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Abstract—Models of actual causality leverage domain knowl-
edge to generate convincing diagnoses of events that caused an
outcome. It is promising to apply these models to diagnose and
repair run-time property violations in cyber-physical systems
(CPS) with learning-enabled components (LEC). However, given
the high diversity and complexity of LECs, it is challenging
to encode domain knowledge (e.g., the CPS dynamics) in a
scalable actual causality model that could generate useful repair
suggestions. In this paper, we focus causal diagnosis on the
input/output behaviors of LECs. Specifically, we aim to identify
which subset of I/O behaviors of the LEC is an actual cause for a
property violation. An important by-product is a counterfactual
version of the LEC that repairs the run-time property by fixing
the identified problematic behaviors. Based on this insights, we
design a two-step diagnostic pipeline: (1) construct and Halpern-
Pearl causality model that reflects the dependency of property
outcome on the component’s I/O behaviors, and (2) perform
a search for an actual cause and corresponding repair on the
model. We prove that our pipeline has the following guarantee:
if an actual cause is found, the system is guaranteed to be
repaired; otherwise, we have high probabilistic confidence that
the LEC under analysis did not cause the property violation.
We demonstrate that our approach successfully repairs learned
controllers on a standard OpenAI Gym benchmark.

Index Terms—actual causality, control policy repair, cyber-
physical system.

I. INTRODUCTION

When a person’s leg hurts, they seek detailed diagnosis from

a physician regarding the pain’s cause, which would lead to an

effective intervention as a “repair”. Similarly, when a closed-

loop cyber-physical system (CPS) violates a desirable property

at run time, the violation needs diagnosis — a procedure that

identifies the cause for the violation, and by fixing the identi-

fied cause, the CPS can be repaired. Traditionally, researchers

conduct this kind of analysis from statistical inference on

observations [1], [2] . However, statistical diagnosis is prone

to mistaking correlation for causation: when a student always

wears a green jacket and fails several exams, such algorithms

are likely to conclude it is the green jacket’s fault due to

the perfect correlation. Therefore, in this paper, we focus on

stronger causal reasoning and repair on CPS failures.

Researchers have explored the concept of actual causality

that leverages domain knowledge to produce well-defined and

convincing causal explanations. Informally, an actual cause for

an outcome is a minimal set of variable assignments, which

represent an event, that changes the outcome if assigned some

counterfactual values. Finding an actual cause requires the

construction of an actual causality model, such as a Halpern-

Pearl model, which rigorously defines actual causes for events

and precisely assigns responsibility and blame [3]–[5]. With

these models, we can encode common knowledge that, for

instance, the student’s bad grade can be either due to not study-

ing hard enough or misunderstanding some concepts in class.

Although actual causality is promising for analyzing and

fixing CPS failures, causal analysis and repair have been

complicated by the growing popularity of learning-enabled

components (LECs) [6]–[8]. First, LECs usually consist of

numerous internal continuous parameters, such as weights

and biases in deep neural networks. Second, LECs take a

large diversity of forms, from basic statistical models such

as linear regressors and support vector machines to complex

deep architectures, lacking a shared struture of a parameter

template. Furthermore, sometimes the internal structures of

LECs are black-boxes protected as intellectual properties, and

are invisible to testing engineers. Under these scenarios, it is

hard to build a causal model based on the internal information

flow of these components. Related to diagnosis and repair are

the efforts in explainable AI [9], [10] and formal methods [11],

[12], where researchers build frameworks to explain behaviors

of learned agents. However, to our knowledge, these strands

of work have yet to connect to actual causality.

Since the internal parameters of LECs are hard to analyze,

we take a step back and analyze the LEC I/O behavior

instead. Our intention in this paper is to leverage actual

causality to efficiently identify the granular I/O behaviors of
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a suspected LEC for a run-time property violation. We intend

to identify these behaviors in the form of fine-grained input-

output mappings, so that a precise repair can be made for CPS

to satisfy the desired property.

To achieve this goal, we first construct an Halpern-Pearl

(HP) causality model to encode the dependency of property

outcome on the suspected LEC’s behaviors. Then, we design

an algorithm to search for an actual cause and corresponding

repair on this HP model. This algorithm either concludes that

an actual cause does not exist within the LEC’s behaviors

with high confidence , or outputs the set of behaviors that

are causing the violation, along with a counterfactual repair.

Experiments on the mountain car, a standard OpenAI Gym

benchmark [13], demonstrates the capability of our method.

To summarize, our contributions are:

1) A novel use of HP causality model to identify problematic

LEC I/O behaviors that cause a run-time property viola-

tion, and produce repair suggestions, without touching the

component’s internal information flow, and

2) Experiments on an OpenAI Gym benchmark that show

our solution’s utility for learning-enabled CPS repair.

II. BACKGROUND AND RELATED WORK

A. Learning-enabled Components (LEC)

Learning-enabled components (LECs) are functional com-

ponents of larger systems that are learned from data, either of-

fline or online. One example is the perception unit, with neural

networks able to complete difficult vision tasks that generally

cannot be accomplished by traditional first-principles algo-

rithms, such as tracking moving objects at 100 fps [6]. More-

over, deep reinforcement learning has provided useful control

policies on various tasks as a substitute for conventional

controllers [14], [15]. Due to LECs’ performance, the state-of-

the-art in CPS has a growing enthusiasm of these statistically

generated agents, with automated design tools built for CPS

with LECs [7], as well as analysis on their assurance on run-

time properties such as safety [8]. Consequently, we need to

consider the presence of LECs when diagnosing faults in CPS.

B. Repair

A repair is a procedure to change or replace parts of

a system to achieve a desirable performance, of which the

system previously fell short. This term has been widely used in

traditional embedded systems. For example, researchers have

studied repair on hardware components such as DRAM [16],

[17] or noisy sensors [18]. Also, repair has been performed on

software; for example, assembly program can be transformed

to decrease resource consumption below a threshold [19].

In modern CPS with LEC, the topic of repair interests many

researchers. Learned agents, such as deep neural networks,

may lead the system to unsafe states [20] or unplanned

paths [21]. Therefore, repair is necessary to recover desirable

behaviors. Repair of neural networks is an active area of

research [22], [23]. For instance, network parameters can be

repaired by search algorithms [24] or constraint solvers [25].

More recently, researchers have studied provable repairs on

deep neural networks, with guaranteed satisfaction of a given

property after the repair [26]–[28].

Compared to the existing work on repair, we focus on the

causal relationships between the repairable elements and the

execution outcome. That is, the neural network parameters to

be repaired should be the ones that caused the system’s failure.

C. Actual Causality and Halpern-Pearl Models

Below we rephrase Halpern and Pearl’s definition of actual

causality [3], [4]. An actual causality model, or a Halpern-

Pearl (HP) model is a recursive structure, i.e., a directed

acyclic graph, such that every node represents either an

exogenous variable, whose value is determined by factors

outside this model, or an endogenous variable, whose value

is determined by other variables in this model. The edges

represent dependencies: an exogenous node has only outgoing

edges but no incoming edges, while an endogenous node may

have both. Every endogenous node is equipped with a function,

which defines how the node’s value is computed from other

nodes. In other words, this function defines the incoming edges

to the node. Formally,

1) An HP model is a tuple M = (Uendo,Uexo,V, E), where

Uendo and Uexo are finite sets of endogenous and ex-

ogenous variables, respectively, and for each variable

u ∈ Uendo∪Uexo, V(u) defines a non-empty and potentially

infinite set of values that u can take.

2) E is a set of edges, associated with dependency equations,

that defines how the value of each endogenous node u is

computed. I.e., for each eu ∈ E ,

eu :
∏

u′∈Uendo\{u}

V(u′)×
∏

u′′∈Uexo

V(u′′) 7→ V(u).

To define an actual cause in an HP modelM, we introduce

the following notation:

1) An assignment of a variable u ∈ Uendo ∪ Uexo is denoted

as u := v, for some v ∈ V(u). Assignments of multiple

variables are denoted in vector form u := v, with u =
[u1, u2, . . . ], v = [v1, v2, . . . ]. This assignment means a

conjunction (u1 := v1) ∧ (u2 := v2) ∧ . . . .
2) A property ψ is a Boolean function of endogenous

variable assignments, e.g., ψ = (u1 := v1) ∧ (u2 :=
v2)∨(u3 := v3). The satisfaction relation (M,vcxt) |= ψ
denotes that a property holds on M given exogenous

nodes assigned with vcxt.

3) A counterfactual v
′ (with respect to the “factual” v)

is an alternative value assignment on some endogenous

variables. The values of dependent nodes in v
′ may be

different from v in accordance with to E . A property ψ
holds on a counterfactual that replaces the factual values

v with v
′ on variables u is denoted as (M,vcxt) |= [u←

v
′]ψ, or simply [u← v

′]ψ.

Then, in the above terms, the Halpern and Pearl definition

of an actual cause is phrased as follows.

Definition 1 (Actual Cause). On an HP modelM with exoge-

nous node values vcxt, the assignment on a set of endogenous

2
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variables u := v is an actual cause of ψ iff the following

conditions hold:

1) AC1: (M,vcxt) |= (u := v) ∧ ψ
2) AC2: ∃ partition Uendo = u∪u1∪u2. Denote the factual

values of u1 and u2 as v1 and v2, respectively. Then,

∃v′,v′
1
, such that

(a) [u← v
′,u1 ← v

′
1
]¬ψ

(b) [u← v,u1 ← v
′
1
,u∗

2
← v

∗
2
]ψ, for any u

∗
2
⊆ u2 and

v
∗
2

is the original factual value of u∗
2

(a subvector of v2).

3) AC3: ∄u′ ⊂ u that satisfies AC1 and AC2.

Condition AC1 ensures the suspected actual cause and out-

come are factual. Then, AC2(a) ensures a sufficient counterfac-

tual, that switching the suspect u and a circumstance u1 to that

counterfactual assignment guarantees a flipped outcome ¬ψ,

and AC2(b) states that switching the circumstance alone does

not change the outcome - as long as the suspect remains the

factual value assignments. Finally, AC3 guarantees minimality

of the actual cause. Detailed explanation for this definition can

be found in the original publications [3], [4].

Researchers have applied actual causality and HP model to

CPS diagnosis. For instance, Ibrahim et al. have designed a

SAT solver to practically compute actual causes to explain

undesirable CPS behaviors [29], [30]. However, the solver is

restricted to finite V(u) for variables and their HP model de-

sign only captures discrete events like ”there exists a Byzantine

fault” or ”the system is on autopilot mode”. Unfortunately, this

design does not extend to diagnosis of LECs, which generally

have continuous value spaces for I/O and internal variables,

and their internal information flows are not interpretable.

III. PROBLEM FORMULATION

A. System Setting

We formalize the system setting as follows. We have an

exact dynamical system model S , which describes how the

components of the agent interact with each other, as well as

how the agent interacts with the environment. This closed-

loop model is assumed to be deterministic. In other words,

the agent’s trajectory only depends on the initial state, the

environment dynamics, and the component designs. These as-

sumptions are often satisfied in model-based CPS engineering

and can be relaxed in future research.

The system aims to satisfy a given specification/property

φ that takes Boolean values (true/satisfied/1, false/violated/0),

e.g., the linear temporal logic (LTL) [31] or signal temporal

logic (STL) [32] formula. In this paper, we focus on STL.

We observe a trajectory on a given initial state s0, where

the system failed to satisfy φ and we suspect one of its

components C, such as a controller, is at fault for the violation.

The component C’s internal design is invisible to us, but we

can observe its input/output (I/O) behavior, which we denote

by function f : X 7→ Y , with its domain and codomain being

continuous and bounded metric spaces (X , dX ) and (Y, dY),
respectively. Therefore, we can replace this behavior by any

counterfactual f ′ : X 7→ Y . We denote the counterfactual

system that uses f ′ in place of f , with everything else

remaining the same, as S(f ′). We use S(f ′) |= φ and

S(f ′) ̸|= φ to denote that the property will be satisfied or

violated under S(f ′). With this notation, the factual outcome

is S(f) ̸|= φ. Next, we formalize the distance between two

choices for the behaviors of component C.

Definition 2 (Distance between I/O behaviors). For any two

I/O behaviors f1, f2 : X 7→ Y , we define distance || · ||df
as

||f1 − f2||df
= max

x∈X
||f1(x)− f2(x)||dY

(1)

We then make the following assumptions.

Assumption 1. We can check the outcome of φ on the given

initial state s0 when substituting different f ′ in place of the

component by calling a simulator,

SIMULATEs0 : (X 7→ Y) 7→ {0, 1}, (2)

which encodes the knowledge of S and φ. For simplicity, we

assume a fixed s0 in the remainder of this paper, and the

simulator is denoted as simply SIMULATE.

Assumption 2. The behavior f is Lipschitz-continuous, with

an unknown Lipschitz constant. This is a common property of

many types of learning models, such as neural networks.

Assumption 3. The property outcome is robust against small

changes from the factual I/O behavior f , i.e., ∀f ′ : X 7→ Y ,

||f − f ′||df
≤ ϵ =⇒ SIMULATE(f) = SIMULATE(f ′), (3)

for some small ϵ > 0.

We expect Assumption 3 to hold in most practical cases.

Suppose the distance of the factual f to the decision boundary

of the simulator outcome on I/O behaviors is δ. If δ > 0, there

exists an arbitrarily small ϵ < δ where the assumption holds.

The only case that Assumption 3 does not hold is when δ = 0,

i.e., the factual behavior is right on the decision boundary, but

this event would usually have a probability measure of 0.

B. Problem Statement

In the above setting, we want to identify a subset of I/O

behaviors of the suspected component C — that is, a set of

input-output tuples of f — that indeed caused the property

violation, as well as the counterfactual outputs on these inputs

that can repair the system.

Main Problem. Upon the observation of a property vio-

lation on a runtime trace, S(f) ̸|= φ, how can we use HP

causality to identify a subset of the suspected component C’s

I/O behaviors (modeled as f ) that caused this violation?

1) Sub-problem 1. Encode the dependency structure of C’s

behaviors on φ using an HP model.

2) Sub-problem 2. On the encoded HP model, design a

search algorithm for an actual cause, such that, upon

success, provide a repair suggestion in form of a coun-

terfactual f∗ : X 7→ Y that S(f∗) |= φ. Upon failure,

quantify the confidence that the property violation is not

caused by the I/Os of C.

3
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Theorem 2 (Propositional Encoding Preserves Partial Order).

The encoding ENCODE : Fr 7→ Vio specified by evaluating the

proposition of every uijk ∈ Uio, as constructed in Algorithm

2, preserves the partial order as defined in Definition 6.

V. THE CAUSAL REPAIR ALGORITHM

A. Satisfactory Counterfactual Search

Based on the constructed propositional HP model, we

look for an actual cause. The idea is to first search for a

counterfactual v′
io on Uio that leads to a satisfactory outcome,

i.e., S(f ′r) |= φ and f ′r = DECODE(v′
io). The subset of nodes

with different value assignments between the factual vio and

counterfactual v
′
io is not necessarily an actual cause yet (it

may not be minimal as per condition AC3), and in the next

subsection, we will look for a different v
∗
io that fulfills the

actual cause conditions from this v
′
io. Here, we focus on the

search for v′
io.

Since a brute-force search on all nm possible value assign-

ments takes exponential time, we leverage random sampling

as follows in Algorithm 3.

Algorithm 3: Counterfactual Random Sampling

Input : HP model M, probability threshold p,

significance level α ∈ [0, 1], simulator

SIMULATE, decoder DECODE, probability

distributions D1, D2

Output: Either a counterfactual value assignment v′
io

on Uio with SIMULATE(DECODE(v′
io)) = 1, or

a statement

PrD2
[PrD1

[SIMULATE(DECODE(v′
io)) = 1] ≤

p] ≥ 1− α
1 N ← ⌈(1/p− 1)Q(1− α/2)2⌉;
2 for 1 . . . N do

3 v
′
io ← uniform sampling from all nm settings;

4 φ← SIMULATE(DECODE(v′
io));

5 if φ then

6 Return v
′
io ;

7 end

8 end

9 Return PrD2
[PrD1

[SIMULATE(DECODE(v′
io)) = 1] ≤

p] ≥ 1− α;

The distribution D1 is a distribution on different value as-

signments in the value space Vio. For example, it can be a uni-

form distribution on the propositional node values. Distribution

D2 is the induced distribution on a sampled value assignment’s

success rate, i.e., p = PrD1
[SIMULATE(DECODE(v′

io) = 1] ,

which is treated as another random variable. In line 1, the

function Q(·) means the quantile on standard normal distribu-

tion. Starting from line 2 to 8, we uniformly sample different

value assignments v
′
io until we find one v

′
io that produces

satisfactory φ by SIMULATE or we reach a maximum number

of samples. If we fail to find a satisfactory value assignment,

we report that the probability of finding a satisfactory v
′
io with

uniform sampling, i.e., the portion of satisfactory v
′
io in the

entire search space, is at most p with confidence 1−α at line

9. We show our probabilistic failure statement at line 9 holds

with the following theorem.

Theorem 3 (Probabilistic Guarantee on Search Failure). Given

an HP model constructed by Algorithm 2, a probability

threshold p ∈ [0, 1] and a confidence 1− α ∈ [0, 1], the final

statement at line 9 of Algorithm 3 holds.

Upon N consecutive failures, this search algorithm states

that with some confidence a counterfactual assignment that

flips the outcome is unlikely to be found. This suggests

that the actual cause for the run-time property violation lies

elsewhere: possibly the environment, the behaviors of another

component, or the suspected component together with another

component — but not the I/O behaviors of this component

alone. This confidence is based on a substantial number of

samples without finding a successful counterfactual. For exam-

ple, for p = 0.001 and α = 0.05, one would need to uniformly

sample at least N = 3838 failed counterfactuals in a row.

B. Node Value Interpolation for Actual Cause

Suppose we have successfully obtained a satisfactory v
′
io on

Uio, from Algorithm 3. The final step is to find a counterfactual

v
∗
io that can flip the outcome and is as close to the factual vio

as possible, starting from v
′
io. This step is required to satisfy

the minimiality condition (AC3) of Definition 1.

We therefore perform a deterministic interpolation between

v
′
io and vio in Algorithm 4, which starts from the found

satisfactory counterfactual assignment v
′
io. In this algorithm,

the counterfactual value assignment steps towards the factual

vio by flipping the differing value assignments one-by-one.

This procedure continues until there are no nodes it can

flip while still satisfying φ. Because the total number of

nodes in Uio is m
∑d

j=1
nj , Algorithm 4 is guaranteed to

output an actual cause with a satisfactory counterfactual within

O(m
∑d

j=1
nj) time. The complexity is linear in terms of m

and n, allowing for efficient computation.

We visualize the process of searching for v
∗
io as Figure 6.

Without loss of generality, consider only the top left input cell.

The factual behavior f = DECODE(vio) maps inputs in this

cell to some output cell and this behavior produces a property

violation. The sampling by Algorithm 3 finds a satisfactory

counterfactual f ′ = DECODE(v′
io), which is an alternative

mapping. Next, the interpolation Algorithm 4 flips the nodes

disagreed by vio and v
′
io one-by-one towards vio. This flipping

is equivalent to stepping through the output cells one by one.

Eventually, the algorithm reaches a node assignment where

any steps towards f result in φ becoming violated, at which

point it returns the current node assignment. Depending on the

dimensions, we can take different paths in stepping, i.e. we can

end up either in cell (1) or cell (2), from interpolating in the

vertical or horizontal dimension first, respectively. Mapping

the input cell to either of these two cells represents a valid

I/O behavior of f∗.

Notice that Algorithm 4 incrementally steps towards the

factual vio from v
′
io by flipping nodes one-by-one. A more

7
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Interpolation Total time (s) Simulator time (s) Stepping time (s) # of operations

Incremental 9148.77 9148.76 0.003 1231
Binary 4965.03 4965.02 0.001 880

TABLE I: Computation time of interpolation from counterfactual f ′
1

to factual f . An “operation” is a combination of executing

SIMULATE and stepping the counterfactual towards the factual behavior.
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