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Abstract. We introduce and examine three subclasses of the family
of quantum no-signalling (QNS) correlations introduced by Duan and
Winter: quantum commuting, quantum and local. We formalise the no-
tion of a universal TRO of a block operator isometry, define an operator
system, universal for stochastic operator matrices, and realise it as a quo-
tient of a matrix algebra. We describe the classes of QNS correlations in
terms of states on the tensor products of two copies of the universal op-
erator system, and specialise the correlation classes and their represen-
tations to classical-to-quantum correlations. We study various quantum
versions of synchronous no-signalling correlations and show that they
possess invariance properties for suitable sets of states. We introduce
quantum non-local games as a generalisation of non-local games. We
define the operation of quantum game composition and show that the
perfect strategies belonging to a certain class are closed under channel
composition. We specialise to the case of graph colourings, where we ex-
hibit quantum versions of the orthogonal rank of a graph as the optimal
output dimension for which perfect classical-to-quantum strategies of
the graph colouring game exist, as well as to non-commutative graph ho-
momorphisms, where we identify quantum versions of non-commutative
graph homomorphisms introduced by Stahlke.
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1. Introduction

Non-local games [19] have in the past decade acquired significant promi-
nence, demonstrating both the power and limitations of quantum entangle-
ment. These are cooperative games, played by two players, Alice and Bob,
against a verifier, in each round of which the verifier feeds in as an input
a pair (x, y), selected from the cartesian product X × Y of two finite sets,
and the players produce as an output a pair (a, b) from a cartesian product
A × B. The combinations (x, y, a, b) that yield a win are determined by
a predicate function ¼ : X × Y × A × B → {0, 1}. A probabilistic strat-
egy is a family p = {(p(a, b|x, y))(a,b)∈A×B : (x, y) ∈ X × Y } of probability
distributions, one for each input pair (x, y), where the value p(a, b|x, y) de-
notes the probability that the players spit out the output (a, b) given they
have received the input (x, y). Such families p are in addition required to
satisfy a no-signalling condition, which ensures no communication between
the players takes place during the course of the game, and are hence called
no-signalling (NS) correlations.

In pseudo-telepathy games [11], no deterministic perfect (that is, win-
ning) strategies exist, while shared entanglement can produce perfect quan-
tum strategies. Such strategies consist of two parts: a unit vector À in the
tensor product HA ¹ HB of two finite dimensional Hilbert spaces (repre-
senting the joint physical system of the players), and local measurement
operators (Ex,a)x,a (for Alice) and (Fy,b)y,b (for Bob), leading to the proba-
bilities p(a, b|x, y) = ï(Ex,a¹Fy,b)À, Àð. Employing the commuting model of
Quantum Mechanics leads, on the other hand, to the broader set of quantum
commuting strategies, whose underlying no-signalling correlations arise from
mutually commuting measurement operators (that is, Ex,aFy,b = Fy,bEx,a)
acting on a single Hilbert space. This viewpoint leads to the following chain
of classes of no-signalling correlations:

(1.1) Cloc ¦ Cq ¦ Cqa ¦ Cqc ¦ Cns.
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The class Cqa of approximately quantum correlations is the closure of the
quantum class Cq – known, due to the work of Slofstra [72] (see also [23]) to
be strictly larger than Cq – and Cns is the class of all no-signalling correla-
tions, playing a fundamental role in generalised probabilistic theories [3, 4].
The long-standing question of whether Cqa coincides with the class Cqc of
all quantum commuting correlations, known as Tsirelson’s problem, was re-
cently settled in the negative in [38]. Due to the works [39] and [58], this
also resolved the fundamental Connes Embedding Problem [67].

In this paper, we propose a quantisation of the chain of inclusions (1.1).
Our motivation is two-fold. Firstly, the resolution of the Connes Embedding
Problem in [38] follows complexity theory routes, and it remains of great
interest if an operator algebraic approach is within reach. The classes of
correlations we introduce are wider and hence may offer more flexibility in
looking for counterexamples.

Our second source of motivation is the development of non-local games
with quantum inputs and quantum outputs. A number of versions of quan-
tum games have already been examined. In [20], the authors studied the
computability and the parallel repetition behaviour of the entangled value
of a rank one quantum game, where the players receive quantum inputs
from the verifier, but a measurement is taken against a rank one projection
to determine the likelihood of winning. In [31], the focus is on multiple
round quantum strategies that are available to players with quantum mem-
ory, while the quantum-classical and extended non-local games considered
in [69] both have classical outputs (see also [15]). Here, we propose a frame-
work for quantum-to-quantum non-local games, which generalises directly
(classical) non-local games. This allows us to define a quantum version
of the graph homomorphism game (see [23, 52, 53, 64]), and leads to no-
tions of quantum homomorphisms between (the widely studied at present
[8, 7, 21, 22, 47, 73]) non-commutative graphs.

Our starting point is the definition of quantum no-signalling correlations
given by Duan and Winter in [22]. Note that no-signalling (NS) correlations
correspond precisely to (bipartite) classical information channels from X ×
Y to A × B with well-defined marginals. In [22], quantum no-signalling
(QNS) correlations are thus defined as quantum channels MX×Y →MA×B

(here MZ denotes the space of all Z ×Z complex matrices) whose marginal
channels are well-defined. In Section 4, we define the quantum versions of
the classes in (1.1), arriving at an analogous chain

(1.2) Qloc ¦ Qq ¦ Qqa ¦ Qqc ¦ Qns.

The base for our definitions is a quantisation of positive operator valued
measures, which we develop in Section 3. The stochastic operator matrices
defined therein replace the families (Ex,a)x∈X,a∈A of measurement operators
that play a crucial role in the definitions of the classical classes (1.1). In
Section 5, we define a universal operator system TX,A, whose concrete repre-
sentations on Hilbert spaces are precisely determined by stochastic operator
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matrices. Our route passes through the definition of a universal ternary
ring of operators VX,A of a given A×X-block operator isometry, which is a
generalisation of the Brown algebra of a unitary matrix [12] (see also [30]).
We describe TX,A as a quotient of a full matrix algebra (Corollary 5.6); this
is a quantum version of a previous known result in the classical case [27].
We show that any such quotient possesses the local lifting property [44].
This unifies a number of results in the literature, implying in particular [36,
Theorem 4.9].

In Section 6, we provide operator theoretic descriptions of the classes
Qloc, Qqa, Qqc and Qns, establishing a perfect correspondence between the
elements of these classes and states on operator system tensor products. We
see that, similarly to the case of classical NS correlations [50], each QNS
correlation of the class Qqc arises from a state on the commuting tensor
product TX,A ¹c TY,B, and that similar descriptions hold for the rest of the
aforementioned classes. Along with the hierarchy (1.2), we introduce an
intermediate chain

(1.3) CQloc ¦ CQq ¦ CQqa ¦ CQqc ¦ CQns,

lying between (1.1) and (1.2), whose terms are classes of classical-to-quantum
no-signalling (CQNS) correlations. We define their universal operator sys-
tem, and provide analogous characterisations in terms of states on its tensor
products; this is achieved in Section 7. In Section 8, we point out the canon-
ical surjections Qx → CQx → Cx (where x denotes any specific correlation
class from the set {loc, q, qa, qc, ns}). Combined with the separation results
at each term, known for (1.1), this implies that the inclusions in (1.2) and
(1.3) are proper.

The class Qloc at the ground level of the chain (1.2) is in fact well-
known: its elements are precisely the local operations and shared random-
ness (LOSR) channels (see e.g. [75, p. 358]). Thus, the channels from Qq

can be thought of as entanglement assisted LOSR transformations, and a
similar interpretation can be adopted for the higher terms of (1.2).

The notion of a synchronous NS correlation [63] is of crucial importance
when correlations are employed as strategies of non-local games. Here, we
assume that X = Y and A = B. These correlations were characterised in
[63] as arising from traces on a universal C*-algebra AX,A – the free prod-
uct of |X| copies of the |A|-dimensional abelian C*-algebra. In Section 9,
we propose two quantum versions of synchronicity. Fair correlations are
defined in operational terms, but display a lower level of relevance than tra-
cial correlations, which are defined operator algebraically, via traces on the
universal C*-algebra of a stochastic operator matrix. Tracial QNS correla-
tions are closely related to factorisable channels [1] which have been used to
produce counterexamples to the asymptotic Birkhoff conjecture [32]. More
precisely, if one restricts attention to QNS correlations that arise from the
Brown algebra as opposed to the ternary ring of operators VX,A, then the
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tracial QNS correlations are precisely the couplings of a pair of factorisable
channels with equal terms.

Restricted to CQNS and NS correlations, traciality produces classes of
correlations that strictly contain synchronous NS correlations. The differ-
ence between synchronous and tracial NS correlations can be heuristically
compared to that between projection and positive operator valued measures.
The operational significance of tracial QNS, tracial CQNS and tracial NS
correlations arises from the preservation of appropriate classes of states,
which quantise the symmetry possessed by the classical pure states sup-
ported on the diagonal of a matrix algebra. The ground class, of locally
reciprocal states, turns out to be a twisted version of de Finetti states [18].
Thus, the higher classes of quantum reciprocal and C*-reciprocal states can
be thought of as an entanglement assisted and a commuting model version,
respectively, of de Finetti states.

In Section 10, we point out how QNS and CQNS correlations can be
used as strategies for quantum-to-quantum and classical-to-quantum non-
local games. This is not an exhaustive treatment, and is rather intended to
summarise several directions and provide a general context that we hope to
investigate subsequently. Employing the CQNS classes, we define new ver-
sions of quantum chromatic numbers of a classical graph G. The class CQloc

yields the well-known orthogonal rank À(G) of G [70]; thus, the chromatic
numbers Àq(G) and Àqc(G), arising from CQq and CQqc, respectively, can be
thought of as entanglement assisted and commuting model versions of this
classical graph parameter.

In Subsection 10.2, we define a non-commutative version of the graph ho-
momorphism game [52]. We show that its perfect strategies from the class
Qloc correspond precisely to non-commutative graph homomorphisms in the
sense of Stahlke [73]. Thus, the perfect strategies from the larger classes
in (1.2) can be thought of as quantum non-commutative graph homomor-
phisms. We note that special cases have been previously considered in [8]
and [57], and that a different perspective, motivated by non-commutative
topology, has been studied in [56]. The treatment in the latter papers was
restricted to non-commutative graph isomorphisms, and the suggested ap-
proach was operator-algebraic. We remedy this by suggesting, up to our
knowledge, the first operational approach to non-commutative graph ho-
momorphisms, thus aligning the non-commutative case with the case of
quantum homomorphisms between classical graphs [52].

Finally, in Subsection 10.3, we introduce a quantum version of non-local
games that contains as a special case the games considered in the previous
subsections. To this end, we view the rule predicate as a map between the
projection lattices of algebras of diagonal matrices. We define game composi-
tion, show that the perfect strategies from a fixed class x ∈ {loc, q, qa, qc, ns}
are closed under channel composition, and prove that channel composition
preserves traciality. Some of these results extend results previously proved
in [59] in the case of classical no-signalling strategies.
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2. Preliminaries

All inner products appearing in the paper will be assumed linear in the
first variable. Let H be a Hilbert space. We denote by B(H) the space
of all bounded linear operators on H and often write L(H) if H is finite
dimensional. If À, ¸ ∈ H, we write À¸∗ for the rank one operator given by
(À¸∗)(·) = ï·, ¸ðÀ. In addition to inner products, ï·, ·ð will denote bilinear
dualities between a vector space and its dual. We write B(H)+ for the
cone of positive operators in B(H), denote by T (H) its ideal of trace class
operators, and by Tr – the trace functional on T (H).

An operator system is a self-adjoint subspace S of B(H) for some Hilbert
space H, containing the identity operator IH . The linear space Mn(S) of
all n by n matrices with entries in S can be canonically identified with a
subspace of B(Hn), where Hn is the direct sum of n-copies of H; we set
Mn(S)+ = Mn(S) ∩ B(Hn)+ and write Sh for the real vector space of all
hermitian elements of S. If K is a Hilbert space, T ¦ B(K) is an operator

system and ϕ : S → T is a linear map, we let ϕ(n) : Mn(S) → Mn(T ) be

the (linear) map given by ϕ(n)((xi,j)i,j) = (ϕ(xi,j))i,j . The map ϕ is called
positive (resp. unital) if ϕ(S+) ¦ T + (resp. ϕ(IH) = IK), and completely

positive if ϕ(n) is positive for every n ∈ N. We call ϕ a complete order
embedding if it is injective and ϕ−1|ϕ(S) : ϕ(S) → S is completely positive;
we write S ¦c.o.i. T . We note that C is an operator system in a canonical
way; a state of S is a unital positive (linear) map ϕ : S → C. We denote
by S(S) the (convex) set of all states of S. We note that every operator
system is an operator space in a canonical fashion, and denote by Sd the
dual Banach space of S, equipped with its canonical matrix order structure.
Operator systems can be described abstractly via a set of axioms [60]; we
refer the reader to [24], [60] and [66] for details and for further background
on operator space theory.

We denote by |X| the cardinality of a finite set X, let HX = ·x∈XH and
denote byMX the space of all complex matrices of size |X|×|X|; we identify
MX with L(CX) and write IX = ICX . For n ∈ N, we set [n] = {1, . . . , n}
and Mn = M[n]. We write (ex)x∈X for the canonical orthonormal basis of

C
X , denote by DX the subalgebra of MX of all diagonal, with respect to

the basis (ex)x∈X , matrices, and let ∆X : MX → DX be the corresponding
conditional expectation.

When É is a linear functional on MX , we often write É = ÉX . The
canonical complete order isomorphism from MX onto Md

X maps an element
É ∈ MX to the linear functional fÉ : MX → C given by fÉ(T ) = Tr(TÉt)
(here, and in the sequel, Ét denotes the transpose of É in the canonical
basis); see e.g. [65, Theorem 6.2]. We will thus consider MX as self-dual
space with pairing

(2.1) (Ä, É) → ïÄ, Éð := Tr(ÄÉt).
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On the other hand, note that the Banach space predual B(H)∗ can be canon-
ically identified with T (H); every normal functional ϕ : B(H) → C thus
corresponds to a (unique) operator Sϕ ∈ T (H) such that ϕ(T ) = Tr(TSϕ),
T ∈ B(H). In the case where X is a fixed finite set (which will sometimes
come in the form of a direct product), we will use a mixture of the two
dualities just discussed: if É, Ä ∈ MX , S ∈ T (H) and T ∈ B(H), it will be
convenient to continue writing

ïÄ¹ T, É ¹ Sð = Tr(ÄÉt) Tr(TS).

If X and Y are finite sets, we identify MX ¹MY with MX×Y and write
MXY in its place. Similarly, we set DXY = DX ¹ DY . Here, and in the
sequel, we use the symbol ¹ to denote the algebraic tensor product of vector
spaces. For an element ÉX ∈ MX and a Hilbert space H, we let LÉX

:
MX ¹ B(H) → B(H) be the linear map given by LÉX

(S ¹ T ) = ïS, ÉXðT .
If H = C

Y and ÉY ∈MY , we thus have linear maps LÉX
:MXY →MY and

LÉY
:MXY →MX ; note that

ïLÉX
(R), ÄY ð = ïR,ÉX ¹ ÄY ð, R ∈MXY , ÄY ∈MY ,

and a similar formula holds for LÉY
. We let TrX :MXY →MY (resp. TrY :

MXY →MX) be the partial trace, that is, TrX = LIX (resp. TrY = LIY ).
Let X and A be finite sets. A classical information channel from X to A

is a positive trace preserving linear map N : DX → DA. It is clear that if
N : DX → DA is a classical channel then p(·|x) := N (exe

∗
x) is a probability

distribution over A, and that N is completely determined by the family
{(p(a|x))a∈A : x ∈ X}.

A quantum channel from MX into MA is a completely positive trace
preserving map Φ : MX → MA; such a Φ will be called (X,A)-classical if
Φ = ∆A ◦Φ ◦∆X . A classical channel N : DX → DA gives rise to a (X,A)-
classical (quantum) channel ΦN : MX → MA by letting ΦN = N ◦ ∆X .
Conversely, a quantum channel Φ : MX → MA induces a classical channel
NΦ : DX → DA by letting NΦ = ∆A ◦Φ|DX

. Note that NΦN
= N for every

classical channel N .
Let X,Y,A and B be finite sets. A quantum correlation over (X,Y,A,B)

(or simply a quantum correlation if the sets are understood from the context)
is a quantum channel Γ : MXY → MAB. Such a Γ is called a quantum no-
signalling (QNS) correlation [22] if

(2.2) TrAΓ(ÄX ¹ ÄY ) = 0 whenever Tr(ÄX) = 0

and

(2.3) TrBΓ(ÄX ¹ ÄY ) = 0 whenever Tr(ÄY ) = 0.

We denote by Qns the set of all QNS correlations; it is clear that Qns is a
closed convex subset of the cone CP(MXY ,MAB) of all completely positive
maps from MXY into MAB.
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Remark 2.1. A quantum channel Γ : MXY → MAB is a QNS correlation
if and only if

TrAΓ(Ä
′) = 0 and TrBΓ(Ä

′′) = 0

provided Ä′, Ä′′ ∈ MXY are such that TrXÄ
′ = 0 and Tr Y Ä

′′ = 0. Indeed,
suppose that Γ is a QNS correlation and Ä′ ∈ MXY , TrXÄ

′ = 0. Writing
Ä′ =

∑

x,x′,y,y′ Ä
′
x,x′,y,y′exe

∗
x′ ¹ eye

∗
y′ , we have that

∑

x∈X Ä′x,x,y,y′ = 0 for all

y, y′ ∈ Y . Thus Tr
(
∑

x∈X Ä′x,x,y,y′exe
∗
x

)

= 0, and hence

TrAΓ

((
∑

x∈X

Ä′x,x,y,y′exe
∗
x

)

¹ eye
∗
y′

)

= 0, y, y′ ∈ Y.

Since Tr exe
∗
x′ = ¶x,x′ , we also have TrA Γ(exe

∗
x′ ¹ eye

∗
y′) = 0 if x ̸= x′, for

all y, y′ ∈ Y . It follows that TrA Γ(Ä′) = 0. The second property is verified
similarly, while the converse direction of the statement is trivial.

A classical correlation over (X,Y,A,B) is a family

p =
{
(p(a, b|x, y))(a,b)∈A×B : (x, y) ∈ X × Y

}
,

where (p(a, b|x, y))(a,b)∈A×B is a probability distribution for each (x, y) ∈
X×Y ; classical correlations p thus correspond precisely to classical channels
Np : DXY → DAB. A classical no-signalling correlation (or simply a no-
signalling (NS) correlation) is a correlation p = ((p(a, b|x, y))a,b)x,y that
satisfies the conditions

(2.4)
∑

a′∈A

p(a′, b|x, y) =
∑

a′∈A

p(a′, b|x′, y), x, x′ ∈ X, y ∈ Y, b ∈ B,

and

(2.5)
∑

b′∈B

p(a, b′|x, y) =
∑

b′∈B

p(a, b′|x, y′), x ∈ X, y, y′ ∈ Y, a ∈ A.

We denote by Cns the set of all NS correlations and identify its elements
with classical channels from DXY to DAB. Given a classical correlation p,
we write Γp = ΦNp ; thus, Γp :MXY →MAB is the (X × Y,A×B)-classical
channel given by

(2.6) Γp(Ä) =
∑

x∈X,y∈Y

∑

a∈A,b∈B

p(a, b|x, y) ïÄ(ex ¹ ey), ex ¹ eyð eae∗a ¹ ebe
∗
b .

Remark 2.2. If p is a classical correlation over (X,Y,A,B) then p is an
NS correlation precisely when Γp is a QNS correlation. Indeed, if Tr ÄX = 0
and p satisfies (2.4) and (2.5) then

TrAΓp(ÄX ¹ ÄY )

=
∑

x∈X,y∈Y

∑

a∈A,b∈B

p(a, b|x, y) ïÄXex, exð ïÄY ey, eyð ebe∗b

=
∑

y∈Y

∑

b∈B

(
∑

x∈X

∑

a∈A

p(a, b|x, y) ïÄXex, exð
)

ïÄY ey, eyð ebe∗b = 0;
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(2.3) is checked similarly. Conversely, assuming that Γp satisfies (2.2) and
(2.3), the relations (2.4) and (2.5) are obtained by substituting in (2.6)
Ä = exe

∗
x¹ eye∗y− ex′e∗x′ ¹ eye∗y and Ä = exe

∗
x¹ eye∗y− exe∗x¹ ey′e∗y′ . It follows

that if Γ is a (X×Y,A×B)-classical QNS correlation then Γ = Γp for some
NS correlation p.

Let H1, . . . , Hn be Hilbert spaces, at most one of which is infinite dimen-
sional, T ∈ B(H1¹· · ·¹Hn) and f be a bounded functional on B(Hi1¹· · ·¹
Hik), where k f n and i1, . . . , ik are distinct elements of [n] (not necessarily
in increasing order). We will use the expression Lf (T ), or ïT, fð (in the case
k = n), without mentioning explicitly that a suitable permutation of the
tensor factors has been applied before the action of f . We note that, if g
is a bounded functional on B(Hj1 ¹ · · · ¹Hjl), where l f n and the subset
{j1, . . . , jl} does not intersect {i1, . . . , ik}, then
(2.7) LfLg = LgLf .

Considering an element É ∈ MX as a functional on MX via (2.1), we have
that, if E = (Ex,x′)x,x′ ∈MX ¹ B(H) then

(2.8) Lexe∗x′
(E) = Ex,x′ , x, x′ ∈ X.

3. Stochastic operator matrices

Let X,Y,A and B be finite sets. A stochastic operator matrix over (X,A)
is a positive operator E ∈MX ¹MA¹B(H) for some Hilbert space H such
that

(3.1) TrAE = IX ¹ IH .

We say that E acts on H. This terminology becomes natural after noting
that the operator stochastic matrices E ∈ DX ¹ DA ¹ B(C) coincide, after
the natural identification of DX¹DA with the space of all |X|×|A| matrices,
with the row-stochastic scalar-valued matrices.

Let E ∈MX¹MA¹B(H) be a stochastic operator matrix and Ex,x′,a,a′ ∈
B(H), x, x′ ∈ X, a, a′ ∈ A, be the operators such that

E =
∑

x,x′∈X

∑

a,a′∈A

exe
∗
x′ ¹ eae

∗
a′ ¹ Ex,x′,a,a′ ;

we write E = (Ex,x′,a,a′)x,x′,a,a′ . Note that

Ex,x′,a,a′ = Lexe∗x′¹eae∗a′
(E) , x, x′ ∈ X, a, a′ ∈ A.

Set
Ea,a′ = (Ex,x′,a,a′)x,x′∈X ∈MX ¹ B(H);

thus, Ea,a′ = Leae∗a′
(E), a, a′ ∈ A, and hence Ea,a ∈ (MX ¹ B(H))+, a ∈ A.

By Choi’s Theorem, stochastic operator matrices E are precisely the Choi
matrices of unital completely positive maps ΦE :MA →MX¹B(H) defined
by

(3.2) ΦE(eae
∗
a′) = Ea,a′ , a, a′ ∈ A.
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Recall that a positive operator-valued measure (POVM) on a Hilbert space
H, indexed by A, is a family (Ea)a∈A of positive operators on H, such that
∑

a∈AEa = IH . If Ea is a projection for each a ∈ A, the family (Ea)a∈A is
called a projection valued measure (PVM).

Theorem 3.1. Let H be a Hilbert space and E ∈ (MX ¹MA ¹ B(H))+.
The following are equivalent:

(i) E is a stochastic operator matrix;
(ii) (Ea,a)a∈A is a POVM in MX ¹ B(H);
(iii) TrA LÉX

(E) = IH , for all states ÉX ∈MX ;
(iv) TrA LÉX

(E) = Tr(ÉX)IH , for all ÉX ∈MX ;
(v) there exists a Hilbert space K and operators Va,x : H → K, x ∈ X,

a ∈ A, such that (Va,x)a,x ∈ B(HX ,KA) is an isometry and

(3.3) Ex,x′,a,a′ = V ∗
a,xVa′,x′ , x, x′ ∈ X, a, a′ ∈ A.

In particular, if E is a stochastic operator matrix then (Ex,x,a,a)a∈A is a
POVM for every x ∈ X.

Proof. (i)ô(ii) and (iv)⇒(iii) are trivial, while (i)⇒(iii) is immediate from
(2.7).

(iii)⇒(iv) By assumption, TrA LÉ(E) = Tr(É)IH for every state É ∈MX .

Write É =
∑4

i=1 ¼iÉi, where Éi is a state in MX and ¼i ∈ C, i = 1, 2, 3, 4.
Then

TrALÉ(E) =

4∑

i=1

¼iTrALÉi
(E) =

4∑

i=1

¼iIH = Tr(É)IH .

(iii)⇒(i) By (2.7), for all ÉX ∈ S(MX) and all normal states Ä on B(H),
we have

ïIX ¹ IH , ÉX ¹ Äð = 1 = ïTrALÉX
(E), Äð = ïLÉX

TrA(E), Äð
= ïTrA(E), ÉX ¹ Äð .

By polarisation and linearity,

ïTrA(E), Ãð = ïIX ¹ IH , Ãð

for all Ã ∈ (MX ¹ B(H))∗, and hence TrA(E) = IX ¹ IH .
(i)⇒(v) Let Φ = ΦE be the unital completely positive map given by

(3.2). By Stinespring’s Dilation Theorem, there exist a Hilbert space K̃, an

isometry V : CX ¹H → K̃ and a unital *-homomorphism Ã : MA → B(K̃)

such that Φ(T ) = V ∗Ã(T )V , T ∈ MA. Up to unitary equivalence, K̃ =
C
A ¹ K for some Hilbert space K and Ã(T ) = T ¹ IK , T ∈ MA. Write

Va,x : H → K, a ∈ A, x ∈ X, for the entries of V , when V is considered as
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a block operator matrix. For À, ¸ ∈ H, x, x′ ∈ X and a, a′ ∈ A, we have
〈
Ex,x′,a,a′À, ¸

〉
=
〈

Lexe∗x′
(Ea,a′)À, ¸

〉

= Tr
(

Lexe∗x′
(Φ(eae

∗
a′))(À¸

∗)
)

= Tr (Φ(eae
∗
a′)((ex′e∗x)¹ (À¸∗)))

= Tr (V ∗((eae
∗
a′)¹ IK)V (ex′ ¹ À)(ex ¹ ¸)∗)

= ïV ∗((eae
∗
a′)¹ IK)V (ex′ ¹ À), ex ¹ ¸ð

= ï((eae∗a′)¹ IK)V (ex′ ¹ À), V (ex ¹ ¸)ð
= ï((eae∗a′)¹ IK)((ea′e

∗
a′)¹ IK)V (ex′ ¹ À), ((eae

∗
a)¹ IK)V (ex ¹ ¸)ð

=
〈
Va′,x′À, Va,x¸

〉
=
〈
V ∗
a,xVa′,x′À, ¸

〉
.

(v)⇒(ii) Let À =
∑

x∈X

∑

a∈A ex ¹ ea ¹ Àx,a, where Àx,a ∈ H, x ∈ X,
a ∈ A. Using (3.3), we have

ïEÀ, Àð =
∑

x,x′∈X

∑

a,a′∈A

〈
Va′,x′Àx′,a′ , Va,xÀx,a

〉
=

∥
∥
∥
∥
∥

∑

x∈X

∑

a∈A

Va,xÀx,a

∥
∥
∥
∥
∥

2

,

and thus E is positive. Since V is an isometry, we have
∑

a∈A

Ex,x′,a,a =
∑

a∈A

V ∗
a,xVa,x′ = ¶x,x′IH .

□

Let (Ex,a)a∈A be a POVM on a Hilbert space H for every x ∈ X. A
stochastic operator matrix of the form

(3.4) E =
∑

x∈X

∑

a∈A

exe
∗
x ¹ eae

∗
a ¹ Ex,a

will be called classical. A general stochastic operator matrix can thus be
thought of as a coordinate-free version of a finite family of POVM’s.

Remarks. (i) In view of Theorem 3.1, stochastic operator matrices are
precisely the positive completions E of partially defined diagonal block ma-
trices D = (Ea,a)a∈A with entries in MX ¹ B(H) and TrA(D) = I.

(ii) The following generalisation of Naimark’s Dilation Theorem was
proved in [61]: if (Ex,a)a∈A ¦ B(H), x ∈ X, are POVM’s then there exist

a Hilbert space H̃, a PVM (Ẽa)a∈A ¦ B(H̃) and isometries Vx : H → H̃,
x ∈ X, with orthogonal ranges such that

(3.5) Ex,a = V ∗
x ẼaVx, a ∈ A, x ∈ X.

This can be seen as a corollary of Theorem 3.1: given POVM’s (Ex,a)a∈A ¦
B(H), x ∈ X, let E be the stochastic operator matrix defined by (3.4) and

let V = (Va,x)a,x be the isometry from Theorem 3.1. Set Ẽa = eae
∗
a ¹ IH ,

a ∈ A, and let Vx be the column isometry (Va,x)a∈A : H → KA, x ∈ X.

Then (Ẽa)a∈A is a PVM fulfilling (3.5).

Let E ∈MX¹MA¹B(H) be a stochastic operator matrix and Φ = ΦE be
given by (3.2). Recall that the predual Φ∗ :MX ¹ T (H) →MA of Φ is the
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completely positive map satisfying ïΦ∗(Ä), Éð = ïÄ,Φ(É)ð, Ä ∈MX ¹T (H),
É ∈MA. For a state Ã ∈ T (H), set

ΓE,Ã(ÄX) = Φ∗(ÄX ¹ Ã), ÄX ∈MX ;

then ΓE,Ã :MX →MA is a quantum channel. We have

(3.6) ΓE,Ã(ÄX) = LÄX¹Ã(E), ÄX ∈MX ;

indeed, if a, a′ ∈ A then

ïΓE,Ã(exe
∗
x′), eae

∗
a′ð = ïΦ∗(exe

∗
x′ ¹ Ã), eae

∗
a′ð = ïexe∗x′ ¹ Ã,Φ(eae

∗
a′)ð

=
〈
exe

∗
x′ ¹ Ã,Ea,a′

〉
=
〈
Ã,Ex,x′,a,a′

〉

=
〈

Lexe∗x′¹Ã(E), eae
∗
a′

〉

;

(3.6) now follows by linearity. By Choi’s Theorem, every quantum channel
Φ : MX → MA has the form ΓE,1 for some stochastic operator matrix
E ∈MX ¹MA.

Remark 3.2. Let H be a Hilbert space and E ∈ MX ¹MA ¹ B(H) be a
stochastic operator matrix. The following are equivalent:

(i) E is classical;
(ii) for each state Ã ∈ T (H), the quantum channel ΓE,Ã : MX → MA is

(X,A)-classical.

Proof. The channel ΓE,Ã is (X,A)-classical if and only if ΓE,Ã(exe
∗
x′) = 0

whenever x ̸= x′ and

ïΓE,Ã(exe
∗
x), eae

∗
a′ð = 0 whenever a ̸= a′.

The latter equality holds for every Ã if and only if Ex,x′,a,a′ = 0 whenever
x ̸= x′ and Ex,x,a,a′ = 0 whenever a ̸= a′, that is, if and only if E is
classical. □

4. Three subclasses of QNS correlations

In this section, we introduce several classes of QNS correlations, which
generalise corresponding classes of NS correlations studied in the literature
(see e.g. [50]).

4.1. Quantum commuting QNS correlations. LetH be a Hilbert space,
and E ∈ MX ¹MA ¹ B(H) and F ∈ MY ¹MB ¹ B(H) be stochastic op-
erator matrices. The pair (E,F ) will be called commuting if LÉX¹ÉA

(E)
and LÉY ¹ÉB

(F ) commute for all ÉX ∈ MX , ÉY ∈ MY , ÉA ∈ MA and
ÉB ∈MB. Writing E = (Ex,x′,a,a′)x,x′,a,a′ and F = (Fy,y′,b,b′)y,y′,b,b′ , we have
that (E,F ) is commuting if and only if

Ex,x′,a,a′Fy,y′,b,b′ = Fy,y′,b,b′Ex,x′,a,a′ , x, x
′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B.
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Proposition 4.1. Let H be a Hilbert space and E ∈ MX ¹MA ¹ B(H),
F ∈MY ¹MB¹B(H) form a commuting pair of stochastic operator matrices.
There exists a unique operator E · F ∈MXY ¹MAB ¹ B(H) such that

(4.1) ïE · F, ÄX ¹ ÄY ¹ ÄA ¹ ÄB ¹ Ãð = ïLÄX¹ÄA(E)LÄY ¹ÄB (F ), Ãð ,
for all ÄX ∈MX , ÄY ∈MY , ÄA ∈MA, ÄB ∈MB and Ã ∈ T (H). Moreover,

(i) E · F is a stochastic operator matrix;
(ii) ∥E · F∥ f ∥E∥∥F∥;
(iii) If Ã ∈ T (H) is a state then ΓE·F,Ã is a QNS correlation.

Proof. Let

E · F :=
(
Ex,x′,a,a′Fy,y′,b,b′

)
∈MXY ¹MAB ¹ B(H).

Denote by A (resp. B) the C*-algebra, generated by Ex,x′,a,a′ , x, x
′ ∈ X,

a, a′ ∈ A (resp. Fy,y′,b,b′ , y, y
′ ∈ Y , b, b′ ∈ B); by assumption, B ¦ A′. Let

ÃA : MXA(A) → MXY AB(B(H)) (resp. ÃB : MY B(B) → MXY AB(B(H)))
be the *-representation given by ÃA(S) = S¹IY B (resp. ÃB(T ) = T ¹IXA).
Then the ranges of ÃA and ÃB commute and hence the pair (ÃA, ÃB) gives
rise to a *-representation Ã :MXA(A)¹maxMY B(B) →MXY AB(B(H)) with
Ã(S¹T ) = ÃA(S)ÃB(T ), S ∈MXA(A), T ∈MY B(B). Thus, E ·F = Ã(E¹
F ) ∈MXY AB(B(H))+. Inequality (ii) now follows from the contractivity of
*-representations. In addition,

TrAB(E · F ) =
∑

a∈A

∑

b∈B

(
Ex,x′,a,aFy,y′,b,b

)

x,x′,y,y′

=
(
¶x,x′¶y,y′I

)

x,x′,y,y′
= IXY ¹ IH ,

that is, E · F is a stochastic operator matrix. For x, x′ ∈ X, y, y′ ∈ Y ,
a, a′ ∈ A, b, b′ ∈ B and Ã ∈ T (H), we have

〈
E · F, exe∗x′ ¹ eye

∗
y′ ¹ eae

∗
a′ ¹ ebe

∗
b′ ¹ Ã

〉
(4.2)

=
〈
Ex,x′,a,a′Fy,y′,b,b′ , Ã

〉
=
〈

Lexe∗x′¹eae∗a′
(E)Leye∗y′¹ebe

∗

b′
(F ), Ã

〉

,

and (4.1) follows by linearity.
To show (iii), let Ã ∈ T (H) be a state. Suppose that ÄX ∈MX is traceless

and ÄY ∈MY . For every ÄB ∈MB, by (4.1) and Theorem 3.1, we have

ïTrAΓE·F,Ã(ÄX ¹ ÄY ), ÄBð = ïΓE·F,Ã(ÄX ¹ ÄY ), IA ¹ ÄBð
= ïE · F, ÄX ¹ ÄY ¹ IA ¹ ÄB ¹ Ãð
= ïTrALÄX (E)LÄY ¹ÄB (F ), Ãð = 0.

Thus, (2.2) is satisfied; by symmetry, so is (2.3). □

If À is a unit vector in H, we set for brevity ΓE,F,À = ΓE·F,ÀÀ∗ .

Definition 4.2. A QNS correlation of the form ΓE,F,À, where (E,F ) is a
commuting pair of stochastic operator matrices acting on a Hilbert space H,
and À ∈ H is a unit vector, will be called quantum commuting.
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We denote by Qqc the set of all quantum commuting QNS correlations.

Proposition 4.3. In Definition 4.2 one can assume, without gain of gen-
erality, that Ã is an arbitrary state.

Proof. Suppose that H is a Hilbert space and E ∈MX ¹MA ¹ B(H), F ∈
MY ¹MB¹B(H) form a commuting pair of stochastic operator matrices. Let
Ã be a state in T (H) and write Ã =

∑∞
i=1 ¼iÀiÀ

∗
i , where (Ài)

∞
i=1 is sequence of

unit vectors and ¼i g 0, i ∈ N, are such that
∑∞

i=1 ¼i = 1. Set H̃ = H ¹ ℓ2

and À =
∑∞

i=1

√
¼iÀi ¹ ei; then À is a unit vector in H̃ and ïÀÀ∗, T ¹ Iℓ2ð =

ïÃ, T ð, T ∈ B(H).

Let Ẽ = E ¹ Iℓ2 and F̃ = F ¹ Iℓ2 ; thus, Ẽ and F̃ are stochastic operator
matrices acting on H̃ that form a commuting pair. Moreover, if ÄX ∈ MX ,
ÄY ∈MY , ÃA ∈MA and ÃB ∈MB then

〈

ΓẼ,F̃ ,À(ÄX ¹ ÄY ), ÃA ¹ ÃB

〉

=
〈

Ẽ · F̃ , ÄX ¹ ÄY ¹ ÃA ¹ ÃB ¹ ÀÀ∗
〉

=
〈

LÄX¹ÃA
(Ẽ)LÄY ¹ÃB

(F̃ ), ÀÀ∗
〉

= ï(LÄX¹ÃA
(E)LÄX¹ÃA

(F ))¹ Iℓ2 , ÀÀ
∗ð

= ïLÄX¹ÃA
(E)LÄX¹ÃA

(F ), Ãð = ïΓE·F,Ã(ÄX ¹ ÄY ), ÃA ¹ ÃBð .
□

Remark 4.4. Recall that a classical NS correlation p over (X,Y,A,B) is
called quantum commuting [63, 64] if there exist a Hilbert space H, POVM’s
(Ex,a)a∈A, x ∈ X, and (Fy,b)b∈B, y ∈ Y , on H with Ex,aFy,b = Fy,bEx,a for
all x, y, a, b, and a unit vector À ∈ H, such that

p(a, b|x, y) = ïEx,aFy,bÀ, Àð, x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

Suppose that the stochastic operator matrices E ∈ MX ¹MA ¹ B(H) and
F ∈MY ¹MB¹B(H) are classical, and correspond to the families (Ex,a)a∈A,
x ∈ X, and (Fy,b)b∈B, y ∈ Y , respectively, as in (3.4). It is clear that pair
(E,F ) is commuting and E · F is classical. We have that Γp = ΓE,F,À.
Indeed, by Remark 3.2, the QNS correlation ΓE,F,À is classical; by Remark
2.2, ΓE,F,À = Γp′ for some NS correlation p′. It is now straightforward that
p′ = p.

4.2. Quantum QNS correlations. Let HA and HB be Hilbert spaces,
and E ∈ MX ¹MA ¹ B(HA) and F ∈ MY ¹MB ¹ B(HB) be stochastic
operator matrices; then

E ¹ F ∈MX ¹MA ¹ B(HA)¹MY ¹MB ¹ B(HB).

Reshuffling the terms of the tensor product, we consider E¹F as an element
ofMXY ¹MAB¹B(HA¹HB); to underline this distinction, the latter element
will henceforth be denoted by E » F . Note that, if

Ẽ = E ¹ IHB
∈MX ¹MA ¹ B(HA ¹HB)

and
F̃ = F ¹ IHA

∈MY ¹MB ¹ B(HA ¹HB)
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(where the last containment is up to a suitable permutation of the tensor

factors), then (Ẽ, F̃ ) is a commuting pair of stochastic operator matrices,

and E » F = Ẽ · F̃ . By Proposition 4.1, E » F is a stochastic operator
matrix on HA¹HB and, if Ã ∈ T (HA¹HB) is a state then, by Proposition
4.1, ΓE»F,Ã is a QNS correlation.

Remark 4.5. It is straightforward to check that, if Ã = ÃA ¹ ÃB, where
ÃA ∈ T (HA) and ÃB ∈ T (HB) are states, then ΓE,ÃA

¹ΓF,ÃB
= ΓE»F,ÃA¹ÃB

.

Definition 4.6. (i) A QNS correlation Γ : MXY → MAB is called quan-
tum if there exist finite dimensional Hilbert spaces HA and HB, stochastic
operator matrices E ∈MX ¹MA¹L(HA) and F ∈MY ¹MB ¹L(HB) and
a pure state Ã ∈ L(HA ¹HB) such that Γ = ΓE»F,Ã.

(ii) A QNS correlation will be called approximately quantum if it is the
limit of a sequence of quantum QNS correlations.

We denote by Qq (resp. Qqa) the set of all quantum (resp. approximately
quantum) QNS correlations. It is clear from the definitions that Qq ¦ Qqc.
It will be shown later that Qqc is closed, and hence contains Qqa.

Similarly to Proposition 4.3, it can be shown that quantum QNS cor-
relations can equivalently be defined using arbitrary, as opposed to pure,
states.

Remark 4.7. Recall that a classical NS correlation p over (X,Y,A,B) is
called quantum if there exist finite dimensional Hilbert spaces HA and HB,
POVM’s (Ex,a)a∈A, on HA, x ∈ X, (Fy,b)b∈A on HB, y ∈ Y , and a unit
vector À ∈ HA ¹HB, such that

(4.3) p(a, b|x, y) = ï(Ex,a ¹ Fy,b)À, Àð , x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

It is easy to verify that, if the stochastic operator matrices E ∈MX ¹MA¹
B(HA) and F ∈ MY ¹MB ¹ B(HB) are classical, and determined by the
families (Ex,a)a∈A, x ∈ X, and (Fy,b)b∈B, y ∈ Y , then E»F is classical and
determined by the family {(Ex,a ¹ Fy,b)(a,b)∈A×B : (x, y) ∈ X × Y }. As in
Remark 4.4, it is easy to see that Γp = ΓE,F,À.

Proposition 4.8. The sets Qq and Qqa are convex.

Proof. Let Ei ∈ MX ¹MA ¹ L(K1,i) (resp. Fi ∈ MY ¹MB ¹ L(K2,i)) be
a stochastic operator matrix over (X,A) (resp. (Y,B)) and Ãi = ¸i¸

∗
i be

a pure state on K1,i ¹ K2,i, i = 1, . . . , n. Fix ¼i g 0, i = 1, . . . , n, with
∑n

i=1 ¼i = 1. Let Kk = ·n
i=1Kk,i, k = 1, 2, E = ·n

i=1Ei, F = ·n
i=1Fi,

and ¸ = ·n
i=1

√
¼i¸i ∈ K1 ¹K2, viewed as supported on the (i, i)-terms of

K1¹K2 ≡ ·n
i,j=1K1,i¹K2,j . Set Ã = ¸¸∗. Using distributivity, we consider

E (resp. F ) as a stochastic operator matrix in MX ¹MA ¹ L(K1) (resp.
MY ¹MB ¹ L(K2)). A direct verification shows that

n∑

i=1

¼iΓEi»Fi,Ãi
= ΓE»F,Ã;
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thus, Qq is convex, and the convexity of Qqa follows from the fact that

Qqa = Qq. □

4.3. Local QNS correlations. It is clear that, if Φ : MX → MA and
Ψ :MY →MB are quantum channels, then the quantum channel Γ := Φ¹Ψ
is a QNS correlation.

Definition 4.9. A QNS correlation Γ : MXY → MAB is called local if
it is a convex combination of quantum channels of the form Φ ¹ Ψ, where
Φ :MX →MA and Ψ :MY →MB are quantum channels.

We denote by Qloc the set of all local QNS correlations. The elements
of Qloc are precisely the maps that arise via local operations and shared
randomness (LOSR) (see e.g. [75, p. 358]).

Remark 4.10. We have that Qloc is a closed convex subset of Qq.

Proof. Let Φ : MX → MA and Ψ : MY → MB be quantum channels and
E ∈ MX ¹ MA and F ∈ MY ¹ MB be the Choi matrices of Φ and Ψ,
respectively. By Remark 4.5,

Φ¹Ψ = ΓE,1 ¹ ΓF,1 = ΓE»F,1

and hence Φ¹Ψ ∈ Qq.
Let (Γk)k∈N ¦ Qloc be a sequence with limit Γ ∈ Qns. Note that Γk all

are elements of a real vector space of dimension 2|X|2|Y |2|A|2|B|2. Let L =

2|X|2|Y |2|A|2|B|2 + 1. By Carathéodory’s Theorem, Γk =
∑L

l=1 ¼
(k)
l Φ

(k)
l ¹

Ψ
(k)
l as a convex combination. By compactness, we may assume, by passing

to subsequences as necessary, that Φ
(k)
l →k→∞ Φl, Ψ

(k)
l →k→∞ Ψl and

¼
(k)
l →k→∞ ¼l. Thus, Γ =

∑L
l=1 ¼lΦl ¹Ψl as a convex combination, that is,

Γ ∈ Qloc, showing that Qloc is closed. □

Remark 4.11. Recall that a classical NS correlation p over (X,Y,A,B) is
called local if there exist families of probability distributions {(p1k(a|x))a∈A :
x ∈ X} and {(p2k(b|y))b∈B : y ∈ Y } and positive scalars ¼k, k = 1, . . . ,m,
such that

∑m
k=1 ¼k = 1 and

p(a, b|x, y) =
m∑

k=1

¼kp
1
k(a|x)p2k(b|y), x ∈ X, y ∈ Y, a ∈ A, b ∈ B.

It is clear that, if Φk (resp. Ψk) is the (X,A)-classical (resp. (Y,B)-classical)
channel corresponding to pk1 (resp. p

k
2) then Γp =

∑m
k=1 ¼kΦk¹Ψk and hence

Γp ∈ Qloc.

If needed, we specify the dependence of Qx on the sets X, Y , A and B
by using the notation Qx(X,Y,A,B), for x ∈ {loc, q, qa, qc, ns}.
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5. The operator system of a stochastic operator matrix

Recall [37, 76] that a ternary ring is a complex vector space V, equipped
with a ternary operation [·, ·, ·] : V×V×V → V, linear on the outer variables
and conjugate linear in the middle variable, such that

[s, t, [u, v, w]] = [s, [v, u, t], w] = [[s, t, u], v, w], s, t, u, v, w ∈ V.
A ternary representation of V is a linear map ¹ : V → B(H,K), for some
Hilbert spaces H and K, such that

¹ ([u, v, w]) = ¹(u)¹(v)∗¹(w), u, v, w ∈ V.
We call ¹ non-degenerate if span{¹(u)∗¸ : u ∈ V, ¸ ∈ K} is dense in H. A
concrete ternary ring of operators (TRO) [76] is a subspace U ¦ B(H,K)
for some Hilbert spaces H and K such that S, T,R ∈ U implies ST ∗R ∈ U .

Let X and A be finite sets, and V0
X,A be the ternary ring, generated by

elements va,x, x ∈ X, a ∈ A, satisfying the relations

(5.1)
∑

a∈A

[va′′,x′′ , va,x, va,x′ ] = ¶x,x′va′′,x′′ , x, x′, x′′ ∈ X, a′′ ∈ A.

Note that (5.1) implies

(5.2)
∑

a∈A

[u, va,x, va,x′ ] = ¶x,x′u, x, x′ ∈ X,u ∈ V0
X,A.

Indeed, suppose that (5.2) holds for u = ui, i = 1, 2, 3. Then
∑

a∈A

[[u1, u2, u3], va,x, va,x′ ] =
∑

a∈A

[u1, u2, [u3, va,x, va,x′ ]] = ¶x,x′ [u1, u2, u3];

(5.2) now follows by induction.
Let ¹ : V0

X,A → B(H,K) be a non-degenerate ternary representation.

Setting Va,x = ¹(va,x), x ∈ X, a ∈ A, (5.2) implies

(5.3)
∑

a∈A

V ∗
a,xVa,x′ = ¶x,x′IH , x, x′ ∈ X;

conversely, a family {Va,x : x ∈ X, a ∈ A} ¦ B(H,K) satisfying (5.3) clearly
gives rise to a non-degenerate ternary representation ¹ : V0

X,A → B(H,K).

We therefore call such a family a representation of the relations (5.1). We
note that the set of representations of (5.1) is non-empty. Indeed, consider
isometries Vx, x ∈ X, with orthogonal ranges on some Hilbert space H,
i.e. V ∗

x Vx′ = ¶x,x′IH , x, x′ ∈ X. Fix a0 ∈ A and let Va,x = ¶a,a0Vx. Then
∑

a∈A V
∗
a,xVa,x′ = V ∗

x Vx′ = ¶x,x′IH .
We note that (5.3) implies ∥Va,x∥ f 1, x ∈ X, a ∈ A. We identify

the family {Va,x : a ∈ A, x ∈ X} with the isometry V = (Va,x)a,x and
write HV = H, KV = K and ¹V = ¹. Two representations V = (Va,x)a,x
and W = (Wa,x)a,x are called equivalent if there exist unitary operators
UH : HV → HW and UK : KV → KW such that Wa,xUH = UKVa,x, x ∈ X,
a ∈ A.
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Write ¹̂ = ·V ¹V , where the direct sum is taken over all equivalence
classes of representations of the relations (5.1), where the cardinality of the
underlying Hilbert spaces are bounded by that of V0

X,A. For u ∈ V0
X,A, let

∥u∥0 := ∥¹̂(u)∥. As ∥va,x∥ f 1 and V0
X,A is generated by va,x, a ∈ A, x ∈ X,

we have that ∥u∥0 < ∞ for every u ∈ V0
X,A. It is also clear that ∥ · ∥0 is a

semi-norm on V0
X,A. Set N =

{

u ∈ V0
X,A : ∥u∥0 = 0

}

. We have that N is a

ternary ideal of V0
X,A, that is, [u1, u2, u3] ∈ N if ui ∈ N for some i ∈ {1, 2, 3}.

The ternary product of V0
X,A thus induces a ternary product on V0

X,A/N , and

¹̂ induces a ternary representation of V0
X,A/N that will be denoted in the

same way. Letting ∥u∥ := ∥¹̂(u)∥, u ∈ V0
X,A/N , we have that ∥ · ∥ is a norm

on V0
X,A/N , and hence V0

X,A/N is a ternary pre-C*-ring (see [76]). We let

VX,A be the completion of V0
X,A/N ; thus, VX,A is a ternary C*-ring [76].

Note that ¹̂ extends to a ternary representation of VX,A (denoted in the

same way) onto a concrete TRO, and the equality ∥u∥ = ∥¹̂(u)∥ continues
to hold for every u ∈ VX,A. We thus have that VX,A is a TRO in a canonical
fashion. It is clear that each ¹V induces a ternary representation of VX,A

onto a TRO, which will be denoted in the same way.
Let CX,A be the right C*-algebra of VX,A; if VX,A is represented faithfully

as a concrete ternary ring of operators in B(H,K) for some Hilbert spaces
H and K (that is, VX,AV∗

X,AVX,A ¦ VX,A), the C*-algebra CX,A may be
defined by letting

CX,A = span{S∗T : S, T ∈ VX,A}.
Each representation V = (Va,x)a,x of the relations (5.1) gives rise [35] to a
unital *-representation ÃV of CX,A on HV by letting

ÃV (S
∗T ) = ¹V (S)

∗¹V (T ), S, T ∈ VX,A.

Lemma 5.1. The following hold true:

(i) Every non-degenerate ternary representation of VX,A has the form
¹V , for some representation V of the relations (5.1);

(ii) ¹̂ is a faithful ternary representation of VX,A;
(iii) Every unital *-representation Ã of CX,A has the form ÃV , for some

representation V of the relations (5.1).

Proof. (i) Suppose that ¹ is a non-degenerate ternary representation of VX,A.
Letting q : V0

X,A → VX,A be the quotient map, write ¹0 = ¹ ◦ q; thus,

¹0 is a non-degenerate ternary representation of V0
X,A. Letting V be the

representation of the relations (5.1) such that ¹0 = ¹V , we have that ¹ = ¹V .

(ii) follows from the fact that ∥¹̂(u)∥ = ∥u∥, u ∈ VX,A.
(iii) Let Ã : CX,A → B(H) be a unital *-representation. Then there exists a

ternary representation ¹ : VX,A → B(H,K) such that Ã(S∗T ) = ¹(S)∗¹(T ),
S, T ∈ VX,A (see e.g. [5, Theorem 3.4] and [25, p. 1636]). Since Ã is unital,
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¹ is non-degenerate. By (i), there exists a representation V of the relations
(5.1) such that ¹ = ¹V , and hence Ã = ÃV . □

Set ex,x′,a,a′ = v∗a,xva′,x′ ∈ CX,A, x, x
′ ∈ X, a, a′ ∈ A. We call the operator

subsystem

TX,A := span{ex,x′,a,a′ : x, x
′ ∈ X, a, a′ ∈ A}

of CX,A the Brown-Cuntz operator system. Note that relations (5.1) imply

(5.4)
∑

a∈A

ex,x′,a,a = ¶x,x′1, x, x′ ∈ X.

Theorem 5.2. Let H be a Hilbert space and ϕ : TX,A → B(H) be a linear
map. The following are equivalent:

(i) ϕ is a unital completely positive map;
(ii)

(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
is a stochastic operator matrix;

(iii) there exists a *-representation Ã : CX,A → B(H) such that ϕ =
Ã|TX,A

.

Moreover, if
(
Ex,x′,a,a′

)

x,x′,a,a′
is a stochastic operator matrix acting on a

Hilbert space H then there exists a (unique) unital completely positive map
ϕ : TX,A → B(H) such that ϕ(ex,x′,a,a′) = Ex,x′,a,a′ for all x, x′, a, a′.

Proof. (i)⇒(ii) By Arveson’s Extension Theorem and Stinespring’s Theo-
rem, there exist a Hilbert space K, a *-representation Ã : CX,A → B(K)
and an isometry W ∈ B(H,K), such that ϕ(u) = W ∗Ã(u)W , u ∈ TX,A. By
Lemma 5.1, Ã = ÃV for some representation V = (Va,x)a,x of the relations
(5.1). By the proof of Theorem 3.1, E :=

(
Ã(ex,x′,a,a′)

)
∈ (MX ¹ MA ¹

B(K))+, and hence
(
ϕ(ex,x′,a,a′)

)
= (IX ¹ IA ¹W )∗E(IX ¹ IA ¹W ) ∈ (MX ¹MA ¹B(H))+ .

By (5.4) and Theorem 3.1,
(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
is a stochastic operator ma-

trix.
(ii)⇒(iii) By Theorem 3.1, there exist a Hilbert space K and an isometry

V = (Va,x)a,x ∈ B(HX ,KA) such that

ϕ(ex,x′,a,a′) = V ∗
a,xVa′,x′ , x, x′ ∈ X, a, a′ ∈ A.

The *-representation ÃV of CX,A is an extension of ϕ.
(iii)⇒(i) is trivial.

Suppose that E =
(
Ex,x′,a,a′

)

x,x′,a,a′
is a stochastic operator matrix acting

on H. Letting V be the isometry, associated with E via Theorem 3.1, we
have that ϕ := ÃV |TX,A

satisfies the required conditions. □

Let S be an operator system. Recall that the pair (C∗
u(S), º) is called

a universal C*-cover of S, if C∗
u(S) is a unital C*-algebra, º : S → C∗

u(S)
is a unital complete order embedding, and whenever H is a Hilbert space
and ϕ : S → B(H) is a unital completely positive map, there exists a *-
representation Ãϕ : C∗

u(S) → B(H) such that Ãϕ ◦ º = ϕ. It is clear that the
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universal C*-cover is unique up to a *-isomorphism. The following corollary
is immediate from Theorem 5.2.

Corollary 5.3. The pair (CX,A, º), where º is the inclusion map of TX,A

into CX,A, is the universal C*-cover of TX,A.

We will need the following slight extension of the equivalence (i)ô(ii) of
Theorem 5.2.

Proposition 5.4. Let H be a Hilbert space and ϕ : TX,A → B(H) be a linear
map. The following are equivalent:

(i) ϕ is a completely positive map;
(ii)

(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
∈ (MX ¹MA ¹ B(H))+.

Proof. (i)⇒(ii) It follows from Theorem 3.1 and Lemma 5.1 (iii), with ÃV
a faithful *-representation of CX,A, that (ex,x′,a,a′) ∈ (MX ¹MA ¹ CX,A)

+.
Since TX,A ¦ CX,A as an operator subsystem, we have

(5.5) (ex,x′,a,a′)x,x′,a,a′ ∈ (MX ¹MA ¹ TX,A)
+

and (ii) follows.
(ii)⇒(i) Write E =

(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
and let T = ϕ(1). Since 1 =

∑

a∈A ex,x,a,a (where x is any element of X), we have that T g 0. Note also
that if x, x′ ∈ X and x ̸= x′ then

(5.6)
∑

a∈A

Ex,x′,a,a = ϕ

(
∑

a∈A

ex,x′,a,a

)

= 0.

Assume first that T is invertible. Let È : TX,A → B(H) be the map given
by

(5.7) È(u) = T−1/2ϕ(u)T−1/2, u ∈ TX,A.

Setting F =
(
È(ex,x′,a,a′)

)

x,x′,a,a′
, we have that

F =
(

IXA ¹ T−1/2
)

E
(

IXA ¹ T−1/2
)

g 0.

Let É = (Éx,x′) ∈MX and Ã be a state in T (H). Using (5.6), we have

ïTrALÉ(F ), Ãð = ïF, É ¹ IA ¹ Ãð
=

〈(

IXA ¹ T−1/2
)

E
(

IXA ¹ T−1/2
)

, É ¹ IA ¹ Ã
〉

=
〈

E,É ¹ IA ¹ T−1/2ÃT−1/2
〉

=
∑

x,x′∈X

∑

a∈A

Éx,x′

〈

Ex,x′,a,a, T
−1/2ÃT−1/2

〉

=
∑

x∈X

∑

a∈A

Éx,x

〈

Ex,x,a,a, T
−1/2ÃT−1/2

〉

=
∑

x∈X

Éx,x

〈

T, T−1/2ÃT−1/2
〉

=
∑

x∈X

Éx,x = Tr(É).
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By Theorem 3.1, F is a stochastic operator matrix; by Theorem 5.2, È is
completely positive. Since ϕ(·) = T 1/2È(·)T 1/2, so is ϕ.

Now relax the assumption that T be invertible. For every ϵ > 0, let
ϕϵ : TX,A → B(H) be the map, given by ϕϵ(u) = ϕ(u) + ϵI. By the previous
paragraph, ϕϵ is completely positive. Since ϕ = limϵ→0 ϕϵ in the point-norm
topology, ϕ is completely positive. □

Let

LX,A =

{

(¼x,x′,a,a′) ∈MXA : ∃ c ∈ C s.t.
∑

a∈A

¼x,x′,a,a = ¶x,x′c, x, x′ ∈ X

}

;

we consider LX,A as an operator subsystem of MXA. For the next propo-
sition, note that, by [17, Corollary 4.5], if T is a finite dimensional opera-
tor system than its (matrix ordered) dual T d is an operator system, when
equipped with any faithful state of T as an Archimedean order unit. It is
straightforward to verify that, in this case, T dd ∼=c.o.i. T .

Proposition 5.5. The linear map Λ : T d
X,A → LX,A, given by

(5.8) Λ(ϕ) =
(
ϕ(ex,x′,a,a′)

)

x,x′∈X,a,a′∈A

is a well-defined complete order isomorphism.

Proof. By Proposition 5.4, if ϕ ∈ TX,A → C is a positive functional then
(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
∈ L+

X,A. Thus, the map Λ+ :
(

T d
X,A

)+
→ L+

X,A, given

by

Λ+(ϕ) =
(
ϕ(ex,x′,a,a′)

)

x,x′,a,a′
, ϕ ∈

(

T d
X,A

)+
,

is well-defined. It is clear that Λ+ is additive and

Λ+(¼ϕ) = ¼Λ+(ϕ), ¼ g 0, ϕ ∈
(

T d
X,A

)+
.

Suppose that ϕ ∈ T d
X,A is a hermitian functional. If ϕ = ϕ1 − ϕ2, where ϕ1

and ϕ2 are positive functionals on TX,A, set

Λh(ϕ) = Λ+(ϕ1)− Λ+(ϕ2).

The map Λh : (TX,A)
d
h → LX,A is well-defined: if ϕ1 − ϕ2 = È1 − È2, where

ϕ1, ϕ2, È1 and È2 are positive functionals then, by the additivity of Λ+, we
have that Λ+(ϕ1)+Λ+(È2) = Λ+(È1)+Λ+(ϕ2), that is, Λ+(ϕ1)−Λ+(ϕ2) =
Λ+(È1) − Λ+(È2). It is straightforward that the map Λh is R-linear, and
thus it extends to a (C-)linear map Λ : T d

X,A → LX,A.

Suppose that (ϕi,j)
m
i,j=1 ∈ Mm

(

T d
X,A

)+
; thus, the map Φ : TX,A → Mm,

given by Φ(u) = (ϕi,j(u))
m
i,j=1, is completely positive. By Proposition 5.4,

(ϕi,j(ex,x′,a,a′))i,j ∈ (MXA ¹Mm)+. This shows that Λ is completely posi-
tive.

If Λ(ϕ) = 0 then ϕ(ex,x′,a,a′) = 0 for all x, x′ ∈ X and all a, a′ ∈ A,
implying ϕ = 0; thus, Λ is injective. Since LX,A is an operator subsystem of
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MXA, it is spanned by the positive matrices it contains. Using Theorem 5.2,
we see that every positive element of LX,A is in the range of Λ; it follows
that Λ is surjective.

Finally, suppose that ϕi,j ∈ T d
X,A, i, j = 1, . . . ,m, are such that the matrix

(Λ(ϕi,j))
m
i,j=1 is a positive element of Mm (LX,A). Let Φ : TX,A → Mm be

given by Φ(u) = (ϕi,j(u))
m
i,j=1. Then

(
Φ(ex,x′,a,a′)

)
∈ Mm (LX,A)

+. By

Proposition 5.4, Φ is completely positive, that is, (ϕi,j)
m
i,j=1 ∈Mm

(

T d
X,A

)+
.

Thus, Λ−1 is completely positive, and the proof is complete. □

Let S be an operator system. A kernel in S [44] is a linear subspace
J ¦ S, for which there exists an operator system T and a unital completely
positive map È : S → T such that J = ker(È). If J is a kernel in S, the
quotient space S/J can be equipped with a unique operator system structure
with the property that, whenever T is an operator system and ϕ : S → T is
a completely positive map annihilating J , the induced map ϕ̃ : S/J → T is
completely positive. If T is an operator system, a surjective map ϕ : S → T
is called complete quotient, if the map ϕ̃ is a complete order isomorphism.
We refer the reader to [44] for further details.

Let

JX,A = {(µx,x′,a,a′) ∈MXA : µx,x′,a,a′ = 0 and µx,x′,a,a = µx,x′,a′,a′ , a ̸= a′,

and
∑

x∈X

µx,x,a,a = 0, a ∈ A}.

Corollary 5.6. The space JX,A is a kernel in MXA and the operator system
TX,A is completely order isomorphic to the quotient MXA/JX,A.

Proof. By Proposition 5.5, the map Λ : T d
X,A → MXA is a complete order

embedding. By [29, Proposition 1.8], the dual Λ∗ : Md
XA → TX,A of Λ is

a complete quotient map. Identifying Md
XA with MXA canonically, for an

element f ∈Md
XA, we have

Λ∗(f) = 0 ⇐⇒ ïΛ∗(f), ϕð = 0 for all ϕ ∈ TX,A

⇐⇒ ïf,Λ(ϕ)ð = 0 for all ϕ ∈ TX,A

⇐⇒ ïf, T ð = 0 for all T ∈ LX,A

⇐⇒ f ∈ JX,A.

Thus, ker(Λ∗) = JX,A. □

6. Descriptions via tensor products

In this section, we provide a description of the classes of QNS correlations,
introduced in Section 4, analogous to the description of the classes of NS
correlations given in [50] (see also [27] and [64]). We will use the tensor
theory of operator systems developed in [43]. If S and T are operator
systems, S¹minT denotes the minimal tensor product of S and T : ifA and B
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are unital C*-algebras, A¹minB is the spatial tensor product ofA and B, and
S ¦c.o.i. A and T ¦c.o.i. B, then S ¹min T ¦c.o.i. A¹min B. The commuting
tensor product S ¹c T sits completely order isomorphically in the maximal
tensor product C∗

u(S) ¹max C
∗
u(T ) of the universal C*-covers of S and T ,

while the maximal tensor product S¹maxT is characterised by the property
that it linearises jointly completely positive maps ¹ : S × T → B(H). We
refer the reader to [43] for more details and further background.

Let X, Y , A and B be finite sets. As in Section 5, we write ex,x′,a,a′ ,
x, x′ ∈ X, a, a′ ∈ A, for the canonical generators of TX,A. Similarly, we
write fy,y′,b,b′ , y, y

′ ∈ Y , b, b′ ∈ B, for the canonical generators of TY,B.
Given a linear functional s : TX,A ¹ TY,B → C (or a linear functional s :
CX,A ¹ CY,B → C), we let Γs :MXY →MAB be the linear map given by

(6.1) Γs

(
exe

∗
x′ ¹ eye

∗
y′
)
=
∑

a,a′∈A

∑

b,b′∈B

s
(
ex,x′,a,a′ ¹ fy,y′,b,b′

)
eae

∗
a′ ¹ ebe

∗
b′ .

Remark 6.1. The correspondence s → Γs is a linear map from the dual
(TX,A ¹ TY,B)d of TX,A ¹ TY,B into the space L(MXY ,MAB) of all linear
transformations from MXY into MAB.

Theorem 6.2. Let X,Y,A,B be finite sets and Γ : MXY → MAB be a
linear map. The following are equivalent:

(i) Γ is a QNS correlation;
(ii) there exists a state s : TX,A ¹max TY,B → C such that Γ = Γs.

Proof. (i)⇒(ii) Let Γ :MXY →MAB be a QNS correlation and write

Γ
(
exe

∗
x′ ¹ eye

∗
y′
)
=
∑

a,a′∈A

∑

b,b′∈B

Cx,x′,y,y′

a,a′,b,b′ eae
∗
a′ ¹ ebe

∗
b′ ,

for some Cx′,x,y′,y
a,a′,b,b′ ∈ C, x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B. It follows

from (2.2) and (2.3) that the Choi matrix C :=
(

Cx,x′,y,y′

a,a′,b,b′

)

of Γ satisfies the

following conditions (see also [22]):

(a) C ∈M+
XY AB;

(b) there exists cy,y
′

b,b′ ∈ C such that
∑

a∈AC
x,x′,y,y′

a,a,b,b′ = ¶x,x′cy,y
′

b,b′ , y, y
′ ∈ Y ,

b, b′ ∈ B;

(c) there exists dx,x
′

a,a′ ∈ C such that
∑

b∈B C
x,x′,y,y′

a,a′,b,b = ¶y,y′d
x,x′

a,a′ , x, x
′ ∈

X, a, a′ ∈ A.

By condition (b), LÉY B
(C) ∈ LX,A for every ÉY B ∈MY B, while by condition

(c), LÉXA
(C) ∈ LY,B for every ÉXA ∈MXA. Thus,

C ∈ (LX,A ¹ LY,B) ∩M+
XY AB;

by the injectivity of the minimal operator system tensor product, C ∈
(LX,A ¹min LY,B)

+.
By [29, Proposition 1.9] and Proposition 5.5,

(6.2) (TX,A ¹max TY,B)d ∼=c.o.i. LX,A ¹min LY,B,
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via the identification Λ given by (5.8). The state s of TX,A ¹max TY,B corre-
sponding to C via (6.2) satisfies
(6.3)

Cx,x′,y,y′

a,a′,b,b′ = s
(
ex,x′,a,a′ ¹ fy,y′,b,b′

)
, x, x′ ∈ X, y, y′ ∈ Y, a, a′ ∈ A, b, b′ ∈ B.

Thus, Γ = Γs.

(ii)⇒(i) Let s be a state of TX,A ¹max TY,B, and define Cx,x′,y,y′

a,a′,b,b′ via (6.3);

thus, C is the Choi matrix of Γs. By (5.5) and and the definition of the
maximal tensor procuct,

(
ex,x′,a,a′ ¹ fy,y′,b,b′

)
∈MXY AB (TX,A ¹max TY,B)+ ,

and hence the matrix C :=
(

Cx,x′,y,y′

a,a′,b,b′

)

is positive; by Choi’s Theorem, Γs

is completely positive. Relations (5.4) imply that Γs is trace preserving and
that conditions (b) and (c) hold. Suppose that ÄX = (Äx,x′)x,x′ ∈ MX has

zero trace and ÄY = (Äy,y
′

)y,y′ ∈MY . We have
∑

x,x′∈X

∑

y,y′∈Y

∑

b,b′∈B

∑

a∈A

Cx,x′,y,y′

a,a,b,b′ Äx,x′Äy,y
′

ebe
∗
b′

=

(
∑

x∈X

Äx,x

)
∑

y,y′∈Y

∑

b,b′∈B

Äy,y
′

cy,y
′

b,b′ ebe
∗
b′ = 0,

that is, (2.2) holds; similarly, (c) implies (2.3). □

Theorem 6.3. Let X,Y,A,B be finite sets and Γ : MXY → MAB be a
linear map. The following are equivalent:

(i) Γ is a quantum commuting QNS correlation;
(ii) there exists a state s : TX,A ¹c TY,B → C such that Γ = Γs;
(iii) there exists a state s : CX,A ¹max CY,B → C such that Γ = Γs.

Proof. (i)⇒(iii) Let H be a Hilbert space, E ∈MX¹MA¹B(H), F ∈MY ¹
MB¹B(H) form a commuting pair of stochastic operator matrices, and Ä ∈
T (H)+ be such that Γ = ΓE·F,Ä . By Theorem 5.2, there exist representations
ÃX and ÃY of CX,A and CY,B, respectively, such that Ex,x′,a,a′ = ÃX(ex,x′,a,a′)
and Fy,y′,b,b′ = ÃY (ey,y′,b,b′) for all x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A, b, b′ ∈ B.
Since CX,A (resp. CY,B) is generated by the elements ex,x′,a,a′ , x, x

′ ∈ X,
a, a′ ∈ A (resp. fy,y′,b,b′ , y, y

′ ∈ Y , b, b′ ∈ B), ÃX and ÃY have commuting
ranges. Let ÃX×ÃY be the (unique) *-representation CX,A¹maxCY,B → B(H)
such that (ÃX × ÃY )(u¹ v) = ÃX(u)ÃY (v), u ∈ CX,A, v ∈ CY,B. By (4.2),

〈
ΓE·F,Ä (exe

∗
x′ ¹ eye

∗
y′), eae

∗
a′ ¹ ebe

∗
b′
〉

=
〈
Ex,x′,a,a′Fy,y′,b,b′ , Ä

〉
=
〈
(ÃX × ÃY )(ex,x′,a,a′ ¹ fy,y′,b,b′), Ä

〉
.

Letting s(w) = ï(ÃX × ÃY )(w), Äð, w ∈ CX,A ¹max CY,B, we have Γ = Γs.
(iii)⇒(i) Let s be a state on CX,A ¹max CY,B and write Ãs and Às for

the corresponding GNS representation of CX,A ¹max CY,B and for its cyclic
vector, respectively. Then E := (Ãs(ex,x′,a,a′ ¹ 1))x,x′,a,a′ and F := (Ãs(1 ¹
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fy,y′,b,b′)y,y′,b,b′ form a commuting pair of stochastic operator matrices; more-
over, for x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A and b, b′ ∈ B, we have
〈
Γs(exe

∗
x′ ¹ eye

∗
y′), eae

∗
a′ ¹ ebe

∗
b′
〉

= s(ex,x′,a,a′ ¹ fy,y′,b,b′)

= ïÃs(ex,x′,a,a′ ¹ fy,y′,b,b′)Às, Àsð
= ïEx,x′,a,a′Fy,y′,b,b′Às, Àsð
=

〈
ΓE,F,Às(exe

∗
x′ ¹ eye

∗
y′), eae

∗
a′ ¹ ebe

∗
b′
〉
.

(ii)ô(iii) By Corollary 5.3 and [43, Theorem 6.4], TX,A ¹c TY,B sits com-
pletely order isomorphically in CX,A¹maxCY,B; thus the states of TX,A¹cTY,B
are precisely the restrictions of the states of CX,A ¹max CY,B. □

Corollary 6.4. The set Qqc is closed and convex.

Proof. By Theorem 6.3 and Remark 6.1, the map s→ Γs is an affine bijec-
tion from the state space of TX,A¹cTY,B onto Qqc. It is straightforward that
it is also a homeomorphism, when its domain is equipped with the weak*
topology. Since the state space of TX,A ¹c TY,B is weak* compact, its range
is (convex and) closed. □

Theorem 6.5. Let X,Y,A,B be finite sets and Γ : MXY → MAB be a
linear map. The following are equivalent:

(i) Γ is an approximately quantum QNS correlation;
(ii) there exists a state s : TX,A ¹min TY,B → C such that Γ = Γs;
(iii) there exists a state s : CX,A ¹min CY,B → C such that Γ = Γs.

Proof. The proof is along the lines of the proof of [64, Theorem 2.8]; we
include the details for the convenience of the reader.

(iii)⇒(i) Let ÃX : CX,A → B(HX) and ÃY : CY,B → B(HY ) be faithful
*-representations. Then ÃX ¹ ÃY : CX,A ¹min CY,B → B(HX ¹ HY ) is a
faithful *-representation of CX,A ¹min CY,B. Let s be a state satisfying (iii).
By [40, Corollary 4.3.10], s can be approximated in the weak* topology by
elements of the convex hull of vector states on (ÃX ¹ ÃY )(CX,A ¹min CY,B);
thus, given ε > 0, there exist unit vectors À1, . . . , Àn ∈ HX¹HY and positive
scalars ¼1, . . . , ¼n with

∑n
i=1 ¼i = 1 such that

∣
∣
∣
∣
∣
s(ex,x′,a,a′ ¹ fy,y′,b,b′)−

n∑

i=1

¼i
〈(
ÃX(ex,x′,a,a′)¹ ÃY (fy,y′,b,b′)

)
Ài, Ài

〉

∣
∣
∣
∣
∣
< ε,

for all x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A and b, b′ ∈ B. Let À = ·n
i=1

√
¼iÀi ∈

C
n ¹ (HX ¹ HY ); then ∥À∥ = 1. Set Ex,x′,a,a′ = In ¹ ÃX(ex,x′,a,a′) and

Fy,y′,b,b′ = ÃY (fy,y′,b,b′). Then (Ex,x′a,a′)x,x′,a,a′ (resp. (Fy,y′,b,b′)y,y′,b,b′) is a
stochastic operator matrix on C

n ¹HX (resp. HY ), and
∣
∣s
(
ex,x′,a,a′ ¹ fy,y′,b,b′

)
−
〈
Ex,x′a,a′ ¹ Fy,y′,b,b′À, À

〉∣
∣ < ε.

It follows that Γs is in the closure of the set of correlations of the form
ΓE»F,À, where E and F act on, possibly infinite dimensional, Hilbert spaces
H and K. Given such a correlation ΓE»F,À, let (P³)³ (resp. (Q´)´) be a net
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of finite rank projections on H (resp. K) such that P³ →³ IH (resp. Q´ →´

IK) in the strong operator topology. Set H³ = P³H (resp. K´ = Q´K),
E³ = (IX ¹ IA ¹ P³)E(IX ¹ IA ¹ P³) (resp. F´ = (IY ¹ IB ¹Q´)F (IY ¹
IB ¹ Q´)), and À³,´ = 1

∥(Pα¹Qβ)À∥
(P³ ¹ Q´)À (note that À³,´ is eventually

well-defined). Then E³ (resp. F´) is a stochastic operator matrix acting on
H³ (resp. K´), and ΓEα»Fβ ,Àα,β

→(³,´) ΓE»F,À along the product net. It
follows that Γs ∈ Qqa.

(i)⇒(iii) Given ε > 0, let E and F be stochastic operator matrices acting
on finite dimensional Hilbert spaces HX and HY , respectively, and À ∈
HX ¹HY be a unit vector, such that

∣
∣
〈
Γ(exe

∗
x′ ¹ eye

∗
y′), eaea′ ¹ ebe

∗
b′
〉
−
〈(
Ex,x′,a,a′ ¹ Fy,y′,b,b′

)
À, À
〉∣
∣ < ε,

for all x, x′ ∈ X, y, y′ ∈ Y , a, a′ ∈ A and b, b′ ∈ B. By Lemma 5.1, there
exists a *-representation ÃX (resp. ÃY ) of CX,A (resp. CY,B) on HX (resp.
HY ) such that Ex,x′,a,a′ = ÃX(ex,x′,a,a′) (resp. Fy,y′,b,b′ = ÃY (fy,y′,b,b′)),
x, x′ ∈ X, a, a′ ∈ A (resp. y, y′ ∈ Y , b, b′ ∈ B). Let sε be the state on
CX,A ¹min CY,B given by

sε (u¹ v) = ï(ÃX(u)¹ ÃY (v)) À, Àð ,

and s be a cluster point of the sequence {s1/n}n in the weak* topology. Then

s
(
ex,x′,a,a′ ¹ fy,y′,b,b′

)
= lim

n→∞
s1/n

(
ex,x′,a,a′ ¹ fy,y′,b,b′

)

=
〈
Γ(exe

∗
x′ ¹ eye

∗
y′), eaea′ ¹ ebe

∗
b′
〉
,

giving Γ = Γs.
(ii)ô(iii) follows from the fact that TX,A ¹min TY,B ¦c.o.i CX,A ¹min CY,B.

□

Recall [65] that, given any Archimedean ordered unit (AOU) space V ,
there exists a (unique) operator system OMIN(V ) (resp. OMAX(V )) with
underlying space V , called the minimal operator system (resp. the maximal
operator system) of V that has the property that every positive map from
an operator system T into V (resp. from V into an operator system T ) is
automatically completely positive as a map from T into OMIN(V ) (resp.
from OMAX(V ) into T ). If V is in addition an operator system, we denote
by OMIN(V ) (resp. OMAX(V )) the minimal (resp. maximal) operator
system of the AOU space, underlying V .

Lemma 6.6. Let V and W be finite dimensional AOU spaces with units e
and f , respectively. An element u ∈ OMAX(V )¹maxOMAX(W ) is positive

if and only if u =
∑k

i=1 vi ¹ wi, for some vi ∈ V +, wi ∈W+, i = 1, . . . , k.

Proof. Let D be the set of all sums of elementary tensors v¹w with v ∈ V +

and w ∈W+. We claim that if, for every ϵ > 0, there exists uϵ ∈ D such that
∥uϵ∥ →ϵ→0 0 and u+ uϵ ∈ D for every ϵ > 0, then u ∈ D. Assume, without
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loss of generality, that ∥uϵ∥ f 1 for all ϵ > 0. Set L = 2dim(V ) dim(W ) + 1
and, using Carathéodory’s Theorem, write

u+ uϵ =

L∑

j=1

v
(ϵ)
j ¹ w

(ϵ)
j ,

where v
(ϵ)
j ∈ V +, w

(ϵ)
j ∈W+ and ∥v(ϵ)j ∥ = ∥w(ϵ)

j ∥ for all j = 1, . . . , L and all

ϵ > 0. Since v
(ϵ)
j ¹w(ϵ)

j f u+uϵ and ∥u+uϵ∥ f ∥u∥+1 for all ϵ > 0, we have

∥v(ϵ)j ∥ f
√

∥u∥+ 1 and ∥w(ϵ)
j ∥ f

√

∥u∥+ 1, j = 1, . . . , L. By compactness,

we may assume that v
(ϵ)
j →ϵ→0 vj and w

(ϵ)
j →ϵ→0 wj for all j = 1, . . . , L. It

follows that u =
∑L

j=1 vj ¹ wj ∈ D.
Let

(6.4) S0 =

l∑

p=1

ap ¹ vp and T0 =

r∑

q=1

bq ¹ wq,

for some ap ∈ Mn, vp ∈ V +, p = 1, . . . , l, and bq ∈ M+
m, wq ∈ W+, q =

1, . . . , r. If ³ ∈M1,nm then

³(S0 ¹ T0)³
∗ =

l∑

p=1

r∑

q=1

(³(ap ¹ bq)³
∗) vp ¹ wq ∈ D.

Suppose that S ∈ Mn(OMAX(V ))+ and ³ ∈ M1,nm. By the definition of
the maximal tensor product [43], if ϵ > 0 then S + ϵ1n has the form of S0
in (6.4). Hence

³ (S ¹ T0)³
∗ + ϵ³ (1n ¹ T0)³

∗ = ³ ((S + ϵ1n)¹ T0)³
∗ ∈ D.

Since ³ (1n ¹ T0)³
∗ ∈ D, the previous paragraph shows that

³ (S ¹ T0)³
∗ ∈ D.

Now let T ∈ Mm(OMAX(W ))+, and write T + ϵ1m in the form of T0 in
(6.4). Then

³ (S ¹ T )³∗ + ϵ³ (S ¹ 1m)³∗ = ³ (S ¹ (T + ϵ1m))³∗ ∈ D.

By the previous paragraph, ³ (S ¹ 1m)³∗ ∈ D; by the first paragraph,
³ (S ¹ T )³∗ ∈ D.

Let u ∈ (OMAX(V )¹max OMAX(W ))+. By the definition of the max-
imal tensor product [43], for every ϵ > 0, there exist n,m ∈ N, S ∈
Mn(OMAX(V ))+, T ∈ Mm(OMAX(W ))+ and ³ ∈ M1,nm, such that u +
ϵ1 = ³ (S ¹ T )³∗. By the previous and the first paragraph, u ∈ D. □

Theorem 6.7. Let X,Y,A,B be finite sets and Γ : MXY → MAB be a
linear map. The following are equivalent:

(i) Γ is a local QNS correlation;
(ii) there exists a state s : OMIN(TX,A)¹minOMIN(TY,B) → C such that

Γ = Γs.
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Proof. (ii)⇒(i) Let s : OMIN(TX,A) ¹min OMIN(TY,B) → C be a state.
Using [41, Theorem 9.9] and [29, Proposition 1.9], we can identify s with

an element of
(

OMAX(T d
X,A)¹max OMAX(T d

Y,B)
)+

. By Lemma 6.6, there

exist states ϕi ∈
(

T d
X,A

)+
and Èi ∈

(

T d
Y,B

)+
, and non-negative scalars ¼i,

i = 1, . . . ,m, such that s ≡ ∑m
i=1 ¼iϕi ¹ Èi. Set Ei = (ϕi(ex,x′,a,a′))x,x′,a,a′

(resp. Fi = (Èi(fy,y′,b,b′))y,y′,b,b′), and let Φi : MX → MA (resp. Ψi : MY →
MB) be the quantum channel with Choi matrix Ei (resp. Fi), i = 1, . . . ,m.
Then Γs =

∑m
i=1 ¼iΦi ¹Ψi.

(i)⇒(ii) Write Γ =
∑m

i=1 ¼iΦi ¹Ψi as a convex combination of quantum
channels Φi : MX → MA and Ψi : MY → MB, i = 1, . . . ,m, and let s
be a functional on TX,A ¹ TY,B such that Γ = Γs. Let Ei ∈ (MX ¹MA)

+

(resp. Fi ∈ (MY ¹MB)
+) be the Choi matrix of Φi (resp. Ψi); thus, Ei

(resp. Fi) is a stochastic operator matrix acting on C. By Theorem 5.2,
there exist positive functionals ϕi : TX,A → C and Èi : TY,B → C such
that (ϕi(ex,x′,a′,a))x,x′,a,a′ = Ei and (Èi(fy,y′,b′,b))y,y′,b,b′ = Fi, i = 1, . . . ,m.
It is now straightforward to see that s is the functional corresponding to
∑m

i=1 ¼iϕi ¹ Èi and is hence, by Lemma 6.6, a state on OMIN(TX,A) ¹min

OMIN(TY,B). □

7. Classical-to-quantum no-signalling correlations

In this section, we consider the set of classical-to-quantum no-signalling
correlations, and provide descriptions of its various subclasses in terms of
canonical operator systems.

7.1. Definition and subclasses. Let X, Y , A and B be finite sets and H
be a Hilbert space.

Definition 7.1. A family Θ = (Ãx,y)x∈X,y∈Y of states in MAB is called a
classical-to-quantum no-signalling (CQNS) correlation if

(7.1) TrAÃx′,y = TrAÃx′′,y and TrBÃx,y′ = TrBÃx,y′′ ,

for all x, x′, x′′ ∈ X and all y, y′, y′′ ∈ Y .

A stochastic operator matrix E ∈MX ¹MA ¹B(H) will be called semi-
classical if Lexe∗x′

(E) = 0 whenever x ̸= x′, that is, if

E =
∑

x∈X

exe
∗
x ¹ Ex,

for some Ex ∈ (MA ¹ B(H))+ with TrAEx = IH , x ∈ X. We write E =
(Ex)x∈X ; note that, in its own right, Ex is a stochastic operator matrix in
L(C)¹MA ¹ B(H), x ∈ X.

Suppose that E = (Ex)x∈X and F = (Fy)y∈Y form a commuting pair of
semi-classical stochastic operator matrices, acting on a Hilbert space H and
Ã is a vector state on B(H). The family formed by the states

(7.2) Ãx,y = LÃ(Ex · Fy), x ∈ X, y ∈ Y,
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is a CQNS correlation; indeed, by Proposition 4.1, TrA Ãx,y = LÃ(Fy) and
TrB Ãx,y = LÃ(Ex) for all x, y. We call the CQNS correlations of this
form quantum commuting. Similarly, if (Ex)x∈X (resp. (Fy)y∈Y ) is a semi-
classical stochastic operator matrix on HA (resp. HB) and Ã is a vector
state on L(HA ¹HB), the family formed by

Ãx,y = LÃ(Ex » Fy), x ∈ X, y ∈ Y,

will be called a quantum CQNS correlation. A CQNS correlation Θ =
(Ãx,y)x∈X,y∈Y will be called approximately quantum if there exist quantum

CQNS correlations Θn = (Ã
(n)
x,y )x∈X,y∈Y , n ∈ N, such that

Ã(n)x,y →n→∞ Ãx,y, x ∈ X, y ∈ Y.

Finally, Θ will be called local if there exist states ÃAi,x (resp. ÃBi,y) in MA

(resp. MB) and scalars ¼i > 0, i = 1, . . . ,m, such that

Ãx,y =
m∑

i=1

¼iÃ
A
i,x ¹ ÃBi,y x ∈ X, y ∈ Y.

If E : DXY → MAB is a (classical-to-quantum) channel, we set ΓE =
E ◦ ∆XY ; thus, ΓE is a (quantum) channel from MXY to MAB. Given a
CQNS correlation Θ = (Ãx,y)x∈X,y∈Y , we let EΘ : DXY → MAB be the

channel given by

EΘ
(
exe

∗
x ¹ eye

∗
y

)
= Ãx,y, x ∈ X, y ∈ Y,

and ΓΘ = ΓEΘ . In the sequel, we will often identify Θ with the channel EΘ.
For x ∈ {loc, q, qa, qc, ns}, we write CQx for the set of all CQNS correlations
of class x; thus, the elements of CQx will often be considered as channels
from DXY to MAB. Similarly to the proof of Proposition 4.3, it can be
shown that quantum and quantum commuting CQNS correlations can be
defined using normal (not necessarily vector) states.

In the next lemma, for (finite) sets X and A and a Hilbert space H, we
let for brevity

∆̃X := ∆X ¹ idA ¹ id B(H) :MX ¹MA ¹ B(H) → DX ¹MA ¹ B(H)

and

∆̃X,A := ∆X ¹∆A ¹ id B(H) :MX ¹MA ¹ B(H) → DX ¹DA ¹ B(H).

Lemma 7.2. Let H be a Hilbert space, E ∈MX¹MA¹B(H) be a stochastic

operator matrix and Ã ∈ T (H) be a state. Set E′ = ∆̃X(E) and E′′ =

∆̃X,A(E). Then E′ (resp. E′′) is a semi-classical (resp. classical) stochastic
operator matrix,

(7.3) ΓE,Ã ◦∆X = ΓE′,Ã and ∆A ◦ ΓE,Ã ◦∆X = ΓE′′,Ã.

Moreover, if F ∈ MY ¹ MB ¹ B(H) is a stochastic operator matrix that
forms a commuting pair with E then

(7.4) ∆̃XY (E · F ) = ∆̃X(E) · ∆̃Y (F ).
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Proof. Note that, if E =
∑

x,x′∈X

∑

a,a′∈A exe
∗
x′ ¹ eae

∗
a′ ¹ Ex,x′,a,a′ then

∆̃X(E) =
∑

x∈X

∑

a,a′∈A

exe
∗
x ¹ eae

∗
a′ ¹ Ex,x,a,a′ .

We now have

ïΓE,Ã(∆X(exe
∗
x′)), eae

∗
a′ð = ¶x,x′ïEx,x′,a,a′ , Ãð =

〈
ΓE′,Ã(exe

∗
x′), eae

∗
a′
〉

for all x, x′ ∈ X and all a, a′ ∈ A. The second identity in (7.3) is equally
straightforward. Finally, for (7.4), notice that, if E =

(
Ex,x′,a,a′

)
and F =

(
Fy,y′,b,b′

)
then both sides of the identity are equal to

∑

x∈X

∑

y∈Y

∑

a,a′∈A

∑

b,b′∈B

exe
∗
x ¹ eye

∗
y ¹ eae

∗
a′ ¹ ebe

∗
b′ ¹ Ex,x,a,a′Fy,y,b,b′ .

□

Theorem 7.3. Fix x ∈ {loc, q, qa, qc, ns}. If Γ ∈ Qx then Γ|DXY
∈ CQx;

conversely, if E ∈ CQx then ΓE ∈ Qx. Moreover, for a channel E : DXY →
MAB, we have that

(i) E ∈ CQqc if and only if ΓE = ΓE·F,Ã, where (E,F ) is a commut-
ing pair of semi-classical stochastic operator matrices, acting on a
Hilbert spaces H, and Ã is a normal state on B(H);

(ii) E ∈ CQq if and only if ΓE = ΓE»F,Ã, where E and F are semi-
classical stochastic operator matrices, acting on finite dimensional
Hilbert spaces HA and HB, respectively, and Ã is a state on L(HA¹
HB).

Proof. It is trivial that if Γ ∈ Qns then Γ|DXY
∈ CQns. Conversely, suppose

that E ∈ CQns, and let ÄX ∈MX and ÄY ∈MY be states, with Tr(ÄX) = 0.
By (7.1),

TrAΓE (ÄX ¹ ÄY ) =
∑

x∈X

∑

y∈Y

ïÄXex, exðïÄY ey, eyðTrAÃx,y = 0

and, by symmetry, ΓE ∈ Qns.
Let E ∈MX ¹MA¹B(H) and F ∈MY ¹MB ¹B(H) form a commuting

pair of stochastic operator matrices and Ã ∈ T (H) be a state. It follows
from Lemma 7.2 that

ΓE·F,Ã|DXY
= Γ∆XY (E·F ),Ã|DXY

= Γ∆X(E)·∆Y (F ),Ã|DXY
∈ CQqc.

Conversely, suppose that EΘ ∈ CQqc, where Θ = (Ãx,y)x∈X,y∈Y is a CQNS
correlation. Let H, Ã, E and F be such that (7.2) holds; then ΓΘ = ΓE·F,Ã.
A similar argument applies in the case x = q, and the case x = qa fol-
lows from the fact that the map E → E ◦ ∆XY , from L(DXY ,MAB) into
L(MXY ,MAB), is continuous. Finally, if Ãx,y = Ãx ¹ Ãy, where Ãx ∈ MA

(resp. Ãy ∈ MB) is a state, x ∈ X (resp. y ∈ Y ), and Φ : MX → MA

(resp. Ψ : MY → MB) is the channel given by Φ(exe
∗
x′) = ¶x,x′Ãx (resp.

Ψ(eye
∗
y′) = ¶y,y′Ã

y), then ΓE = Φ¹Ψ, and the case x = loc follows. □
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7.2. Description in terms of states. We next introduce an operator sys-
tem, universal for classical-to-quantum no-signalling correlations in a similar
manner that TX,A is universal for the (fully) quantum correlations, and de-
scribe the subclasses of CQNS correlations via states on tensor products of
its copies.

Let
BX,A =MA ∗1 · · · ∗1 MA

︸ ︷︷ ︸

|X| times

,

a free product, amalgamated over the unit. For each x ∈ X, write {ex,a,a′ :
a, a′ ∈ A} for the canonical matrix unit system of the x-th copy of MA, and
let

RX,A = span{ex,a,a′ : x ∈ X, a, a′ ∈ A},
considered as an operator subsystem of BX,A.

Given operator systems S1, . . . ,Sn, their coproduct S = S1·1 · · · ·1 Sn is
an operator system, equipped with complete order embeddings ºi : Si → S,
characterised by the universal property that, whenever R is an operator
system and ϕi : Si → R is a unital completely positive map, i = 1, . . . , n,
there exists a unique unital completely positive map ϕ : S → R such that
ϕ◦ºi = ϕi, i = 1, 2, . . . , n. We refer the reader to [42, Section 8] for a detailed
account of the coproduct of operator systems.

Remark 7.4. Let Ai, i = 1, . . . , n, be unital C*-algebras and S = span{ai :
ai ∈ Ai, i = 1, . . . , n}, considered as an operator subsystem of the free
product A1 ∗1 · · · ∗1 An, amalgamated over the unit. It was shown in [28,
Theorem 5.2] that S ∼=c.o.i. A1 ·1 · · · ·1 An. In particular, we have

(7.5) RX,A
∼=MA ·1 · · · ·1 MA
︸ ︷︷ ︸

|X| times

.

An application of [64, Lemma 2.8] now shows that

(7.6) RX,A ¹c RY,B ¦c.o.i. BX,A ¹max BY,B.

Theorem 7.5. Let H be a Hilbert space and ϕ : RX,A → B(H) be a linear
map. The following are equivalent:

(i) ϕ is a unital completely positive map;

(ii)
((
ϕ(ex,a,a′)

)

a,a′∈A

)

x∈X
is a semi-classical stochastic operator ma-

trix.

Proof. (i)⇒(ii) The restriction ϕx of ϕ to the x-th copy of MA is a unital
completely positive map. By Choi’s Theorem,

(
ϕx(ex,a,a′)

)

a,a′
is a stochastic

operator matrix inMA¹B(H) for every x ∈ X; thus,
((
ϕ(ex,a,a′)

)

a,a′∈A

)

x∈X
is a semi-classical stochastic operator matrix.

(ii)⇒(i) For each x ∈ X, let ϕx :MA → B(H) be the linear map defined by
letting ϕx(eae

∗
a′) = ϕ(ex,a,a′). By Choi’s Theorem, ϕx is a (unital) completely

positive map. By the universal property of the coproduct, there exists a
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(unique) unital completely positive map È : RX,A → B(H) whose restriction
to the x-th copy of MA coincides with ϕx. It follows that È = ϕ, and hence
ϕ is completely positive. □

Remark 7.6. By [28, Theorem 5.1], RX,A is an operator system quotient
of MXA. Now [29, Proposition 1.8] shows that, if

QX,A = {·x∈XTx ∈ ·x∈XMA : ∃ c ∈ C s.t. TrTx = c, x ∈ X} ,
then the linear map Λcq : Rd

X,A → QX,A, given by

Λcq(ϕ) = ·x∈X

(
ϕ(ex,a,a′)

)

a,a′
,

is a well-defined unital complete order isomorphism.

We denote the canonical generators of RY,B by fy,b,b′ , y ∈ Y , b, b′ ∈ B.
Given a functional t : RX,A ¹ RY,B → C, we let Et : DXY → MAB be the
linear map defined by

Et
(
exe

∗
x ¹ eye

∗
y

)
=
∑

a,a′∈A

∑

b,b′∈B

t
(
ex,a,a′ ¹ fy,b,b′

)
eae

∗
a′ ¹ ebe

∗
b′ .

We note that t→ Et is a linear map from (RX,A¹RY,B)
∗ into L(DXY ,MAB).

Theorem 7.5 and the universal property of the coproduct imply the exis-
tence of a unital completely positive map ´X,A : RX,A → TX,A such that

´X,A(ex,a,a′) = ex,x,a,a′ , x ∈ X, a, a′ ∈ A.

Similarly, the matrix (¶x,x′ex,a,a′)x,x′,a,a′ is stochastic, and Theorem 5.2 im-
plies the existence of a unital completely positive map ´′X,A : TX,A → RX,A

such that

´′X,A(ex,x′,a,a′) = ¶x,x′ex,a,a′ , x, x′ ∈ X, a, a′ ∈ A.

It is clear that
´′X,A ◦ ´X,A = idRX,A

.

Theorem 7.7. The map t→ Et is an affine isomorphism

(i) from the state space of RX,A ¹max RY,B onto CQns;
(ii) from the state space of RX,A ¹c RY,B onto CQqc;
(iii) from the state space of RX,A ¹min RY,B onto CQqa;
(iv) from the state space of OMIN (RX,A)¹minOMIN (RY,B) onto CQloc.

Proof. It is clear that the map t→ Et is bijective. It is also straightforward
to see that, for a linear functional s : TX,A¹TY,B → C, we have Γs|DXY

= Et,
where t = s ◦ (´X,A ¹ ´Y,B). The claims now follow from Theorems 6.2, 6.3,
6.5, 6.7, 7.3 and the functoriality of the involved tensor products. □

As a consequence of Theorem 7.7, we see that the sets CQqc and CQloc

are closed (as are CQns and CQqa).

Remark. As in Theorems 6.3 and 6.5, the classes CQqc and CQqa can
be equivalently described via states on the C*-algebraic tensor products
BX,A¹maxBY,B and BX,A¹minBY,B, respectively. For the class CQqa, this is
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a direct consequence of the injectivity of the minimal tensor product in the
operator system category, while for the class CQqc, this is a consequence of
Remark 7.4.

8. Classical reduction and separation

Let X and A be finite sets. We let

AX,A = ℓ∞A ∗1 · · · ∗1 ℓ∞A
︸ ︷︷ ︸

|X| times

,

where the free product is amalgamated over the unit, and

SX,A = ℓ∞A ·1 · · · ·1 ℓ
∞
A

︸ ︷︷ ︸

|X| times

,

the operator system coproduct of |X| copies of ℓ∞A . Note that, by [28,
Theorem 5.2] (see Remark 7.4), SX,A is an operator subsystem of AX,A. We
let (ex,a)a∈A be the canonical basis of the x-th copy of ℓ∞A inside SX,A; thus,
SX,A is generated, as a vector space, by {ex,a : x ∈ X, a ∈ A}, and the
relations ∑

a∈A

ex,a = 1, x ∈ X,

are satisfied. Note that, by the universal property of the operator system
coproduct, SX,A is characterised by the following property: whenever H is a
Hilbert space and {Ex,a : x ∈ X, a ∈ A} is a family of positive operators on
H such that (Ex,a)a∈A is a POVM for every x ∈ X, there exists a (unique)
unital completely positive map ϕ : SX,A → B(H) such that ϕ(ex,a) = Ex,a,
x ∈ X, a ∈ A.

We denote by E the map sending a quantum channel Γ : MXY →
MAB to Γ|DXY

(and recall that N stands for the map sending Γ to NΓ =
∆AB ◦ Γ|DXY

); Remark 8.1 below justifies calling E and N classical reduc-
tion maps. The forward implications all follow similarly to the one in (ii),
which was shown in Theorem 7.3, while the reverse ones can be seen after
an application of Lemma 7.2. We recall that we identify Cns with the set
{Np : p an NS correlation}.
Remark 8.1. Let X, Y , A and B be finite sets, x ∈ {loc, q, qa, qc, ns},
p ∈ Cx and E ∈ CQx. The following hold:

(i) p ∈ Cx ô Ep ∈ CQx ô Γp ∈ Qx;
(ii) E ∈ CQx ô ΓE ∈ Qx.

Moreover, the maps E : Qx → CQx and N : CQx → Cx are well-defined and
surjective.

We identify an element N of Cx with the corresponding classical-to-
quantum channel from DXY into MAB, and an element E of CQx with the
corresponding quantum channel fromMXY intoMAB. The subsequent table
summarises the inclusions between the various classes of correlations:
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Cloc ¢ Cq ¢ Cqa ¢ Cqc ¢ Cns
∩ ∩ ∩ ∩ ∩

CQloc ¢ CQq ¢ CQqa ¢ CQqc ¢ CQns

∩ ∩ ∩ ∩ ∩
Qloc ¢ Qq ¢ Qqa ¢ Qqc ¢ Qns.

By Bell’s Theorem, Cloc ̸= Cq for all subsets X,Y,A,B of cardinality at
least 2. By Remark 8.1, we have that CQloc ̸= CQq and Qloc ̸= Qq. By
[72], Cq ̸= Cqa for some finite sets X, Y , A and B (see also [23]) and hence
CQq ̸= CQqa and Qq ̸= Qqa for a suitable choice of sets. The inequality
Cqc ̸= Cns is well-known (it follows e.g. from [27, Theorem 7.11]), implying
that CQqc ̸= CQns and Qqc ̸= Qns.

It was recently shown [38] that the inequality Cqa ̸= Cqc also holds true
for suitable sets X, Y , A and B, thus resolving the long-standing Tsirelson
Problem and, by [39] and [58], the Connes Embedding Problem, in the
negative. It thus follows from Remark 8.1 that, for this choice of sets,
CQqa ̸= CQqc and Qqa ̸= Qqc. We next strengthen these inequalities.

Lemma 8.2. Let Xi and Ai be finite sets, i = 1, 2, with X1 ¦ X2 and
A1 ¦ A2. There exist unital completely positive maps º1 : SX1,A1 → SX2,A2

and º2 : SX2,A2 → SX1,A1 such that º2 ◦ º1 = id.

Proof. Denote the canonical generators of SX1,A1 by ex,a, and of SX2,A2 –
by fx,a. By induction, it suffices to prove the claim in two cases.

Case 1. X1 = X2 and A2 = A1 ∪ {a2}, where a2 ̸∈ A1.

Let a1 ∈ A1. Define the maps º1 and º2 by setting

º1(ex,a) =

{
fx,a if a ∈ A1 \ {a1},
fx,a1 + fx,a2 a = a1,

and

º2(fx,a) =

{
ex,a if a ∈ A1 \ {a1},
1
2ex,a1 a ∈ {a1, a2}.

Case 2. A2 = A1 and X2 = X1 ∪ {x2}, where x2 ̸∈ X1.

Let x1 ∈ X1. Define º1(ex,a) = fx,a, x ∈ X1, a ∈ A1, and

º2(fx,a) =

{
ex,a if x ∈ X1,
ex1,a x = x2.

By the universal property of the operator systems SX,A, º1 and º2 are
unital completely positive maps, and the condition º2 ◦ º1 = id is readily
verified. □

Theorem 8.3. For all finite sets X, Y , A and B of sufficiently large car-
dinality, the following hold true:

(i) Qqa(X,Y,A,B) ̸= Qqc(X,Y,A,B);
(ii) CQqa(X,Y,A,B) ̸= CQqc(X,Y,A,B);
(iii) TX,A ¹min TY,B ̸= TX,A ¹c TY,B;
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(iv) RX,A ¹min RY,B ̸= RX,A ¹c RY,B;
(v) BX,A ¹min BY,B ̸= BX,A ¹max BY,B;
(vi) CX,A ¹min CY,B ̸= CX,A ¹max CY,B.

Proof. By [38], there exist (finite) sets X0, Y0, A0 and B0 and an NS corre-
lation

p ∈ Cqc(X0, Y0, A0, B0) \ Cqa(X0, Y0, A0, B0).

Using [50, Corollary 3.2], let s be a state on SX0,A0 ¹c SY0,B0 such that

(8.1) p(a, b|x, y) = s(ex,a ¹ ey,b)

for all x ∈ X0, y ∈ Y0, a ∈ A0 and b ∈ B0. Assume that X0 ¦ X,
Y0 ¦ Y , A0 ¦ A and B0 ¦ B. Write ºAi (resp. ºBi ), i = 1, 2, for the
maps arising from Lemma 8.2 for the operator systems SX0,A0 and SX,A

(resp. SY0,B0 and SY,B). By the functoriality of the commuting tensor

product, the map t := s ◦ (ºA2 ¹ ºB2 ) is a state on SX,A ¹c SY,B. The NS
correlation q ∈ Cqc(X,Y,A,B) arising from t as in (8.1) does not belong to
the class Cqa. Indeed, if q ∈ Cqa then, by [50, Corollary 3.3], t is a state on
SX,A ¹min SY,B, and hence s = t ◦ (ºA1 ¹ ºB1 ) (see Lemma 8.2) is a state on
SX0,A0 ¹min SY0,B0 which, in view of [50, Corollary 3.3], contradicts the fact
that p is not approximately quantum.

It follows that Cqa(X,Y,A,B) ̸= Cqc(X,Y,A,B) for all sets X, Y , A and
B of sufficiently large cardinality. Parts (i) and (ii) now follow from Remark
8.1. Claim (iii) follows from Theorems 6.3 and 6.5, while (iv) – from (ii)
and Theorem 7.7. Finally, (v) follows from (iv) and Remark 7.4, and (vi)
follows from (iii), Corollary 5.3 and [43, Theorem 6.4]. □

Recall that an operator system S is said to possess the operator system
local lifting property (OSLLP) [44] if, whenever A is a unital C*-algebra,
I ¦ A is a two-sided ideal, T ¦ S is a finite dimensional operator subsystem
and φ : T → A/I is a unital completely positive map, there exists a unital
completely positive map È : T → A such that φ = q ◦ È (here q : A → A/I
denotes the quotient map). We conclude this section with showing that the
operator systems we introduced possess OSLPP.

Proposition 8.4. Let S be an operator system quotient of Mk, for some
k ∈ N, and H be a Hilbert space. Then S ¹min B(H) ∼=c.o.i. S ¹max B(H),
and hence S possesses OSLLP.

Proof. Let J ¦ Mk be a kernel such that S = Mk/J ; write q : Mk → S
for the quotient map. By [29, Proposition 1.8], the dual q∗ : Sd → Md

k is a
complete order embedding.

Fix u ∈Mn (S ¹min B(H))+; after a canonical identification, we consider
u as an element of (S ¹min Mn (B(H)))+. Let {S1, . . . , Sm} be a basis of
S, and write u =

∑m
i=1 Si ¹ Ti, for some Ti ∈ Mn (B(H)), i = 1, . . . ,m.

By [42, Proposition 6.1], the map ϕu : Sd → Mn (B(H)), given by ϕu(f) =∑m
i=1 f(Si)Ti, is completely positive. By Arveson’s Extension Theorem,

there exists a completely positive map È : Md
k → Mn (B(H)) with È ◦ q∗ =
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ϕu. Let S′
i ∈ Mk be such that q(S′

i) = Si, i = 1, . . . ,m, and let {S′
i : i =

m+ 1, . . . , k2} be a basis of J . Then {S′
1, . . . , S

′
m, S

′
m+1, . . . , S

′
k2} is a basis

of Mk. Let

v =

k2∑

i=1

S′
i ¹ T ′

i ∈Mk ¹Mn (B(H))

be an element such that

È(g) =
k2∑

i=1

g(S′
i)T

′
i , g ∈Md

k ;

by [42, Proposition 6.1], v ∈ (Mk ¹min Mn (B(H)))+. Since Mk is nuclear, v
belongs to (Mk ¹max Mn (B(H)))+. Let w = (q¹ id)(v); by the functoriality
of the maximal tensor product, w ∈ (S ¹max Mn(B(H)))+. We have

w =
k2∑

i=1

q(S′
i)¹ T ′

i =
m∑

i=1

Si ¹ T ′
i .

For all f ∈ Sd, we have

m∑

i=1

f(Si)T
′
i =

k2∑

i=1

q∗(f)(S′
i)T

′
i = È(q∗(f)) = ϕu(f) =

m∑

i=1

f(Si)Ti.

It follows that Ti = T ′
i , i = 1, . . . ,m, and hence u = w. Thus, u ∈

Mn (S ¹max B(H))+, and it follows from [44, Theorem 8.6] that S possesses
OSLLP. □

Proposition 8.4, combined with Corollary 5.6 and Remark 7.6, yield the
following corollary.

Corollary 8.5. Let X and A be finite sets. Then TX,A and RX,A possess
OSLPP.

Remark. It is worth noting the different nature of the C*-algebras AX,A

and BX,A on one hand, and CX,A on the other. This is best seen in the special
case where |X| = 1, when AX,A

∼= DA, BX,A
∼=MA and CX,A

∼= C∗
u(MA).

9. Quantum versions of synchronicity

Let X and A be finite sets, Y = X and B = A. We will often distinguish
the notation for X vs. Y (resp. A vs. B) although they coincide, in order
to make clear with respect to which term in a tensor product a partial trace

is taken. An NS correlation p =
{

(p(a, b|x, y))a,b∈A : x, y ∈ X
}

is called

synchronous [63] if

p(a, b|x, x) = 0 x ∈ X, a, b ∈ A, a ̸= b.

In this section, we examine possible quantum versions of the notion of syn-
chronicity. Our main motivation is the following result, which was proved
in [63].
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Theorem 9.1. Let p be an NS correlation. Then

(i) p is synchronous and quantum commuting if and only if there exists
a trace Ä : AX,A → C such that

(9.1) p(a, b|x, y) = Ä (ex,aey,b) , x, y ∈ X, a, b ∈ A;

(ii) p is synchronous and quantum if and only if there exist a finite di-
mensional C*-algebra A, a trace ÄA on A and a *-homomorphism
Ã : AX,A → A such that (9.1) holds for the trace Ä = ÄA ◦ Ã;

(iii) p is synchronous and local if and only if there exist an abelian C*-
algebra A, a trace ÄA on A and a *-homomorphism Ã : AX,A → A
such that (9.1) holds for the trace Ä = ÄA ◦ Ã.

9.1. Fair correlations. If A is a unital C*-algebra, we write Aop for the
opposite C*-algebra of A; recall that Aop has the same underlying set (whose
elements will be denoted by uop, for u ∈ A), the same involution, linear
structure and norm, and multiplication given by uopvop = (vu)op, u, v ∈ A.
For a subset S ¦ A, we let Sop = {uop : u ∈ S}.

For a Hilbert space H, we denote by Hd its Banach space dual; if K
is a(nother) Hilbert space and T ∈ B(H,K), we denote by T d its adjoint,
acting from Kd into Hd. We note the relation

(9.2) (T ∗)d = (T d)∗, T ∈ B(H,K).

It is straightforward to see that if A is a C*-algebra and Ã : A → B(H)
is a (faithful) *-representation then the map Ãop : Aop → B(Hd), given by
Ãop(uop) = Ã(u)d, is a (faithful) *-representation. Note that the transpo-
sition map u → (ut)op is a *-isomorphism between MX and Mop

X . It was
shown in [45] that there exists a *-isomorphism ∂A : AX,A → Aop

X,A such

that ∂A(ex,a) = eopx,a, x ∈ X, a ∈ A. The following analogous statements for
CX,A and BX,A will be needed later.

Lemma 9.2. Let X and A be finite sets.

(i) There exists a *-isomorphism ∂ : CX,A → Cop
X,A such that

∂(ex,x′,a,a′) = eopx′,x,a′,a, x, x′ ∈ X, a, a′ ∈ A.

(ii) There exists a *-isomorphism ∂B : BX,A → Bop
X,A such that

∂B(ex,a,a′) = eopx,a′,a, x ∈ X, a, a′ ∈ A.

Proof. (i) Let Ã : CX,A → B(H) be a faithful *-representation. Write
Ex,x′,a,a′ = Ã(ex,x′,a,a′), x, x

′ ∈ X, a, a′ ∈ A. Using Theorem 3.1, let K

be a Hilbert space and (Va,x)a,x : HX → KA be an isometry such that

Ex,x′,a,a′ = V ∗
a,xVa′,x′ , x, x′ ∈ X, a, a′ ∈ A. Let Wa,x =

(
V d
a,x

)∗
; thus,

Wa,x ∈ B(Hd,Kd), x ∈ X, a ∈ A. Using (9.2), we have
∑

a∈A

W ∗
a,x′Wa,x =

∑

a∈A

V d
a,x′

(
V ∗
a,x

)d
=
∑

a∈A

(
V ∗
a,xVa,x′

)d
= ¶x,x′Id;
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thus, (Wa,x)a,x is an isometry. By Theorem 3.1, if Fx,x′,a,a′ = W ∗
a,xWa′,x′ ,

x, x′ ∈ X, a, a′ ∈ A, then
(
Fx,x′,a,a′

)

x,x′,a,a′
is a stochastic operator matrix.

Note that

Fx,x′,a,a′ = V d
a,x

(

V d
a′,x′

)∗
=
(
V ∗
a′,x′Va,x

)d
= Ed

x′,x,a′,a.

By the universal property of CX,A, there exists a *-homomorphism Ã′ :

Ã (CX,A) → B
(
Hd
)
such that

Ã′
(
Ex,x′,a,a′

)
= Ed

x′,x,a′,a, x, x′ ∈ X, a, a′ ∈ A.

By the paragraph before Lemma 9.2, Ã′ ◦ Ã can be regarded as a *-homo-
morphism from CX,A into Cop

X,A, which maps ex,x′,a,a′ to e
op
x′,x,a′,a. The claim

follows by symmetry.
(ii) The words of the form ex1,a1,a′1

. . . exk,ak,a
′
k
span a dense ∗-subalgebra

of BX,A . As u 7→ (ut)op is a *-isomorphism from MA to Mop
A that maps

the matrix unit eae
∗
a′ to (ea′e

∗
a)

op, the universal property of the free product
implies that the map ∂B given by

∂B(ex1,a1,a′1
. . . exk,ak,a

′
k
) = eop

x1,a′1,a1
. . . eop

xk,a
′
k
,ak

extends to the desired *-isomorphism. □

If U is a subspace of a C∗-algebra A, we call a linear functional s :
U ¹ Uop → C fair if

(9.3) s(u¹ 1) = s(1¹ uop) for all u ∈ U .
It will be convenient to write tY for the transpose map on MY . A state

Ä ∈ MXY will be called fair if TrX ((id¹ tY )(Ä)) = TrY ((id¹ tY )(Ä)). We
write ΣX = {Ä ∈ M+

XY : Ä a fair state}, and observe that an element Ä =

(Äx,x′,y,y′) ∈M+
XY belongs to ΣX precisely when

∑

x∈X

∑

y,y′∈Y

Äx,x,y,y′ey′e
∗
y =

∑

x,x′∈X

∑

y∈Y

Äx,x′,y,yexe
∗
x′ ,

that is, when

(9.4)
∑

x∈X

Äx,x,z,z′ =
∑

y∈X

Äz′,z,y,y, z, z′ ∈ X.

We let Σcl
X = ΣX∩DXY ; thus, a state Ä = (Äx,y)x,y ∈ D+

XY is in Σcl
X precisely

when

(9.5)
∑

x∈X

Äx,z =
∑

y∈X

Äz,y, z ∈ X.

It follows from (9.4) and (9.5) that

(9.6) ∆XY (ΣX) = Σcl
X .

Definition 9.3. A QNS correlation Γ : MXY → MAB (resp. a CQNS
correlation E : DXY →MAB, an NS correlation N : DXY → DAB) is called
fair if Γ (ΣX) ¦ ΣA (resp. E

(
Σcl
X

)
¦ ΣA, N

(
Σcl
X

)
¦ Σcl

A).
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Theorem 9.4. Let Γ be a QNS correlation.

(i) Γ is fair if and only if there exists a state s : TX,A ¹max TX,A → C

such that Γ = Γs and the state s ◦ (id¹ ∂)−1 is fair;
(ii) Γ is fair and belongs to Qqc if and only if there exists a state s :

TX,A ¹c TX,A → C such that Γ = Γs and the state s ◦ (id ¹ ∂)−1 is
fair;

(iii) Γ is fair and belongs to Qqa if and only if there exists a state s :
TX,A ¹min TX,A → C such that Γ = Γs and the state s ◦ (id¹ ∂)−1 is
fair;

(iv) Γ is fair and belongs to Qloc if and only if there exists a state s :
OMIN(TX,A)¹min OMIN(TY,B) → C such that Γ = Γs and the state
s ◦ (id¹ ∂)−1 is fair.

Proof. We only show (i); the proofs of (ii)-(iv) are similar. Let Γ be a QNS
correlation. By Theorem 6.2, there exists a state s ∈ TX,A ¹max TX,A → C

such that Γ = Γs. The condition

TrA ((id¹ tB)(Γ(Ä)) = TrB ((id¹ tB)(Γ(Ä))

is equivalent to
(9.7)
∑

a∈A

ï(id¹ tB(Γ(Ä))ea ¹ eb′ , ea ¹ ebð =
∑

a∈A

ï(id¹ tB(Γ(Ä))eb′ ¹ ea, eb ¹ eað ,

b, b′ ∈ B. Note that

Γ(Ä) =
∑

a,a′∈A

∑

b,b′∈A

∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s(ex,x′,a,a′ ¹ ey,y′,b,b′)eae
∗
a′ ¹ ebe

∗
b′

and hence

(id¹ tB)(Γ(Ä))

=
∑

a,a′∈A

∑

b,b′∈A

∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s(ex,x′,a,a′ ¹ ey,y′,b,b′)eae
∗
a′ ¹ eb′e

∗
b .

Thus, letting µ
(1)
y,y′ =

∑

x∈X Äx,x,y,y′ , we have that the left hand side of (9.7)

coincides with
∑

a∈A

∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s
(
ex,x′,a,a ¹ ey,y′,b′,b

)

=
∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s

((
∑

a∈A

ex,x′,a,a

)

¹ ey,y′,b′,b

)

=
∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′¶x,x′s
(
1¹ ey,y′,b′,b

)
= s



1¹
∑

y,y′∈X

µ
(1)
y,y′ey,y′,b′,b





= s ◦ (id¹ ∂)−1



1¹
∑

y,y′∈X

µ
(1)
y,y′e

op
y′,y,b,b′



 .
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Similarly, letting µ
(2)
x,x′ =

∑

y∈X Äx,x′,y,y, we have that the right hand side of

(9.7) coincides with
∑

a∈A

∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s
(
ex,x′,b,b′ ¹ ey,y′,a,a

)

=
∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′s

(

ex,x′,b,b′ ¹
(
∑

a∈A

ey,y′,a,a

))

=
∑

x,x′∈X

∑

y,y′∈X

Äx,x′,y,y′¶y,y′s
(
ex,x′,b,b′ ¹ 1

)

= s




∑

x,x′∈X

µ
(2)
x,x′ex,x′,b,b′ ¹ 1



 ,

that is, with

s ◦ (id¹ ∂)−1




∑

y,y′∈X

µ
(2)
y′,yey′,y,b,b′ ¹ 1



 .

Let now Ä ∈ ΣX . By (9.4), µ
(1)
y,y′ = µ

(2)
y′,y. Hence, if s ◦ (id¹ ∂)−1 is fair then

Γ(Ä) ∈ ΣA, that is, Γ is fair.
Conversely, assuming that Γ is fair, the previous paragraph shows that

(9.8) s ◦ (id¹ ∂)−1(u¹ 1) = s ◦ (id¹ ∂)−1(1¹ uop)

for any u of the form u =
∑

y,y′∈X(
∑

x Äx,x,y,y′)ey,y′,b,b′ with Ä ∈ ΣX . Letting

Ä = exe
∗
x ¹ exe

∗
x ∈ ΣX we conclude that (9.8) holds for u = ex,x,b,b′ , x ∈ X,

b, b′ ∈ A. Letting Ä = 1 ¹ Ét + É ¹ 1, where É = ³(eze
∗
z + ez′e

∗
z′) +

´eze
∗
z′ +

¯́ez′e
∗
z, z ̸= z′, with ³ g |´|, we obtain that (9.8) holds for u =

³(2
∑

y∈X ey,y,b,b′ + |X|ez,z,b,b′ + |X|ez′,z′,b,b′) + ´|X|ez′,z,b,b′ + ¯́|X|ez,z′,b,b′ .
From this we deduce that (9.8) holds for any u = ey,y′,b,b′ , y, y

′ ∈ X, b, b′ ∈
A. □

Let S ¦ B(K) be an operator system. We let Sop = {ud : u ∈ S},
considered as an operator subsystem of B(Kd). Note that Sop is well-defined:

if ϕ : S → B(K̃) is a unital complete isometry, then the map ϕ̃ : Sop →
B(K̃d), given by ϕ̃(ud) = ϕ(u)d, is also unital and completely isometric. We
thus write uop = ud in the (abstract) operator system Sop.

For a linear map Φ : MX → MA, let Φq : MX → MA be the linear map
given by Φq(É) = Φ(Ét)t.

Lemma 9.5. Let S be an operator system.

(i) If ϕ : S → B(H) be a unital completely positive map then the map
ϕop : Sop → B(Hd), given by ϕop(uop) = ϕ(u)d, is unital and com-
pletely positive.

(ii) Up to a canonical *-isomorphism, C∗
u(Sop) = C∗

u(S)op.
(iii) If Φ :MX →MA is a completely positive map then so is Φq.
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Proof. (i) Represent S ¦ B(K) as a concrete operator system. Then Sop ¦
B(Kd). Suppose that ui,j ∈ S, i, j = 1, . . . , n, are such that (udi,j)i,j ∈
Mn(B(Kd))+. Then (uj,i)i,j = (udi,j)

d
i,j ∈Mn(B(K))+ and hence (ϕ(uj,i))i,j ∈

Mn(B(H))+. Thus,
(

ϕop(uopi,j)
)

i,j
=
(

ϕ(ui,j)
d
)

i,j
∈Mn

(

B(Hd)
)+

.

(ii) Suppose that È : Sop → B(H) is a unital completely positive map.
By (i), Èop : S → B(Hd) is (unital and) completely positive. By the uni-
versal property of the maximal C*-cover, there exists a *-homomorphism
Ã : C∗

u(S) → B(Hd) extending Èop. It follows that Ãop : C∗
u(S)op → B(H)

is a *-homomorphism that extends È. Thus, C∗
u(S)op satisfies the universal

property of the C*-cover of Sop.
(iii) The transposition is a (unital) complete order isomorphism fromMX

onto Mop
X . The statement follows after observing that, under the latter

identification, Φq coincides with Φop. □

Corollary 9.6. A local QNS correlation Γ is fair if and only if Γ =
∑m

i=1
¼iΦi¹Ψi for some quantum channels Φi,Ψi :MX →MA and scalars ¼i g 0,
i = 1, . . . ,m,

∑m
i=1 ¼i = 1, such that

(9.9)

m∑

i=1

¼iΦi =

m∑

i=1

¼iΨ
q
i .

Proof. Suppose that Γ is fair and, using Theorem 9.4, write Γ = Γs, where
s is a state on OMIN(TX,A) ¹min OMIN(TY,B) such that s ◦ (id ¹ ∂)−1 is
fair. As in the proof of Theorem 6.7, identify s with a convex combination
∑m

i=1 ¼iϕi ¹ Èi, where ϕi and Èi are states on TX,A, i = 1, . . . ,m; then the
fairness condition is equivalent to

(9.10)
m∑

i=1

¼iϕi(u) =
m∑

i=1

¼iÈi(∂
−1(uop)), u ∈ TX,A.

Let Φi and Ψi be the quantum channels fromMX toMA, corresponding to ϕi
and Èi, respectively; then Γ =

∑m
i=1 ¼iΦi ¹Ψi. Let È̃i : u 7→ Èi((∂

−1(uop)),

u ∈ TX,A. By Lemma 9.2, È̃i is a state. Moreover,

ïΨq
i(exe

∗
x′), eae

∗
a′ð = ïΨi(ex′e∗x)

t, eae
∗
a′ð = ïΨi(ex′e∗x), ea′e

∗
að

= Èi(ex′,x,a′,a) = Èi(∂
−1(eopx,x′,a,a′)) = È̃i(ex,x′,a,a′),

that is, the quantum channel Ψq
i corresponds to È̃i. Identity (9.9) now follows

from (9.10). The converse implication follows by reversing the previous
steps. □

Corollary 9.7. (i) A CQNS correlation E is fair if and only if there is
a state t : RX,A ¹max RX,A → C such that t ◦ (id¹ ∂B)

−1 is fair and
E = Et. Similar descriptions hold for fair correlations in the classes
CQqc, CQqa and CQloc.
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(ii) An NS correlation p is fair if and only if there is a state t : SX,A¹max

SX,A → C such that t(u¹ 1) = t(1¹ u), u ∈ SX,A, and

p(a, b|x, y) = t(ex,a ¹ ey,b), x, y ∈ X, a, b ∈ A.

Similar descriptions hold for fair correlations in the classes Cqc, Cqa
and Cloc.

Proof. We only give details for (i). Let E : DXY → MAB be a fair CQNS
correlation. By (9.6), E ◦∆XY :MXY →MAB is a fair QNS correlation. By
Theorem 9.4 (i), E ◦ ∆XY = Γs, for some state s on TX,A ¹max TX,A such
that s◦ (id¹∂)−1 is fair. It follows that E = Et, where t := s◦ (´X,A¹´X,A)
is a state on RX,A¹maxRX,A and t◦(id¹∂B)−1 is fair. Conversely, if E = Et
for some state t on RX,A ¹max RX,A such that t ◦ (id ¹ ∂B)

−1 is fair then
ΓE = Γs, where s := t ◦ (´′X,A¹´′X,A) and s ◦ (id¹∂)−1 is fair. By Theorem

9.4 (i), ΓE is fair, and hence so is E . The statements regarding CQqc, CQqa

and CQloc follow after a straightforward modification of the argument. □

Remark. It follows from Theorem 9.1, Theorem 9.4 and Corollary 9.7 that
fair correlations can be viewed as a non-commutative, and less restrictive,
version of synchronous correlations.

9.2. Tracial QNS correlations. Let A be a unital C*-algebra, Ä : A → C

be a state and Aop be the opposite C*-algebra of A. By the paragraph
before Theorem 6.2.7 in [13], the linear functional sÄ : A ¹max Aop → C,
given by sÄ (u¹ vop) = Ä(uv), is a state.

A positive element E ∈ MX ¹ MA ¹ A will be called a stochastic A-
matrix if (id¹ id¹Ã)(E) is a stochastic operator matrix for some faithful
*-representation of A. Such an E will be called semi-classical if it belongs
to DX ¹MA ¹A.

Let E = (gx,x′,a,a′)x,x′,a,a′ be a stochastic A-matrix, and set

Eop = (gopx′,x,a′,a)x,x′,a,a′ ∈MX ¹MA ¹Aop;

Lemma 9.2 shows that Eop is a stochastic Aop-matrix. Thus, after a per-
mutation of the tensor factors, we can consider E ¹ Eop as an element
of (MXA ¹MXA ¹ (A¹max Aop))+. By Theorem 5.2, there exists a *-
homomorphism ÃE : CX,A → A, such that ÃE(ex,x′,a,a′) = gx,x′,a,a′ for all
x, x′, a, a′. By Corollary 5.3 and Lemma 9.5, C∗

u(T op
X,A) ≡ Cop

X,A; thus,

TX,A ¹c T op
X,A ¦c.o.i. CX,A ¹max Cop

X,A.

Write

(9.11) fE,Ä = sÄ ◦ (ÃE ¹ ÃopE ) ◦ (id¹∂);
we have that fE,Ä is a state on TX,A ¹c TX,A, and

fE,Ä (ex,x′,a,a′ ¹ ey,y′,b,b′) = Ä(gx,x′,a,a′gy′,y,b′,b), x, x
′, y, y′ ∈ X, a, a′, b, b′ ∈ A.
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In the sequel, we write ΓE,Ä = ΓfE,τ
; by Theorem 6.3, ΓE,Ä ∈ Qqc. By

Theorem 5.2, we may assume, without loss of generality, that A = CX,A and
E = (ex,x′,a,a′)x,x′,a,a′ . In this case, we will abbreviate ΓE,Ä to ΓÄ .

Definition 9.8. A QNS correlation Γ is called

(i) tracial if Γ = ΓÄ , where Ä : CX,A → C is a trace;
(ii) quantum tracial if there exists a finite dimensional C*-algebra A,

a trace ÄA on A and a *-homomorphism Ã : CX,A → A such that
Γ = ΓÄA◦Ã;

(iii) locally tracial if there exists an abelian C*-algebra A, a state ÄA on
A and a *-homomorphism Ã : CX,A → A such that Γ = ΓÄA◦Ã.

Theorem 9.9. Let X and A be finite sets.

(i) If Γ is a quantum tracial QNS correlation then Γ ∈ Qq;
(ii) A QNS correlation Γ : MXX → MAA is locally tracial if and only if

there exists quantum channels Φj : MX → MA, j = 1, . . . , k, such
that

(9.12) Γ =

k∑

j=1

¼jΦj ¹ Φq
j

as a convex combination. In particular, if Γ is a locally tracial QNS
correlation then Γ ∈ Qloc.

Proof. (i) Suppose that H is a finite dimensional Hilbert space on which
A acts faithfully and let Ã : CX,A → A be as in Definition 9.8 (ii). Let
Ex,x′,a,a′ = Ã(ex,x′,a,a′) and E =

(
Ex,x′,a,a′

)

x,x′,a,a′
. By the proof of Lemma

9.2, Eop :=
(

Ed
x′,x,a′,a

)

x,x′,a,a′
is a stochastic operator matrix. Let Ã be

any positive functional on L(H ¹Hd) that extends the state sÄA which, by
nuclearity, may be considered as a state on A¹minAop. Then ΓÄ = ΓE»Eop,Ã

and, by the paragraph before Remark 4.7, ΓÄ ∈ Qq.
(ii) Suppose that Φj : MX → MA, j = 1, . . . , k, are quantum channels

and Γ is the convex combination (9.12). Letting
(

¼
(j)
x,x′,a,a′

)

a,a′
= Φj

(
exe

∗
x′

)
,

x, x′ ∈ X, we have that the matrix Cj =
(

¼
(j)
x,x′,a,a′

)

x,x′,a,a′
is a stochastic

C-matrix. By Theorem 5.2, there exists a (unique) *-representation Ãj :

CX,A → C such that Ãj(ex,x′,a,a′) = ¼
(j)
x,x′,a,a′ , x, x

′ ∈ X, a, a′ ∈ A. Let

Ã : CX,A → Dk be the *-representation given by

Ã (u) =
k∑

j=1

Ãj (u) eje
∗
j , u ∈ CX,A,
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and let Äk : Dk → C be the state defined by Äk

(

(µj)
k
j=1

)

=
∑k

j=1 ¼jµj . We

have

ΓÄk◦Ã

(
exe

∗
x′ ¹ eye

∗
y′
)

=
∑

a,a′∈A

∑

b,b′∈B

(Äk ◦ Ã)(ex,x′,a,a′ey′,y,b′,b)eae
∗
a′ ¹ ebe

∗
b′

=
∑

a,a′∈A

∑

b,b′∈B

Äk





k∑

j=1

Ãj(ex,x′,a,a′ey′,y,b′,b)eje
∗
j



 eae
∗
a′ ¹ ebe

∗
b′

=
k∑

j=1

¼j
∑

a,a′∈A

∑

b,b′∈B

¼
(j)
x,x′,a,a′¼

(j)
y′,y,b′,beae

∗
a′ ¹ ebe

∗
b′

=
k∑

j=1

¼j




∑

a,a′∈A

¼
(j)
x,x′,a,a′eae

∗
a′



¹




∑

b,b′∈B

¼
(j)
y′,y,b′,bebe

∗
b′





=
k∑

j=1

¼jΦj (exe
∗
x′)¹ Φq

j

(
eye

∗
y′
)
.

Conversely, let A be a unital abelian C*-algebra, ÄA : A → C a state,
and Ã : CX,A → A a *-homomorphism such that Γ = ΓÄA◦Ã. Without
loss of generality, assume that A = C(Ω), where Ω is a compact Hausdorff
topological space, and µ is a Borel probability measure on Ω such that
ÄA(f) =

∫

Ω fdµ, f ∈ A. Set hx,x′,a,a′ = Ã(ex,x′,a,a′), x, x
′ ∈ X, a, a′ ∈ A.

For each s ∈ Ω, let Φ(s) : MX → MA be the quantum channel given by
Φ(s)

(
exe

∗
x′

)
=
(
hx,x′,a,a′(s)

)

a,a′
. We have

Γ
(
exe

∗
x′ ¹ eye

∗
y′
)

=
∑

a,a′∈A

∑

b,b′∈A

(∫

Ω
hx,x′,a,a′(s)hy′,y,b′,b(s)dµ(s)

)

eae
∗
a′ ¹ ebe

∗
b′

=

∫

Ω
Φ(s) (exe

∗
x′)¹ Φ(s)q

(
eye

∗
y′
)
dµ(s).

It follows that Γ is in the closed hull of the set of all correlations of the form
(9.12). An argument using Carathéodory’s Theorem, similar to the one in
the proof of Remark 4.10, shows that Γ has the form (9.12). □

Remark 9.10. (i) Every tracial QNS correlation Γ = ΓE,Ä is fair. Indeed,
writing E = (gx,x′,a,a′), we have

fE,Ä ◦ (id¹∂)−1(ex,x′,a,a′ ¹ 1) = Ä(gx,x′,a,a′)

= fE,Ä ◦ (id¹∂)−1(1¹ eopx,x′,a,a′).

It can be seen from Corollary 9.6 and Theorem 9.9 (see the closing remarks
of this section) that the converse does not hold true.
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(ii) The set of all tracial (resp. quantum tracial, locally tracial) QNS
correlations over (X,A) is convex. Indeed, suppose that A (resp. B) is a
unital C*-algebra, ÄA (resp. ÄB) a trace on A and E (resp. F ) a stochastic
A-matrix (resp. a stochastic B-matrix). Let ¼ ∈ (0, 1), C = A·B, Ä : C → C

be given by Ä(u· v) = ¼ÄA(u) + (1− ¼)ÄB(v), and G = E · F , considered
as an element of MX ¹MA ¹ C. Then G is a stochastic C-matrix and

¼ΓE,ÄA + (1− ¼)ΓF,ÄB = ΓG,Ä .

(iii) It is straightforward from Theorem 9.1 that, if p ∈ Cqc (resp. p ∈ Cq,
p ∈ Cloc) is synchronous then Γp is a tracial (resp. quantum tracial, locally
tracial) QNS correlation. By [23, Theorem 4.2], the set Cs

q of synchronous

quantum NS correlations is not closed if |X| = 5 and |A| = 2. Let p ∈ Cs
q\Cs

q.
Then p is a synchronous NS correlation and does not lie in Cq. Assume that
Γp is quantum tracial. By Theorem 9.9, Γp ∈ Qq and hence, by Remark
8.1, p ∈ Cq, a contradiction. It follows that the set of quantum tracial NS
correlations is not closed.

(iv) The set of all tracial QNS correlations is closed; this can be seen via
a standard argument (see e.g. [55]): Assuming that (Γn)n∈N is a sequence
of tracial QNS correlations converging to the QNS correlation Γ, let An be

a unital C*-algebra with a trace Än, and En =
(

g
(n)
x,x′,a,a′

)

be a stochastic

An-matrix such that Γn = ΓEn,Än . Let A be the tracial ultraproduct of the
family {(An, Än)}n∈N with respect to a non-trivial ultrafilter u [34, Section
4]. Write Ä for the trace on A and E = (gx,x′,a,a′) for the class of ·n∈NEn

in A. Then
〈
Γ(exe

∗
x′ ¹ eye

∗
y′), eae

∗
a′ ¹ ebe

∗
b′
〉

= lim
n→∞

Än

(

g
(n)
x,x′,a,a′g

(n)
y′,y,b′,b

)

= Ä
(
gx,x′,a,a′gy′,y,b′,b

)
.

We next show that the class of all tracial QNS correlations, as well as each
of the the subclasses of quantum tracial and locally tracial QNS correlations,
have natural classes of invariant states. Given a unital C*-algebra A, a trace
Ä : A → C and a stochastic A-matrix E = (gz,z′)z,z′ ∈ L(C) ¹MZ ¹A, let

ÉE,Ä =
(

ÉE,Ä
z,z′,u,u′

)

∈MZZ be defined by

ÉE,Ä
z,z′,u,u′ = Ä(gz,z′gu′,u), z, z′, u, u′ ∈ Z.

Equivalently, let Eop be the stochastic Aop-matrix
(

gopu′,u

)

, and recall that

sÄ : A ¹max Aop → C is the state given by sÄ (u ¹ vop) = Ä(uv). Then
ÉE,Ä = Lsτ (E ¹ Eop) , where

Lsτ :MZZ ¹ (A¹max Aop) →MZZ

is the corresponding slice. It follows that ÉE,Ä is a state.

Definition 9.11. Let Z be a finite set. A state É ∈MZZ is called
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(i) C*-reciprocal if there exists a unital C*-algebra A, a trace Ä on A
and a stochastic A-matrix E ∈MZ ¹A such that É = ÉE,Ä ;

(ii) quantum reciprocal if it is C*-reciprocal, and the C*-algebra A from
(i) can be chosen to be finite dimensional;

(iii) locally reciprocal if it is C*-reciprocal, and the C*-algebra A from
(i) can be chosen to be abelian.

We will denote by Υ(Z) (resp. Υq(Z), Υloc(Z)) the set of all C*-reciprocal
(resp. quantum reciprocal, locally reciprocal) states in MZZ .

Theorem 9.12. Let Γ be a QNS correlation.

(i) If Γ is tracial then Γ (Υ(X)) ¦ Υ(A);
(ii) If Γ is quantum tracial then Γ (Υq(X)) ¦ Υq(A);
(iii) If Γ is locally tracial then Γ (Υloc(X)) ¦ Υloc(A).

Proof. (i) Let Ä be a trace on CX,A, A be a C*-algebra, ÄA be a trace on A,

and E = (gx,x′)x,x′ ∈MX ¹A be a stochastic A-matrix. Set É = ΓÄ

(
ÉE,ÄA

)

and write É =
(
Éa,a′,b,b′

)

a,a′,b,b′
. Let B = A ¹max CX,A and ÄB = ÄA ¹ Ä be

the product trace on B [13, Proposition 3.4.7]. Set

ha,a′ =
∑

x,x′∈X

gx,x′ ¹ ex,x′,a,a′ , a, a′ ∈ A;

thus, F := (ha,a′)a,a′ ∈MA ¹ B. Moreover,

TrAF =
∑

a∈A

ha,a =
∑

x,x′∈X

gx,x′ ¹
(
∑

a∈A

ex,x′,a,a

)

=
∑

x,x′∈X

gx,x′ ¹ ¶x,x′1 =
∑

x∈X

gx,x ¹ 1 = 1B.

To see that F is positive, we assume that A and CX,A are faithfully repre-
sented and let Vx and Va,x be operators such that (Vx)x is a row isometry,
(Va,x)a,x is an isometry, gx,x′ = V ∗

x Vx′ and ex,x′,a,a′ = V ∗
a,xVa′,x′ , x, x′ ∈ X,

a, a′ ∈ A. Letting W =
(∑

x∈X Vx ¹ Va,x
)

a∈A
, considered as row operator,

we have that F =W ∗W . Hence F is a stochastic B-matrix. In addition, for
a, a′, b, b′ ∈ A we have

ÄB
(
ha,a′hb′,b

)
=

∑

x,x′∈X

∑

y,y′∈X

ÄA
(
gx,x′gy′,y

)
Ä
(
ex,x′,a,a′ey′,y,b′,b

)
= Éa,a′,b,b′ ,

implying that É = ÉF,ÄB .
(ii) and (iii) follow from the fact that if the C*-algebra A is finite di-

mensional (resp. abelian) and Ä factors through a finite-dimensional (resp.
abelian) C*-algebra then so does ÄB. □
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Remark 9.13. (i) The state 1
|X|2 IXX is locally reciprocal, and hence it

follows from Theorem 9.12 that

Υloc(A) =

{
1

|X|2Γ(IXX) : X finite, Γ loc. tracial QNS correlation

}

= {Γ(1) : Γ : C →MAA loc. tracial QNS correlation} .(9.13)

Similar descriptions hold for Υq(A) and Υ(A). Remark 9.10 thus implies
that the sets Υ(A), Υq(A) and Υloc(A) are convex and the sets Υ(A) and
Υloc(A) are closed.

(ii) Recall that a state Ä ∈ MXX is called de Finetti [18] if there exist

states Éi ∈ MX , i = 1, . . . , k, such that Ä =
∑k

j=1 ¼jÉj ¹ Éj as a convex

combination. By (9.13) and Theorem 9.9,

Υloc(X) = conv
{
É ¹ Ét : É a state in MX

}
.

Thus, the locally reciprocal states can be viewed as twisted de Finetti states.
The presence of the transposition in our case is required in view of the
necessity to employ opposite C*-algebras. Thus, quantum reciprocal states
can be viewed as an entanglement assisted version of (twisted) de Finetti
states, while C*-reciprocal states – as their commuting model version.

(iii) C*-reciprocal states are closely related to factorisable channels intro-
duced in [1] (see also [33, 54], to which we refer the reader for the definition
used here). Indeed, factorisable channels have Choi matrices of the form
Ä(gx,x′hy′,y)x,x′,y,y′ , where Ä is a faithful normal trace on a von Neumann
algebra A, and (gx,x′)x,x′ and (hy,y′)y,y′ are matrix unit systems – a special
type of stochastic A-matrices (see [54, Proposition 3.1]). Equivalently, the
Choi matrices of factorisable channels Φ : MX → MX can be described
[33, Definition 3.1] as the matrices of the form

(
Ä(v∗a,xva′,x′)

)

x,x′,a,a′
, where

V = (va,x)a,x ∈MX(A) is a unitary matrix. Note that, if E is the stochastic
operator matrix corresponding to V , then the QNS correlation Γ = ΓE,Ä has
marginal channels ΓA(·) = Γ(· ¹ I) and ΓB(·) = Γ(I ¹ ·) that coincide with
Φ. We can thus view tracial QNS correlations as generalised couplings of
factorisable channels. Here, by a coupling of the pair (Φ,Ψ) of channels, we
mean a channel Γ with ΓA = Φ and ΓB = Ψ – a generalisation of classical
coupling of probability distributions in the sense of optimal transport [74].

9.3. Tracial CQNS correlations. In this subsection, we define a tracial
version of CQNS correlations. Let A be a unital C*-algebra, Ä : A → C be a
trace and E ∈ DX ¹MA¹A be a semi-classical stochastic A-matrix. Write
E = (gx,a,a′)x,a,a′ ; thus, (gx,a,a′)a,a′ ∈ (MA ¹A)+ and

∑

a∈A gx,a,a = 1, for
each x ∈ X. Set Eop = (gopx,a′,a)x,a,a′ ; thus, Eop ∈ DX ¹ MA ¹ Aop and

Lemma 9.2 shows that Eop is a semi-classical stochastic Aop-matrix. Let
ϕE,x :MA → A be the unital completely positive map given by ϕE,x(eae

∗
a′) =

gx,a,a′ . By Boca’s Theorem [6], there exists a unital completely positive
map ϕE : BX,A → A such that ϕE(ex,a,a′) = gx,a,a′ , x ∈ X, a, a′ ∈ A.
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Let ϕopE : Bop
X,A → Aop be the map given by ϕopE (uop) = ϕE(u)

op, which is
completely positive by Lemma 9.5. Write

fE,Ä = sÄ ◦ (ϕE ¹ ϕopE ) ◦ (id¹∂B);
thus, by (7.6) fE,Ä is a state on RX,A ¹c RX,A. Note that

fE,Ä

(
ex,a,a′ ¹ ey,b,b′

)
= Ä

(
gx,a,a′gy,b′,b

)
, x, y ∈ X, a, a′, b, b′ ∈ A.

In the sequel, we write EE,Ä = EfE,τ
; by Theorem 7.7, EE,Ä ∈ CQqc.

Definition 9.14. A CQNS correlation E is called

(i) tracial if E = EE,Ä , where E ∈ DX ¹ MA ¹ A is a semi-classical
stochastic A-matrix for some unital C*-algebra A and Ä : A → C is
a trace;

(ii) quantum tracial if it is tracial and the C*-algebra as in (i) can be
chosen to be finite dimensional;

(iii) locally tracial if it it is tracial and the C*-algebra as in (i) can be
chosen to be abelian.

Proposition 9.15. Let E : DXX →MAA be a CQNS correlation.

(i) If E is quantum tracial then E ∈ CQq;
(ii) E is locally tracial if and only if there exist channels Ej : DX →MA,

j = 1, . . . , k, such that

(9.14) E =
k∑

j=1

¼jEj ¹ Eq
j .

In particular, if E is locally tracial then E ∈ CQloc.

Proof. (i) Suppose that E is quantum tracial and write E = EE,Ä , where
E = (gx,a,a′)x,a,a′ ∈ DX ¹MA¹A is a semi-classical stochastic A-matrix for
some finite dimensional C*-algebra A and a trace Ä : A → C. The matrix
Ẽ =

(
¶x,x′gx,a,a′

)

x,x′,a,a′
is a stochastic matrix in MX ¹MA ¹A and hence

gives rise, via Theorem 5.2, to a canonical *-homomorphism ÃẼ : CX,A → A.
Letting Ä̃ = Ä ◦ ÃẼ , we have that Ä̃ is a trace on CX,A and ΓE = ΓÄ̃ . Thus,
ΓE ∈ Qq. By Remark 8.1, E ∈ CQq.

(ii) We fix A, Ä and E as in (i), with A abelian. The trace Ä̃ , defined in
the proof of (i), now factors through an abelian C*-algebra, and hence ΓE is
locally tracial. By Theorem 9.9, there exists quantum channels Φj :MX →
MA, j = 1, . . . , k, such that ΓE =

∑k
j=1Φj ¹ Φq

j as a convex combination.

Letting Ej = Φj |DX
, j = 1, . . . , k, we see that E has the form (9.14).

Conversely, suppose that E has the form (9.14). By Theorem 9.9, there
exists an abelian C*-algebra A, a *-representation Ã : CX,A → A and a
trace Ä on A such that ΓE = ΓÄ◦Ã. The stochastic operator matrix E =
(
Ã(ex,x,a,a′)

)

x,a,a′
is semi-classical and E = EE,Ä . □

We now specialise Definition 9.11 to states in DXX , that is, bipartite
probability distributions. A probability distribution q = (q(x, y))x,y∈X on
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X ×X will be called C*-reciprocal if there exists a C*-algebra A, a POVM
(gx)x∈X in A and a trace Ä : A → C such that q(x, y) = Ä(gxgy), x, y ∈ X. If
A can be chosen to be finite dimensional (resp. abelian), we call q quantum
reciprocal (resp. locally reciprocal). We denote by Υcl(X) (resp. Υcl

q (X),

Υcl
loc(X)) the (convex) set of all C*-reciprocal (resp. quantum reciprocal,

locally reciprocal) probability distributions on X ×X.
It can be seen as in Remark 9.13 that the class of locally reciprocal proba-

bility distributions coincides with the well-known class of exchangeable prob-
ability distributions, that is, the convex combinations of the form

q(x, y) =
n∑

i=1

¼iqi(x)qi(y), x, y ∈ X,

where qi is a probability distribution on X, i = 1, . . . , n. Thus, C*-reciprocal
and quantum reciprocal probability distributions can be viewed as quantum
versions of exchangeable distributions.

It is straightforward to see that, writing ∆ = ∆XX , we have

∆(Υ(X)) = Υcl(X), ∆(Υq(X)) = Υcl
q (X) and ∆(Υloc(X)) = Υcl

loc(X).

These relations, combined with Theorem 9.12, easily yield the following
proposition, whose proof is omitted.

Proposition 9.16. Let E : DXX →MAA be a CQNS correlation.

(i) If E is tracial then E
(
Υcl(X)

)
¦ Υ(A);

(ii) If E is quantum tracial then E
(
Υcl

q (X)
)
¦ Υq(A);

(iii) If E is locally tracial then E
(
Υcl

loc(X)
)
¦ Υloc(A).

9.4. Tracial NS correlations. The correlation classes introduced in Sec-
tions 9.2 and 9.3 have a natural NS counterpart. For a C*-algebra A,
equipped with a trace Ä , and a classical stochastic A-matrix E ∈ DX ¹
DA ¹ A, say, E = (gx,a)x,a (so that gx,a ∈ A+ for all x ∈ X and all a ∈ A
and

∑

a∈A gx,a = 1, x ∈ X), write

pE,Ä (a, b|x, y) = Ä(gx,agy,b), x, y ∈ X, a, b ∈ A.

Similar arguments to the ones in Sections 9.2 and 9.3 show that pE,Ä ∈ Cqc.
Definition 9.17. An NS correlation p is called

(i) tracial if it is of the form pE,Ä , where E is a classical stochastic
A-matrix for some unital C*-algebra A and Ä : A → C is a trace;

(ii) quantum tracial if it is tracial and the C*-algebra A in (i) can be
chosen to be finite dimensional;

(iii) locally tracial if it it is tracial and the C*-algebra A in (i) can be
chosen to be abelian.

The next two propositions are analogous to Theorem 9.9 and 9.12, re-
spectively, and their proofs are omitted.

Proposition 9.18. Let p be an NS correlation.
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(i) If p is quantum tracial then p ∈ Cq;
(ii) p is locally tracial if and only if p =

∑k
j=1 ¼jqj ¹ qj, where qj =

{qj(·|x) : x ∈ X}, is a family of probability distributions, j =
1, . . . , k. In particular, if p is locally tracial then p ∈ Cloc.

Proposition 9.19. Let N : DXX → DAA be an NS correlation.

(i) If N is tracial then N
(
Υcl(X)

)
¦ Υcl(A).

(ii) If N is quantum tracial then N
(
Υcl

q (X)
)
¦ Υcl

q (A).

(iii) If N is locally tracial then N
(
Υcl

loc(X)
)
¦ Υcl

loc(A).

9.5. Reduction for tracial correlations. We next specialise the state-
ments contained in Remark 8.1 to tracial correlations.

Theorem 9.20. Let X and A be finite sets, p be an NS correlation and E
be a CQNS correlation. The following hold:

(i) p is tracial (resp. quantum tracial, locally tracial, fair) if and only if
Ep is tracial (resp. quantum tracial, locally tracial, fair), if and only
if Γp is tracial (resp. quantum tracial, locally tracial, fair);

(ii) E is tracial (resp. quantum tracial, locally tracial, fair) if and only
if ΓE is tracial (resp. quantum tracial, locally tracial, fair).

Moreover,

(iii) the map N is a surjection from the class of all tracial (resp. quantum
tracial, locally tracial, fair) CQNS correlations onto the class of all
tracial (resp. quantum tracial, locally tracial) NS correlations;

(iv) the map C is a surjection from the class of all tracial (resp. quan-
tum tracial, locally tracial, fair) QNS correlations onto the class of
all tracial (resp. quantum tracial, locally tracial, fair) CQNS corre-
lations.

Proof. We prove first the statements about tracial correlations.
(i) Suppose that the NS correlation p is tracial, and write p(a, b|x, y) =

Ä(gx,agy,b), x, y ∈ X, a, b ∈ A, for some trace Ä on a unital C*-algebra

A and matrix F = (gx,a)x,a ∈ (DX ¹DA ¹A)+ with
∑

a∈A gx,a = 1, x ∈
X. The matrix F ′ = (¶a,a′gx,a)x,a,a′ ∈ DX ¹ MA ¹ A is a semi-classical
stochastic A-matrix and, trivially, Ep = EF ′,Ä . Similarly, the family F ′′ =
(¶a,a′¶x,x′gx,a)x,x′,a,a′ ∈ MX ¹MA ¹ A is a stochastic A-matrix and Γp =
ΓF ′′,Ä .

Conversely, suppose that Γp = ΓE,Ä , where E = (gx,x′,a,a′)x,x′,a,a′ is a
stochastic A-matrix and Ä is a trace on the unital C*-algebra A. Then
E′ := (gx,x,a,a′)x,a,a′ (resp. E′′ := (gx,x,a,a)x,a) is a semi-classical (resp.
classical) stochastic A-matrix such that Ep = EE′,Ä (resp. p = pE′′,Ä ).

(ii) is similar to (i).
(iii) follows from the fact that, if E is a stochastic A-matrix and Ä is a

trace on A such that Γ = ΓE,Ä then C(Γ) = EE′,Ä , where E
′ is given as in

the second paragraph of the proof.
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(iv) is similar to (iii). All remaining statements about quantum tracial
and locally tracial correlations are analogous.

Turning to the case of fair correlations, (ii) follows from the equivalence

E(Σcl
X) ¦ ΣA ⇐⇒ ΓE(ΣX) = E(∆X,Y (ΣX)).

For (i), observe that Ep = ∆A,B ◦ Ep and hence

Ep(Σcl
X) ¦ ΣA ⇐⇒ Ep(Σcl

X) ¦ Σcl
A ⇐⇒ Np(Σ

cl
X) ¦ Σcl

A,

showing that p is fair if and only if so is Ep. As Γp = ΓEp , the equivalence
with fairness of Γp follows from (ii). □

We conclude this section with a comparison between the different classes
of correlations of synchronous type. Note first that, if p is a synchronous
quantum commuting NS correlations then, by Theorem 9.1, Np is a tracial
NS correlation. In fact, the synchronous quantum commuting NS corre-
lations arise precisely from classical stochastic A-matrices (gx,a)x,a, where
each (gx,a)a∈A is a PVM, as opposed to POVM. Theorem 9.4 implies that
tracial QNS correlations are necessarily fair. We summarise these inclusions
below:

synch. Cloc ¢ loc. tr. NS ¢ loc. tr. CQNS ¢ loc. tr. QNS
∩ ∩ ∩ ∩

synch. Cq ¢ q. tr. NS ¢ q. tr. CQNS ¢ q. tr. QNS
∩ ∩ ∩ ∩

synch. Cqc ¢ tracial NS ¢ tracial CQNS ¢ tracial QNS
∩ ∩ ∩

fair NS ¢ fair CQNS ¢ fair QNS

The inclusions in the table are all strict. Indeed, for the first column this
follows from [23]. It can be shown, using results on the completely positive
semidefinite cone of matrices [47, 14] that Υcl

loc ̸= Υcl
q [2]. The properness of

the first inclusion in the second column now follows from Remark 9.13. The
properness of the second inclusion in the second column was pointed out in
Remark 9.10 (iii), and Theorem 9.20 implies that the first and the second
inclusions in the third and the fourth column are proper.

Let p = {p(·|x) : x ∈ X} and q = {q(·|x) : x ∈ X} be families of
distributions so that, for some x ∈ X, we have that supp p(·|x)∩supp q(·|x) =
∅. Then p̃ = 1/2(p ¹ q + q ¹ p) is a fair NS correlation. However, p̃ is not
tracial; indeed, assuming the contrary, we have that p̃ =

∑m
j=1 ¼jpj ¹ pj

as a convex combination, where {pj}mj=1 consists of families of probability
distributions indexed by X. Since

p̃(a, a|x, x) = 1

2
(p(a|x)q(a|x) + q(a|x)p(a|x)) = 0, a ∈ A,

we have
∑m

j=1 ¼jpj(a|x)2 = 0, and hence pj(a|x) = 0, for all a ∈ A and all
j, a contradiction. Thus, the last inclusion in the second column is strict,
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and by Theorem 9.20 so are the last inclusions in the third and the fourth
column.

Using Theorem 9.9 and Proposition 9.15, one can easily see that the sec-
ond and third inclusion on the first row are strict, and hence these inclusions
are strict on all other rows as well. Any NS correlation of the form q ¹ q,
where q = {q(·|x) : x ∈ X} is a family of probability distributions with
at least one x having | supp q(·|x)| > 1, is not synchronous, but is locally
tracial; thus, the first inclusion in the first, second and third rows are strict.

10. Correlations as strategies for non-local games

In this section, we discuss how QNS correlations can be viewed as perfect
strategies for quantum non-local games, extending the analogous viewpoint
on NS correlations to the quantum case. Let X, Y , A and B be finite
sets. A non-local game on (X,Y,A,B) is a cooperative game, played by two
players against a verifier, determined by a rule function (which will often
be identified with the game) ¼ : X × Y ×A×B → {0, 1}. The set X (resp.
Y ) is interpreted as a set of questions to, while the set A (resp. B) as a
set of answers of, player Alice (resp. Bob). In a single round of the game,
the verifier feeds in a pair (x, y) ∈ X × Y and the players produce a pair
(a, b) ∈ A × B; they win the round if and only if ¼(x, y, a, b) = 1. An NS
correlation p on X × Y ×A×B is called a perfect strategy for the game ¼ if

¼(x, y, a, b) = 0 =⇒ p(a, b|x, y) = 0.

The terminology is motivated by the fact that if, given a pair (x, y) of
questions, the players choose their answers according to the probability dis-
tribution p(·, ·|x, y), they will win every round of the game.

10.1. Quantum graph colourings. Let G be a simple graph on a finite
set X. For x, y ∈ X, we write x ∼ y if {x, y} is an edge of G. By assumption,
x ∼ y implies x ̸= y; we write x ≃ y if x ∼ y or x = y. A classical colouring
of G is a map f : X → A, where A is a finite set, such that

x ∼ y =⇒ f(x) ̸= f(y).

The chromatic number Ç(G) of G is the minimal cardinality |A| of a set A
for which a classical colouring f : X → A of G exists.

The graph colouring game for G (called henceforth the G-colouring game)
[16] is the non-local game with Y = X, B = A, and rules

(i) x = y =⇒ a = b;
(ii) x ∼ y =⇒ a ̸= b.

Thus, an NS correlation p = {(p(a, b|x, y))a,b∈A : x, y ∈ X} is a perfect strat-
egy of the G-colouring game if

(S) p is synchronous;
(P) x ∼ y ⇒ p(a, a|x, y) = 0 for all a.
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It is easy to see that if p is a perfect strategy of the G-colouring game from
the class Cloc then G possesses a classical colouring from the set A. Thus, the
perfect strategies for the G-colouring game from Cx, where x ∈ {loc, q, qc}
can be thought of as classical x-colourings of G. The x-chromatic number
of G is the parameter

Çx(G) = min {|A| : G has a classical x-colouring by A} ;
in particular, Çloc(G = Ç(G) (see [16, 51, 64] and the references therein).

We call p a G-proper correlation if condition (P) is satisfied. For a finite
set A, we let ΩA be the non-normalised maximally entangled matrix inMAA,
namely,

ΩA =
∑

a,b∈A

eae
∗
b ¹ eae

∗
b .

Remark 10.1. Let G be a graph with vertex set X. An NS correlation p
over (X,X,A,A) is G-proper if and only

x ∼ y =⇒
〈
Ep
(
exe

∗
x ¹ eye

∗
y

)
,ΩA

〉
= 0.

Proof. The claim is immediate from the fact that
〈
Ep
(
exe

∗
x ¹ eye

∗
y

)
,ΩA

〉

=
∑

a,b∈A

∑

a′,b′∈A

p (a, b|x, y) ïeae∗a ¹ ebe
∗
b , ea′e

∗
b′ ¹ ea′e

∗
b′ð

=
∑

a,b∈A

∑

a′,b′∈A

p (a, b|x, y) ïeae∗a, ea′e∗b′ð ïebe∗b , ea′e∗b′ð

=
∑

a∈A

p (a, a|x, y) .

□

Remark 10.1 allows to generalise the classical x-colourings of a graph G
to the quantum setting as follows.

Definition 10.2. Let G be a graph with vertex set X. A CQNS correlation
E : DXX →MAA is called G-proper if

x ∼ y =⇒
〈
E(exe∗x ¹ eye

∗
y),ΩA

〉
= 0.

A G-proper CQNS correlation E is called

(i) a quantum loc-colouring of G by A if E is locally tracial;
(ii) a quantum q-colouring of G by A if E is quantum tracial;
(iii) a quantum qc-colouring of G by A if E is tracial.

For x ∈ {loc, q, qc}, let
Àx(G) = min {|A| : ∃ a quantum x-colouring of G by A}

be the quantum x-chromatic number of G.

Remark. The complete quantum graph on n vertices was introduced in
[73] as the subspace Qn = {Ωn}§, where Ωn is the maximally entangled
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state in C
n¹C

n. In view of Definition 10.8 below, we see that the existence
of a G-proper correlation E : DXX →Mn2 of a specified type t is equivalent
to the existence of a homomorphism of type t from the quantisation (10.10)
of G into Qn.

Recall [70] that an orthogonal representation of a graph G with vertex set
X is a family (Àx)x∈X of unit vectors in C

k such that

x ∼ y =⇒ ïÀx, Àyð = 0.

The orthogonal rank À(G) of G is given by

À(G) = min
{

k : ∃ an orthogonal representation of G in C
k
}

.

Proposition 10.3. Let G be a graph with vertex set X. The following are
equivalent:

(i) the graph G has an orthogonal representation in C
k;

(ii) there exists a quantum loc-colouring of G by a set A with |A| = k.

Proof. (i)⇒(ii) Suppose that (Àx)x∈X ¦ C
k is an orthogonal representation

of G. Let E0 : DX →MA be the quantum channel given by

E0(exe∗x) = ÀxÀ
∗
x, x ∈ X,

and set E = E0 ¹ Eq
0; by Proposition 9.15, E is locally tracial. If x ∼ y then

〈
E(exe∗x ¹ eye

∗
y),ΩA

〉
=

∑

a,b∈A

〈

ÀxÀ
∗
x ¹

(
ÀyÀ

∗
y

)t
, eae

∗
b ¹ eae

∗
b

〉

=
∑

a,b∈A

Tr
(
(ÀxÀ

∗
x) (eae

∗
b)

t)Tr
((
ÀyÀ

∗
y

)t
(eae

∗
b)

t
)

=
∑

a,b∈A

Tr ((ÀxÀ
∗
x) (ebe

∗
a)) Tr

((
ÀyÀ

∗
y

)
(eae

∗
b)
)

=
∑

a,b∈A

ïÀx, eað ïeb, Àxð ïÀy, ebð ïea, Àyð

=

(
∑

a∈A

ïÀx, eað ïea, Àyð
)(

∑

b∈A

ïÀy, ebð ïeb, Àxð
)

= |ïÀx, Àyð|2 = 0;

thus, E is a quantum loc-colouring of G.
(ii)⇒(i) Suppose that E : DXX → MAA is a quantum loc-colouring of

G, and write E =
∑k

j=1 ¼jEj ¹ E q
j as a convex combination with positive

coefficients, where Ej : DX → MA is a quantum channel, j = 1, . . . , k.
Suppose that x ∼ y. Then

k∑

j=1

¼j

〈(

Ej ¹ Eq
j

) (
exe

∗
x ¹ eye

∗
y

)
,ΩA

〉

= 0
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and hence, by the non-negativity of each of the terms of the sum,

(10.1)
〈

E1(exe∗x)¹ Eq
1(eye

∗
y),ΩA

〉

= 0.

Let Àx be a unit eigenvector of E1(exe∗x), corresponding to a positive eigen-

value, x ∈ X. Condition (10.1) implies that
〈

ÀxÀ
∗
x ¹

(
ÀyÀ

∗
y

)t
,ΩA

〉

= 0,

which in turn means, by the arguments in the previous paragraph, that
ïÀx, Àyð = 0. □

By Proposition 10.3, Àloc(G) = À(G). Thus, the parameters Àq and Àqc
can be viewed as quantum versions of the orthogonal rank.

Proposition 10.4. Let G be a graph. Then

(i) Àqc(G) f Àq(G) f Àloc(G), and
(ii) Àx(G) f Çx(G) for x ∈ {loc, q, qc}.

Proof. (i) The inequalities follow from the fact that CQloc ¦ CQq ¦ CQqc.
(ii) Let p be a synchronous NS correlation that is an x-colouring of G by

a set A. By Theorem 9.20, Ep ∈ CQx. By Remark 10.1, Ep is G-proper.
Thus, Àx(G) f Çx(G). □

Remarks. (i) There exist graphs G for which À(G) < Ç(G) (see e.g. [70]).
By Proposition 10.3, for such G we have a strict inequality in Proposition
10.4 (ii) in the case x = loc. In [53], an example of a graph G on 13 vertices
was exhibited with the property that À(G) < Çq(G). By Proposition 10.4
(i), for this graph G, we have a strict inequality in Proposition 10.4 (ii) in
the case x = q. We do not know if a strict inequality can occur in the case
x = qc.

(ii) It was shown in [53] that there exists a graph G such that Çq(G) <
À(G). By Proposition 10.4 (ii), this implies Àq(G) < À(G). We do not
whether Àqc(G) can be strictly smaller than Àq(G).

We point out that there is another natural family of quantum orthogonal
ranks, defined as follows. Call a CQNS correlation E : DXX → MAA gen-
uinely tracial if there exist a unital C*-algebra A, a trace Ä : A → C and a
*-homomorphism Ã : BX,A → A such that

(10.2) E(exe∗x ¹ eye
∗
y) =

∑

a,a′,b,b′

Ä(Ã(ex,a,a′ex,b′,b))eae
∗
a′ ¹ ebe

∗
b′ , x, y ∈ X.

We call a genuinely tracial CQNS correlation E a genuine quantum qc-
colouring of G if E is G-proper. In addition, we call E a genuine quantum
q-colouring of G if the algebra A for which (10.2) holds can be chosen to be
finite dimensional, and E is G-proper. Set

À′x(G) = min {|A| : ∃ a genuine quantum x-colouring of G by A} .
We have the inequalities Àx(G) f À′x(G), and we do not know if equality
holds.
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We exhibit a lower bound on À′qc(G) in terms of the Lovász number ¹(G)
of G. We refer the reader to [49] for the definition and properties of the
latter parameter. We denote by Kd the complete graph on d vertices. We
will need some notation, which will also be essential in Subsection 10.2. If
» ¦ X ×X, let

S» = span
{
exe

∗
y : (x, y) ∈ »

}
;

thus, S» is a linear subspace of MX which is a bimodule over the diagonal
algebra DX . We write

E(G) = {(x, y) ∈ X ×X : x ≃ y} and E0(G) = {(x, y) ∈ X ×X : x ∼ y},

and let SG := SE(G) be the graph operator system ofG [21], and S0
G := SE0(G)

be the graph operator anti-system of G [73] (here we use the terminology of
[7]).

Proposition 10.5. Let G be a graph with vertex set X. Then À′qc(G) g
√

|X|
¹(G) . Moreover, À′q(Kd2) = À′qc(Kd2) = d.

Proof. Suppose that E : DXX → MAA is a genuine quantum qc-colouring
of G and write Éx,y = E(exe∗x ¹ eye

∗
y), x, y ∈ X. We may assume that, in

the definition of the correlation E , we have that A = BX,A and Ã is the
identity representation. Let H be a Hilbert space, À ∈ H a unit vector and
(Ex,a,a′)a,a′ matrix unit systems in B(H) such that, if Ä : BX,A → B(H) is
the *-representation given by Ä(ex,a,a′) = Ex,a,a′ , x ∈ X, a, a′ ∈ A, then

Ä(u) = ïÄ(u)À, Àð, u ∈ BX,A.

Set Àx,a,a′ = Ex,a,a′À, x ∈ X, a, a′ ∈ A; then

(10.3)
∑

a∈A

Àx,a,a = À, x ∈ X.

In addition, if x ∼ y then

(10.4)
∑

a,b∈A

ïÀx,a,b, Ày,a,bð =
∑

a,b∈A

ïÉx,y, eae
∗
b ¹ eae

∗
bð = ïÉx,y,ΩAð = 0.

Let

Qa,a′,b,b′ =
(
ïÀx,a,a′ , Ày,b,b′ð

)

x,y∈X
, a, a′, b, b′ ∈ A,

and note that the matrix
(
Qa,a′,b,b′

)

a,a′,b,b′
is positive. In addition, being a

Gram matrix, Qa,b,a,b is positive for all a, b ∈ A. Write Q =
∑

a,b∈AQa,b,a,b.

By (10.4),

x ∼ y =⇒ ïQex, eyð = 0.
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By Theorem 3.1, there exist operators Va,x such that (Va,x)a,x is an isom-
etry and Ex,a,a′ = V ∗

a,xVa′,x, x ∈ X, a, a′ ∈ A. Thus, if x ∈ X then

ïQex, exð =
∑

a,b∈A

ïÀx,a,b, Àx,a,bð =
∑

a,b∈A

∥Ex,a,bÀ∥2

=
∑

a,b∈A

∥
∥V ∗

a,xVb,xÀ
∥
∥2 f

∑

a∈A

∑

b∈A

∥Vb,xÀ∥2

= |A|
∑

b∈A

ïVb,xÀ, Vb,xÀð = |A|
〈
∑

b∈A

V ∗
b,xVb,xÀ, À

〉

= |A|.

Write Q = D + T , where D is diagonal and T § SG. We have shown that
D f |A|IX ; thus |A|IX + T ∈M+

X . It follows that

∥Q∥ f ∥|A|IX + T∥
f max

{

∥|A|IX + S∥ : S ∈ S§
G , |A|IX + S ∈M+

X

}

= |A|¹(G).(10.5)

Let (Ea,b)a,b∈A be a matrix unit system on H and Ux be a unitary, such
that

Ex,a,b = U∗
xEa,bUx, x ∈ X

(such unitaries exist because every two matrix unit systems on H are uni-
tarily equivalent). Let ¸ = (¼x)x∈X ∈ C

X . We have

ïQ¸, ¸ð =
∑

x,y∈X

∑

a,b∈A

ïÀx,a,b, Ày,a,bð¼y¼x

=
∑

x,y∈X

∑

a,b∈A

ï¼xEx,a,bÀ, ¼yEy,a,bÀð

=
∑

a,b∈A

〈
∑

x∈X

¼xEx,a,bÀ,
∑

y∈X

¼yEy,a,bÀ

〉

=
∑

a,b∈A

∥
∥
∥
∥
∥

∑

x∈X

¼xEx,a,bÀ

∥
∥
∥
∥
∥

2

g
∑

a∈A

∥
∥
∥
∥
∥

∑

x∈X

¼xU
∗
xEa,aUxÀ

∥
∥
∥
∥
∥

2

g 1

|A|

(
∑

a∈A

∥
∥
∥
∥
∥

∑

x∈X

¼xU
∗
xEa,aUxÀ

∥
∥
∥
∥
∥

)2

g 1

|A|

∥
∥
∥
∥
∥

∑

x∈X

¼xU
∗
x

(
∑

a∈A

Ea,a

)

UxÀ

∥
∥
∥
∥
∥

2

=
1

|A|

∥
∥
∥
∥
∥

∑

x∈X

¼xU
∗
xUxÀ

∥
∥
∥
∥
∥

2

=
1

|A|

∥
∥
∥
∥
∥

∑

x∈X

¼xÀ

∥
∥
∥
∥
∥

2

=
1

|A| ïJX¸, ¸ð ,

where JX ∈MX is the matrix all of whose entries are equal to 1. It follows

that 1
|A|JX f Q; thus, |X|

|A| f ∥Q∥. Together with (10.5), this implies |X|
|A| f

|A|¹(G), completing the proof of the inequality.
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Realise A = Zd = {0, 1, . . . , d−1} and let X = A×A. Let · be a primitive
|A|-th root of unity. For x = (a′, b′) and y = (a′′, b′′) ∈ X, let

Àx,y =
1√
d
·b

′′(a′′−a′)
d−1∑

l=0

·(b
′′−b′)lel ¹ el−a′+a′′

and write Ãx,y = Àx,yÀ
∗
x,y. We have

Ãx,y =
1

d

d−1∑

l,n=0

·(b
′′−b′)(l−n)ele

∗
n ¹ el−a′+a′′e

∗
n−a′+a′′

=
1

d

d−1∑

l,n=0

·(b
′′−b′)(l−n)el+a′e

∗
n+a′ ¹ el+a′′e

∗
n+a′′ .

Note that, if Θ = (Ãx,y)x,y then E := EΘ is a CQNS correlation; indeed,

TrAÃx,y =
1

d

d−1∑

l=0

el+a′′e
∗
l+a′′ =

1

d
IA =

1

d

d−1∑

l=0

el+a′e
∗
l+a′ = TrBÃx,y

for all x, y ∈ X. Since

∑

a,b∈A

ïÃx,y, eae∗b ¹ eae
∗
bð =

1

d

∑

a,b∈A

¶a′,a′′·
(b′′−b′)(a−b) = d¶a′,a′′¶b′,b′′ ,

we have that E is Kd2-proper.
We claim that E is genuinely tracial. To see this, let

Ex,z,z′ = ·(z
′−z)b′ez−a′e

∗
z′−a′ ∈ L(CA), x = (a′, b′) ∈ X, z, z′ ∈ A,

and note that, for each x ∈ X, the family {Ex,z,z′ : z, z
′ ∈ A} is a matrix

unit system. For x = (a′, b′), y = (a′′, b′′) ∈ X and z, z′, w, w′ ∈ A we have

Tr
(
Ex,z,z′Ey,w′,w

)

= Tr
(

·(z
′−z)b′·(w−w′)b′′(ez−a′e

∗
z′−a′)(ew′−a′′e

∗
w−a′′)

)

= ¶z′−a′,w′−a′′¶z−a′,w−a′′·
(z′−z)(b′−b′′)

=

d−1∑

l,n=0

·(b
′′−b′)(l−n) ïez′ , en+a′ð ïew′ , en+a′′ð ïel+a′ , ezð ïel+a′′ , ewð

=

d−1∑

l,n=0

·(b
′′−b′)(l−n)

〈
(el+a′e

∗
n+a′)ez′ ¹ (el+a′′e

∗
n+a′′)ew′ , ez ¹ ew

〉

= d ïÃx,y(ez′ ¹ ew′), ez ¹ ewð .
Therefore E is genuinely quantum tracial. It follows that À′q(Kd2) f d; On
the other hand, ¹(Kd2) = 1 and hence À′qc(Kd2) g d. Thus, À′qc(Kd2) =
À′q(Kd2) = d. □
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10.2. Graph homomorphisms. In this subsection, we consider a quan-
tum version of the graph homomorphism game first studied in [52]. Let G
and H be graphs with vertex sets X and A, respectively. Recall that the
homomorphism game G → H has Y = X, B = A, and ¼(x, y, a, b) = 0 if
and only if, either x = y and a ̸= b, or x ∼ y and a ̸∼ b. A synchronous

NS correlation p =
{

(p(a, b|x, y))a,b∈A : x, y ∈ X
}

is thus called a perfect

x-strategy for the game G→ H if p ∈ Cx and

x ∼ y, a ̸∼ b =⇒ p(a, b|x, y) = 0.

For a subset » ¦ X ×X, let P» :MX →MX be the map given by

P»(T ) =
∑

(x,y)∈»

(exe
∗
x)T (eye

∗
y), T ∈MX .

Thus, P» is the Schur projection onto S»; it can be canonically identified with
the (positive) element

∑

(x,y)∈»(exe
∗
x)¹(eye

∗
y) of DXX . We set (P»)§ = P»c .

For a graph G, we write for brevity PG = PE0(G).

Proposition 10.6. Let G (resp. H) be a graph with vertex set X (resp. A),

and p =
{

(p(a, b|x, y))a,b∈A : x, y ∈ X
}

be a synchronous NS correlation.

The following are equivalent:

(i) p is a perfect strategy for the homomorphism game G→ H;
(ii) ïNp(PG), (PH)§ð = 0.

Proof. (i)⇒(ii) We have

ïNp (PG) , (PH)§ð

=

〈

Np

(
∑

x∼y

exe
∗
x ¹ eye

∗
y

)

,
∑

a′ ̸∼b′

ea′e
∗
a′ ¹ eb′e

∗
b′

〉

=
∑

x∼y

∑

a,b∈A

∑

a′ ̸∼b′

p(a, b|x, y) ïeae∗a ¹ ebe
∗
b , ea′e

∗
a′ ¹ eb′e

∗
b′ð

=
∑

x∼y

∑

a∼b

∑

a′ ̸∼b′

p(a, b|x, y) ïeae∗a ¹ ebe
∗
b , ea′e

∗
a′ ¹ eb′e

∗
b′ð = 0.

(ii)⇒(i) If x ∼ y and a ̸∼ b then exe
∗
x¹eye∗y f PG and eae

∗
a¹ebe∗b f (PH)§.

By the monotonicity of the pairing,

p (a, b|x, y) =
〈
Np

(
exe

∗
x ¹ eye

∗
y

)
, eae

∗
a ¹ ebe

∗
b

〉
f ïNp(PG), (PH)§ð = 0.

□

General operator systems in MX were considered in [21] as a quantum
versions of graphs (noting that SG is an operator system), while operator
anti-systems (that is, selfadjoint subspaces of MX each of whose elements
has trace zero [7]) were proposed as such a quantum version in [73] (noting
that S0

G is an operator anti-system). Note that one can pass from any of
the two notions to the other by taking orthogonal complements. Due to
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the specific definition of QNS correlations in [22], employed also here, it will
be convenient to use a slightly different perspective on non-commutative
graphs, which we now describe. Let Z be a finite set, H = C

Z , Hd be its
dual space and d : H → Hd be the map given by d(À)(¸) = ï¸, Àð; we write
Àd = d(À). Note that, if T ∈ L(H) then

(10.6) T dÀd = (T ∗À)d, T ∈ L(H).

Let ¹ : H ¹H → L(Hd, H) be the linear map given by

¹(À ¹ ¸)(·d) = ïÀ, ·ð¸, · ∈ H.

By (10.6),

(10.7) ¹((S ¹ T )·) = T¹(·)Sd, · ∈ H ¹H, S, T ∈ L(H).

We denote by m : H ¹H → C the map given by

m(·) =

〈

·,
∑

z∈Z

ez ¹ ez

〉

, · ∈ H ¹H.

Let also f : H ¹H → H ¹H be the flip operator given by f(À ¹ ¸) = ¸ ¹ À.
Note that, if À, ¸, ·1, ·2 ∈ H then

ï¹(À ¹ ¸)∗(·1), ·
d
2 ð = ï·1, ¹(À ¹ ¸)·d2 ð = ï·1, ïÀ, ·2ð¸ð = ï·2, Àðï·1, ¸ð

= ïÀd, ·d2 ðï·1, ¸ð = ïï·1, ¸ðÀd, ·d2 ð
and hence

d−1(¹(À ¹ ¸)∗(d−1(·d1 )) = d−1(ï·1, ¸ðÀd) = ï¸, ·1ðÀ = ¹(¸ ¹ À)(·d1 );

thus,

(10.8) d−1 ◦ ¹(·)∗ ◦ d−1 = (¹ ◦ f)(·), · ∈ H ¹H.

In addition,
∑

z∈Z

ï¹(À ¹ ¸)(d(ez)), ezð =
∑

z∈Z

ïÀ, ezðï¸, ezð = m(À ¹ ¸),

and hence

(10.9) m(·) =
∑

z∈Z

ï(¹(·) ◦ d)(ez), ezð, · ∈ H ¹H.

Definition 10.7. A linear subspace U ¦ H¹H is called skew if m(U) = {0}
and symmetric if f(U) = U .

Suppose that U is a symmetric skew subspace of H ¹H. Let SU = ¹(U);
by (10.8) and (10.9), the subspace SU of L(Hd, H) satisfies

• T ∈ SU =⇒ d−1 ◦T ∗ ◦ d−1 ∈ SU , and
• T ∈ SU =⇒ ∑

z∈Zï(T ◦ d)(ez), ezð = 0.
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We call a subspace of L(Hd, H) satisfying these properties a twisted op-
erator anti-system. Conversely, given a twisted operator anti-system S ¦
L(Hd, H), (10.8) and (10.9) imply that the subspace US = ¹−1(S) of H¹H
is symmetric and skew. Given a graph G, let

(10.10) UG = span{ex ¹ ey : x ∼ y};
it is clear that UG is a symmetric skew subspace of CX ¹C

X . We thus con-
sider symmetric skew subspaces of CX ¹ C

X as a non-commutative version
of graphs. We note that if ∂ : Hd → H is the unitary operator given on the
standard basis {ez}z∈Z in H by ∂(edz) → ez, z ∈ Z, then S ¦ L(Hd, H) is
a twisted operator anti-system if and only if the subspace S∂−1 ¦ L(H) is
closed under transposition and traceless, see [10, p. 36].

We write PU for the orthogonal projection from C
X ¹ C

X onto U . Let

U§ ¢
(
C
X ¹ C

X
)d

be the annihilator of U and write PU§
∈ L

(
(CX ¹ C

X)d
)

for the orthogonal projection onto U§. Observe that ·d ∈ U§ if and only if
· belongs to the orthogonal complement U§ of U in C

X ¹ C
X . Thus, for

· ∈ H ¹H we have

PU§
·d = ·d ô P§

U (·) = · ô ïP§
U (·), ·dð = 1

ô ï·, (P§
U )d(·d)ð = 1 ô (P§

U )d(·d) = ·d,

and hence

(10.11) PU§
= (P§

U )d.

Let A be a finite set and É ∈ MA. Writing fÉ for the functional on MA

given by fÉ(Ä) = Tr(ÄÉt), we have that the map É → fÉ is a complete order
isomorphism from MA onto Md

A (see e.g. [65, Theorem 6.2]). On the other
hand, the map Éd 7→ Ét is a *-isomorphism from L

(
(CA)d

)
onto MA. The

composition of these maps, Éd 7→ fwt , is thus a complete order isomorphism
from L

(
(CA)d

)
onto Md

A. In the sequel, we identify these two spaces; note
that, via this identification,

(10.12) ïÄ, Édð = ïÄ, Étð = Tr(ÄÉ), Ä, É ∈MA.

Definition 10.8. Let X and A be finite sets and U ¦ C
X¹C

X , V ¦ C
A¹C

A

be symmetric skew subspaces. A QNS correlation Γ :MXX →MAA is called

(i) a quantum commuting homomorphism from U to V (denoted U qc→
V) if Γ is tracial and

(10.13) ïΓ (PU ) , PV§
ð = 0.

(ii) a quantum homomorphism from U to V (denoted U q→ V) if Γ is
quantum tracial and (10.13) holds;

(iii) a local homomorphism from U to V (denoted U loc→ V) if Γ is locally
tracial and (10.13) holds.

Given operator anti-systems S ¦ MX and T ¦ MA, Stahlke [73] defines
a non-commutative graph homomorphism from S to T to be a quantum
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channel Φ : MX → MA with family {Mi}mi=1 of Kraus operators, such that
MiSM∗

j ¦ T , i, j = 1, . . . ,m; if such Φ exists, he writes S → T . The
appropriate version of this notion for twisted operator anti-systems – directly
modelled on Stahlke’s definition – is as follows. For T ∈ MZ , we write
T = T ∗t for the conjugated matrix of T .

Definition 10.9. Let X and A be finite sets, and S ¦ L
(
(CX)d,CX

)
and

T ¦ L
(
(CA)d,CA

)
be twisted operator anti-systems. A homomorphism from

S into T is a quantum channel

Φ :MX →MA, Φ(T ) =
m∑

i=1

MiTM
∗
i ,

such that
M jSMd

i ¦ T , i, j = 1, . . . ,m.

If S and T are twisted operator anti-systems, we write S → T as in [73]
to denote the existence of a homomorphism from S to T .

Proposition 10.10. Let X and A be finite sets and U ¦ C
X ¹ C

X , V ¦
C
A ¹ C

A be symmetric skew spaces. Then U loc→ V if and only if SU → SV .

Proof. Suppose that U loc→ V and let Γ be a locally tracial QNS correlation
for which (10.13) holds. By Theorem 9.9, there exist quantum channels

Φj : MX → MA, j = 1, . . . , k, such that Γ =
∑k

j=1 ¼jΦj ¹ Φq
j as a convex

combination. We have
k∑

j=1

¼j

〈(

Φj ¹ Φq
j

)

(PU ) , PV§

〉

= ïΓ (PU ) , PV§
ð = 0;

since each of the terms in the sum on the left hand side is non-negative,
selecting j with ¼j > 0 and setting Φ = Φj , we have

(10.14)
〈(

Φ¹ Φq
)

(PU ) , PV§

〉

= 0.

Let Φ(É) =
∑m

i=1MiÉM
∗
i , É ∈MX , be a Kraus representation of Φ. For

É ∈MX , we have

Φq(É) =
m∑

i=1

(
MiÉ

tM∗
i

)t
=

m∑

i=1

(M∗
i )

tÉM t
i =

m∑

i=1

M iÉM
∗
i .

It follows that

(10.15)
(

Φ¹ Φq
)

(Ä) =
m∑

i,j=1

(Mi ¹M j)Ä(Mi ¹M j)
∗, Ä ∈MXX .

Let À ∈ U and ¸ ∈ V§ be unit vectors; then ÀÀ∗ f PU . In addition,
¸d = PV§

¸d and hence (¸¸∗)d = ¸d(¸d)∗ f PV§
; thus, (10.14) implies

〈(

Φ¹ Φq
)

(ÀÀ∗) , (¸¸∗)d
〉

= 0.
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By (10.15) and positivity,
〈
(Mi ¹M j)(ÀÀ

∗)(Mi ¹M j)
∗, (¸¸∗)d

〉
= 0, i, j = 1, . . . ,m,

which, by (10.12), means that
〈
(Mi ¹M j)À, ¸

〉
= 0, i, j = 1, . . . ,m.

Thus, (Mi ¹M j)À ∈ V for every À ∈ U and, by (10.7),

M j¹(À)M
d
i = ¹((Mi ¹M j)À) ∈ SV , À ∈ U ,

that is, SU → SV .
Conversely, suppose that Φ : MX → MA is a quantum channel with a

family of Kraus operators (Mi)
m
i=1 ¦ L(CX ,CA) such that M jSUM

d
i ¦ SV ,

i, j = 1, . . . ,m. The previous paragraphs show that
〈

(Φ¹ Φq)(ÀÀ∗), (¸¸∗)d
〉

= Tr((Φ¹ Φq)(ÀÀ∗)(¸¸∗)) = 0

for all unit vectors À ∈ U , ¸ ∈ V§. It follows that

(Φ¹ Φq)(ÀÀ∗) = (¸¸∗)§(Φ¹ Φq)(ÀÀ∗)(¸¸∗)§,

for all unit vectors ¸ ∈ V§. Taking infimum over all such ¸, we obtain

(Φ¹ Φq)(ÀÀ∗) = PV(Φ¹ Φq)(ÀÀ∗)PV ,

for all unit vectors À ∈ U . Thus, by (10.12) and (10.11),

Tr
((

Φ¹ Φq
)

(ÀÀ∗)P§
V

)

=
〈

(Φ¹ Φq)(ÀÀ∗), PV§

〉

= 0,

for all unit vectors À ∈ U . Writing PU =
∑l

i=1 ÀiÀ
∗
i , where (Ài)

l
i=1 is an

orthonormal basis of U , we obtain
〈
(Φ¹ Φq)(PU ), PV§

〉
= 0. □

For graphs G and H, write G→ H if there exists a homomorphism from
G to H. The next corollary justifies viewing the symmetric skew spaces as
non-commutative graphs.

Corollary 10.11. Let G and H be graphs. We have that G → H if and

only if UG
loc→ UH .

Proof. Write X and A for the vertex sets of G and H, respectively. Assume
that G → H. By [73], S0

G → S0
H . Write {Mi}mi=1 for the set of Kraus

operators such that MiS0
GM

∗
j ¦ S0

H , i, j = 1, . . . ,m. Let JX : CX → C
X be

the map given by JX(¸) = ¯̧. Then ¹(ex ¹ ey) = JX ◦ eye∗x ◦ d−1, x, y ∈ X.
Therefore,

(JA ◦Mi ◦ JX)(JX ◦ S0
G ◦ d−1)(d ◦M∗

j ◦ d−1) ¦ JA ◦ S0
H ◦ d−1,

implying M iSUG
Md

j ¦ SUH
; by Proposition 10.10, UG

loc→ UH . The converse
follows after reversing the arguments. □
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10.3. General quantum non-local games. We write PM for the projec-
tion lattice of a von Neumann algebra M, and denote as usual by ( (resp.
') the join (resp. the wedge) operation in PM; thus, for P1, P2 ∈ PM, the
projection P1(P1 (resp. P1'P2) has range the closed span (resp. the inter-
section) of the ranges of P1 and P2. If M and N are von Neumann algebras,
a map φ : PM → PN is called join continuous if φ ((i∈IPi) = (i∈I φ(Pi) for
any family {Pi}i∈I ¦ PM. Note that if M is finite dimensional, then join
continuity is equivalent to the preservation of finite joins.

Let H be a Hilbert space and P be an orthogonal projection on H with
range U . As in Subsection 10.2, we denote by U§ the annihilator of U in the
space Hd, and by P§ – the orthogonal projection on Hd with range U§.

Definition 10.12. Let X, Y , A and B be finite sets.

(i) A map φ : PMXY
→ PMAB

(resp. φ : PDXY
→ PMAB

, φ : PDXY
→

PDAB
) is called a quantum non-local game (resp. a classical-to-

quantum non-local game, a classical non-local game) if φ is join
continuous and φ(0) = 0. We say that such φ is a game from XY
to AB.

(ii) A QNS (resp. CQNS, NS) correlation Λ is called a perfect strat-
egy for the quantum (resp. classical-to-quantum, classical) non-local
game φ if

(10.16) ïΛ(P ), φ(P )§ð = 0, P ∈ PMXY
(resp. P ∈ PDXY

).

Remark 10.13. (i) Join continuous zero-preserving maps φ : PB(H) →
PB(K), where H and K are Hilbert spaces, were first considered by J. A.
Erdos in [26]. They are equivalent to bilattices introduced in [71] – that is,
subsets B ¦ PB(H) × PB(K) such that (P, 0), (0, Q) ∈ B for all P ∈ PB(H),
Q ∈ PB(K), and (P1, Q1), (P2, Q2) ∈ B ⇒ (P1 ( P2, Q1 ' Q2) ∈ B and
(P1 ' P2, Q1 ( Q2) ∈ B. Thus, quantum non-local games (resp. classical-
to-quantum non-local games, classical non-local games) can be alternatively
defined as bilattices; we have chosen to use maps instead because they are
more convenient to work with when compositions are considered (see Defi-
nition 10.15).

Conditions (10.16) are reminiscent of J. A. Erdos’ characterisation [26] of
reflexive spaces of operators, introduced by L. N. Loginov and V. S. Shulman
in [48]. As shown in [26], a subspace S ¦ B(H,K) (H and K being Hilbert
spaces) is reflexive in the sense of [48] if and only if there exists a join
continuous zero-preserving map φ : PB(H) → PB(K) such that S coincides
with the the space

Op(φ) =
{

T ∈ B(H,K) : φ(P )§TP = 0, for all P ∈ PB(H)

}

.

(ii) The quantum (resp. classical-to-quantum, classical) non-local game
φ with φ(P ) = IAB for every non-zero P ∈ PMXY

(resp. P ∈ PDXY
) will be

referred to as the empty game. It is clear that the set of perfect strategies
for the empty game coincides with the class of all no-signalling correlations.
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(iii) Let G be a graph with vertex set X and A be a finite set. The
quantum graph colouring game considered in Subsection 10.1 is the classical-
to-quantum non-local game φ : PDXX

→ PMAA
, given by

φ(exe
∗
x ¹ eye

∗
y) =

{
1
|A|Ω

§
A if x ∼ y

I otherwise.

Similarly, letting U ¦ C
X ¹ C

X and V ¦ C
A ¹ C

A be symmetric skew
spaces, we define the homomorphism game U → V to be the quantum non-
local game È, given by

È(P ) =







PV if 0 ̸= P f PU

0 if P = 0

I otherwise.

For x ∈ {loc, q, qc}, we have that U x→ V if and only if the game U → V has
a perfect strategy of class Qx.

Let (X,Y,A,B, ¼) be a non-local game. For a subset ³ ¦ X × Y , let
P³ ∈ PDXY

be the projection with range span{ex ¹ ey : (x, y) ∈ ³}. For
(x, y) ∈ X × Y , let

´x,y(¼) = {(a, b) ∈ A×B : ¼(x, y, a, b) = 1}.
We associate with ¼ the (unique) classical non-local game φ¼ : PDXY

→
PDAB

determined by the requirement

φ ¼

(
P{(x,y)}

)
= P´x,y(¼), (x, y) ∈ X × Y.

Proposition 10.14. An NS correlation p is a perfect strategy for the non-
local game (with rule function) ¼ if and only if Np is a perfect strategy for
φ¼.

Proof. Note that, if (x, y) ∈ X × Y then
(
P´x,y(¼)

)

§
has range span{eae∗a ¹

ebe
∗
b : ¼(x, y, a, b) = 0}. As in Proposition 10.6, it is thus easily seen that p

is a perfect strategy for ¼ if and only if
〈

Np

(
P{(x,y)}

)
,
(
P´x,y(¼)

)

§

〉

= 0, (x, y) ∈ X × Y.

Assume that p is a perfect strategy for ¼. For a projection P ∈ DXY ,
write P = ({P{(x,y)} : P (ex ¹ ey) = ex ¹ ey}; then

φ ¼(P ) = ({P´x,y(¼) : P (ex ¹ ey) = ex ¹ ey}.
Thus,

〈
Np(P{(x,y)}), φ¼(P )§

〉
= 0 for all pairs (x, y) with P (ex ¹ ey) = ex ¹

ey. Taking the join over all those (x, y), we conclude that ïNp(P ), φ¼(P )§ð =
0. The converse is direct from the first paragraph. □

Definition 10.15. Let X, Y , A, B, Z and W be finite sets and φ1 (resp.
φ2) be a game from XY to AB (resp. from AB to ZW ). The composition
of φ1 and φ2 is the game φ2 ◦φ1 from XY to ZW .
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It is clear that φ2 ◦φ1 is well-defined in all cases except when φ1 is a
quantum game, while φ2 is a classical-to-quantum game.

Lemma 10.16. Let X, A and Z be finite sets, H and K be Hilbert spaces
and E ∈MX¹MA¹B(H) and F ∈MA¹MZ¹B(K) be stochastic operator
matrices. Set

Gx,x′,z,z′ =
∑

a,a′∈A

Fa,a′,z,z′ ¹ Ex,x′,a,a′ , x, x′ ∈ X, z, z′ ∈ Z.

Then G = (Gx,x′,z,z′)x,x′,z,z′ is a stochastic operator matrix in MX ¹MZ ¹
B(K ¹H).

Proof. Let V = (Va,x)a,x (resp. W = (Wz,a)z,a) be an isometry from HX

(resp. KA) to H̃A (resp. K̃Z) for some Hilbert space H̃ (resp. K̃), such
that

Ex,x′,a,a′ = V ∗
a,xVa′,x′ and Fa,a′,z,z′ =W ∗

z,aWz′,a′

for all x, x′ ∈ X, a, a′ ∈ A and z, z′ ∈ Z. Set

Uz,x =
∑

a∈A

Wz,a ¹ Va,x, x ∈ X, z ∈ Z.

For x, x′ ∈ X, we have

∑

z∈Z

U∗
z,xUz,x′ =

∑

z∈Z

(
∑

a∈A

W ∗
z,a ¹ V ∗

a,x

)(
∑

a′∈A

Wz,a′ ¹ Va′,x′

)

=
∑

z∈Z

∑

a,a′∈A

W ∗
z,aWz,a′ ¹ V ∗

a,xVa′,x′

=
∑

a,a′∈A

(
∑

z∈Z

W ∗
z,aWz,a′

)

¹ V ∗
a,xVa′,x′

=
∑

a,a′∈A

¶a,a′IK ¹ V ∗
a,xVa′,x′ =

∑

a∈A

IK ¹ V ∗
a,xVa,x′

= ¶x,x′IK ¹ IH ;

thus, (Uz,x)z,x is an isometry from (K ¹H)X into (K̃ ¹ H̃)Z . In addition,
for x, x′ ∈ X and z, z′ ∈ Z, we have

U∗
z,xUz′,x′ =

(
∑

a∈A

W ∗
z,a ¹ V ∗

a,x

)(
∑

a′∈A

Wz′,a′ ¹ Va′,x′

)

=
∑

a,a′∈A

Fa,a′,z,z′ ¹ Ex,x′,a,a′ = Gx,x′,z,z′ .

By Theorem 3.1, G is a stochastic operator matrix acting on K ¹H. □

We call the stochastic operator matrix G from Lemma 10.16 the compo-
sition of F and E and denote it by F ◦ E.
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Theorem 10.17. Let φ1 (resp. φ2) be a quantum game from XY to AB
(resp. from AB to ZW ) and x ∈ {loc, q, qa, qc, ns}.

(i) If Γi is a perfect strategy for φi from the class Qx, i = 1, 2, then
Γ2 ◦ Γ1 is a perfect strategy for φ2 ◦φ1 from the class Qx.

(ii) Asume that X = Y , A = B and Z = W . If Γi is a perfect tracial
(resp. quantum tracial, locally tracial) strategy for φi, i = 1, 2, then
Γ2 ◦ Γ1 is a perfect tracial (resp. quantum tracial, locally tracial)
strategy for φ2 ◦φ1.

Proof. First note that if Γi is a QNS correlation then so is Γ2 ◦ Γ1. Indeed,
suppose that Ä ∈MXY is such that TrX Ä = 0. By Remark 2.1, TrA Γ1(Ä) =
0, and hence, again by Remark 2.1, TrZ(Γ2(Γ1(Ä)) = 0.

Suppose that Γi ∈ Qqc, i = 1, 2. Let (E(i), F (i)) be a commuting pair
of stochastic operator matrices acting on a Hilbert space Hi, and Ãi be a
normal state on B(Hi), such that Γi = ΓE(i)·F (i),Ãi

, i = 1, 2. Write E(1) =
(

E
(1)
x,x′,a,a′

)

, F (1) =
(

F
(1)
y,y′,b,b′

)

, E(2) =
(

E
(2)
a,a′,z,z′

)

and F (2) =
(

F
(2)
b,b′,w,w′

)

.

Set H = H2 ¹ H1, Ã = Ã2 ¹ Ã1, E = E(2) ◦ E(1) and F = F (2) ◦ F (1);
note that, by Lemma 10.16, E and F are stochastic operator matrices. It is
straightforward that (E,F ) is a commuting pair. Write E = (Ex,x′,z,z′) and
F = (Fy,y′,w,w′). Note that

∑

a,a′,b,b′

〈

E
(1)
x,x′,a,a′F

(1)
y,y′,b,b′ , Ã1

〉〈

E
(2)
a,a′,z,z′F

(2)
b,b′,w,w′ , Ã2

〉

=
∑

a,a′,b,b′

〈(

E
(2)
a,a′,z,z′ ¹ E

(1)
x,x′,a,a′

)(

F
(2)
b,b′,w,w′ ¹ F

(1)
y,y′,b,b′

)

, Ã2 ¹ Ã1

〉

=
〈
Ex,x′,z,z′Fy,y′,w,w′ , Ã

〉
,

and hence

(Γ2 ◦ Γ1)
(
exe

∗
x′ ¹ eye

∗
y′
)

=
∑

a,a′,b,b′

〈

E
(1)
x,x′,a,a′F

(1)
y,y′,b,b′ , Ã1

〉

Γ2 (eae
∗
a′ ¹ ebe

∗
b′)

=
∑

z,z′,w,w′

∑

a,a′,b,b′

ïE(1)
x,x′,a,a′F

(1)
y,y′,b,b′ , Ã1ðïE

(2)
a,a′,z,z′F

(2)
b,b′,w,w′ , Ã2ðeze∗z′ ¹ ewe

∗
w′

=
∑

z,z′,w,w′

〈
Ex,x′,z,z′Fy,y′,w,w′ , Ã

〉
eze

∗
z′ ¹ ewe

∗
w′ ;

thus, Γ2 ◦ Γ1 = ΓE·F,Ã.
If Γi ∈ Qq, i = 1, 2, then the arguments in the previous paragraph –

replacing operator products by tensor products as necessary – show that
Γ2 ◦ Γ1 ∈ Qq. By the continuity of the composition, the assumptions Γi ∈
Qqa, i = 1, 2, imply that Γ2 ◦ Γ1 ∈ Qqa. Finally, assume that Γi ∈ Qloc,

i = 1, 2, and write Γi =
∑mi

k=1 ¼
(i)
k Φ

(i)
k ¹Ψ

(i)
k as a convex combination, where

Φ
(i)
k : MX → MA and Ψ

(i)
k : MY → MB are quantum channels, i = 1, 2.
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Then

Γ2 ◦ Γ1 =

m1∑

k=1

m2∑

l=1

¼
(1)
k ¼

(2)
l

(

Φ
(2)
l ◦ Φ(1)

k

)

¹
(

Ψ
(2)
l ◦Ψ(1)

k

)

as a convex combination, and hence Γ2 ◦ Γ1 ∈ Qloc.
Suppose that Γi is a tracial QNS correlation; thus, there exist unital

C*-algebras A1 and A2, traces Ä1 and Ä2 on A1 and A2, respectively, and
stochastic matrices E(1) ∈MX ¹MA ¹A1 and E(2) ∈MA ¹MZ ¹A2, such
that Γi = ΓE(i),Äi

, i = 1, 2. The arguments given for (i) show that

Γ2 ◦ Γ1 = ΓE(2)◦E(1),Ä2¹Ä1
,

where Ä2¹Ä1 is the product trace on A2¹minA1; E
(2) ◦E(1) is considered as

a stochastic A2 ¹min A1-matrix (note that we identify
(
E(2) ◦ E(1)

)op
with

E(2)op ◦ E(1)op in the natural way).
It remains to show that if Γi is a perfect strategy for φi, i = 1, 2,

then Γ2 ◦ Γ1 is a perfect strategy for φ2 ◦φ1. Let P ∈ PMXY
and É be

a pure state with É f P . Then Γ1(É) = φ1(P )Γ1(É)φ1(P ) and hence
Γ1(É) f φ1(P ). Similarly, for any pure state Ã with Ã f φ1(P ) we have
Γ2(Ã) = φ2(φ1(P ))Γ2(Ã)φ2(φ1(P )), giving ï(Γ2(Ã), (φ 2 ◦ φ 1)(P )§ð = 0. In
particular,

ï(Γ2 ◦ Γ1)(É), (φ 2 ◦ φ 1)(P )§ð = 0.

As in the proof of Proposition 10.10, this yields

ï(Γ2 ◦ Γ1)(P ), (φ 2 ◦ φ 1)(P )§ð = 0,

establishing the claim. □

Suppose that p1 (resp. p2) is an NS correlation from XY to AB (resp.
from AB to ZW ). It is straightforward to verify that the correlation p with
Np = Np2 ◦ Np1 is given by

p(z, w|x, y) =
∑

a∈A

∑

b∈B

p2(z, w|a, b)p1(a, b|x, y);

we write p = p2 ◦ p1. Such compositions were first studied in [59]. For a
non-local game from XY to AB (resp. from AB to ZW ) with rule function
¼1 (resp. ¼2), let ¼2 ◦ ¼1 : X × Y × Z ×W → {0, 1} be given by

(¼2 ◦ ¼1)(x, y, z, w) = 1 ô ∃ (a, b) s.t. ¼1(x, y, a, b) = ¼2(a, b, z, w) = 1.

Combining Theorem 10.17 with classical reduction and Proposition 10.14,
we obtain the following perfect strategy version of [59, Proposition 3.5],
which simultaneously extends the graph homomorphism transitivity results
contained in [59, Theorem 3.7].

Corollary 10.18. Let ¼1 (resp. ¼2) be the rule functions of non-local games
from XY to AB (resp. from AB to ZW ) and x ∈ {loc, q, qa, qc, ns}. If pi
is a perfect strategy for ¼i from the class Cx, i = 1, 2, then p2 ◦p1 is a perfect
strategy for ¼2 ◦ ¼1 from the class Cx.
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Combining Theorem 10.17 with Remark 10.13 (iii) yields the following
transitivity result; in view of Proposition 10.10, it extends [73, Proposition
9].

Corollary 10.19. Let X, A and Z be finite sets, U ¦ C
X ¹ C

X , V ¦
C
A¹C

A and W ¦ C
Z ¹C

Z be symmetric skew spaces, and x ∈ {loc, q, qc}.
If U x→ V and V x→ W then U x→ W.
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Notes. (i) After the paper was completed, we became aware of the work [9],
in which the authors define quantum-to-classical no-signalling correlations
and study a version of the homomorphism game from a non-commutative
to a classical graph. Although these can be viewed as dual to our classical-
to-quantum correlations (Section 7), there is no direct duplication of results
in the current paper with those in [9].

(ii) The article [10], published before the acceptance of the present pa-
per, studies in detail quantum graph homomorphisms of different types,
providing operator-algebraic characterisations thereof. In particular, in [10,
Theorem 5.5], we obtain a version of Proposition 10.10 for homomorphisms
of quantum type, showing that the existence of such a homomorphism is
equivalent to the existence of a local homomorphism from a quantum graph
ampliated by a maximally entangled state. This implies that homomor-
phisms of quantum type constitute a special class of the entanglement-
assisted non-commutative graph homomorphisms defined in [73, Definition
15]. The identification of an operational characterisation of the latter notion
remains an open problem.
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