

1 **Correlation between strain rate and seismicity in different tectonic settings**

2 Yuxuan Chen^{*1,2} and Mian Liu²

3 ¹ School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China

4 ² Dept. of Geological Sciences, University of Missouri, Columbia, MO 65211, USA.

5

6 *Corresponding author: Yuxuan Chen (yc2023@whu.edu.cn)

7 Address: 129 Luoyu Road, Wuhan 430079, China

8

9

10 **Declaration of Competing Interests**

11 The authors acknowledge that there are no conflicts of interest recorded.

12

13 **Abstract**

14 Geodetic strain rate characterizes present-day crustal deformation and therefore may be used as a
15 spatial predictor for earthquakes. However, the reported correlation between strain rates and
16 seismicity varies significantly in different places. Here, we systematically study the correlation
17 between strain rate, seismicity, and seismic moment in six regions representing typical plate
18 boundary zones, diffuse plate boundary regions, and continental interiors. We quantify the strain
19 rate-seismicity correlation using a method similar to the Molchan error diagram and area skill
20 scores. We find that the correlation between strain rate and seismicity varies with different
21 tectonic settings that can be characterized by the mean strain rates. Strong correlations are found
22 in typical plate boundary zones where strain rates are high and concentrated at major fault zones,
23 whereas poor or no correlations are found in stable continental interiors with low strain rates.
24 The correlation between strain rate and seismicity is also time-dependent: it is stronger in
25 seismically active periods but weaker during periods of relative quiescence. These temporal
26 variations can be useful for hazard assessment.

27

28 **Introduction**

29 The advancement of space-based geodesy in the past decades has provided great details
30 of present-day crustal deformation. Geodetic strain rates indicate where and how fast strain is
31 accumulating near Earth's surface. Because much of the strain is elastic and will be released by
32 earthquakes, geodetic strain rates may be used as a spatial predictor for earthquakes. On a global
33 scale, Kreemer *et al.* (2002) found that seismicity rates of shallow earthquakes are correlated
34 with strain rates in subduction zones and active continental plate boundaries. In California and
35 Nevada, large earthquakes are concentrated in the San Andreas Fault system, the Eastern

36 California Shear Zone, and the Walker Lane shear zone, where strain rates are high and well
37 correlated with seismicity (Shen *et al.*, 2007; Zeng *et al.*, 2018; Kreemer and Young, 2022). In
38 the Tibetan Plateau, higher strain rate regions have higher background seismicity rates (Stevens
39 and Avouac, 2021), hence strain rate is used in some probabilistic seismic hazard assessments
40 (Shen *et al.*, 2007; Stevens and Avouac, 2021).

41 However, poor correlation between strain rate and seismicity has been found in other
42 places. In North China, active tectonic zones have both high strain rates and seismicity rates, but
43 some low strain rate regions have significant modern seismicity and large historical earthquakes
44 (Liu and Wang, 2012; Chen *et al.*, 2021). In stable North America, low strain rates are found in
45 the major seismic zones such as the Charleston, South Carolina area, the Eastern Tennessee
46 Seismic Zone, and the New Madrid Seismic Zone (NMSZ) (Calais *et al.*, 2016; Kreemer *et al.*,
47 2018). In the Saint Lawrence Valley, eastern Canada, Tarayoun *et al.* (2018) found that high
48 strain rate is concentrated in ancient rift zones where modern seismicity and large historical
49 earthquakes are clustered, but no systematic correlation is found between seismicity and geodetic
50 strain rate in the whole region.

51 The correlation between strain rate and seismicity could also be time-dependent. In
52 California and Nevada, the $M \geq 4$ background earthquakes gradually changed from a diffuse
53 distribution in the whole region (1933-1980s) to a concentrated distribution in high strain rate
54 areas (1980s-2016), along with increasing $M \geq 6.5$ events (Zeng *et al.*, 2018). In mainland China,
55 temporal variations of the correlation between strain rate and seismicity are also observed (Wu *et*
56 *al.*, 2021). Comparison of such temporal variations of seismicity with geodetic strain rates could
57 provide useful insights for hazard assessment.

58 In this study, we systematically analyzed and quantified the correlation between strain
59 rate and seismicity in six tectonic settings representing typical plate boundary zones, diffuse
60 plate boundary regions, and continental interiors. We analyzed and compared the spatial
61 correlations between strain rate, seismicity, and seismic moment in these regions using the
62 approach of Shen *et al.* (2007) and Zeng *et al.* (2018). We then investigated how correlations
63 between strain rate and seismicity vary with time. We also explored the effects of seismic catalog
64 completeness, cut-off magnitude, declustering, and model parameters. We show that the
65 correlation between strain rates and seismicity is generally predictable by the regional strain
66 rates: the higher the strain rates, the stronger the correlation.

67

68 **Strain rates and Seismicity: Data, Method, and Results**

69 The earthquake catalogs used in this study are from four sources: the historical and
70 instrumental earthquake catalog for North China (-780 - 2015) (Cheng *et al.*, 2017), the
71 earthquake catalogs (1568-2016) used for the 2018 USGS National Seismic Hazard Map
72 (Mueller, 2019), the GEM Global Historical Earthquake Catalog (1000-1903) (Albini *et al.*,
73 2013; Albini *et al.*, 2014), and the ISC-GEM Global Instrumental Earthquake Catalog (1904-
74 2015) (Storchak *et al.*, 2013; Storchak *et al.*, 2015; Giacomo *et al.*, 2018). All catalogs use the
75 moment magnitude.

76 For strain rates, we used the results of the Global Strain Rate Model (GSRM v.2.1)
77 (Kreemer *et al.*, 2014) for plate boundary zones and Kreemer *et al.* (2018) for the CEUS. GSRM
78 v.2.1 is a global model of strain rates in the plate boundary zones constrained by horizontal
79 geodetic site-velocities (Kreemer *et al.*, 2014). In the GSRM, significant transient motion due to
80 postseismic deformation and slow slip events are excluded to represent “secular” or interseismic

81 velocities. The resolution for GSRM v.2.1 is 0.1° longitude by 0.1° latitude in plate boundary
82 zones. For intraplate North America, we used the strain rate model from Kreemer *et al.* (2018).
83 The grid size of strain rate results is 0.5° by 0.5° with spatial resolution of ~ 100 km in the central
84 and eastern United States (CEUS). The data used in Kreemer *et al.* (2018) are from continuous
85 GPS networks, commercial and state networks, and networks installed to study the ionosphere,
86 the troposphere, and surface subsidence.

87 In addition to the spatial distribution of earthquake epicenters, we considered the spatial
88 distribution of seismic moment release. The seismic moment released by each earthquake is
89 converted from its moment magnitude following Hanks and Kanamori (1979): $\log_{10} M_0 =$
90 $1.5 M_w + 16.1$, where M_0 is the seismic moment in dyne-centimeter. As a first-order
91 approximation, the moment released by each earthquake is assumed to be evenly distributed in a
92 circular region centered at its epicenter with diameter equal to the empirical rupture length,
93 estimated using the formula by Blaser *et al.* (2010).

94 We studied the spatial distribution of strain rate, earthquake, and seismic moment in six
95 regions: California-Nevada, Japan, Anatolian, Tibetan Plateau, North China, and the CEUS,
96 representing a spectrum of tectonic settings ranging from plate boundary zones to stable
97 continental interiors. The first two regions are typical plate boundary zones. Anatolia and the
98 Tibetan Plateau are diffuse plate boundary regions of continental collision. North China is an
99 intraplate region of reactivated Archaean craton (Liu *et al.*, 2014), whereas the CEUS is a stable
100 continental region with low strain rate.

101 The spatial distributions of seismicity, strain rate, and seismic moment of these regions
102 are shown in Figure 1. For plate boundary zones and regions (California-Nevada and Japan,
103 Figure 1a-d), most large earthquakes occurred and released seismic moment in areas of high

104 strain rate. For diffuse plate boundary regions (Anatolia and the Tibetan Plateau), seismicity and
105 moment release generally correlate with strain rates, but with noticeable exceptions – some large
106 earthquakes occurred in the interior of regions where the strain rates are relatively low (Figure
107 1e-h). The correlations are more complicated for intraplate settings. In North China (Figure 1i-j),
108 seismicity is concentrated in the circum-Ordos rift systems and the northern boundary of the
109 North China block where strain rates are relatively high, but large earthquakes also occurred in
110 regions of low strain rates (e.g., the 1556 Huaxian earthquake and the 1668 Tancheng
111 earthquake). In the CEUS (Figure 1k-l), the correlation seems absent – most large historic
112 earthquakes occurred in regions of the lowest strain rate.

113

114 **Quantifying the strain rate-seismicity correlation**

115 We followed the approach of Shen *et al.* (2007) and Zeng *et al.* (2018) to quantify the
116 correlation between strain rate and seismicity and test the predicting power of strain rate for
117 earthquake locations. For each seismic region, we gridded the region according to the spatial
118 resolution of strain rate data and then sorted the grid cells by descending strain rate. Strain rate
119 was then summed over the sorted cells to produce the cumulative value, plotted as a function of
120 the fraction of covered area (Figure 2). If the strain rate distribution is random, its cumulative
121 value would increase proportionally to the number of the cells (i.e., the fraction of covered area),
122 and plot as a straight line. If the strain rate is localized in some areas, then the plot would be a
123 concave curve, with the highest strain rate areas to the left of the plot. The curve would be more
124 concave if the strain rate is more concentrated. In the plots, the cumulative strain rate and the
125 cumulative number of the sorted cells (covered area) are normalized to unity for comparison.

126 The normalized cumulative number of earthquakes was counted from the cells of
127 descending strain rates and plotted together with the cumulative strain rates (Figure 2). Again, if
128 earthquake distribution is random, the cumulative earthquakes would plot as a straight line
129 (staircases in practice because of finite numbers of earthquakes in each cell), i.e., they increase
130 proportionally with the fraction of covered area. If seismicity is concentrated in areas of high
131 strain rate, then the normalized cumulative earthquake counts would plot closely to the
132 normalized cumulative strain rate values (we call these seismicity and strain rate curves, for
133 convenience) (Figure 2). This plot, a “success diagram”, illustrates how “successfully” strain rate
134 predicts the locations of earthquakes. This is a flipped version of the Molchan error diagram used
135 to test earthquake predictions (Molchan and Kagan, 1992; Zechar and Jordan, 2008).

136 Figure 3 compares the success diagrams for three regions: California-Nevada (plate
137 boundary zone), North China (active continental interior), and the CEUS (stable continent). In
138 California-Nevada, both strain rates and large earthquakes ($M \geq 6.5$) are highly concentrated, and
139 their spatial correlation is strong. Thus, strain rate in this region is a good spatial predictor of
140 large earthquakes. In North China, strain rates are relatively localized and have a good spatial
141 correlation with large earthquakes. In the CEUS, strain rates are somewhat concentrated in some
142 areas but not correlated to earthquakes – the seismicity curve is close to but slightly below the
143 diagonal line, indicating that earthquakes are nearly randomly distributed in space, and more
144 earthquakes occurred in areas of relatively lower strain rates. In this case, strain rate has no use
145 as an indicator of future earthquake locations.

146 We then compared the correlations between strain rates, seismicity, and moment release
147 in each region. We used catalogs from previous studies and chose time span and cut-off
148 magnitude for complete records (Huang *et al.*, 1994; Albini *et al.*, 2013; Petersen *et al.*, 2020).

149 The normalized cumulative moment-release curve (moment curve for short) was constructed the
150 same way as the seismic curve: summed from cells sorted in order of descending strain rate. In
151 California-Nevada and Japan, good spatial correlations are found between strain rate, seismicity,
152 and seismic moment release (Figure 4a, b). In Anatolia, the seismicity and moment curves match
153 with each other, but they are slightly below the strain rate curve (Figure 4c). This deviation may
154 be caused by the lack of $M \geq 7$ earthquakes in the regions of medium strain rates in central and
155 western Anatolian peninsula (Figure 1e). In the Tibetan Plateau, strain rate has a good spatial
156 correlation with large earthquakes ($M \geq 7$) but is poorly correlated with seismic moment release
157 (Figure 4d), perhaps because the stored seismic moment is not totally released in the short period
158 of the catalog.

159 North China is similar to the Tibetan Plateau where strain rate correlates well with
160 seismicity but poorly with seismic moment release (Figure 4e). North China has a lower average
161 strain rate than Anatolia or the Tibetan Plateau, so the recurrence intervals for large earthquakes
162 are longer, and the seismic moment curve can be strongly influenced by a few large earthquakes
163 in the catalog. For example, the 1668 $M8.4$ Tancheng earthquake (Figure 1j), one of the largest
164 earthquakes in North China (Liu *et al.*, 2014), occurred in an area of low strain rate (Figure 1i).
165 For the CEUS, we used a longer seismic catalog than that in Kreemer *et al.* (2018) and obtained
166 similar results: the correlation between strain rate, seismicity, and seismic moment is poor or
167 absent (Figure 4f). The seismicity curve is close to the diagonal line (Figure 4f), suggesting that
168 the $M \geq 5$ earthquakes in the CEUS are close to a random distribution and not correlated with
169 strain rate. Moreover, the seismic moment is mainly released in regions of low strain rate (Figure
170 4f), where the 1811-1812 New Madrid earthquakes and the 1886 Charleston earthquake
171 occurred. We also analyzed the $M \geq 5$ background seismicity and smaller modern seismicity (M

172 ≥ 2.5); the results are similar (Figure 5). The factors for the significant difference between strain
173 rate, seismicity, and seismic moment in the CEUS are discussed later.

174 We can further quantify the spatial concentration of strain rate and its correlation with
175 seismicity using the area skill score (Zechar and Jordan, 2008), which is the fractional area
176 below the corresponding strain curve (or the staircase for earthquake counts) in the success
177 diagram (Figures 3-5). If strain rate is randomly distributed in a region, the strain rate curve
178 follows the diagonal line, therefore the area skill score is 0.5. When strain rate is highly
179 localized, such as in California-Nevada or Japan, the strain curves are strongly concave, and their
180 area skill scores are much greater than 0.5. The area skill score of the seismicity (or seismic
181 moment) curves, which are based on strain rates, characterizes how concentrated seismicity (or
182 seismic moment) is in high strain-rate areas. If a seismic curve has a high area skill score, it
183 means that strain rate is a good predictor for earthquakes. A less than 0.5 score means more
184 earthquakes occurred in areas of lower strain rate. In other words, strain rate as a spatial
185 earthquake predictor would fare worse than random guessing. The same is true for the moment
186 curves in these figures.

187 The results of area skill scores for the six studied regions are shown in Figure 4 and Table
188 1. Except for the CEUS, all other regions have area skill scores > 0.5 for seismicity, with the
189 highest value (0.85) in California-Nevada. In these regions, strain rate as a predictor for
190 earthquakes would fare better than random guessing. For the CEUS, the area skill score for the
191 seismicity (staircase) is lower than 0.5 (Figure 5), meaning that more earthquakes occurred in
192 lower strain rate areas. Thus, using strain rate as a spatial predictor of earthquakes would fare
193 worse than random guessing in the CEUS.

194 The correlation between strain rate and seismicity (or seismic moment) can be quantified
195 by the closeness between the strain rate curve and the corresponding seismicity (or moment)
196 curve for a region. We use ΔA_{eq} to represent the fractional area between the strain rate curve and
197 seismicity curve, and ΔA_m for the fractional area between the strain rate and seismic moment
198 curves (Table 1). Both ΔA_{eq} and ΔA_m are small for plate boundary zones (California-Nevada
199 and Japan), indicating strong correlation between strain rate and seismicity (seismic moment).
200 North China has low ΔA_{eq} but large ΔA_m , indicating that strain rate is a good spatial indicator of
201 seismicity but poor indicator for moment release, because several large earthquakes occurred in
202 areas of low strain rates (Figure 1i-j). The CEUS has large ΔA_{eq} and ΔA_m , indicating that strain
203 rate is a poor predictor for either earthquakes or seismic moment release. We also found that
204 ΔA_m is negatively correlated with strain rate (Figure 6), which means poorer correlations
205 between strain rate and moment release in lower strain rate regions.

206

207 **Temporal variations of strain rate-seismicity correlation**

208 Regional seismicity rate varies with time (Omori, 1894; Kagan and Jackson, 1991) and
209 thus would affect strain rate-seismicity correlation. A major cause of the temporal variation is
210 earthquake clustering (aftershocks and foreshocks), but even background seismicity rate can
211 change in time (Zhuang *et al.*, 2005; Llenos and Michael, 2013; Chen *et al.*, 2021). We analyzed
212 the temporal variations of the correlation between strain rate and relatively small earthquakes in
213 California-Nevada, North China, and the CEUS. Both the original catalogs and declustered
214 catalogs were used. We obtained the declustered catalogs using the nearest-neighbor method
215 (Baiesi and Paczuski, 2004; Zaliapin *et al.*, 2008; Chen *et al.*, 2021; Chen and Liu, 2023). In
216 California and Nevada, the correlation between strain rate and seismicity varies with time for

217 both background earthquakes and all events with the same trend (Figure 7a-b): poorer
218 correlations from 1933 to the 1980s and better correlations from the 1980s to 2016. This trend of
219 temporal variation is similar to the results of Zeng *et al.* (2018) based on background
220 earthquakes. In North China (Figure 7c), the seismicity curves for total events are above the
221 strain rate curve in the 1970s and 1980s, because most events during that time were aftershocks
222 of the 1976 Great Tangshan earthquake (Chen *et al.*, 2021), and both the mainshock and its
223 aftershocks were concentrated in areas of high strain rate (Figure 1i-j). As time passed,
224 aftershock activity decayed and background earthquakes, many in areas of relatively low strain
225 rate, become relatively dominant. Therefore, the correlation between strain rate and seismicity
226 worsens. A similar trend is found for background seismicity (Figure 7d). After 2000, most events
227 in North China are background earthquakes and they are diffusely distributed. In the CEUS,
228 some temporal variations exist (Figure 7e-f). The seismicity curves are below the diagonal line
229 (for spatially random distribution) and move downward as time passed, indicating even more
230 small events occurred in areas of low strain rate. These trends of the temporal variations of strain
231 rate-seismicity correlation do not change with different lengths of time windows used in
232 constructing these curves (Figure S1).

233 Over a longer time, seismicity rate may change between relatively active (clustered)
234 periods and relatively inactive (quiescent) periods (Figure 8a). These temporal variations have
235 been described as the Devil's staircases (Chen *et al.*, 2020) or supercycles (Sieh *et al.*, 2008;
236 Goldfinger *et al.*, 2013; Salditch *et al.*, 2019). For North China, the complete records of $M \geq 6$
237 earthquakes show an active period between 1600 and 1750, followed by a relatively quiescent
238 period (1750-1900), then another active period since 1900 (Figure 8a). We compared the
239 seismicity curves in these periods with the strain rate curves, and the results show that the

240 seismicity curves for the two active periods match the strain rate curve well (Figure 8b), but the
241 seismicity curve for the quiescent period is significantly below the strain rate curve and close to
242 spatially random distribution (Figure 8b). Similar results are found in California-Nevada (Zeng
243 *et al.*, 2018). Therefore, good correlations between strain rate and seismicity may correspond to
244 periods of relatively active seismicity, while poor correlations may correspond to relatively
245 quiescent periods of seismicity.

246

247 **Discussion**

248 The past few decades have seen rapid development and applications of space-based
249 geodesy, which has been providing unprecedented details of present-day crustal deformation.
250 The geodetic strain rates indicate where and how fast strain is accumulating, therefore where
251 future earthquakes may occur. However, for strain rate to be a useful spatial predictor of
252 earthquakes, their spatial distributions need to be closely correlated, yet such correlations seem
253 to vary significantly in different regions (Kreemer *et al.*, 2018; Zeng *et al.*, 2018; Chen *et al.*,
254 2021).

255 In this study, we systematically characterized the correlation between strain rate,
256 seismicity, and seismic moment in different tectonic settings. We found that the strain rate-
257 seismicity correlation is complex (Figures 1, 3-4) and may be characterized by the regional mean
258 strain rates (Table 1). In typical plate boundary zones (e.g., California and Japan), strain rates are
259 generally high and concentrated at major fault zones where most large earthquakes occur. Fast
260 tectonic loading in these regions also means short interseismic intervals, hence more
261 representative earthquake catalogs. Therefore, strain rate correlates well with seismicity and
262 seismic moment release. In this case, strain rate is a good spatial predictor of seismicity, as

263 previously suggested (Shen *et al.*, 2007; Zeng *et al.*, 2018). In broadly diffuse plate boundary
264 regions (e.g., the Tibetan Plateau) and boundaries of microplates (e.g., Anatolia), correlations
265 between strain rate and seismicity are still good, but the predicting power of strain rate for
266 earthquakes is not as good as in typical plate boundary zones (Figure 1, 4), because the strain
267 rate distribution is more diffuse, and many earthquakes occur in areas of median or low strain
268 rates. In continental interiors, strain rate is relatively low and its spatial correlation with
269 seismicity is generally poor. North China is an end-member case with active fault systems and
270 relatively high strain rate (Liu and Wang, 2012; Chen *et al.*, 2021), strain rate has a reasonably
271 good correlation with seismicity but not seismic moment release (Figure 1, 4), because some
272 large historic earthquakes occurred in areas of low strain rates. The CEUS represent another end-
273 member case: stable plate interiors where strain rate is extremely low and its correlation with
274 seismicity is poor or absent (Figure 1, 5), as suggested by previous studies (Calais *et al.*, 2016;
275 Kreemer *et al.*, 2018). In such settings, strain rate cannot be used as a useful spatial predictor of
276 seismicity.

277 The contrast between North China and the CEUS also highlights the complexity of strain
278 rate and seismicity data in continental interiors. The measured strain rates may include non-
279 tectonic components, and low strain rates in these regions means long recurrence intervals for
280 large earthquakes. Earthquake records in intraplate regions are often too short to provide
281 representative long-term spatiotemporal patterns (Liu and Stein, 2016). The relatively good
282 strain rate-seismicity correlation in North China may indicate that the observed geodetic strain
283 rate reflects the long-term interseismic loading. However, the long-lasting aftershocks and
284 postseismic deformation of the 1966 Xingtai earthquake and the 1976 Tangshan earthquake in
285 North China (Liu and Wang, 2012; Liu *et al.*, 2014; Chen *et al.*, 2021) may cause an

286 overestimation of the goodness of the correlation between strain rate and seismicity. In contrast,
287 geodetic strain rates in the CEUS are dominated by glacial isostatic adjustment (GIA), which
288 partially explains the poor or no correlation between strain rate and seismicity (Figure 4f) (Calais
289 *et al.*, 2006; Kreemer *et al.*, 2018). Based on the lack of strain rate-seismicity correlation in the
290 CEUS, Kreemer *et al.* (2018) argued that “intraplate seismicity does not reflect the release of
291 geodetic strain, and the largest, GIA-controlled, strain rate does not load faults, except perhaps in
292 zones of weakness such as continental margins.”

293 Geodetic strain rate in most tectonically active regions reflects mainly long-term steady
294 tectonic loading, and is therefore correlated to seismicity, with noticeable exceptions in stable
295 continents like the CEUS. Even in diffuse plate boundary regions and active continental
296 interiors, strain rate has some predicting power for future locations of earthquakes (or seismic
297 moment release), and would fare better than random guessing. If current strain rate fields reflect
298 long-term interseismic loading, then they should be correlated with long-term seismic moment
299 release. Therefore, deviations between the strain rate curve and the seismic moment curve in a
300 short-term record may offer information about where strain is insufficiently released (Yin *et al.*,
301 2023). For example, in North China (Figure 4e), future large earthquakes may be more likely to
302 occur in regions of medium strain rates because the stored energy there has not been sufficiently
303 released in the past 400 years.

304 While we discussed six tectonic regions as single units, within each region, especially the
305 regions of diffuse plate boundary zones or continental interiors, the correlation between strain
306 rate, seismicity, and seismic moment release may vary significantly. For example, in the western
307 part of North China, both seismicity and moment release concentrate in high strain rate areas
308 (Figure S2a-b), but in the eastern part of North China, strain rate correlates with seismicity but

309 not with moment release (Figure S2c-d). Within the North China Plain, strain rate correlates with
310 neither seismicity nor moment release (Figure S2e-f). Such variations are related to strain rate:
311 the correlation is better in higher strain rate regions but poorer in lower strain rate regions
312 (Figure 6 and Figure S3). Thus, in intraplate regions large earthquakes could occur in subregions
313 of low strain rate.

314 The correlation between strain rate and seismicity also varies with time (Figures 7-8) and
315 needs to be considered in hazard assessment. Hazard maps usually estimate seismic hazard in the
316 next 50 years (Petersen *et al.*, 2014; Petersen *et al.*, 2020). However, in a 50-year window, the
317 spatial distributions of seismicity can vary significantly (Figure 7). This effect is minor in plate
318 boundary zones, because the recurrence intervals there are relatively short and most events occur
319 in areas of high strain rates in all periods (Figure 7a-b). In intraplate regions like North China,
320 because of long recurrence intervals, spatial distributions of seismicity can vary significantly in
321 different periods (Figure 7c-d, 8). In an active period, earthquakes tend to concentrate in areas of
322 high strain rate, but in a relatively quiescent period, earthquake distribution is diffuse and closer
323 to be random. The spatial distributions of small earthquakes seem to have clear trend of temporal
324 variations (Figure 7), which has been related to different phases of regional stress accumulation
325 and release (Zeng *et al.*, 2018). These temporal variations and trends may be used to tell if a
326 region is entering a more active or a relatively quiescent period of seismicity, as suggested by
327 Zeng *et al.* (2018).

328

329 **Conclusions**

330 We have systematically studied the correlation between strain rate and seismicity in
331 different tectonic settings, and evaluated how good strain rate is as a spatial indicator of

332 earthquakes and moment release in these regions. The strain rate-seismicity correlation is strong
333 in plate boundary zones where strain rate is high and localized at a few major fault zones. In this
334 case strain rate is a good spatial predictor of earthquakes and seismic moment release. In diffuse
335 plate boundary regions and tectonically active continents, strain rates are relatively high and
336 generally correlated with seismicity. Strain rate could be a useful spatial predictor of seismicity,
337 and deviation of cumulative moment release from cumulative strain may provide information of
338 where large earthquakes may occur in the future. However, in stable continents such as the
339 CEUS, strain rates are low and may be dominated by non-tectonic strain, thus the correlation
340 between strain rate and seismicity is poor or absent. In this case strain rate cannot be used as a
341 spatial indicator of seismicity; it would fare worse than random guessing.

342 The strain rate-seismicity correlation is time-dependent, because the spatiotemporal
343 distribution of earthquakes, including background seismicity, are found to change with time.
344 Better correlations are found in seismically active periods and poorer in relatively quiescent
345 periods. If the trends of the temporal change can be clearly established, they may indicate if a
346 given region is entering an active period of seismic activity, which can be useful for hazard
347 assessment.

348

349 **Data and Resources**

350 The China fault data is available at
351 <https://data.earthquake.cn/datashare/report.shtml?PAGEID=datasourcelist&dt=ff8080826e16801d016eb119cb350006> (last accessed October, 2022) from China Earthquake Networks Center and
353 National Earthquake Data Center.

354

355 **Acknowledgement**

356 We are grateful to Seth Stein for his helpful review and editing, and to the AE and an anonymous
357 reviewer for their constructive comments. This work is part of Y. Chen's Ph.D. research. M. Liu
358 acknowledges support from NSF (grants 1519980 and 2013656).

359

360 **References**

361 Albini, P., R. Musson, A. Gomez Capera, M. Locati, A. Rovida, M. Stucchi, and D. Viganò
362 (2013). Global historical earthquake archive and catalogue (1000-1903).

363 Albini, P., R. M. Musson, A. Rovida, M. Locati, A. A. Gomez Capera, and D. Viganò (2014).
364 The global earthquake history, *Earthquake Spectra* **30** 607-624.

365 Baiesi, M., and M. Paczuski (2004). Scale-free networks of earthquakes and aftershocks,
366 *Physical Review E* **69** 066106.

367 Blaser, L., F. Krüger, M. Ohrnberger, and F. Scherbaum (2010). Scaling relations of earthquake
368 source parameter estimates with special focus on subduction environment, *Bulletin of the*
369 *Seismological Society of America* **100** 2914-2926.

370 Calais, E., T. Camelbeeck, S. Stein, M. Liu, and T. Craig (2016). A new paradigm for large
371 earthquakes in stable continental plate interiors, *Geophysical Research Letters* **43**.

372 Calais, E., J. Han, C. DeMets, and J. Nocquet (2006). Deformation of the North American plate
373 interior from a decade of continuous GPS measurements, *Journal of geophysical*
374 *research: solid earth* **111**.

375 Chen, Y., and M. Liu (2023). Long-Lived Aftershocks in the New Madrid seismic Zone and the
376 Rest of Stable North America, *Journal of Geophysical Research: Solid Earth* **128**
377 e2023JB026482.

378 Chen, Y., M. Liu, and G. Luo (2020). Complex Temporal Patterns of Large Earthquakes: Devil's
379 Staircases, *Bulletin of the Seismological Society of America* **110** 1064-1076.

380 Chen, Y., M. Liu, and H. Wang (2021). Aftershocks and background seismicity in Tangshan and
381 the rest of North China, *Journal of Geophysical Research: Solid Earth* e2020JB021395.

382 Cheng, J., Y. Rong, H. Magistrale, G. Chen, and X. Xu (2017). An Mw-based historical
383 earthquake catalog for Mainland China, *Bulletin of the Seismological Society of America*
384 **107** 2490-2500.

385 Giacomo, D. D., E. R. Engdahl, and D. A. Storchak (2018). The ISC-GEM Earthquake
386 Catalogue (1904–2014): status after the Extension Project, *Earth System Science Data* **10**
387 1877-1899.

388 Goldfinger, C., Y. Ikeda, R. S. Yeats, and J. Ren (2013). Superquakes and supercycles,
389 *Seismological Research Letters* **84** 24-32.

390 Hanks, T. C., and H. Kanamori (1979). A moment magnitude scale, *Journal of Geophysical
391 Research: Solid Earth* **84** 2348-2350.

392 Huang, W.-Q., W.-X. Li, and X.-F. Cao (1994). Research on the completeness of earthquake
393 data in the Chinese mainland (I)—North China, *Acta Seismologica Sinica* **7** 351-359.

394 Kagan, Y. Y., and D. D. Jackson (1991). Long-term earthquake clustering, *Geophysical Journal
395 International* **104** 117-133.

396 Kreemer, C., G. Blewitt, and E. C. Klein (2014). A geodetic plate motion and Global Strain Rate
397 Model, *Geochemistry, Geophysics, Geosystems* **15** 3849-3889.

398 Kreemer, C., W. C. Hammond, and G. Blewitt (2018). A robust estimation of the 3-D intraplate
399 deformation of the North American plate from GPS, *Journal of Geophysical Research: Solid Earth* **123**
400 4388-4412.

401 Kreemer, C., W. E. Holt, and A. J. Haines (2002). The global moment rate distribution within
402 plate boundary zones, *Plate boundary zones* **30** 173-190.

403 Kreemer, C., and Z. M. Young (2022). Crustal Strain Rates in the Western United States and
404 Their Relationship with Earthquake Rates, *Seismological Research Letters* **93** 2990-3008.

405 Liu, M., and S. Stein (2016). Mid-continental earthquakes: Spatiotemporal occurrences, causes,
406 and hazards, *Earth-Science Reviews* **162** 364-386.

407 Liu, M., and H. Wang (2012). Roaming earthquakes in China highlight midcontinental hazards,
408 *Eos, Transactions American Geophysical Union* **93** 453-454.

409 Liu, M., H. Wang, J. Ye, and J. Cheng (2014). Intraplate earthquakes in North China, in
410 *Intraplate Earthquakes* P. Talwani (Editor), Cambridge University Press, New York, 97-
411 125.

412 Llenos, A. L., and A. J. Michael (2013). Modeling earthquake rate changes in Oklahoma and
413 Arkansas: Possible signatures of induced seismicity, *Bulletin of the Seismological Society
414 of America* **103** 2850-2861.

415 Molchan, G., and Y. Y. Kagan (1992). Earthquake prediction and its optimization, *Journal of
416 Geophysical Research: Solid Earth* **97** 4823-4838.

417 Mueller, C. S. (2019). Earthquake catalogs for the USGS national seismic hazard maps,
418 *Seismological Research Letters* **90** 251-261.

419 Omori, F. (1894). On the after-shocks of earthquakes, The University.

420 Petersen, M. D., M. P. Moschetti, P. M. Powers, C. S. Mueller, K. M. Haller, A. D. Frankel, Y.
421 Zeng, S. Rezaeian, S. C. Harmsen, O. S. Boyd, N. Field, R. Chen, K. S. Rukstales, N.

422 Luco, R. L. Wheeler, R. A. Williams, and A. H. Olsen (2014). Documentation for the
423 2014 update of the United States national seismic hazard maps, Geological Survey (US).

424 Petersen, M. D., A. M. Shumway, P. M. Powers, C. S. Mueller, M. P. Moschetti, A. D. Frankel,
425 S. Rezaeian, D. E. McNamara, N. Luco, and O. S. Boyd (2020). The 2018 update of the
426 US National Seismic Hazard Model: Overview of model and implications, *Earthquake*
427 *Spectra* **36** 5-41.

428 Salditch, L., S. Stein, J. Neely, B. D. Spencer, E. M. Brooks, A. Agnon, and M. Liu (2019).
429 Earthquake supercycles and Long-Term Fault Memory, *Tectonophysics* 228289.

430 Shen, Z.-K., D. D. Jackson, and Y. Y. Kagan (2007). Implications of Geodetic Strain Rate for
431 Future Earthquakes, with a Five-Year Forecast of M5 Earthquakes in Southern
432 California, *Seismological Research Letters* **78** 116-120.

433 Sieh, K., D. H. Natawidjaja, A. J. Meltzner, C.-C. Shen, H. Cheng, K.-S. Li, B. W. Suwargadi, J.
434 Galetzka, B. Philibosian, and R. L. Edwards (2008). Earthquake supercycles inferred
435 from sea-level changes recorded in the corals of west Sumatra, *Science* **322** 1674-1678.

436 Stevens, V., and J. Avouac (2021). On the relationship between strain rate and seismicity in the
437 India–Asia collision zone: implications for probabilistic seismic hazard, *Geophysical*
438 *Journal International* **226** 220-245.

439 Storchak, D. A., D. Di Giacomo, I. Bondár, E. R. Engdahl, J. Harris, W. H. Lee, A. Villaseñor,
440 and P. Bormann (2013). Public release of the ISC–GEM global instrumental earthquake
441 catalogue (1900–2009), *Seismological Research Letters* **84** 810-815.

442 Storchak, D. A., D. Di Giacomo, E. Engdahl, J. Harris, I. Bondár, W. H. Lee, P. Bormann, and
443 A. Villaseñor (2015). The ISC-GEM global instrumental earthquake catalogue (1900–
444 2009): introduction, *Physics of the Earth and Planetary Interiors* **239** 48-63.

445 Styron, R., and M. Pagani (2020). The GEM global active faults database, *Earthquake Spectra*
446 **36** 160-180.

447 Tarayoun, A., S. Mazzotti, M. Craymer, and J. Henton (2018). Structural inheritance control on
448 intraplate present-day deformation: GPS strain rate variations in the Saint Lawrence
449 Valley, eastern Canada, *Journal of Geophysical Research: Solid Earth* **123** 7004-7020.

450 Wu, Y., Z. Jiang, Y. Pang, and C. Chen (2021). Statistical Correlation of Seismicity and
451 Geodetic Strain Rate in the Chinese Mainland, *Seismological Research Letters* **93** 268-
452 276.

453 Yin, L., G. Luo, and M. Liu (2023). Moment budget and seismic potential of the Xianshuihe-
454 Xiaojiang fault system, southeastern Tibetan Plateau, *Tectonophysics* 229935.

455 Zaliapin, I., A. Gabrielov, V. Keilis-Borok, and H. Wong (2008). Clustering analysis of
456 seismicity and aftershock identification, *Physical review letters* **101** 018501.

457 Zechar, J. D., and T. H. Jordan (2008). Testing alarm-based earthquake predictions, *Geophysical
458 Journal International* **172** 715-724.

459 Zeng, Y., M. D. Petersen, and Z. K. Shen (2018). Earthquake potential in California-Nevada
460 implied by correlation of strain rate and seismicity, *Geophysical Research Letters* **45**
461 1778-1785.

462 Zhuang, J., C. P. Chang, Y. Ogata, and Y. I. Chen (2005). A study on the background and
463 clustering seismicity in the Taiwan region by using point process models, *Journal of
464 Geophysical Research: Solid Earth* **110**.

465

466

467 **Full mailing address for each author**

468 1. Yuxuan Chen

469 Mailling address: 129 Luoyu Road, School of Geodesy and Geomatics, Wuhan University,
 470 Wuhan 430079, China
 471 Email: yc2023@whu.edu.cn

472

473 2. Mian Liu

474 Mailling address: 101 Geological Sciences Building, Dept. of Geological Sciences,
 475 University of Missouri, Columbia, MO 65211, USA.

476 Email: lium@missouri.edu

477

478 Tables

479 **Table 1.** Quantification of strain rate-seismicity correlations shown in Figures 1 and 4

Region	Mean strain rate ($10^{-9}/\text{year}$)	Uncertainty range of mean strain rate	Time	Magnitude	Area skill score of strain rate (Earthquake)	ΔA_{eq}	ΔA_m
California	61.0	58.7-64.4	1852-2016	$M \geq 6.5$	0.85 (0.85)	0.025	0.028
Japan	184.0	182.1-186.2	1586-2015	$M \geq 7$	0.73 (0.72)	0.023	0.022
Anatolia	64.6	62.2-67.3	1045-2015	$M \geq 7$	0.76 (0.69)	0.077	0.057
Tibet	28.0	25.7-31.8	1786-2015	$M \geq 7$	0.73 (0.75)	0.027	0.094
North China	4.8	2.7-8.9	1604-2015	$M \geq 6$	0.75 (0.74)	0.021	0.111
CEUS	1.1	0.5-2.3	1568-2016	$M \geq 5$	0.67 (0.44)	0.225	0.510

480

481 List of Figure Captions

482 **Figure 1.** **(a)** Spatial distribution of seismicity (circles, $M \geq 6$, 1769-2016) and strain rate (color
483 contours) in California-Nevada. **(b)** Spatial distribution of seismicity (circles, $M \geq 6$, 1769-2016)
484 and the seismic moment release (color contours) in California-Nevada. **(c-d)** Same as (a-b) but
485 for seismicity ($M \geq 7$, 1096-2015), strain rate, and seismic moment in Japan. **(e-f)** Same as (a-b)
486 but for seismicity ($M \geq 6$, 1045-2015), strain rate, and seismic moment in Anatolia. **(g-h)** Same
487 as (a-b) but for seismicity ($M \geq 6$, 1117-2015), strain rate, and seismic moment in Tibet. HYF:
488 Haiyuan fault; XFS: Xianshuihe fault system. **(i-j)** Same as (a-b) but for seismicity ($M \geq 6$, -780-
489 2015), strain rate, and seismic moment in North China. ZPFS: Zhangjiakou-Penglai fault system.
490 **(k-l)** Same as (a-b) but for seismicity ($M \geq 5$, 1568-2016), strain rate, and seismic moment in the
491 CEUS. The fault data are from the GEM global active faults database (Styron and Pagani, 2020)
492 and China Earthquake Networks Center and National Earthquake Data Center (see Data and
493 Resources).

494

495 **Figure 2.** Illustration of the procedure that transforms strain rate and earthquake data to the
496 “success diagram”. The grid cells are sorted by descending strain rate values (sr_1, sr_2, \dots, sr_n),
497 so the cumulative value of strain rate increases with the number of the cells (fraction of covered
498 area) as a concave curve. The numbers of earthquakes that occurred in these cells are
499 eq_1, eq_2, \dots, eq_n . If earthquakes are randomly distributed in space as shown here, the cumulative
500 earthquakes increase linearly with the number of cells.

501

502 **Figure 3.** Comparison between strain rate and seismicity in different tectonic settings. Curves:
503 cumulative strain rate; staircases: cumulative earthquake count. The method is explained in the
504 text and illustrated in Figure 2. The concave strain rate curves for California-Nevada and North

505 China indicate strain rate concentration, and their closeness to the cumulative earthquake counts
506 (staircases) indicate strong correlations between strain rate and earthquakes. In the CEUS, the
507 cumulative counts plotted close to the diagonal line, showing that large earthquakes ($M \geq 5$) are
508 nearly randomly distributed in space.

509

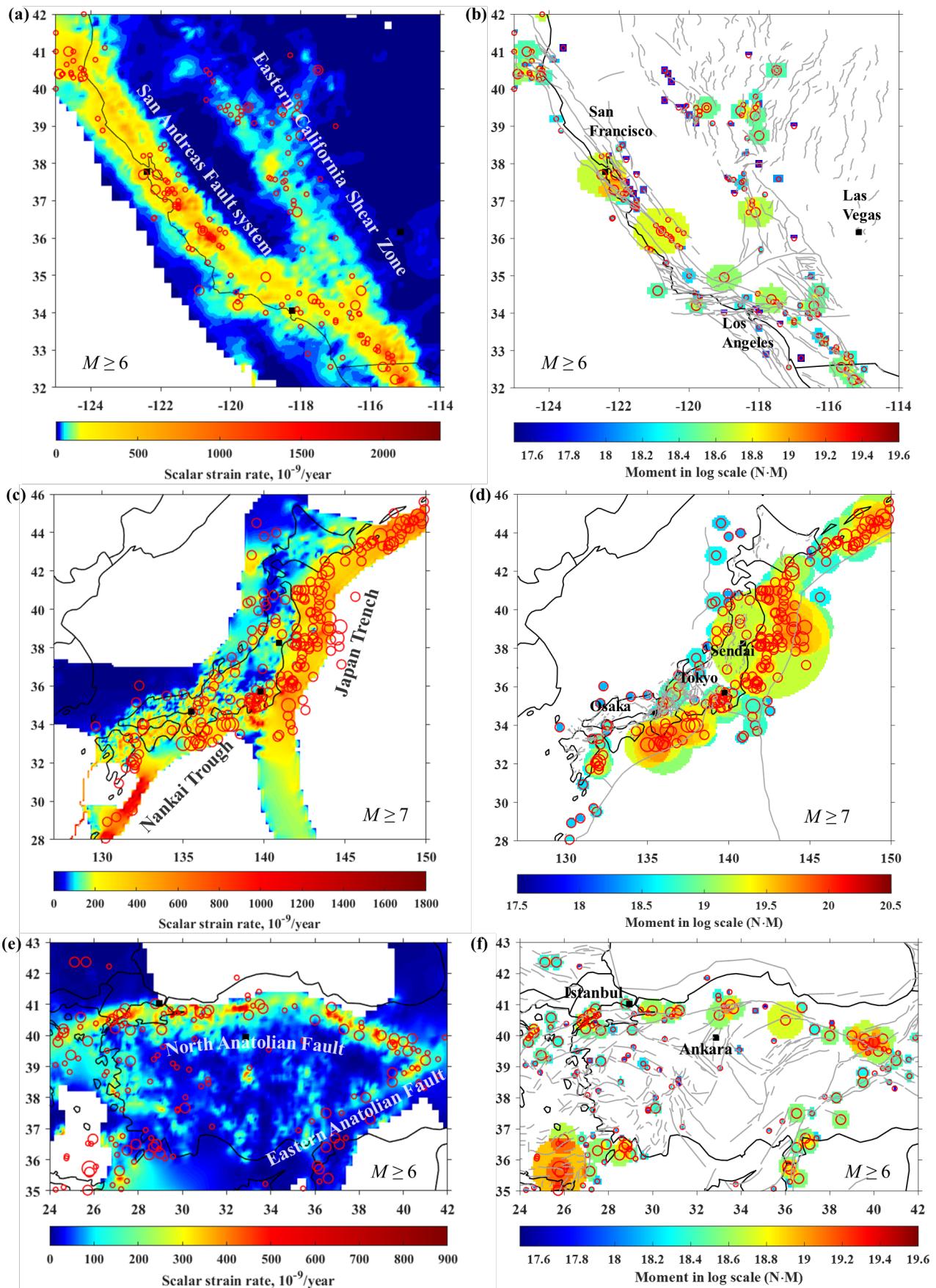
510 **Figure 4.** Comparison of correlations between strain rate, seismicity, and seismic moment in
511 different tectonic settings. Cumulative strain rate, earthquake count, and seismic moment are
512 plotted against the fraction of covered area sorted by descending strain rates, with the highest
513 strain rate areas located to the left of the horizontal axis. The scores in the legend are the area
514 skill scores explained in the text. The diagonal line indicates random distribution in space (area
515 skill score = 0.5).

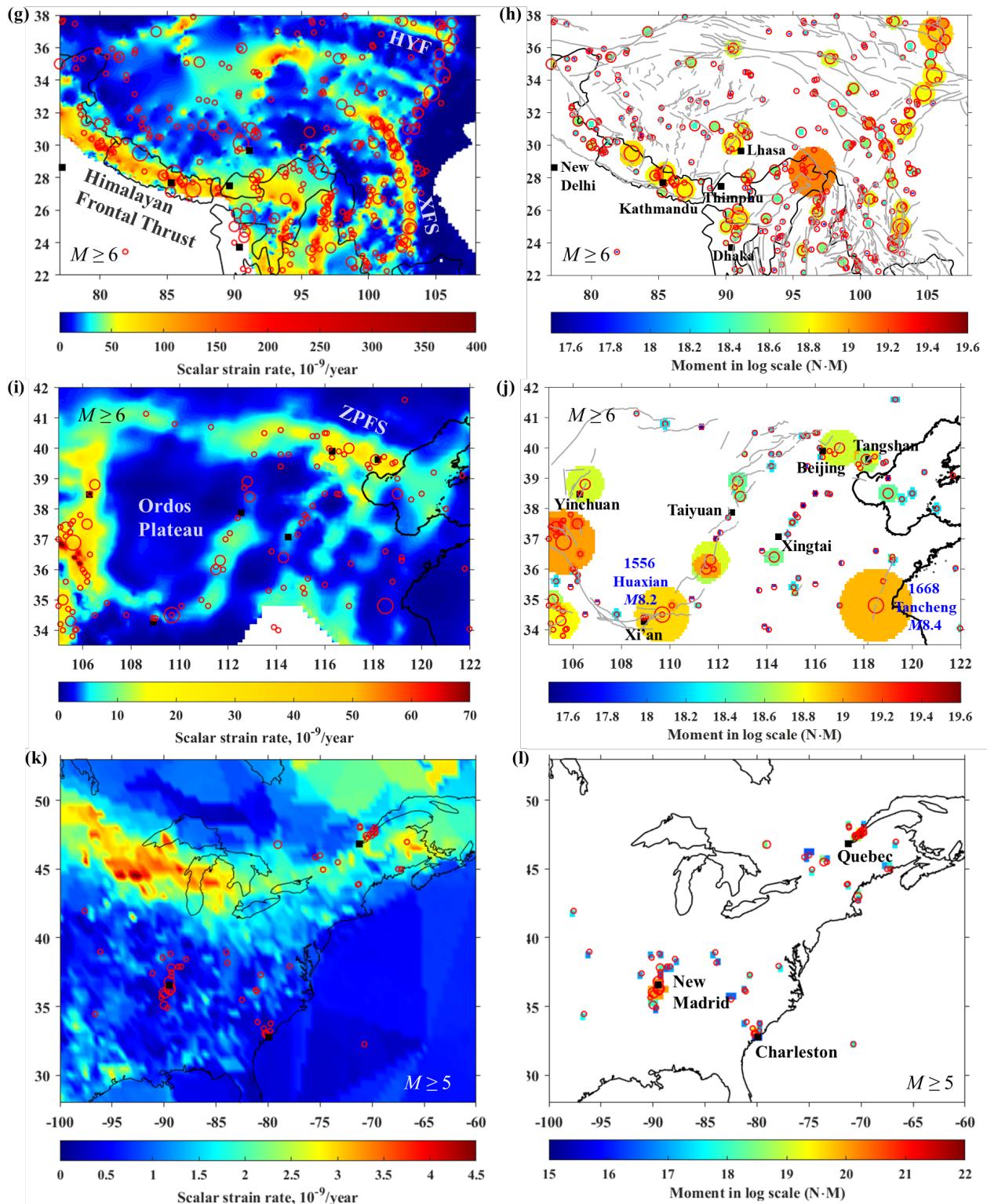
516

517 **Figure 5.** Comparison of the correlations between strain rate and seismicity in the CEUS for **(a)**
518 all events, **(b)** background events of $M \geq 5$ between 1811 and 2016. **(c)-(d)** Same as **(a)-(b)** but
519 for $M \geq 2.5$ events between 1980 and 2016. The background seismicity is obtained by
520 declustering the catalog using the nearest-neighbor method.

521

522 **Figure 6.** Relationship between strain rate and ΔA_m (the fractional area between the strain rate
523 curve and seismic moment curve) based on the results in Table 1. Regions with higher strain rate
524 have smaller values of ΔA_m , which indicates better correlation between strain rate and seismic
525 moment release in higher strain rate regions.

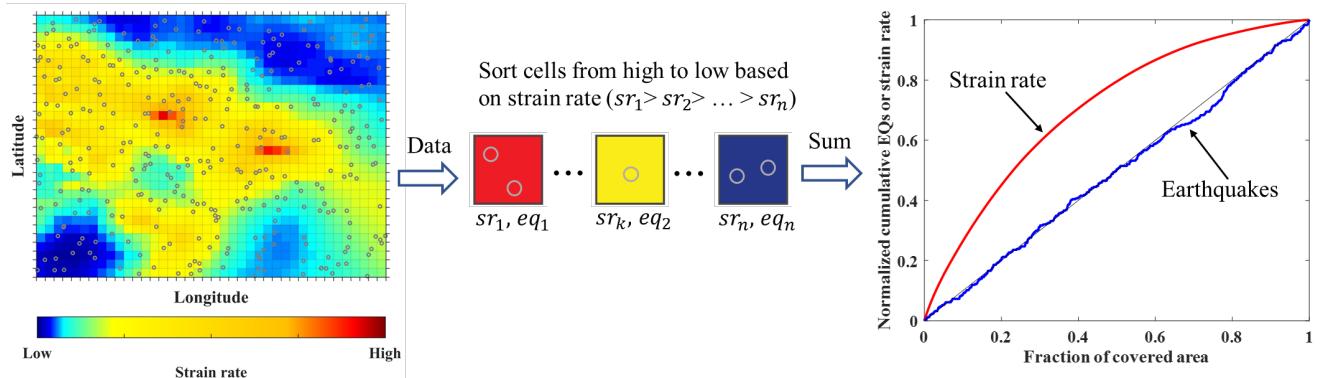

526


527 **Figure 7.** Temporal variations of strain rate-seismicity correlation in California and Nevada for
528 **(a)** all $M \geq 4$ events or **(b)** $M \geq 4$ background earthquakes. The cumulative earthquakes are
529 counted within a 10-year window that moves in 2-year steps from 1933 to 2016. **(c-d)** Same for
530 (a-b), but for $M \geq 4$ earthquakes in North China from 1970 to 2015. **(e-f)** Same for (a-b), but for
531 $M \geq 2.5$ earthquakes in the CEUS from 1980 to 2016. The color bar shows the midyear of the
532 moving 10-year windows used to calculate the cumulative earthquake counts. The thick black
533 curve is the cumulative strain rate. The diagonal line indicates spatially random distribution.
534

535 **Figure 8. (a)** Temporal pattern of $M \geq 6$ earthquakes ($M \geq 6.5$ for inset) in North China with two
536 active periods (1600-1750 and 1900-2015) separated by a relatively quiescent period (1750-
537 1900). **(b)** Comparison of correlations between strain rate (red curve) and seismicity in these
538 three periods. The diagonal line indicates a random distribution of earthquakes.

539

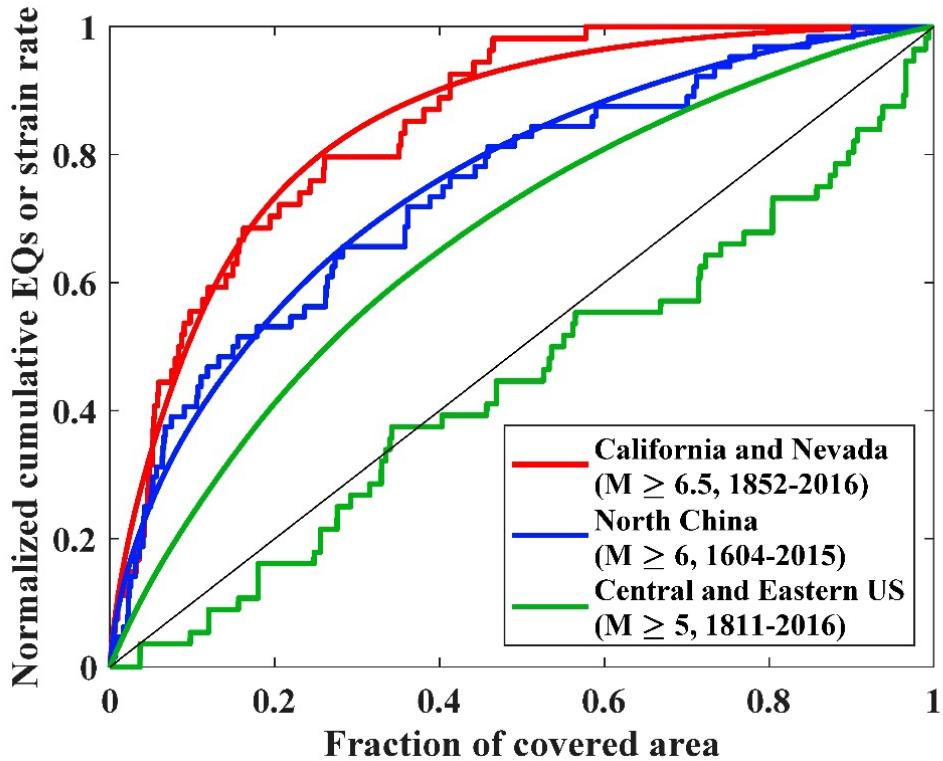
540 **Figures**



542

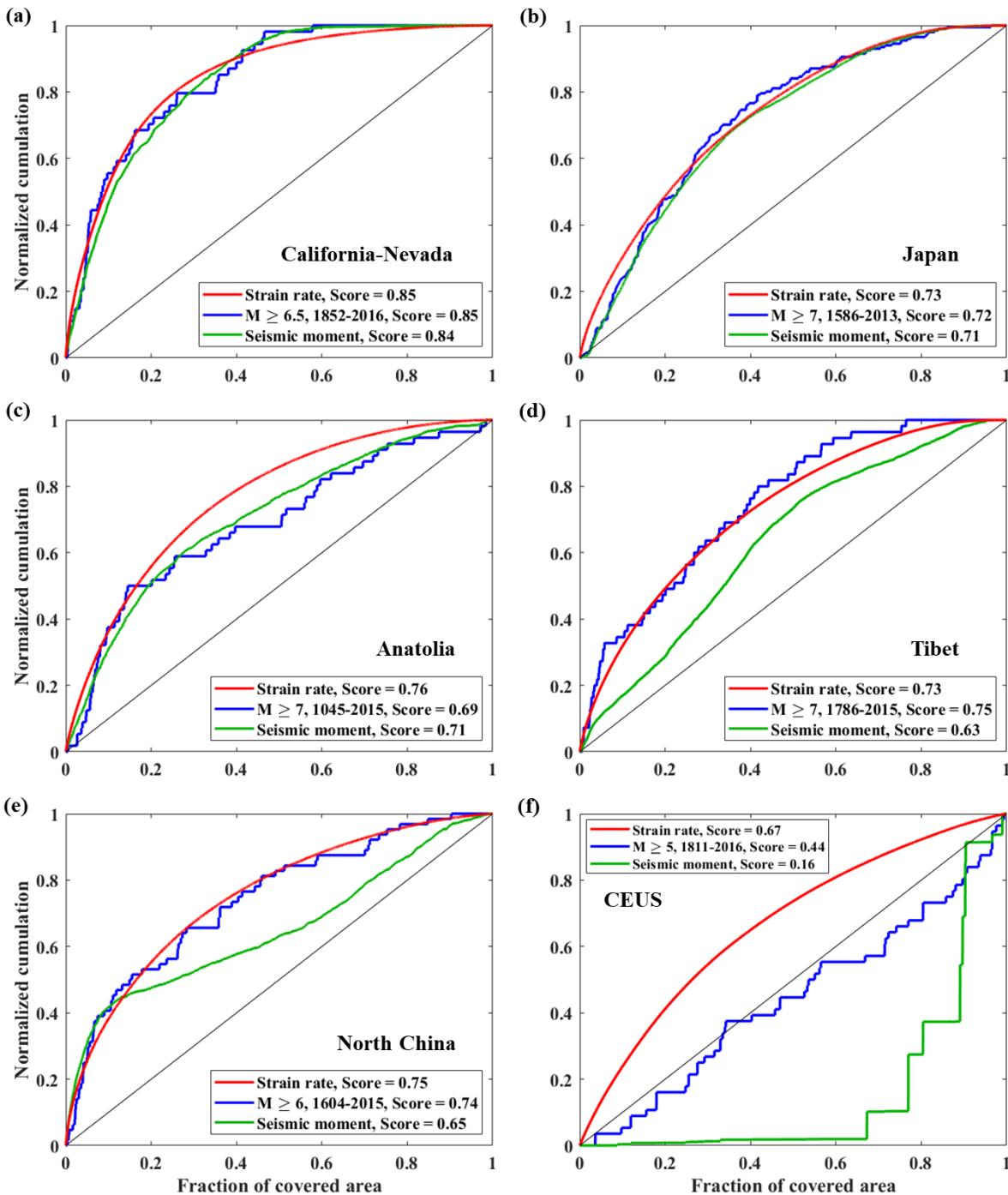
543 **Figure 1. (a)** Spatial distribution of seismicity (circles, $M \geq 6$, 1769-2016) and strain rate (color
 544 contours) in California-Nevada. **(b)** Spatial distribution of seismicity (circles, $M \geq 6$, 1769-2016)

545 and the seismic moment release (color contours) in California-Nevada. **(c-d)** Same as (a-b) but
546 for seismicity ($M \geq 7$, 1096-2015), strain rate, and seismic moment in Japan. **(e-f)** Same as (a-b)
547 but for seismicity ($M \geq 6$, 1045-2015), strain rate, and seismic moment in Anatolia. **(g-h)** Same
548 as (a-b) but for seismicity ($M \geq 6$, 1117-2015), strain rate, and seismic moment in Tibet. HYF:
549 Haiyuan fault; XFS: Xianshuihe fault system. **(i-j)** Same as (a-b) but for seismicity ($M \geq 6$, -780-
550 2015), strain rate, and seismic moment in North China. ZPFS: Zhangjiakou-Penglai fault system.
551 **(k-l)** Same as (a-b) but for seismicity ($M \geq 5$, 1568-2016), strain rate, and seismic moment in the
552 CEUS. The fault data are from the GEM global active faults database (Styron and Pagani, 2020)
553 and China Earthquake Networks Center and National Earthquake Data Center (see Data and
554 Resources).


555

556

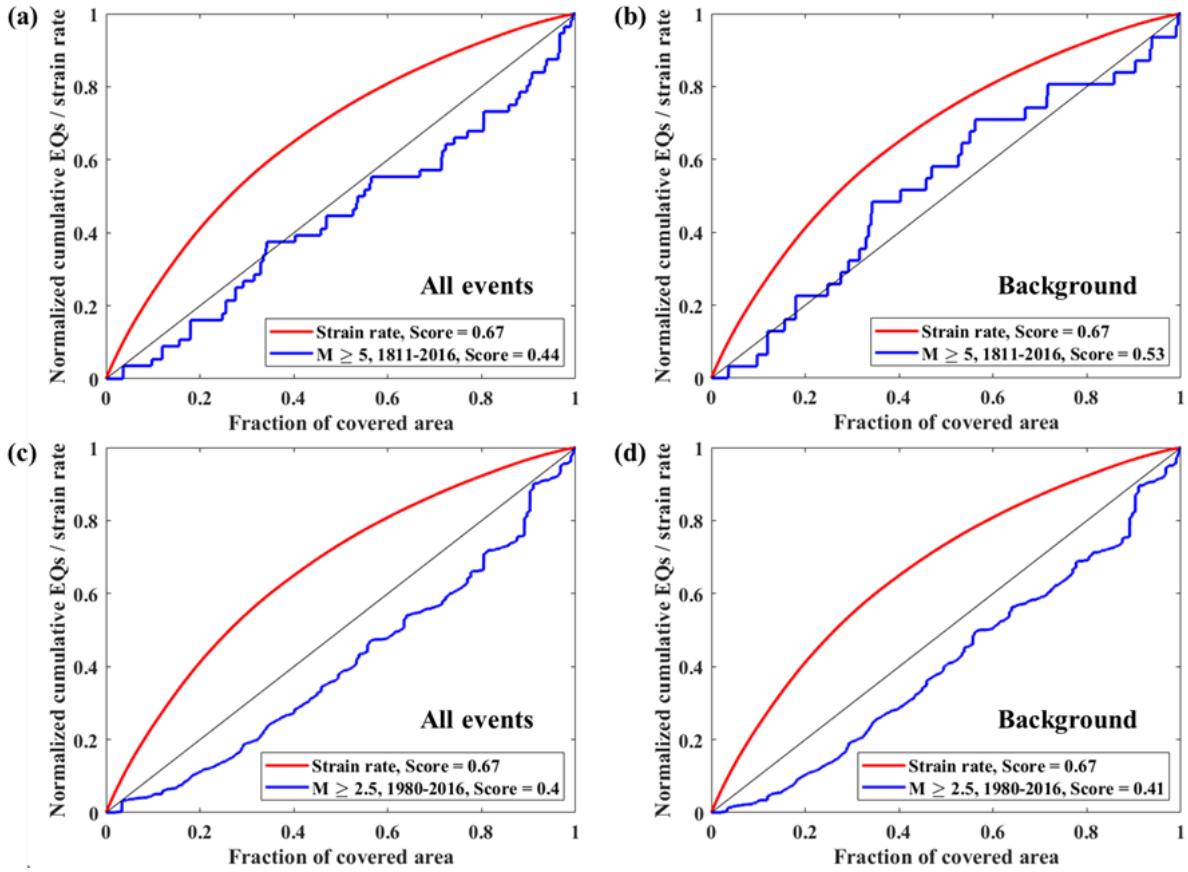
557 **Figure 2.** Illustration of the procedure that transforms strain rate and earthquake data to the
 558 “success diagram”. The grid cells are sorted by descending strain rate values (sr_1, sr_2, \dots, sr_n),
 559 so the cumulative value of strain rate increases with the number of the cells (fraction of covered
 560 area) as a concave curve. The numbers of earthquakes that occurred in these cells are
 561 eq_1, eq_2, \dots, eq_n . If earthquakes are randomly distributed in space as shown here, the cumulative
 562 earthquakes increase linearly with the number of cells.


563

564

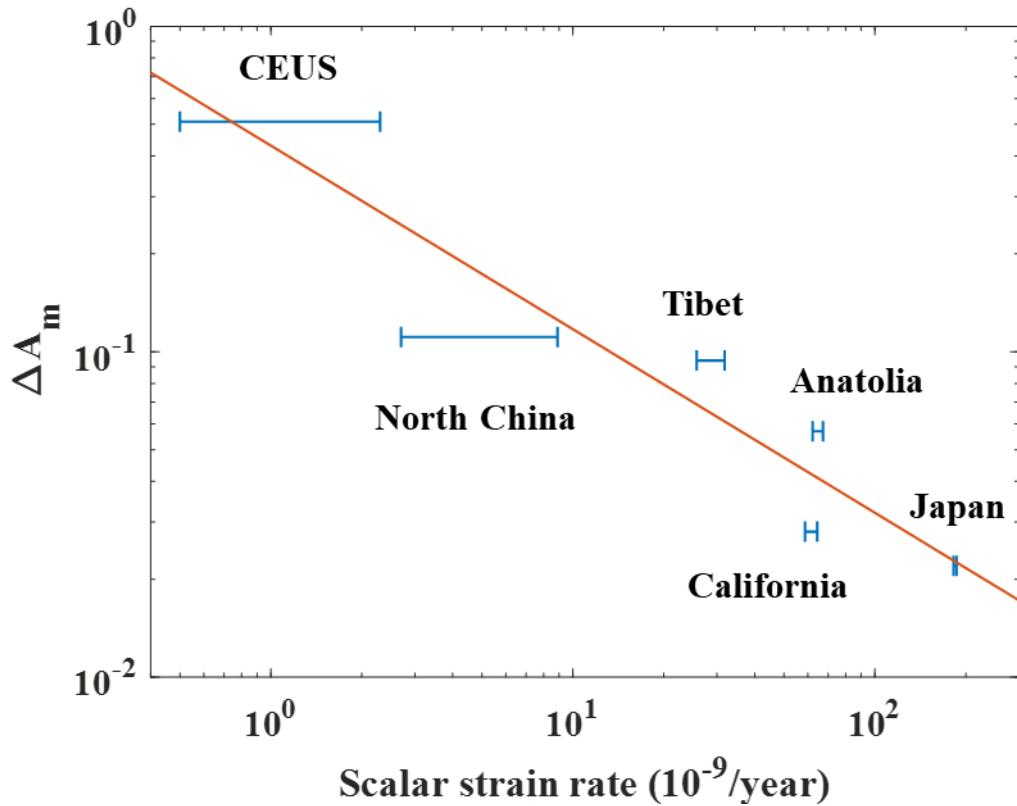
565 **Figure 3.** Comparison between strain rate and seismicity in different tectonic settings. Curves:
 566 cumulative strain rate; staircases: cumulative earthquake count. The method is explained in the
 567 text and illustrated in Figure 2. The concave strain rate curves for California-Nevada and North
 568 China indicate strain rate concentration, and their closeness to the cumulative earthquake counts
 569 (staircases) indicate strong correlations between strain rate and earthquakes. In the CEUS, the
 570 cumulative counts plotted close to the diagonal line, showing that large earthquakes (M \geq 5) are
 571 nearly randomly distributed in space.

572


573

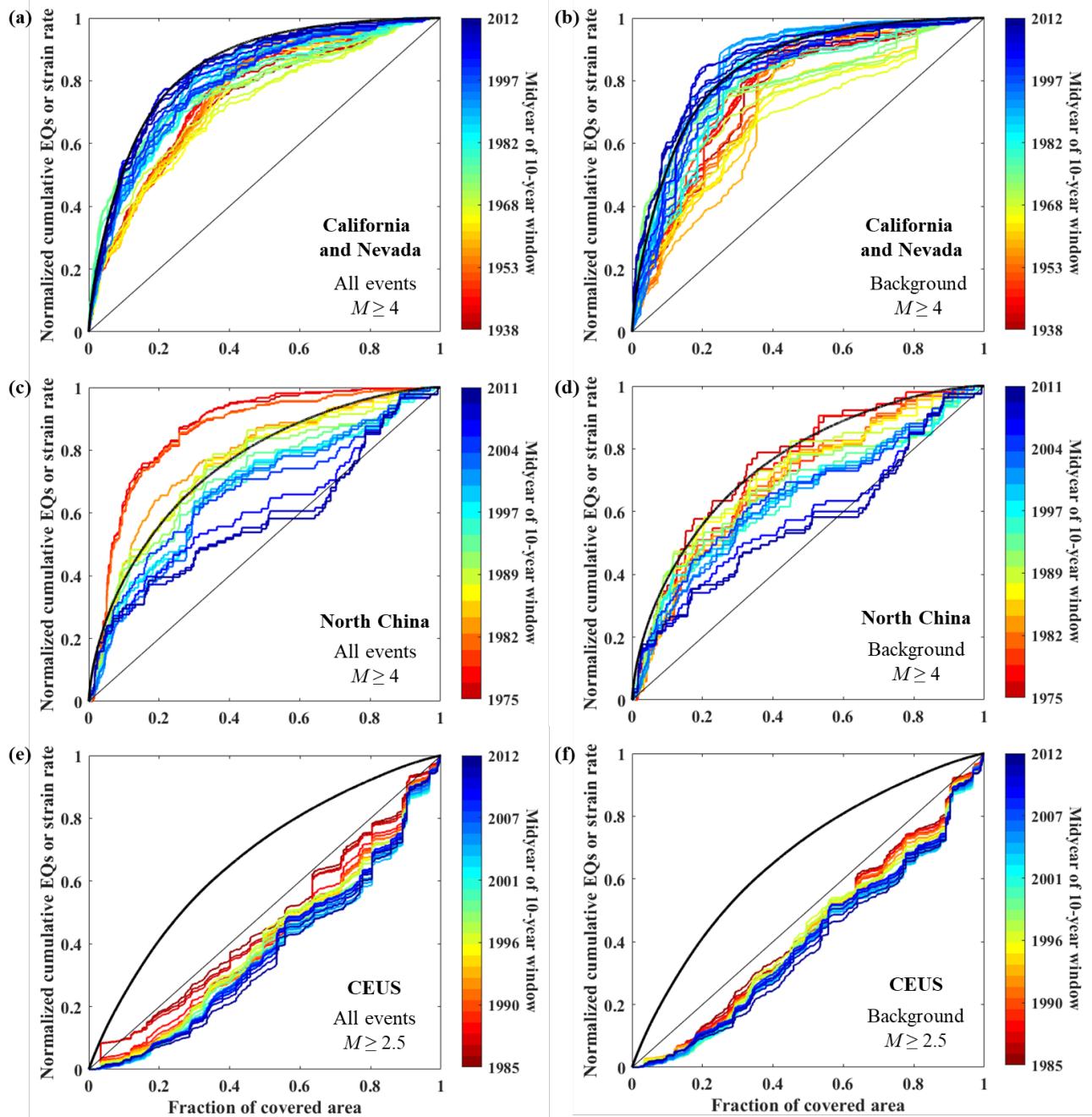
574 **Figure 4.** Comparison of correlations between strain rate, seismicity, and seismic moment in
 575 different tectonic settings. Cumulative strain rate, earthquake count, and seismic moment are
 576 plotted against the fraction of covered area sorted by descending strain rates, with the highest
 577 strain rate areas located to the left of the horizontal axis. The scores in the legend are the area

578 skill scores explained in the text. The diagonal line indicates random distribution in space (area


579 skill score = 0.5).

580

581


582 **Figure 5.** Comparison of the correlations between strain rate and seismicity in the CEUS for (a)
 583 all events, (b) background events of $M \geq 5$ between 1811 and 2016. (c-d) Same as (a-b) but for
 584 $M \geq 2.5$ events between 1980 and 2016. The background seismicity is obtained by declustering
 585 the catalog using the nearest-neighbor method.

586

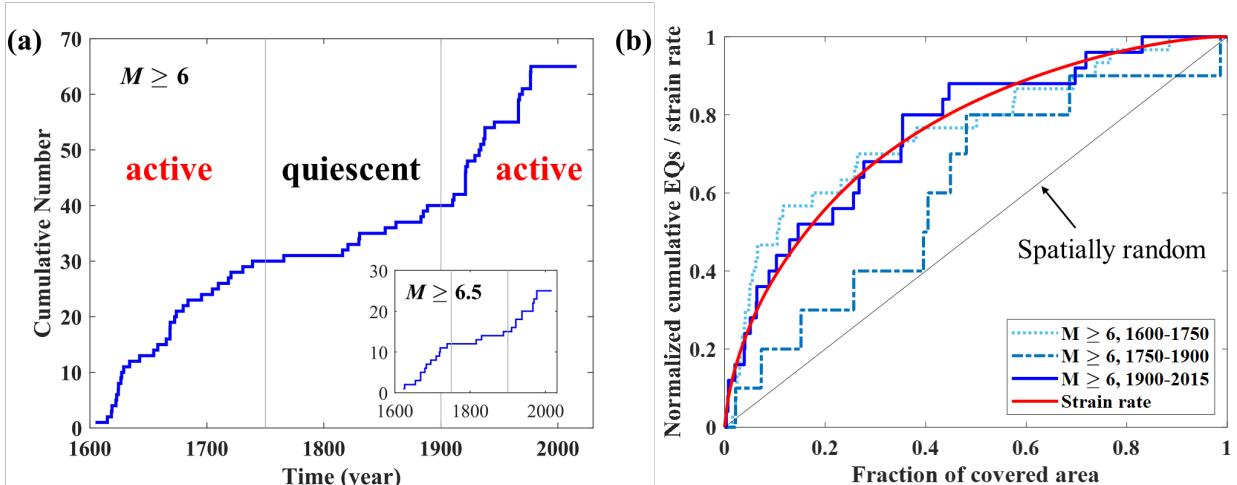
587 **Figure 6.** Relationship between mean strain rate and ΔA_m (the fractional area between the strain
 588 rate curve and seismic moment curve) based on the results in Table 1. Regions with higher strain
 589 rate have smaller values of ΔA_m , which indicates better correlation between strain rate and
 590 seismic moment release in higher strain rate regions. The red line is the least-square fitting.

591

592

593 **Figure 7.** Temporal variations of strain rate-seismicity correlation in California and Nevada for

594 **(a)** all $M \geq 4$ events or **(b)** $M \geq 4$ background earthquakes. The cumulative earthquakes are


595 counted within a 10-year window that moves in 2-year steps from 1933 to 2016. **(c-d)** Same as

596 (a-b), but for $M \geq 4$ earthquakes in North China from 1970 to 2015. **(e-f)** Same as (a-b), but for

597 $M \geq 2.5$ earthquakes in the CEUS from 1980 to 2016. The color bar shows the midyear of the

598 moving 10-year windows used to calculate the cumulative earthquake counts. The thick black
599 curve is the cumulative strain rate. The diagonal line indicates a spatially random distribution.

600

601

602 **Figure 8. (a)** Temporal pattern of $M \geq 6$ earthquakes ($M \geq 6.5$ for inset) in North China with two
 603 active periods (1600-1750 and 1900-2015) separated by a relatively quiescent period (1750-
 604 1900). **(b)** Comparison of correlations between strain rate (red curve) and seismicity in these
 605 three periods. The diagonal line indicates a random distribution of earthquakes.

606