Γ.

(ii)⇒(iii) For each À ∈ U , ¸ ∈ V§, h, g ∈ H, we have

(63) ïU t
1,3U

∗
2,3(¸ ¹ h), À ¹ gð = ï¸ ¹ h, U2,3Ū1,3(À ¹ g)ð = 0.

Consider U2,3Ū1,3 as a linear operator on CXX ¹ B(H) by letting

(U2,3Ū1,3)(À ¹ T ):=
∑

x,y,a,b∈X
(ϵb,y ¹ ϵa,x)À ¹ Ua,xU

∗
b,yT, À ∈ C

XX , T ∈ B(H).

Fix À ∈ CXX . We have

(¹ ¹ id)(U2,3Ū1,3(À ¹ I))

=
∑

x,y,a,b∈X
¹((ϵb,y ¹ ϵa,x)À)¹ Ua,xU

∗
b,y =

∑

x,y,a,b∈X
ϵa,x¹(À)ϵ

d
b,y ¹ Ua,xU

∗
b,y

=





∑

a,x∈X
ϵa,x ¹ Ua,x



 (¹(À)¹ I)





∑

b,y∈X
ϵdb,y ¹ U∗

b,y



 .

Note that ∂Xϵ
d
b,y∂

−1
X = ϵy,b. Therefore,

(¹ ¹ id)(U2,3Ū1,3(À ¹ I))(∂−1
X ¹ I)

=





∑

a,x∈X
ϵa,x ¹ Ua,x





(

¹(À)∂−1
X ¹ I

)





∑

b,y∈X
∂Xϵ

d
b,y∂

−1
X ¹ U∗

b,y



(64)

= U(¹(À)∂−1
X ¹ I)U∗.

To see that U(S̃U ¹ 1)U∗ ¦ S̃V ¹ B(H), let À ∈ U , and fix orthonormal
bases (¸i)i∈I and (·j)j∈J of V and V§, respectively. Then

U(¹(À)∂−1
X ¹ I)U∗ =

∑

i∈I
¹(¸i)∂

−1
X ¹Ri +

∑

j∈J
¹(·j)∂

−1
X ¹ Sj

for some Ri, Sj ∈ B(H), i ∈ I, j ∈ J. From the previous arguments we
obtain

(¹ ¹ id)(U2,3Ū1,3(À ¹ I)) = (¹ ¹ id)





∑

i∈I
¸i ¹Ri +

∑

j∈J
·j ¹ Sj





and

U2,3Ū1,3(À ¹ I) =
∑

i∈I
¸i ¹Ri +

∑

j∈J
·j ¹ Sj .

Let Ég,h be the vector functional on B(H), given by Ég,h(T ) = ïTg, hð and,
for ¸ ∈ CXX , let ℓ¸ be the linear functional on CXX , given by ℓ¸(À) = ïÀ, ¸ð.
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Then

(ℓ¸ ¹ Ég,h)(U2,3Ū1,3(À ¹ I))) =
∑

x,y,a,b∈X
ï(ϵx,a ¹ ϵy,b)À, ¸ðïUa,xU

∗
b,yg, hð

= ïU2,3Ū1,3(À ¹ g), ¸ ¹ hð,
while

(ℓ¸ ¹ Ég,h)





∑

i∈I
¸i ¹Ri+

∑

j∈J
·j ¹Sj



=
∑

i∈I
ï¸i,¸ðïRig,hð+

∑

j∈J
ï·j ,¸ðïSjg,hð.

Taking now ¸ = ·j we obtain from (63) that

(ℓ¸ ¹ Ég,h)
(

U2,3Ū1,3(À ¹ I))
)

= 0

and that

(ℓ¸ ¹ Ég,h)





∑

i∈I
¸i ¹Ri +

∑

j∈J
·j ¹ Sj



 = ∥·j∥2ïSjg, hð;

thus, ïSjg, hð = 0. As g and h can be chosen arbitrarily, Sj = 0 for all j ∈ J.
Therefore

U(¹(À)∂−1
X ¹ I)U∗ =

∑

i∈I
¹(¸i)∂

−1
X ¹Ri ¦ S̃V ¹ B(H).

Similar arguments applied to (Q ¹ I)F̃ (P§ ¹ I) = 0, where F̃ = U1,3Ū2,3,
give

U t(S̃V ¹ 1)(U t)∗ ¦ S̃U ¹ B(H).

(iii)⇒(ii) follows, using (64), by reversing the arguments in the implication
(ii)⇒(iii). □

Remarks. (i) The arguments in the proof of Theorem 7.4 can be used to
conclude that U →qc V if and only if there exists a tracial von Neumann
algebra N ¦ B(H) and an N -aligned isometry V = (Va,x)a,x, Va,x ∈ B(H),
such that

V (S̃U ¹ 1)V ∗ ¦ S̃V ¹ B(H).

This complements the characterisation obtained in [11, Theorem 5.7].

(ii) Similar results to those of Theorem 7.4 hold for U ≃q V, in which
case the space H is finite-dimensional. A treatment of the case U ≃loc V is
presented in Subsection 7.2 below.

Corollary 7.5. Let G and H be graphs with vertex set X. The following
are equivalent:

(i) UG
∼=qc UH ;

(ii) there exists a tracial von Neumann algebra N ¦ B(H) and an N -
aligned bi-unitary U = (Ua,x)a,x ∈MX(B(H)) such that Ua,xU

∗
b,y = 0

if either x ∼G y and a ̸∼H b, or x ̸∼G y and a ∼H b;
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(iii) there exists a tracial von Neumann algebra N ¦ B(H) and an N -
aligned bi-unitary U = (Ua,x)a,x ∈MX(B(H)) such that

(PG ¹ I)U t
1,3U

∗
2,3 = U t

1,3U
∗
2,3(PH ¹ I);

(iv) there exists a tracial von Neumann algebra N ¦ B(H) and a bi-
unitary U = (Ua,x)a,x ∈MX(B(H)) such that U∗

a,xUb,y ∈ N , x, y, a, b ∈
X, and

U(SG ¹ 1)U∗ ¦ SH ¹ B(H) and U t(SH ¹ 1)U t∗ ¦ SG ¹ B(H).

Proof. We have UG = {ex ¹ ey : x ∼G y} and UH = {ea ¹ eb : a ∼H b}. As
P̄G = PG and P̄H = PH , the conditions

(65) (PG ¹ I)U t
1,3U

∗
2,3(P

§
H ¹ I) = 0 and (P̄§

G ¹ I)U t
1,3U

∗
2,3(P̄H ¹ I) = 0

are equivalent to (PG ¹ I)U t
1,3U

∗
2,3 = U t

1,3U
∗
2,3(PH ¹ I), and also equivalent

to Ua,xU
∗
b,y = 0 if either x ∼G y and a ̸∼H b or x ̸∼G y and a ∼H b. The

statement now follows from Theorem 7.4. □

Remark 7.6. The conditions on the bi-unitary U contained in Corollary
7.5 are equivalent to the conditions AHc ∗ U(AG ¹ I)U∗ = 0 and AGc ∗
U t(AH¹I)Ū = 0, where Gc is the complement to G and ∗ denotes the Schur
product. We can formulate a similar characterisation for types loc and q.
In the case when the bi-unitary U is actually a quantum permutation (that
is, the entries ui,j of U are all orthogonal projections), these conditions are
equivalent to the condition that U(AG ¹ I)U∗ = AH ¹ I. Indeed, if U is
a quantum permutation satisfying AHc ∗ U(AG ¹ I)U∗ = 0, then whenever
i ̸= j and i ̸∼H j, we have

0 = (U(AG ¹ I)U∗)i,j =
∑

k∼Gℓ

ui,kuj,ℓ.

Multiplying on the left by ui,k for any fixed k satisfying k ∼G ℓ, we obtain
ui,kuj,ℓ = 0 whenever i ̸∼H j, i ̸= j and k ∼G ℓ. Similarly, if i = j and
k ∼G ℓ, then k ̸= ℓ, so that ui,kuj,ℓ = 0.

Next, if we interchange the roles of G and H in the above argument and
replace U with the magic unitary U t, the identity AGc ∗ U t(AH ¹ I)Ū = 0
yields uk,iuℓ,j = 0 whenever i ̸∼G j, i ̸= j and k ∼H ℓ or whenever i = j,
and k ∼H ℓ.

It follows that, if i ∼H j, then (assuming that n = |X|) we have

(U(AG ¹ I)U∗)i,j =
∑

k∼Gℓ

ui,kuj,ℓ

=

n
∑

k=1

ui,kuj,k +
∑

k∼Gℓ

ui,kuj,ℓ +
∑

k ̸∼Gℓ
k ̸=l

ui,kuj,ℓ

=
n
∑

k,ℓ=1

ui,kuj,ℓ =

(

n
∑

k=1

ui,k

)(

n
∑

ℓ=1

uj,ℓ

)

= 1 = (AH)i,j .
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Similarly, if i ̸∼H j, then either i = j or i ∼Hc j, and we obtain in either
case

(U(AG ¹ I)U∗)i,j =
∑

k∼Gℓ

ui,kuj,ℓ = 0 = (AH)i,j .

It follows that U(AG ¹ I)U∗ = AH ¹ I. The converse is immediate.

7.2. Local isomorphisms. In this subsection, we restrict our attention to
quantum graph isomorphisms of local type.

Proposition 7.7. Let X be a finite set, and U and V be quantum graphs in
CX ¹ CX . The following are equivalent:

(i) U ∼=loc V;
(ii) there exists a unitary U ∈MX such that (U ¹ Ū)(U) = V.

Proof. (i)⇒(ii) Let Γ ∈ Qbic
loc is a correlation satisfying the conditions of

Definition 7.2 for quantum graphs U and V. By Theorem 6.7 (iv), Γ =
∑k

i=1 ¼iΦi¹Φq
i as a convex combination, where Φi :MX →MX is a unitary

quantum channel, i = 1, . . . , k. Conditions (i) and (ii) in Definition 7.2 are
equivalent to

(66)
〈

Γ(PU ), P§
V
〉

= 0 and
〈

Γ∗(PV), P§
U
〉

= 0.

The monotonicity of the trace functional now implies that Φi ¹ Φq
i satisfies

the conditions in Definition 7.2 for every i = 1, . . . , k. We may thus assume
that Γ = Φ ¹ Φq, where Φ : MX → MA is a unitary quantum channel.
Let U ∈ MX be a unitary such that Φ(É) = U∗ÉU , É ∈ MX . A direct
verification shows that

Φq(É) = Ū∗ÉŪ, É ∈MX .

Thus,

Γ(É) = (U ¹ Ū)∗É(U ¹ Ū), É ∈MXX .

The first condition in (66) now implies that, for every À ∈ U , we have
(

(U ¹ Ū)∗À
) (

(U ¹ Ū)∗À
)∗

= (U ¹ Ū)∗(ÀÀ∗)(U ¹ Ū) f PV ,

that is, (U ¹ Ū)∗(U) ¦ V. On the other hand,

Γ∗(É) = (U ¹ Ū)É(U ¹ Ū)∗, É ∈MXX ,

and arguing by symmetry implies that (U ¹ Ū)(V) ¦ U ; thus, (ii) follows.
(ii)⇒(i) Given a unitary U ∈ MX , let Φ(É) = U∗ÉU , É ∈ MX , and

Γ = Φ ¹ Φq. Then the arguments in the first part of the proof imply that
U ∼=loc V via Γ. □

Remark. Proposition 7.7 can equivalently be seen as a consequence
of Theorem 7.4. Indeed, note that, by Theorem 6.7 (iv) and its proof,

Γ ∈ Qbic
loc if and only if Γ =

∑k
i=1 ¼iΓi as a convex combination, where

Γi(ex,x′ ¹ ey,y′) = (Ãi(ux,x′,a,a′uy′,y,b′,b))a,a′,b,b′ for some ∗-representation Ãi :
C(PU+

X) → C. Using the fact that all Γi are positive, it can be easily seen
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that one can assume that k = 1. Let U = (ua,x)a,x ∈ MX be the unitary
that corresponds to Ã1 as in the proof of the implication (i)⇒(ii); we have
that U satisfies the corresponding conditions (ii) and (iii). In particular,

U S̃UU∗ ¦ S̃V and U tS̃V(U t)∗ ¦ S̃U . As S̃t
U = S̃U and S̃t

V = S̃V , we obtain

that U∗S̃VU ¦ S̃U , which implies U∗S̃VU = S̃U . This gives in particular
that (U ¹ Ū)(U) = V.
Proposition 7.8. Let G and H be graphs with vertex set X. Then UG

∼=loc

UH if and only if G ∼= H.

Proof. A graph isomorphism φ : X → X between G and H gives rise to a
permutation unitary operator Uφ : CX → CX ; letting Φ : MX → MA be

the conjugation by Uφ, we have that the correlation Φ¹ Φq implements an
isomorphism UG

∼=loc UH .
Conversely, suppose that UG

∼=loc UH . By Proposition 7.7, there exists a
unitary U ∈MX such that (U ¹ Ū)(UG) = UH . Letting

SG = span{ϵx,y : x ∼ y or x = y},
we now have that USGU

∗ = SH . By [43, Proposition 3.1], G ∼= H. □

Corollary 7.9. There exist quantum graphs U and V such that U ∼=q V but
U ̸∼=loc V.
Proof. By [1, Theorem 6.4], there exists graphs G and H such that G ∼=q H
but G ̸∼=loc H. By Proposition 7.8, UG ̸∼=loc UH ; to complete the proof,
we show that UG

∼=q UH . By [36, Theorem 2.1], there exists a quantum
permutation matrix (Px,a)x,a, acting on a finite dimensional Hilbert space
H, such that

Px,aPy,b = 0 if x ∼G y & a ̸∼H b, or x ̸∼G y & a ∼H b.

By Remark 7.6, UG
∼=q UH □

7.3. The quantum isomorphism algebra. Let X be a finite set, and
U ¦ CXX and V ¦ CXX be quantum graphs. We will introduce a C*-
algebra whose tracial properties reflect the properties of the isomorphism
game U ∼= V. Let P (resp. Q) be the projection from CXX onto U (resp.
from CXX onto V). For matrices S, T ∈MXX , define a linear map

µS,T :MXX ¹ C(PU+
X)¹MXX ¹ C(PU+

X)op → C(PU+
X)

by letting

µS,T (É ¹ u¹ vop) = Tr(É(S ¹ T ))uv, É ∈MXX ¹MXX , u, v ∈ C(PU+
X).

Set W = (ux,x′,a,a′)x,x′,a,a′ ∈MXX ¹ C(PU+
X), and let

IP,Q =
〈

µP,Q§ (W ¹W op) , µP§,Q (W ¹W op)
〉

be the closed ideal in C(PU+
X), generated by the elements µP,Q§(W ¹W op)

and µP§,Q(W ¹W op). Set AP,Q = C(PU+
X)/IP,Q. We write u̇ for the image

of an element u ∈ C(PU+
X) in AP,Q under the quotient map.
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Theorem 7.10. Let X be a finite set, U ¦ CXX (resp. V ¦ CXX) be a
quantum graph and P ∈ MXX (resp. Q ∈ MXX) be the projection onto U
(resp. V). The following are equivalent for a QNS bicorrelation Γ :MXX →
MXX :

(i) Γ is a perfect quantum commuting (resp. quantum/local) strategy for
the isomorphism game U ∼= V;

(ii) there exists a trace Ä (resp. a trace Ä that factors through a finite
dimensional/abelian *-representation) of AP,Q such that

(67) Γ(ϵx,x′ ¹ ϵy,y′) =
(

Ä(u̇x,x′,a,a′ u̇y′,y,b′,b)
)

a,a′,b,b′
, x, x′, y, y′ ∈ X.

Proof. (i)⇒(ii) We consider first the quantum commuting case. By Theorem
6.7, there exists a tracial state Ä : C(PU+

X) → C such that Γ = ΓÄ . Writing

W̃ = (ux,x′,a,a′uy′,y,b′,b) ∈MXXXX ¹ C(PU+
X),

we thus have

ïΓ(ϵx,x′ ¹ ϵy,y′), ϵa,a′ ¹ ϵb,b′ð = Ä(ux,x′,a,a′uy′,y,b′,b)

= Tr(((ϵx,x′ ¹ ϵy,y′)¹ (ϵa,a′ ¹ ϵb,b′))Ä
(XXXX)(W̃ ))

= Ä(µϵx,x′¹ϵy,y′ ,ϵa,a′¹ϵb,b′ (W ¹W op)).

By linearity,

(68) ïΓ(S), T ð = Ä (µS,T (W ¹W op)) , S, T ∈MXX .

Since Γ is a perfect strategy for the game U ∼= V, equation (68) implies that

Ä
(

µP,Q§(W ¹W op)
)

= Ä
(

µP§,Q(W ¹W op)
)

= 0.

Set g = µP,Q§(W ¹W op); we claim that g ∈ C(PU+
X)+. To see this, let

m :MXX(C(PU+
X))¹max MXX(C(PU+

X))op →MXX(C(PU+
X))

be the multiplication map, and note that, if u ∈MXX(C(PU+
X))+ and vop ∈

MXX(C(PU+
X))op+ then

m(u¹ vop) ∈MXX(C(PU+
X))+

(this can be seen by realisingMXX(C(PU+
X)) andMXX(C(PU+

X))op as mutu-
ally commuting C*-algebras acting on the same Hilbert space). We have that
W ∈MXX(C(PU+

X))+ and, by Lemma 6.6, that W op ∈MXX(C(PU+
X))op+.

It follows that
W̃ ∈MXXXX(C(PU+

X))+.

Taking partial trace against the positive matrix P ¹ Q§ yields a positive
operator; the claim is now proved after noticing that the latter operator
coincides with g.

Similarly,
h := µP§,Q(W ¹W op) ∈ C(PU+

X)+.

We have that
Ä(g) = Ä(h) = 0;



54 M. BRANNAN, S. J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

by a straightforward application of the Cauchy-Schwartz inequality, Ä an-
nihilated IP,Q and hence induces a trace (denoted in the same way) Ä :
AP,Q → C. The validity of equation (67) persists on AP,Q.

Now consider the case where Γ is a quantum correlation. By Theorem 6.7,
there exists a trace Ä : C(PU+

X) → C that factors through a finite dimensional
C*-algebra, such that Γ = ΓÄ . By the previous paragraphs, Ä annihilates
JP,Q. Thus Ä induces a trace (denoted in the same way) Ä : AP,Q → C that
factors through a finite dimensional C*-algebra and, as before, Γ = ΓÄ . The
case where Γ is of local type are similar.

(ii)⇒(i) follows in a straightforward way from relation (68). □

Remark 7.11. It follows from identity (68) and the proof of Theorem 7.4
that AP,Q is the universal C∗-algebra generated by elements u∗a,xua′,x′ , where
U = (ua,x)a,x is a bi-unitary matrix, subject to the relations

(P ¹ I)U t
1,3U

∗
2,3(Q

§ ¹ I) = 0 & (P̄§ ¹ I)U t
1,3U

∗
2,3(Q̄¹ I) = 0.(69)

Remark 7.12. Let us consider the special case P = Q; this is the case
of quantum automorphisms U → U . We would like to interpret AP,P as a

quantum group of automorphisms of the quantum graph U ¦ CX ¹ CX .
This intuition can be made precise by equipping AP,P with a natural co-
associative comultiplication ∆P : AP,P → AP,P ¹AP,P , which turns it into
a C∗-algebraic compact quantum group.

To construct such a comultiplication ∆P onAP,P , we first consider C(U+
X),

the universal C∗-algebra generated by the entries of a bi-unitary U = (ux,a) ∈
MX(C(U+

X)). The C*-algebra C(U+
X) is well-known to be a compact matrix

quantum group when equipped with the comultiplication ∆ : C(U+
X) →

C(U+
X) ¹ C(U+

X), given by ∆(ux,a) =
∑

c∈X ux,c ¹ uc,a on C(U+
X) [55].

Define a new C∗-algebra B obtained from C(U+
X) by quotienting by the

relations given in (69). Denote the canonical matrix of generators of B
by V = (vx,a) ∈ MX(B). (Note that, by definition, V is the universal
X ×X bi-unitary satisfying the relations (69).) We claim that the assign-
ment ∆B(vx,a) :=

∑

c vx,c ¹ vc,a, (x, a ∈ X), determines a co-associative
co-multiplication ∆B : B → B ¹ B, turning (B,∆B) into a compact matrix

quantum group. To see this, it suffices to check that matrix Ṽ ∈MX¹B¹B,
given by

Ṽ =

(

∑

c∈X
vx,c ¹ vc,a

)

x,a∈X
= V1,2V1,3,

satisfies the defining relations for V (that is, Ṽ is bi-unitary and satisfies the
equations (69) inMX¹MX¹B¹B). Indeed, if the above is verified, then the
co-multiplication ∆ on C(U+

X) will have been shown to factor the quotient

C(U+
X) → B, proving that ∆B is well defined and induces a quantum group

structure on B.
First note that fact that Ṽ is bi-unitary follows immediately from the

formula for Ṽ and the bi-unitarity of V . To check (69), we first note that in
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MX ¹MX ¹ (B ¹ B) we have

Ṽ t
1,3Ṽ

∗
2,3 = (V1,3V1,4)

t(V2,3V2,4)
∗ = V t

1,4V
t
1,3V

∗
2,4V

∗
2,3 = V t

1,4V
∗
2,4V

t
1,3V

∗
2,3,

and hence

(P ¹ I)Ṽ t
1,3Ṽ

∗
2,3(P

§ ¹ I) = (P ¹ I ¹ I)V t
1,4V

∗
2,4V

t
1,3V

∗
2,3(P

§ ¹ I ¹ I)

= (P ¹ I ¹ I)V t
1,4V

∗
2,4(P ¹ I ¹ I)V t

1,3V
∗
2,3(P

§ ¹ I ¹ I) = 0,

where in the last line we have used relation (69) for V to insert the extra
copy of (P ¹ I ¹ I) in the middle. This shows that the first relation in (69)

holds for Ṽ . The second relation in (69) is verified similarly.
Finally, we note that AP,P is, by construction, the C∗-subalgebra of B

generated by order two elements of B of the form v∗x,avx′,a′ , x, x
′, a, a′ ∈ X.

The natural co-multiplication ∆P on AP,P is then the restriction of ∆B to
AP,P (note that ∆B(AP,P ) ¦ AP,P ¹AP,P ).

Remark 7.13. Note that, by Proposition 7.7, any character on AP,P cor-
responds to a unitary U ∈ UX such that (U ¹ Ū)U = U . In other words,
the abelianisation of AP,P corresponds via Gelfand duality to the classical
compact group of unitary matrices

G = {U ¹ Ū : U ∈ UX and (U ¹ Ū)U = U} ¦MX ¹MX .

The pair (AP,P ,∆P ) is therefore the quantisation of this very natural matrix
group of automorphisms of U .

8. Connection with algebraic quantum isomorphisms

The purpose of this section is to clarify the connection between the notion
of a quantum graph isomorphism defined and characterised in Section 7 and
the notion, defined and studied in [9]. Our main reference for the latter
concept will be [15], and we follow its notation as closely as possible.

8.1. Algebraic isomorphism as a tighter equivalence. We fix through-
out the section a finite setX and let n = |X|. We denote by tr the normalised
trace on MX ; thus, tr = 1

|X|Tr. In order to simplify the notation, we will

write 1 in the place of IX .
Denote by L2(MX) the Hilbert space with underlying linear space MX

and inner product arising from the GNS construction applied to the pair
(MX , tr). More specifically, if Λ : MX → L2(MX) is the GNS map, we set
ïΛ(a),Λ(b)ð = tr(a∗b) (note that the inner product is linear in the second
variable). In what follows, we view MX as a subalgebra of B(L2(MX)),
where an element a ∈ MX gives rise to the operator (denoted in the same
way and given by)

aΛ(b) = Λ(ab), a, b ∈MX .

Note that Λ(a) = aΛ(1), a ∈MX .
Let m : L2(MX) ¹ L2(MX) → L2(MX) be the multiplication map, that

is, the map, defined by letting m(Λ(a)¹Λ(b)) = Λ(ab), and m∗ : L2(MX) →
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L2(MX) ¹ L2(MX) be its Hilbert space adjoint. For notational simplicity,
we will often suppress the use of Λ, and consider m (resp. m∗) as a map
from MX ¹MX to MX (resp. from MX to MX ¹MX). We note that

(70) m∗(ϵi,j) = n
n
∑

k=1

ϵi,k ¹ ϵk,j .

Indeed, for p, q, s, t = 1, . . . , n, we have

(71) ïm∗(ϵi,j), ϵp,q ¹ ϵs,tð = ïϵi,j , ϵp,qϵs,tð = tr(ϵj,iϵp,qϵs,t),

while
〈

n

n
∑

k=1

ϵi,k ¹ ϵk,j , ϵp,q ¹ ϵs,t

〉

= n
n
∑

k=1

tr(ϵk,iϵp,q) tr(ϵj,kϵs,t)(72)

= n tr(ϵs,iϵp,q) tr(ϵj,t).

The right hand sides of (71) and (72) are thus equal, establishing (70) which,
further, implies that

(73) m∗(1) = n

n
∑

i,j=1

ϵi,j ¹ ϵj,i.

Let ¸ : C → L2(MX) be the map, given by ¸(¼) = ¼Λ(1). Recall [15,
Definition 2.4] that a selfadjoint linear map A : L2(MX) → L2(MX) is called
a quantum adjacency matrix if it has the following properties:

(1) m(A¹A)m∗ = A;

(2) (id¹ ¸∗m)(1¹A¹ 1)(m∗¸ ¹ id) = A;

(3) m(A¹ 1)m∗ = 0.

We stress that condition (3) reflects the fact that we work with a quantum
version of graphs without loops (graphs with loops are quantised in this
context by requiring the condition m(A ¹ 1)m∗ = 1 instead of (3) [15, p.
6]). A triple G = (MX , tr, A), where A is a quantum adjacency matrix, is
called in [9, 15] a quantum graph. In order to distinguish this notion from
the one used in the present paper, we will hereafter refer to it as an algebraic
quantum graph.

We fix an algebraic quantum graph G = (MX , tr, A). We associate with
G the MX -bimodule S′ in B(L2(MX)) generated by A (its dependence on
G is suppressed for notational simplicity); thus, recalling that the elements
of MX are viewed as operators on L2(MX), we have that

(74) S′ = span {aAb : a, b ∈MX} .
If x, y ∈MX , we write ΘΛ(x),Λ(y) for the rank one operator, given by

ΘΛ(x),Λ(y)(À) = ïΛ(x), ÀðΛ(y), À ∈ L2(MX).

Let Ψ : B(L2(MX)) →MX ¹MX be the linear map, given by

Ψ
(

ΘΛ(x),Λ(y)

)

= x∗ ¹ y, x, y ∈MX ;
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by finite dimensionality, Ψ is bijective. Set e = (1 ¹ A)(m∗(1)); recalling
(73), we have that

(75) e = n

n
∑

i,j=1

ϵi,j ¹A(ϵj,i).

Lemma 8.1. Let G = (MX , tr, A) be an algebraic quantum graph. Then

(i) Ψ(A) = e,
(ii) e = e∗, and
(iii) Ψ(S′) = span{(1¹ a)e(b¹ 1) : a, b ∈MX} ¦MX ¹MX .

Proof. (i) Note that {√nΛ(ϵi,j)}1fi,jfn is an orthonormal basis for L2(MX);
thus,

A =

n
∑

i,j=1

Θ√
nΛ(ϵi,j),

√
nΛ(A(ϵi,j)),

and the claim now follows from (75).
(ii) Let R = ΘΛ(a),Λ(b), a, b ∈MX , and T := (id¹¸∗m)(1¹R¹1)(m∗¸¹

id). For notational simplicity write m∗¸(1) = m∗(1) =
∑m

i=1 Ài ¹ ¸i. If x,
y ∈MX , then

ïΛ(x), TΛ(y)ð

=
m
∑

i=1

ïΛ(x)¹ Λ(1), (1¹m)(1¹ ¹Λ(a),Λ(b) ¹ 1)(Ài ¹ ¸i ¹ Λ(y)ð

=
m
∑

i=1

ïΛ(x)¹ Λ(1), (1¹m)(Ài ¹ ïΛ(a), ¸iðΛ(b)¹ Λ(y)ð

=
m
∑

i=1

ïΛ(x)¹ Λ(1), Ài ¹ Λ(by)ðïΛ(a), ¸ið

=
m
∑

i=1

ïΛ(x), ÀiðïΛ(a), ¸iðïΛ(1),Λ(by)ð

= ïΛ(x)¹ Λ(a),m∗(1)ðïΛ(b∗),Λ(y)ð = ïΛ(xa),Λ(1)ðïΛ(b∗),Λ(y)ð
= ïΛ(x),Λ(a∗)ðïΛ(b∗),Λ(y)ð,

showing that T = ΘΛ(b∗),Λ(a∗), and hence that Ψ(T ) = b ¹ a∗ = f(Ψ(R)),
where f is the flip map. By linearity, we obtain

Ψ(id¹ ¸∗m)(1¹A¹ 1)(m∗¸ ¹ id)) = f(Ψ(A))

and therefore by (i) and condition (2), e = f(e).
Furthermore,

A∗ =





n
∑

i,j=1

Θ√
nΛ(ϵi,j),

√
nΛ(A(ei,j))





∗

=

n
∑

i,j=1

Θ√
nΛ(A(ei,j)),

√
nΛ(ϵi,j),
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and therefore

e = Ψ(A) = Ψ(A∗) = n

n
∑

i,j=1

A(ϵi,j)
∗ ¹ ϵi,j = f(e∗),

giving e = e∗ = f(e).
(iii) The claim follows from the fact that

(76) Ψ
(

aΘΛ(x),Λ(y)b
)

= Ψ
(

ΘΛ(b∗x),Λ(ay)

)

= x∗b¹ ay, a, b, x, y ∈MX .

□

We set Λ¹2 = Λ¹ Λ and write UG = Λ¹2(Ψ(S′)); thus, UG ¦ L2(MX)¹
L2(MX) (we note that, in the case G is classical, the space UG is closely
related to, although not identical, to the space denoted in the same way in

Section 7). Throughout this section, we fix an orthonormal basis {Λ(fj)}n2

j=1

of L2(MX); we note that {Λ(f∗i )}n
2

i=1 is also an orthonormal basis. Let
∂ : L2(MX) → L2(MX) be the linear operator with

(77) ∂
(

Λ(f∗j )
)

= Λ(fj), j = 1, . . . , n2,

and set ŨG = (∂¹1)(UG). We next record the properties of the spaces of the

form ŨG, akin to the properties of quantum graphs in the sense of Definition
7.1. We write d for the conjugate-linear map on L2(MX) ¹ L2(MX), given
by

d





n2
∑

i,j=1

³i,jΛ(fi)¹ Λ(fj)



 =
n2
∑

i,j=1

³̄i,jΛ(fi)¹ Λ(fj)

and recall that f is the flip map on L2(MX) ¹ L2(MX). We note that the
definitions of the maps ∂ and d depend on the basis, but the concrete basis
we are working with will be fixed or clear from the context. The same
comment applies for the notion we define next.

Definition 8.2. A subspace W ¦ L2(MX) ¹ L2(MX) is called a quantum
pseudo-graph if W is skew and (d ◦ f)(W) = W.

Let J0 : L
2(MX)¹L2(MX) → L2(MX)¹L2(MX) be the anti-linear map

given by J0(Λ(x)¹ Λ(y)) = Λ(y∗)¹ Λ(x∗).

Lemma 8.3. Let W ¦ L2(MX) ¹ L2(MX) and U = (∂−1 ¹ 1)(W). The
following are equivalent:

(i) (d ◦ f)(W) = W;
(ii) J0(U) = U ;
(iii) Ψ−1(U) is selfadjoint.
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Proof. Let x, y ∈MX . Then

(J0 ◦ (∂−1 ¹ 1))(Λ(x)¹ Λ(y))

= (J0 ◦ (∂−1 ¹ 1))





n2
∑

i=1

ïΛ(fi),Λ(x)ðΛ(fi)¹ Λ(y)





= J0





n2
∑

i=1

ïΛ(fi),Λ(x)ðΛ(f∗i )¹Λ(y)



=
n2
∑

i=1

ïΛ(fi),Λ(x)ðΛ(y∗)¹Λ(fi)

=

n2
∑

i,j=1

ïΛ(fi),Λ(x)ðïΛ(f∗j ),Λ(y∗)ðΛ(f∗j )¹ Λ(fi).

Therefore,

((∂ ¹ 1) ◦ J0 ◦ (∂−1 ¹ 1))(Λ(x)¹ Λ(y))

=
n2
∑

i,j=1

ïΛ(fi),Λ(x)ðïΛ(fj),Λ(y)ðΛ(fj)¹ Λ(fi)

= (d ◦ f)





n2
∑

i,j=1

ïΛ(fi),Λ(x)ðïΛ(fj),Λ(y)ðΛ(fi)¹ Λ(fj)





= (d ◦ f)(Λ(x)¹ Λ(y)),

giving the equivalence (i)ô(ii). As

Ψ(Θ∗
Λ(x),Λ(y)) = Ψ(ΘΛ(y),Λ(x)) = Λ(y∗)¹ Λ(x)

= J0(Λ(x
∗)¹ Λ(y)) = J0(Ψ(ΘΛ(x),Λ(y)),

we obtain the equivalence (ii)ô(iii). □

Proposition 8.4. Let G = (MX , tr, A) be an algebraic quantum graph.

Then ŨG is a quantum pseudo-graph.

Proof. As A is selfadjoint, there exist xi ∈ MX and ¼i ∈ R such that A =
∑n2

i=1 ¼iΘΛ(xi),Λ(xi). Using (76), we have

(∂ ¹ 1)((Λ¹2 ◦Ψ)(aAb)) =

n2
∑

i=1

¼i(∂ ¹ 1)(Λ(x∗i b)¹ Λ(axi))

=

n2
∑

i=1

¼i(∂ ¹ 1)





n2
∑

j,k=1

ïΛ(f∗k ),Λ(x∗i b)ðïΛ(fj),Λ(axi)ðΛ(f∗k )¹ Λ(fj)





=
n2
∑

i=1

¼i

n2
∑

j,k=1

ïΛ(fk),Λ(b∗xi)ðïΛ(fj),Λ(axi)ðΛ(fk)¹ Λ(fj).
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Hence

(d ◦ f)((∂ ¹ 1)((Λ¹2 ◦Ψ)(aAb))) = (∂ ¹ 1)(((Λ¹2 ◦Ψ)(b∗Aa∗)),

implying the condition (d ◦ f)(ŨG) = ŨG.
Using (73), we have

0 = m(A¹ 1)m∗(ϵi,i) = n
n
∑

k=1

A((ϵi,k))ϵk,i = n
n
∑

j,k=1

¼j tr(x
∗
jϵi,k)xjϵk,i,

and hence, for all y ∈MX , we have

0 = n

n2
∑

i,k,j=1

¼j tr(x
∗
jϵi,k) tr(xjϵk,iy)

= n
n2
∑

i,k,j=1

¼j tr(x
∗
jϵi,k) tr(ϵ

∗
i,kyxj) = n

n2
∑

i,k,j=1

¼jïxj , ϵi,kðïϵi,k, yxjð

=

n2
∑

j=1

¼jïxj , yxjð =
n2
∑

j=1

¼j tr(yxjx
∗
j ) = tr



y

n2
∑

j=1

¼jxjx
∗
j



 .

Therefore,
∑n2

j=1 ¼jxjx
∗
j = 0. By the previous paragraph, we have

〈

(∂ ¹ 1)(((Λ¹2 ◦Ψ)(aAb)),
n2
∑

k=1

Λ(fk)¹ Λ(fk)

〉

=

n2
∑

i=1

¼i

n2
∑

k=1

ïΛ(fk),Λ(b∗xi)ðïΛ(fk),Λ(axi)ð

=
n2
∑

i=1

¼iïΛ(b∗xi),Λ(axi)ð = tr





n2
∑

i=1

¼iaxix
∗
i b



 = 0,

showing that ŨG is skew. □

Remark 8.5. Proposition 8.4 shows that an algebraic quantum graph G =
(MX , tr, A) gives rise to a canonical quantum pseudo-graph ŨG ¦ L2(MX)¹
L2(MX). The reason we are led to work with quantum pseudo-graphs in-
stead of quantum graphs in the sense of our Definition 7.1 lies in the setup
of QNS correlations, which is borrowed from [20]. In defining QNS correla-
tions, instead of no-signalling quantum channels Γ :MX¹MY →MA¹MB,
one could start with no-signalling quantum channels Γ′ : MX ¹ Mop

Y →
MA ¹Mop

B . For the class of quantum commuting no-signalling correlations,
this would lead to Choi matrices of the form (Ä(ex,x′,a,a′ey,y′,b,b′)), as opposed
to the matrices (Ä(ex,x′,a′,aey′,y,b′,b)) that arise through the current setup. As
we will shortly see, in order to obtain a neat connection between the two



QUANTUM NO-SIGNALLING BICORRELATIONS 61

types of quantum isomorphisms, one also needs to work with a slightly dif-
ferent concept of quantum isomorphism than the one employed in Section
7. We make this discussion rigorous in Theorem 8.9.

Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. Let
O(G1, G2) be the universal (unital) C∗-algebra with generators pi,j , i, j =
1, . . . , n2, and relations that turn the map Ä :MX →MX¹O(G1, G2), given
by

(78) Ä(fi) =

n2
∑

j=1

fj ¹ pj,i, i = 1, . . . , n2,

into a unital ∗-homomorphism such that

(79) (A2 ¹ id) ◦ Ä = Ä ◦A1,

and

(80) (tr¹id) ◦ Ä = tr(·)1
Remark 8.6. It follows from the proof of [18, Theorem 4.7] that the matrix

P = (pi,j)
n2

i,j=1 ∈ Mn2(O(G1, G2)) is automatically unitary. Identifying Ai

with its corresponding matrix in Mn2 with respect to the basis {fj}n2

j=1, one

can further check that equation (79) is equivalent to

(81) (A2 ¹ 1O(G1,G2))P = P (A1 ¹ 1O(G1,G2)).

Indeed, we have that

(Ä ◦A1)(fi) =

n2
∑

k,j=1

(A1)k,ifj ¹ pj,k =

n2
∑

j=1

fj ¹ (P (A1 ¹ IH))j,i

and

(A2 ¹ 1O(G1,G2))Ä(fi)=
n2
∑

k=1

A2(fk)¹ pk,i

=

n2
∑

k,j=1

(A2)j,kfj ¹ pk,i=

n2
∑

j=1

fj ¹ ((A2 ¹ IH)P )j,i.

Identity (81) now follows by comparing the corresponding coefficients. We
note that reversing these arguments shows that relations (81) and (79) are
equivalent.

Note that if {Λ(gj)}n2

j=1 ¢ L2(MX) is another orthonormal basis and

U ∈Mn2 is unitary such that UΛ(gj) = Λ(fj), j = 1, . . . , n2, then

Ä(gi) =
n2
∑

j=1

gj ¹ ((U∗ ¹ 1)P (U ¹ 1))j,i.



62 M. BRANNAN, S. J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

For the remainder of this section, we make the underlying assumption
that the C∗-algebra O(G1, G2) is non-trivial.

Proposition 8.7. Let Gr = (MX , tr, Ar) be an algebraic quantum graph,
r = 1, 2. Then the matrix P ∈Mn2 ¹O(G1, G2) is bi-unitary.

Proof. We verify that P t = (pj,i)
n2

i,j=1 is unitary. By the previous remark we

may assume that {Λ(fi)}n2

i=1 is {√nΛ(ϵi,j)}ni,j=1. Following the proof of [15,

Lemma 9.4], let W ∈Mn2 be the matrix with entries

W(i,j),(k,l) := n
〈

Λ(ϵi,j),Λ(ϵ
∗
k,l)
〉

= Tr(ϵj,iϵl,k) = ¶i,l¶j,k.

Then

(W ∗W )(i,j),(k,l) =

n
∑

p,q=1

W(p,q),(i,j)W(p,q),(k,l) = 1

if (i, j) = (k, l) and zero otherwise; thus, W ∗W = In2 . As Ä is ∗-preserving,
we obtain

n2
∑

j,l=1

fl ¹ ïΛ(fj),Λ(f∗i )ð pl,j =
n2
∑

j=1

ïΛ(fj),Λ(f∗i )ð Ä(fj)

= Ä(f∗i ) = Ä(fi)
∗ =

n2
∑

j=1

f∗j ¹ p∗j,i =
n2
∑

j,l=1

fl ¹
〈

Λ(fl),Λ(f
∗
j )
〉

p∗j,i.

Thus

n2
∑

j=1

pl,jWj,i = n
n2
∑

j=1

ïΛ(fj),Λ(f∗i )ð pl,j

= n
n2
∑

j=1

〈

Λ(fl),Λ(f
∗
j )
〉

p∗j,i =
n2
∑

j=1

Wl,jp
∗
j,i

for all i, l = 1, . . . , n2; equivalently, P (W ¹ 1) = (W ¹ 1)P t∗. It follows that
P t∗ = (W−1 ¹ 1)P (W ¹ 1), and hence

P t∗P t = (W−1¹1)P (W¹1)(W ∗¹1)P ∗((W ∗)−1¹1)

= (W−1¹1)PP ∗((W ∗)−1¹1) = 1

and

P tP t∗ = (W ∗¹1)P ∗((W ∗)−1¹1)(W−1¹1)P (W¹1)

= (W ∗¹1)P ∗P (W¹1) = 1.

□

Let Gr = (MX , tr, Ar) be an algebraic quantum graph, r = 1, 2. We will
write S′

r for the space corresponding to Gr via (74), r = 1, 2. We say [9,
Definition 4.4] that G1 and G2 are quantum commuting isomorphic, denoted
G1 ≃qc G2, if the C∗-algebra O(G1, G2) admits a tracial state, say Ä . We
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note that by [9, Corollary 4.8], this is equivalent to (the seemingly weaker)
assumption that O(G1, G2) ̸= 0. We assume, unless specified otherwise,
that G1 ≃qc G2. Let H be the Hilbert space, arising from the GNS con-
struction applied to Ä and, by abuse of notation, continue to write pi,j for
the image of the corresponding canonical generator of O(G1, G2) under the
∗-representation arising from Ä . By (81), we have

(82) A2 ¹ IH = P (A1 ¹ IH)P ∗.

We view P = (pi,j)
n2

i,j=1 as an operator on L2(MX) ¹H and note that, by

(78), we have

(83) P (Λ(b)¹ À) = Ä(b)(Λ(1)¹ À), b ∈MX , À ∈ H.

Moreover, for a, d ∈MX and À ∈ H we have

P (a¹ 1)P ∗P (Λ(d)¹ À) = P (a¹ 1)(Λ(d)¹ À) = P (Λ(ad)¹ À)

= Ä(ad)(Λ(1)¹ À) = Ä(a)(Ä(d)(Λ(1)¹ À) = Ä(a)P (Λ(d)¹ À),

and hence

(84) P (a¹ 1)P ∗ = Ä(a), a ∈MX ,

as maps on L2(MX)¹ B(H).

We define P̃ ∈ B(L2(MX)¹H) by letting

P̃ (Λ(f∗j )¹ ¸) =
n2
∑

k=1

Λ(f∗k )¹ p∗k,j¸, ¸ ∈ H.

Using leg-notation, we write P2,3 and P1,3 for the corresponding operators
on L2(MX)¹ L2(MX)¹H, arising from P .

Lemma 8.8. We have ((Λ¹2 ◦Ψ)¹ id)(P (S′
1 ¹ 1)P ∗) = P2,3P̃1,3(UG1 ¹ 1).



64 M. BRANNAN, S. J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

Proof. Let x, y ∈MX . We have

P
(

ΘΛ(x),Λ(y) ¹ 1
)

P ∗(Λ(fk)¹ ¸)

= P
(

ΘΛ(x),Λ(y) ¹ 1
)





n2
∑

j=1

Λ(fj)¹ p∗k,j¸





= P





n2
∑

j=1

ïΛ(x),Λ(fj)ðΛ(y)¹ p∗k,j¸





= P





n2
∑

i,j=1

ïΛ(x),Λ(fj)ðïΛ(fi),Λ(y)ðΛ(fi)¹ p∗k,j¸





=
n2
∑

m=1

Λ(fm)¹





n2
∑

i=1

ïΛ(fi),Λ(y)ðpm,i

n2
∑

j=1

ïΛ(x),Λ(fj)ðp∗k,j



 (¸)

=

n2
∑

l,m=1

ΘΛ(fl),Λ(fm)¹





n2
∑

i=1

ïΛ(fi),Λ(y)ðpm,i

n2
∑

j=1

ïΛ(x),Λ(fj)ðp∗l,j



(Λ(fk)¹¸)

and hence

P (ΘΛ(x),Λ(y) ¹ 1)P ∗

=

n2
∑

l,m=1

ΘΛ(fl),Λ(fm) ¹





n2
∑

i=1

ïΛ(fi),Λ(y)ðpm,i









n2
∑

j=1

ïΛ(x),Λ(fj)ðp∗l,j



.

It follows that

((Λ¹2 ◦Ψ)¹ id)
(

P (ΘΛ(x),Λ(y) ¹ 1)P ∗)

=

n2
∑

l,m=1

Λ(f∗l )¹Λ(fm)¹





n2
∑

i=1

ïΛ(fi),Λ(y)ðpm,i









n2
∑

j=1

ïΛ(x),Λ(fj)ðp∗l,j



.

As P (Λ(y)¹ À) =
∑n2

i,m=1ïΛ(fi),Λ(y)ðΛ(fm)¹ pm,iÀ and

P̃ (Λ(x∗)¹ ¸) =
n2
∑

j=1

P̃ (ïΛ(f∗j ),Λ(x∗)ð(Λ(f∗j )¹ ¸))

=

n2
∑

j,l=1

ïΛ(x),Λ(fj)ðΛ(f∗l )¹ p∗l,j¸,

we obtain

((Λ¹2 ◦Ψ)¹ id)(P (ΘΛ(x),Λ(y) ¹ 1)P ∗) = P2,3P̃1,3(Λ(x
∗)¹ Λ(y)¹ 1).

The statements now follow by linearity from the definition of UG1 . □
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Let N ¦ B(H) be a von Neumann algebra, equipped with a faithful trace
Ä̃ , and let U = (ui,j)i,j ∈ Mn2(N ) be a bi-unitary block operator matrix
(with entries in N ). Suppose that Γ : Mn2 ¹Mn2 → Mn2 ¹Mn2 is a QNS
correlation, given by

(85) Γ(ϵi,i′ ¹ ϵj,j′) = (Ä̃(u∗k,iuk′,i′u
∗
l′,j′ul,j))k,k′,l,l′ .

We let Γ̃ :Mn2 ¹Mn2 →Mn2 ¹Mn2 be the unital completely positive map,
given by

Γ̃(ϵk,k′ ¹ ϵl,l′) = (Ä̃(u∗l,juk,iu
∗
k′,i′ul′,j′))i,i′,j,j′ .

If fk,k′,i,i′ = uk,iu
∗
k′,i′ then Γ̃ has Choi matrix (Ä̃(fk,k′,i,i′fl′,l,j′,j)) and is hence

a quantum commuting QNS correlation. We remark that, as can be verified
in a straightforward way, if Ã :Mn2 ¹Mn2 →Mn2 ¹Mn2 is the map, given
by Ã(ϵk,k′ ¹ ϵl,l′) = ϵk′,l ¹ ϵl′,k, then Γ̃ = Ã ◦ Γ∗ ◦ Ã.

We call two quantum pseudo-graphs W1 and W2 qc-pseudo-isomorphic if
there exists Γ ∈ Qbic

qc of the form described in the previous paragraph, such
that

(i) Γ is a perfect strategy for W1 → W2, and

(ii) Γ̃ is a perfect strategy for W2 → W1.

Theorem 8.9. Let Gr = (MX , tr, Ar), r = 1, 2, be algebraic quantum graphs

with G1 ≃qc G2. Then the quantum pseudo-graphs ŨG1 and ŨG2 are qc-
pseudo-isomorphic.

Proof. Set Ũr = ŨGr for brevity, r = 1, 2. By assumption, the C*-algebra
O(G1, G2) has a tracial state, say Ä . Let N ¦ B(H) be the von Neumann
algebra associated with Ä via the GNS construction, and Ä̃ be the (faithful)
trace on N , corresponding to Ä . Write ui,j for the images of the canonical

generators pi,j under the Gelfand map, and let U and Ũ be the matrices,

corresponding to P and P̃ , respectively. Let Γ be the QNS correlation given
by (85). Note that, by (84) P (a ¹ 1)P ∗ = Ä(a), a ∈ MX , and, by (82),
P (A1 ¹ 1)P ∗ = A2 ¹ 1; thus,

P (aA1b¹ 1)P ∗ = P (a¹ 1)(A1 ¹ 1)(b¹ 1)P ∗

= P (a¹ 1)P ∗P (A1 ¹ 1)P ∗P (b¹ 1)P ∗

= Ä(a)(A2 ¹ 1)Ä(b).

It now follows from (78) that U(S′
1 ¹ 1)U∗ ¦ S′

2 ¹ B(H). By Lemma 8.8,

(86) U2,3Ũ1,3(U1 ¹ 1) ¦ U2 ¹ B(H).

Recalling the map ∂ defined in (77), note that

(∂¹1)Ũ(∂¹1)(Λ(fi)¹¸)= (∂¹1)





n2
∑

k=1

Λ(f∗k )¹u∗k,i¸



=
n2
∑

k=1

Λ(fk)¹u∗k,i¸,

that is,

(∂ ¹ 1)Ũ(∂ ¹ 1) = U t∗ =: Ū .
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Let PŨr
be the projection onto Ũr, r = 1, 2. Then condition (86) implies

that

(87) (P§
Ũ2

¹ 1)U2,3Ū1,3(PŨ1
¹ 1) = 0.

The arguments in the proof of Theorem 7.4 (see also the subsequent Remark)
now imply that Γ is a perfect strategy for the quantum graph homomorphism
game Ũ1 → Ũ2.

Relation (82) implies U∗(A2 ¹ 1)U = A1 ¹ 1. By symmetry, we obtain
the relation

(88) (P§
Ũ1

¹ 1)U∗
2,3Ū

∗
1,3(PŨ2

¹ 1) = 0.

We now show that Γ̃ is a perfect strategy for Ũ2 → Ũ1. Let À =
∑n2

k,l=1 ³k,lfk¹
fl ∈ Ũ2 and ¸ =

∑n2

i,j=1 ´i,jfi ¹ fj ∈ Ũ§
1 ; then

ïΓ̃(ÀÀ∗)¸, ¸ð = Ä̃





n2
∑

k,l,k′,l′=1

n2
∑

i,i′,j,j′=1

³k,l³k′,l′u
∗
j,luk,iu

∗
k′,i′ul′,j′´i′,j′´i,j



 .

Writing RÀ,¸ =
∑n2

k,l,i,j=1 ³k,l´i,ju
∗
k,iul,j , we have ïΓ̃(ÀÀ∗)¸, ¸ð = Ä̃(R∗

À,¸RÀ,¸),
and using the fact that Ä̃ is faithful, this implies that

ïΓ̃(ÀÀ∗)¸, ¸ð = 0 ⇐⇒ RÀ,¸ = 0.

Taking into account (60), we now have

ïRÀ,¸f, hð = ïŪ1,3U2,3(¸ ¹ f), À ¹ hð, f, h ∈ H,

and therefore

(PŨ2
¹ 1)Ū1,3U2,3(P

§
Ũ1

¹ 1) = 0 ⇐⇒ Γ̃ is a perfect strategy for Ũ2 → Ũ1.

The proof is complete in view of (88). □

Remark 8.10. For a classical graph G with vertex set X, let AG : MX →
MX be Schur multiplication map against the adjacency matrix of G. Then
(MX , tr, AG) is an algebraic quantum graph. Let

WG = span{ϵx,x ¹ ϵy,y : x ∼ y in G} ¦MX ¹MX .

Then WG is a quantum pseudo-graph in L2(MX)¹ L2(MX).
Let G1, G2 be classical graphs with vertex set X. We have the following

three types of quantum commuting isomorphism for the graphs G1 and G2:

(a) quantum commuting isomorphism in the sense of classical non-local
games [1];

(b) quantum commuting isomorphism of the algebraic quantum graphs
(MX , tr, AG1) and (MX , tr, AG2);

(c) quantum commuting isomorphism in the sense of quantum non-local
games (Section 7), employing the quantum pseudo-graphs W1 and
W2.
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We have that (a) implies (b), and that (b) implies (c). We do not know if
these implications are reversible.

8.2. A partial converse. In the remainder of this section, we discuss to
what extent the implication established in Theorem 8.9 can be reversed.
We first note that the quantum pseudo-graphs of the form Ũ = ŨG, for an
algebraic quantum graph G = (MX , tr, A), automatically have some extra
structure, and hence a full reversal of Theorem 8.9 cannot be expected.
Indeed, let U = (∂−1 ¹ 1)(Ũ), and recall that S′ = Ψ−1(U) ¦ B(L2(MX))

is an MX -bimodule. We first show that any quantum pseudo-graph Ũ , for
which Ψ−1(U) is a MX -bimodule, arises in this way. In what follows we fix

a basis {Λ(fi)}i in L2(MX) when define pseudo-graphs Ũ .
LetMop

X be the opposite algebra toMX . For notational simplicity, we will
consider Mop

X as having the same underlying vector space as MX , and will
denote its product by ·op; thus, a ·op b = ba, a, b ∈MX . Let (L2(Mop

X ),Λop)
be the GNS construction applied to (Mop

X , tr). As

ïΛop(a),Λop(b)ð = tr(a∗ ·op b) = tr(ba∗) = ïΛ(a),Λ(b)ð,
we have that L2(Mop

X )¹ L2(MX) and L2(MX)¹ L2(MX) can be identified

also as Hilbert spaces. Recall that L2(MX)d is the Banach space dual of
L2(MX) (equivalently, the conjugate Hilbert space to L2(MX)). If A ¦
B(L2(MX)) is a ∗-subalgebra, then the map T op 7→ T d, where T dÀ = T ∗À,
À ∈ L2(MX), is a ∗-isomorphism. In what follows we will often identify
T op with T d. For a linear operator T : L2(MX) → L2(MX), we define
T̄ : L2(MX)d → L2(MX)d, by letting T̄ À̄ = TÀ, À ∈ L2(MX).

Lemma 8.11. Let G = (MX , tr, A) be an algebraic quantum graph. Then
e = (1¹A)(m∗(1)) is a projection when considered as element in Mop

X ¹MX .

Proof. By Lemma 8.1, we only have to show that e is an idempotent. Using
(75), we have

e2 = n2





n
∑

i,j=1

ϵi,j ¹A(ϵj,i)









n
∑

k,l=1

ϵk,l ¹A(ϵl,k)





= n2
n
∑

i,j,k,l=1

ϵi,j ·op ϵk,l ¹A(ϵj,i)A(ϵl,k)

= n2
n
∑

i,j,k=1

ϵk,j ¹A(ϵj,i)A(ϵi,k) = n

n
∑

j,k=1

ϵk,j ¹m(A¹A)m∗(ϵj,k)

= n
n
∑

j,k=1

ϵk,j ¹A(ϵj,k) = e.

□
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Remark 8.12. We remark that reversing the arguments of Lemmas 8.1
and 8.11, we can easily see that any projection e ∈ Mop

X ¹MX , such that
e = f(e), gives rise to selfadjoint operator A : L2(MX) → L2(MX) satisfying
the conditions (1) and (2) of quantum adjacency matrix and linked to e
through the identity (75).

Let J : L2(MX) → L2(MX) be the conjugate-linear map, given by
J(Λ(a)) = Λ(a∗), and the map » : B(L2(MX)) → B(L2(MX)) be given
by »(x) = Jx∗J . We have that » is an anti-∗-homomorphism such that
»2 = id; writing Ã : L2(MX) → L2(MX) for the ∗-homomorphism given by
Ã(x)Λ(a) = Λ(xa), we have that »(Ã(MX)) = Ã(MX)′.

Proposition 8.13. Let Ũ be a quantum pseudo-graph such that Ψ−1((∂−1¹
1)(Ũ)) is an MX-bimodule. Then there exists an algebraic quantum graph

G = (MX , tr, A) such that Ũ = ŨG.

Proof. Let U = (∂−1 ¹ 1)(Ũ) and S′ = Ψ−1(U). By assumption, S′ is an
MX -bimodule and hence »(S′) is a Ã(MX)′-bimodule. Under the canon-
ical bijection between B(L2(MX)) and L2(MX)d ¹ L2(MX), the Ã(MX)′-
bimodule »(S′) corresponds to the (Ã(MX)′)op¹Ã(MX)′-invariant subspace
U ′. Thus it gives rise to the projection e ∈Mop

X ¹MX onto U ′. By Lemma
8.3, S′ is selfadjoint and hence so is »(S′), which implies, again by Lemma
8.3, that e = f(e) and J0(U ′) = U ′.

Let A : L2(MX) → L2(MX) be the linear map corresponding to e as
in Remark 8.12. We have that »(S′) is the Ã(MX)′-bimodule generated
by A. It follows that S′ is the Ã(MX)-bimodule generated by A. In fact,
since »(Ã(MX)′) = Ã(MX), it suffices to verify that JA∗J = A. Write
A =

∑m
i=1 ¼iΘΛ(xi),Λ(xi), ¼i ∈ R, xi ∈ MX , i = 1, . . . ,m. Then e = Ψ(A) =

∑m
i=1 ¼ix

∗
i ¹ xi. On the other hand,

JA∗J = JAJ =
m
∑

i=1

¼iΘΛ(x∗
i ),Λ(x

∗
i )
.

Thus Ψ(JA∗J) =
∑m

i=1 ¼ixi ¹ x∗i = f(e). As e = f(e), we get Ψ(JA∗J) =
Ψ(A), implying that JA∗J = A.

Finally, reversing arguments in Proposition 8.4 we see that skewness of
Ũ implies that m(A ¹ 1)m∗ = 0, showing that A is a quantum adjacency

matrix. Letting G = (MX , A, tr), we have that Ũ = ŨG. □

We now fix a quantum pseudo-graph Ũr in L2(MX)¹L2(MX), for which

the corresponding space S′
r is anMX -bimodule, and let Ur := (∂−1¹1)(Ũr),

r = 1, 2. We assume that Ũ1 and Ũ2 are qc-pseudo-isomorphic, and let N
be a von Neumann algebra with trace Ä , and U = (uk,i)

n2

k,i=1 be a bi-unitary,

with uk,i ∈ N , k, i = 1, . . . , n2, such that U gives rise, via (85), to a QNS

correlation implementing a qc-pseudo-isomorphism between ŨG1 and ŨG2 .
The proof of Theorem 8.9 implies that

(89) (P§
Ũ2

¹ 1)U2,3Ū1,3(PŨ1
¹ 1) = 0 and (P§

Ũ1
¹ 1)U∗

2,3Ū
∗
1,3(PŨ2

¹ 1) = 0;
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reversing the arguments in its proof, we obtain the equivalent conditions

(90) U(S′
1 ¹ 1)U∗ ¦ S′

2 ¹N and U∗(S′
2 ¹ 1)U ¦ S′

1 ¹N .

Note that the map ³U : B(L2(MX)) → B(L2(MX)) ¹ N , given by
³U (x) = U(x ¹ 1)U∗, is trace preserving, that is, satisfies the identities
(tr¹ id)(³U (x)) = tr(x)I, x ∈ B(L2(MX)). Indeed, for i, j ∈ X × X, we
have

(tr¹ id)(³U (ϵi,j))) = (tr¹ id)((uk,iu
∗
l,j)k,l) =

1

n

n
∑

k=1

uk,iu
∗
k,j

=
1

n
¶i,jI = tr(ϵi,j)I.

Assume that there exists a ∗-homomorphism Ä :MX →MX ¹N , such that
U(Λ(b) ¹ À) = (Ã ¹ id)(Ä(b))(Λ(1) ¹ À). According to [15, Section 9.1] (see
also (84)),

³U (Ã(a)) = (Ã ¹ id)(Ä(a)) ¦ Ã(MX)¹N , a ∈MX ;

we call U the unitary implementation of Ä. Writing Ä(fi) =
∑

fj ¹ vj,i, we
have

U(Λ(fi)¹ À) =
n2
∑

j=1

Λ(fj)¹ vj,iÀ, i = 1, 2, . . . , n2,

and hence vi,j = ui,j for all i, j. The elements ui,j satisfy all of the relations of
the generators of O(G1, G2), except for, possibly, relation (79) (equivalently,
(81)). The following theorem establishes this last relation.

Theorem 8.14. Let Gr = (MX , tr, Ar) be an algebraic quantum graph,
r = 1, 2. Let N be a tracial von Neumann algebra and U be a bi-unitary with
entries in N giving rise, via (85), to a QNS correlation Γ that implements a

qc-pseudo-isomorphism between ŨG1 and ŨG2. Assume that U is the unitary
implementation of a trace-preserving ∗-homomorphism Ä :MX →MX ¹N .
Then U(A1 ¹ I) = (A2 ¹ I)U and hence G1 ≃qc G2.

The proof of Theorem 8.14 uses arguments from [15] and some auxiliary
statements which we now establish. Set H = L2(MX) (equipped with the
inner product associated with tr). We identify L2(Mop

X ) with L2(MX)d via

the unitary map Λop(x) 7→ Λ(x∗).
We write Λ̃ : B(H) → L2(B(H)) for the GNS-map corresponding to (non-

normalised trace) Tr. We have
〈

Λ̃(ΘΛ(x),Λ(y)), Λ̃(ΘΛ(x′),Λ(y′))
〉

= Tr
(

ΘΛ(y),Λ(x)ΘΛ(x′),Λ(y′)

)

=
〈

Λ(y),Λ(y′)ðHïΛ(x′),Λ(x)
〉

H
=
〈

Λ(y),Λ(y′)
〉

H

〈

Λ(x),Λ(x′)
〉

Hd
.

Hence the linear map É : L2(B(H)) → Hd ¹H, defined by

É
(

Λ̃(ΘΛ(x),Λ(y))
)

= Λ(x)¹ Λ(y),
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is a unitary operator.
We now fix algebraic quantum graphs, Gr = (MX , tr, Ar), r = 1, 2, a von

Neumann algebra N and a bi-unitary U as in the statement of Theorem
8.14. Assume that N acts on a Hilbert space K. Let er ∈ Mop

X ¹MX be
the projection associated with the adjacency matrix Ar : MX → MX of
Gr via (75), r = 1, 2 (see the paragraph after the proof of Theorem 8.9),
and let pr be the orthogonal projections from the Hilbert space L2(B(H))
(equipped with the inner product corresponding to Tr) onto its subspace

Λ̃(S′
r), r = 1, 2. The following lemma specialises [15, Lemma 9.17]; we

include a direct proof for the convenience of the reader.

Lemma 8.15. The following hold:

(i) (É ◦ Λ̃)(Ar) = (Λop ¹ Λ)(er);
(ii) ÉprÉ

∗ = (J̄ ¹ J)er(J̄ ¹ J);

(iii) prÉ
∗(Λ(1)¹ Λ(1)) = Λ̃(Ar).

Proof. (i) Let T = ΘΛ(x),Λ(y), x, y ∈MX . Then

É(Λ̃(T )) = Λ(x)¹ Λ(y) = (Λop ¹ Λ)(x∗ ¹ y).

As Ar = n
∑n

i,j=1ΘΛ(ϵi,j),Λ(Ar(ϵi,j)), we have

(É ◦ Λ̃)(Ar) = n
n
∑

i,j=1

(Λop ¹ Λ)(ϵ∗i,j ¹Ar(ϵi,j))

= n

n
∑

i,j=1

(Λop ¹ Λ)(ϵj,i ¹Ar(ϵi,j)) = (Λop ¹ Λ)(er).

(ii) Using (76), for a, b ∈MX we have

É(Λ̃(aTb)) = É(Λ̃(ΘΛ(b∗x),Λ(ay)) = Λ(b∗x)¹ Λ(ay)

= Λop(x∗b)¹ Λ(ay) = (b¹ a)(Λop(x∗)¹ Λ(y)),

where the latter action is that of Mop
X ¹MX on L2(Mop

X )¹ L2(MX). Thus

(91) É(Λ̃(S′
r)) = (Mop

X ¹MX)(Λop ¹ Λ)(er).

As er ∈ Mop
X ¹MX , identifying it with its image under the map Ãop ¹ Ã

(which acts on L2(MX)d¹L2(MX)), for a¹b, x¹y ∈Mop
X ¹MX , we obtain

that

(J ¹ J)(x¹ y)(J ¹ J)((Λop ¹ Λ)(a¹ b))(92)

= (J ¹ J)(x¹ y)(JΛ(a∗)¹ Λ(b∗)) = (J ¹ J)(x¹ y)(Λop(a∗)¹ Λ(b∗))

= (J ¹ J)(Λop(a∗x)¹ Λ(yb∗)) = JΛ(x∗a)¹ Λ(by∗)

= Λop(x∗a)¹ Λ(by∗) = (a¹ b)(Λop ¹ Λ)(x∗ ¹ y∗)

which, together with the fact that er is selfadjoint (see Lemma 8.11), implies
that, for any u ∈Mop

X ¹MX , we have

(93) (J ¹ J)er(J ¹ J)((Λop ¹ Λ)(u)) = u(Λop ¹ Λ)(er).
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In particular, using (91),

ran
(

(J ¹ J)er(J ¹ J)
)

= (Mop
X ¹MX)(Λop ¹ Λ)(er) = (É ◦ Λ̃)(S′

r).

Statement (ii) now follows.
(iii) Using (i), (ii), (93) and the calculation (92) for a = b = 1, we have

(ÉprÉ
∗)(Λ(1)¹ Λ(1)) = (J ¹ J)er(J ¹ J)((Λ(1)¹ Λ(1))

= (Λop ¹ Λ)(er) = (É ◦ Λ̃)(Ar).

□

Let Ũ : L2(B(H))¹K → L2(B(H))¹K be the operator, given by

Ũ(Λ̃(b)¹ À) = ³U (b)(Λ̃(1)¹ À), À ∈ K.

For a Hilbert space L, let j : L → Ld the anti-linear isomorphism, given
by j(g) = g, and R : B(L) → B(Ld) be the map, given by R(x) = jx∗j,
x ∈ B(L). Note that, if (gi)i is an orthonormal basis for L, ϵi,j ∈ B(L) are
the matrix units corresponding to (gi)i, and {ϵ̄j,i} is the matrix unit system

for B(Ld) with respect to the orthonormal basis (ḡi)i, then

R(ϵi,j) = j(gig
∗
j )

∗j = j(gjg
∗
i )j = j(gj)j(gi)

∗ = ϵ̄j,i.

In the following, we let V = (R ¹ 1)(U∗). Thus, if U = (ui,j)
n2

i,j=1 with

respect to the orthonormal basis {Λ(fi)}n
2

i=1 of L2(MX), then V is the oper-

ator on L2(MX)d ¹K whose matrix with respect to the orthonormal basis
{

Λ(fi)
}n2

i=1
is (vi,j)

n2

i,j=1 := (u∗i,j)
n2

i,j=1.

Lemma 8.16. We have that (É ¹ 1)Ũ(É∗ ¹ 1) = U2,3V1,3.

Proof. For 1 f s, t f n2 and À ∈ K we have

(É ¹ 1)Ũ(É∗ ¹ 1)(Λ(ft)¹ Λ(fs)¹ À)

= (É ¹ 1)Ũ(Λ̃(ΘΛ(ft),Λ(fs))¹ À)

= (É ¹ 1)³U (ΘΛ(ft),Λ(fs))(Λ̃(1)¹ À)

= (É ¹ 1)U(ΘΛ(ft),Λ(fs) ¹ 1)U∗(Λ̃(1)¹ À)

= (É¹1)





n2
∑

i,j=1

ϵi,j¹ui,j



(ΘΛ(ft),Λ(fs)¹1)





n2
∑

k,l=1

ϵl,k¹u∗k,l



 (Λ̃(1)¹À)

= (É ¹ 1)





n2
∑

i,j,k,l=1

ϵi,jΘΛ(ft),Λ(fs)ϵk,l ¹ ui,ju
∗
l,k



 (Λ̃(1)¹ À)

=
n2
∑

i,l=1

Λ(fl)¹ Λ(fi)¹ ui,su
∗
l,tÀ = U2,3V1,3(Λ(ft)¹ Λ(fs)¹ À)

The statement follows by linearity. □
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Proof of Theorem 8.14. We recall that the von Neumann algebra N acts on
the Hilbert space K, and that pr is the orthogonal projections from the
Hilbert space L2(B(H)) (equipped with the inner product coming from Tr)

onto Λ̃(S′
r). By (90),

(94) Ũ(Λ̃(b)¹ À) = ³U (b)(Λ̃(1)¹ À) ∈ Λ̃(S′
2)¹N À, b ∈ S′

1,

and hence

Ũ(p1 ¹ 1) = (p2 ¹ 1)Ũ(p1 ¹ 1).

Similarly, Ũ∗(p2 ¹ 1) = (p1 ¹ 1)Ũ∗(p2 ¹ 1), from which we get

(p2 ¹ 1)Ũ = Ũ(p1 ¹ 1).

Using Lemmas 8.15 and 8.16, for À ∈ B(K) we therefore have

³U (A1)(Λ̃(1)¹ À) = Ũ(Λ̃(A1)¹ À)

= Ũ(p1É
∗(Λ(1)¹ Λ(1))¹ À) = (p2 ¹ 1)Ũ(É∗(Λ(1)¹ Λ(1))¹ À))

= (p2É
∗ ¹ 1)U2,3V1,3(Λ(1)¹ Λ(1)¹ À).

From the definition of U , we have

(95) U(Λ(1)¹ À) = Ä(1)(Λ(1)¹ À) = Λ(1)¹ À.

Observe that

V = (F−1 ¹ 1)U(F ¹ 1)(96)

where F : Hd → H is the unitary given by FΛ(x) = Λ(x∗). Indeed, to
establish (96), we note that F−1 = F ∗ and, for À ∈ K and i = 1, . . . , n2, we
compute:

(F−1 ¹ 1)U(F ¹ 1)(Λ(fi)¹ À) = (F−1 ¹ 1)U(Λ(f∗i )¹ À)

= (F−1 ¹ 1)(Ã ¹ id)(Ä(f∗i ))(Λ(1)¹ À)

= (F−1 ¹ 1)(Ã ¹ id)
(

n2
∑

j=1

f∗j ¹ u∗j,i
)

(Λ(1)¹ À)

= (F−1 ¹ 1)
(

n2
∑

j=1

Λ(f∗j )¹ u∗j,iÀ
)

=

n2
∑

j=1

Λ(fj)¹ u∗j,iÀ = V (Λ(fi)¹ À).

By (96), and the identities F (Λ(1)) = Λ(1) and F−1(Λ(1)) = Λ(1), we have

(97) V (Λ(1)¹ À) = Λ(1)¹ À.
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Using (94), (95), (97), and Lemmas 8.15 and 8.16, we finally obtain

³U (A1)(Λ̃(1)¹ À) = Ũ(Λ̃(A1)¹ À)

= (p2É
∗ ¹ 1)U2,3V1,3(Λ(1)¹ Λ(1)¹ À)

= (p2É
∗ ¹ 1)(Λ(1)¹ Λ(1)¹ À)

= Λ̃(A2)¹ À = (A2 ¹ I)(Λ̃(1)¹ À),

where we consider A2 in the left regular representation of B(L2(MX)), that
is, as an operator on L2(B(L2(MX))). Thus,

(³U (A1)−A2 ¹ I)(Λ̃(1)¹ À) = 0, À ∈ K.

This implies that

(id¹LÀ¸∗)((³U (A1)−A2 ¹ I))Λ̃(1) = 0, À, ¸ ∈ K;

thus,
(id¹LÀ¸∗)((³U (A1)−A2 ¹ I)) = 0, À, ¸ ∈ K.

Hence ³U (A1) = A2¹ I which, in turn, means that U(A1¹ I) = (A2¹ I)U .
The proof is complete. □
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Henri Poincaré 22 (2021), no. 2, 593-614.
[48] V. I. Paulsen, I. G. Todorov and M. Tomforde, Operator system structures on

ordered spaces, Proc. London Math. Soc. 102 (2011), 25-49.
[49] W. Slofstra, The set of quantum correlations is not closed, Forum Math. Pi 7

(2019), E1.
[50] W. Slofstra, Tsirelson’s problem and an embedding theorem for groups arising from

non-local games, J. Amer. Math. Soc. 33 (2020), no. 1, 1-56.
[51] D. Stahlke, Quantum zero-error source-channel coding and non-commutative graph

theory, IEEE Trans. Inform. Theory 62 (2016), no. 1, 554-577.
[52] I. G. Todorov and L. Turowska, Quantum no-signalling correlations and non-

local games, preprint (2020), arXiv:2009.07016. To appear in Comm. Math. Phys..
[53] A. Uhlmann, Roofs and convexity, Entropy 12 (2010), no. 7, 1799-1832.
[54] C. Voigt, On the structure of quantum automorphism groups, J. Reine Angew. Math.

732 (2017), 255-273.
[55] S .Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995),

no. 3, 671–692.
[56] S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998),

no. 1, 195-211.
[57] J. Watrous, The theory of quantum information, Cambridge University Press, 2018.
[58] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983),

no. 2, 117-143.



76 M. BRANNAN, S. J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

Department of Pure Mathematics and Institute for Quantum Computing,

University of Waterloo, 200 University Ave West, Waterloo, Ontario, Canada,

N2L 3G1

Email address: michael.brannan@uwaterloo.ca

Department of Mathematics and Statistics, Northern Arizona University,

1900 S Knoles Dr, Flagstaff, AZ 86011, USA

Email address: samuel.harris@nau.edu

School of Mathematical Sciences, University of Delaware, 501 Ewing Hall,

Newark, DE 19716, USA

Email address: todorov@udel.edu

Department of Mathematical Sciences, Chalmers University of Technol-

ogy and the University of Gothenburg, Gothenburg SE-412 96, Sweden

Email address: turowska@chalmers.se


