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Abstract 

Photonic modes in dielectric nanostructures, e.g., wide gap semiconductor like CeO2 (ceria), have the 

potential for various applications such as information transmission and sensing technology. To fully 

understand the properties of such phenomenon at the nanoscale, electron energy-loss spectroscopy 

(EELS) in a scanning transmission electron microscope (STEM) was employed to detect and explore 

photonic modes in well-defined ceria nanocubes. To facilitate the interpretation of the observations, 

EELS simulations were performed with finite-element methods. The simulations allow the electric and 

magnetic field distributions associated with different modes to be determined.  A simple analytical 

eigenfunction model was also used to estimate the energy of the photonic modes. In addition, by 

comparing various spectra taken at different location relative to the cube, the effect of the surrounding 

environment on the modes could be sensed. This work gives a high-resolution description of the 

photonic modes’ properties in nanostructures, while demonstrating the advantage of EELS in 

characterizing optical phenomena locally. 

Introduction 

Photonic modes, sometimes referred as cavity modes or waveguide modes, is a phenomenon in some 

dielectric materials, with specific sizes and shapes in which photons may form a standing wave and be 

temporarily trapped or channeled in the material. Such modes have been widely applied in fields such 

as telecommunication (Ramp et al., 2020; Schatzl et al., 2017), laser generation (Morville et al., 2005; 

Painter et al., 1999) and sensors (Gan et al., 2017; Lucklum et al., 2012). When the size of the structure 

is on the order of a few hundred nanometers, photonic modes associated with visible light can form, 

enabling potential application to fields such as energy conversion and sensing (Dong et al., 2007; Ge et 

al., 2013; Luo et al., 2015). 

To fully tap the potential of photonic modes in nanostructures, a deeper understanding of the modes’ 

properties is needed. However, despite high energy resolution, traditional optical measurement methods, 

e.g., Raman spectroscopy (McCreery, 2001) and infrared spectroscopy (Stuart, 2004), usually suffer 

from low spatial resolution, of around 1 micrometer. An alternative approach to trigger and locally 
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probe photonic modes in nanostructure is to employ high energy focused electron beams which have 

dimensions of 0.1 nm or less. For a free electron beam, the electric field in frequency space can be 

described in terms of virtual photons (Jackson, 1999). In the case of scanning transmission electron 

microscopy (STEM), the high energy electron probe can act as a sub-nanometer source that emits 

continuum light that has a component perpendicular to the beam propagation direction. 

With the advances in electron optics, especially aberration corrector (Haider et al., 1998; Krivanek et 

al., 1999), monochromator (Krivanek et al., 2009; Tiemeijer et al., 2001), and detectors (Eisenstein et 

al., 2019; Plotkin-Swing et al., 2020), studying low-energy phenomena including plasmonic (Koh et al., 

2009; Schaffer et al., 2010; Wu et al., 2018) and phononic (Hachtel et al., 2019; Hage et al., 2017, 2018, 

2019, 2020; Hoglund et al., 2022; Krivanek et al., 2014; Lagos et al., 2017; Venkatraman et al., 2019; 

Yan et al., 2021) response at atomic resolution with adequate energy resolution (~10meV) through 

electron energy-loss spectroscopy (EELS) in STEM is feasible. These enhancements in the quality of 

EELS in the electron microscope also enable photonic modes to be explored with higher energy 

resolution compared to the past. 

Previous studies on photonic modes in silicon-based materials with different shapes supported by thin 

films has shown that STEM-EELS as a powerful tool to explore this phenomenon (Alexander et al., 

2021; Kordahl et al., 2021; Yurtsever et al., 2008). Such studies provided a deep understanding of the 

modes and more recent investigations have focused on wider band-gap materials with different shapes, 

e.g., CeO2, and TiO2 nanoparticles (Liu et al., 2019). Also, it shown that the modes are easier to detect 

at higher accelerating voltage in the aloof beam geometry. However, many nanoparticle systems have 

complex aggregate geometries which may impact the character of photonic modes especial if there is 

strong coupling.  The photonic response from such complex systems is not easy to model and must be 

explored with experimental approaches. High spatial resolution EELS is ideally suited to investigating 

the heterogeneity in the photonic response in nanoscale systems with complex geometry.  

In this paper, STEM-EELS was performed on well-defined cerium oxide nanocubes. Through energy-

loss spectra and mapping, different mode excitation due to the geometry difference are demonstrated, 

i.e., some modes may be more preferentially excited when the beam is placed at specific positions. To 
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further understand such spatial variations in mode excitation, numerical finite element calculation was 

performed in the commercial software COMSOL Multiphysics and compared with a simple analytical 

model to calculate the energy of photonic modes in cubic nanoparticles with given dielectric functions. 

The influence of the surrounding environment on the properties of photonic modes is also investigated. 

In particular, the change in the character of the photonic modes when there is strong coupling with 

surrounding aggregate is explore. 

Methods 

Synthesis 

Ceria nanocubes with predominantly (100) surface terminations were synthesized using a hydrothermal 

method (Yang et al., 2007). Cerium nitrate hexahydrate (Ce(NO3)3·6H2O) and sodium hydroxide 

(NaOH) were separately dissolved in deionized water. The solution was mixed and stirred using a 

magnetic stirrer for 30 min. The final molar concentration of NaOH was calculated to be 8 M. In order 

to get cubes with ideal size for photonic modes, the mixture was heated inside an autoclave at 220°C 

for 24 hours and cooled down in 1 hour. The precipitate particles that formed were dispersed in 

deionized water by sonicating for 20 min. The top layer of the suspension was used for TEM observation 

by drop-casting onto a lacey carbon film supported on Cu grids. The sample was baked at 150oC for 

two hours to avoid carbon contamination.  

STEM and EELS measurements 

Monochromated-EELS was performed with NION UltraSTEM 100 microscope equipped with an 

aberration corrector and the state-of-the-art Dectris ELA detector (Plotkin-Swing et al., 2020). The 

microscope was operated at 100 kV. The energy dispersion of the spectrometer was set to 5 meV per 

channel and the measured zero-loss peak full width half maximum was 18 meV. The convergence and 

collection semi angle of the experiment were set to 19 mrad and 21.8 mrad respectively, (a 2 mm 

spectrometer entrance aperture was employed), giving a probe size of 120 pm. To increase the signal-

to-noise ratio (SNR), 100 spectra taken at the same position with 500 ms exposure time and 

subsequently summed. EELS mapping was also performed from ceria cubes and surrounding areas with 
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a dwell time of 100 ms per pixel to minimize the effect of sample drift while maintaining an adequate 

SNR. Maps were plotted as the background-subtracted intensity at each major peak energy with a 5meV 

window (1 pixel width on the spectrometer). The data was processed with Nion Swift and Gatan Digital 

Micrograph. The background subtraction is described in supplement S1.  

 

Finite element simulations 

Finite element methods were employed to simulate the energy-loss spectra. The calculations were 

performed with the radio frequency module in COMSOL Multiphysics, which has been previously 

employed for the plasmonic (Raza et al., 2014; Wiener et al., 2013) and vibrational loss (Konečná et 

al., 2018) spectral region. Electric fields corresponding to different frequencies can be derived from 

solutions of Maxwell’s equations. The energy-loss probability can be evaluated through the following 

equation (Konečná et al., 2018):  

Γ𝐸𝐸𝐿𝑆(𝜔) =
𝑒

2𝜋ℏ𝜔
∫ 𝑑𝑧𝑅𝑒[𝐸𝑧

𝑖𝑛𝑑(𝑧, 𝜔)𝑒−
𝑖𝜔𝑧

𝑣  ] 

where 𝑣, 𝑒, 𝜔, 𝐸𝑖𝑛𝑑 are the velocity of electron, unit charge, frequency and induced electric field, and z 

is the propagating direction of the electron beam, respectively. The cerium oxide dielectric function was 

taken from the literature (Järrendahl & Arwin, 1998), 

Result and Discussion 

Energy-loss spectra and mappings 

Measurements were performed on cubes that had faces both with and without aggregates present.  A 

ceria nanocube with a size of around 200nm in a [100] orientation is shown in the high-angle annular 

dark-field (HAADF) image of Figure 1a. One face of the cube is nearly clean (i.e., aggregate free) 

while the other faces have differing degrees of contact with small and large aggregates. Spectra can be 

recorded in either aloof or transmission geometry, depending on whether the beam is located in the 

surrounding vacuum or is transmitting through the particle. In the aloof beam geometry, the energy-loss 

signal is generated as a result of delocalized electron-solid interactions (Crozier, 2017). The influence 
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of the distance from the electron beam to the crystal surface, defined as the impact parameter b (b>0 

for aloof and b<0 for transmission geometries), on the aloof spectral intensity has been discussed 

previously in the literature (Howie & Milne, 1985; Liu et al., 2017). 

In the aloof geometry, as the beam approaches the particle surface, the spectral intensity rises, with the 

peaks becoming most intense when the electron beam is positioned on the surface. This strong increase 

in the signal with decreasing impact parameter is expected for the aloof geometry. However, once the 

beam enters the CeO2 cube, a pronounced reduction in overall spectral intensity is observed. This overall 

intensity drop in the transmission spectra is mainly because a significant portion of the incident electrons 

now undergo elastic scattering outside the spectrometer entrance aperture (Egerton, 2014). In practice, 

the visibility of the photonic modes is enhanced when the probe is close to the edge of the particle in 

the aloof beam geometry. Considering the convergent electron probe and the average nanoparticle 

thickness (~100-200 nm), the optimum impact parameter to observe the spectral signatures of photonic 

modes while avoiding elastic scattering contributions is 10 nm.  

Figure 1b shows spectra from two different probe geometries: the blue one, denoted as the edge (E) 

position, is near the top left edge of the cube which is parallel to the direction of the incident electron 

beam, and the red one, denoted as the face (F) position, is around the middle of the face of the cube. 

Four major peaks between 2 eV and the bandgap edge (~3.40eV), denoted as peak E1(~2.45eV), 

F1(~2.65eV), F2(~3.10eV), and E2(~3.25eV), are present in the spectra. In the face position geometry, 

peaks F1 and F2 are the predominant peak, while peak E2 is about half the intensity of peak F2, and 

peak E1 is almost invisible. For the edge position, peaks E1 and E2 are stronger signal compared to 

face position, while there is a peak F1* of low intensity that has energy very close to peak F1, and peak 

F2 is covered by the tail of peak E2.    

Figure 2 presents the background-subtracted EELS intensity mapping of each major peak across the 

cube. In the transmission part of the map (i.e., on the cube), the intensity is a factor of 200 lower 

compared to the aloof geometry, due to elastic scattering as described above. We could compensate for 

elastic scattering by normalizing the maps to the total spectral intensity, but this was not done due to 

the very poor SNR associated with the transmitted signal. (It should be mentioned that there is no 
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Begrenzung effects for photonic modes because the imaginary part of the dielectric function is zero 

below the bandgap.) However, the photonic modes are still detectable in transmission as shown in 

supplement S2. Elastic scattering from small particles decorating the surface of the cube (see figure 

1a) also causes some medium-low intensity contrast in the maps. For peak F1 and F2, the high intensity 

region formed an arc-shape area, and the brightest area is at the center of the arc, close to the middle of 

the (100) surface. Meanwhile, peak E1 and peak E2 give higher intensity near the edge of the cube, 

especially the top left and bottom right. Also, peaks E1 and E2 are more strongly excited around the 

edge of the cube while modes corresponding to peaks F1 and F2 are more strongly excited at the middle 

of the face. The similarities between the F peak maps indicates that they have similar excitation 

probability distributions. The same applies to the E peak maps. (It should be noted that all the modes 

are excited at the same time when beam is placed at different positions, which just alter exciting 

probability of different modes.) 

Finite element simulations of energy-loss spectra and standing wave model 

To further understand the photonic modes in the cube, we performed numerical simulations with 

COMSOL Multiphysics. The geometry for the simulation is shown in figure 3a and was similar to the 

experiment set-up with an incident electron energy of 100 keV. We use a line current to simulate the 

electron beam, which is positioned 10 nm away from the cube and along z-direction in our Cartesian 

coordinate system. The beam was placed at the same position as the experimental edge and face settings. 

The simulated energy-loss spectra are plotted as figure 3b. The energy-loss spectra of two geometries 

show a very good qualitative match with the experimental spectra: the position of the valence loss edge 

is roughly the same, and the major four peaks and a minor peak F1* and their relative intensity agrees 

with that of experiment. The reason for slight differences between experiment and simulation might 

come from: (1) The dielectric data we use for simulation, which is measured from a film, may not 

exactly match that for our cube. (2) The assumption we made that the nanoparticle is a cube, which may 

not be true since we cannot measure the side of the particle that parallel to the beam. (3) In the 

experimental case, the cube surfaces are decorated with small nanoparticles and aggregates which are 

not included in the simulation. (4) The electron beam was modeled as a line current in COMSOL, 
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instead of convergent cones in real experiment, which leads to finer and sharper peaks in simulation (5) 

COMSOL assumes perfectly sharp edges, which is not true in reality. (6) The experimental spectra can 

be considered as the convolution of our simulated result and the ZLP, thus resulting in broader peaks 

that will cover potential minor features (Kimoto et al., 2005).   

Another way to understand these modes is the basic standing wave model (Balanis, 2012): 

𝜔𝑚𝑛𝑙 =
𝜋

√𝜇𝜖(𝜔)
(

𝑚2

𝑎2
+

𝑛2

𝑏2
+

𝑙2

𝑐2)

1 2⁄

=
𝜋

√𝜇𝜖(𝜔)

𝑘

𝑎
,   𝑤ℎ𝑒𝑟𝑒 𝑘 = √𝑚2 + 𝑛2 + 𝑙2  

where 𝜔, 𝜇, 𝜖, 𝑎, 𝑏, 𝑐 are the frequency of the mode, the permeability (which we consider as a constant), 

the dielectric function in frequency, and three dimensions of the rectangular cuboid respectively. 𝑚, 𝑛, 𝑙 

are non-negative integers, which stands for the wave mode for each direction. Since it is a cube, 𝑎, 𝑏, 𝑐 

are the same and  𝑎 = 200𝑛𝑚.  In this case, the solution to this equation over the energy range of 

interest is given in table 1a (Supplement S3 shows the detailed solving procedure). Notice that 𝑘2 = 7 

is skipped, which is because 7 cannot be written as the summation of three square of integers. There is 

a reasonable agreement between the peak energy generated by COMSOL simulations (table 1b) and 

the photonic eigenmode model. The reason for discrepancy between the two approaches is because, in 

the eigenfunction model, it is assumed that there is no penetration of the electromagnetic field beyond 

the cube boundaries, which is not true in both finite-element simulation and experiment (some field 

always extends beyond the cube boundary). 

This equation also frames general conditions for photonic mode generation. The bandgap value will act 

as an upper limit of photonic mode energy (or the lower limit of photonic mode wavelength), since 

photons with energy larger than bandgap will be absorbed and the form electron-hole pairs. The real 

part of the dielectric function will determine the minimum size of the particle that can support a photonic 

mode. In a high-κ dielectric with a bandgap of 3~5eV bandgap like ceria, we can observe photonic 

modes in particles larger than 100 nm in size. 
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Electric field of the modes 

An intuitive way to visualize the modes is to plot the time-integrated electric fields in the cube with 

each excitation geometry in frequency domain.  We calculate the electric field in the cube for each peak 

energy. Figure 4 shows the z components of electric field. The 3D plot of electric field shows standing 

wave patterns in the cube. To further visualize the modes, we plotted the cross section of the cube which 

has highest electric field intensity for each mode. For low energy modes (peak E1 and F1), the highest 

intensity is in the middle of the cube, while it is low or even zero at some locations on the top and 

bottom surfaces. Higher energy modes give strong electric fields at the 1/4 and 3/4 height of the cube, 

and has weak field at middle, top and bottom of the field. (See supplement S5 for field at other heights). 

Also, for the cross-section of the same energy at different heights, while the shape of the field is nearly 

identical, the sign of the field reverses as shown in figure 4c-d. The behavior in the z-direction indicates 

a periodicity of the electric field: a half period for lower energy peaks, and a full period for higher 

energy peaks.  

Apart from the variation in z-direction, the electric field also shows specific symmetry for two different 

probe geometries. The electric field maps of the two edge peaks show a symmetry along the diagonals, 

while for the face geometry, the symmetry axis is the horizontal or vertical bisector line. The shape of 

the electric field also indicates the wave vector of the mode, especially for the edge modes: a wave 

pattern is formed in the diagonal direction. In addition, an energy comparison can be done with the 

estimation of wavelength based on the electric field pattern. Peak E1 has a wavelength proportional to 

the diagonal of the square, thus the energy is lower than peak F1, of which the wavelength is around 

the side of the cube. For peak F1 and F2, although they share similar electric field patterns in the x-y 

plane, peak F2 has a shorter wavelength due to the extra half period in z-direction, and therefore a 

higher energy. The wavelength of peak E2 in x-y plane is two third of the diagonal, which is shorter 

than the side of the cube by a little amount. This matches the fact that the energy of peak E2 is slightly 

higher than peak F2.   

Modes’ properties with different surrounding environments 
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Notice that the peaks’ intensities in the map do not show perfect spatial symmetry in Figure 2, for 

example, the map for peak E2. To understand the slight asymmetry, we acquired multiple spectra at 

different points along the side of the cube and extracted signals at points that would be symmetrically 

equivalent in terms of the geometry of a hypothetical clean cube. Figure 5 shows two sets of 3 spectra 

at symmetrically equivalent points (with respect to perfect cube) and they show unexpected differences 

in major peaks between points, (matching the intensity variation of the EELS mapping). For face 

position (figure 5b), spectra at FL and FR are giving qualitatively similar results as the face position 

spectrum in figure 1b, while FB shows an intensity decrease and peak broadening for both peak II and 

III. Similar results are observed at the edge positions (figure 5c): ETL and EBR are equivalent to the 

edge position results in figure 1b, whereas peak E1 and especially, peak E2 are suppressed when beam 

is placed at EBL. Although two sets of points are geometrically equivalent for a clean cube, the 

surrounding environment of the cube, e.g., the aggregates attached to the cube, is not symmetric.  

There are two groups of aggregates that can possibly lead to a disturbance of the photonic modes: (1) 

small particles decorated the cube surfaces (2) a very large aggregate at the top and upper right side of 

the cube (see Figure 1a). According to the HAADF image, ETL, FB and FR are the three probe positions 

that are closer to the small particles on the surface. At these positions, the conduction band signal is 

stronger and shows a steeper rise due to the closer proximity of the probe to the small ceria particles.  

However, despite the fact that these three points collect additional signal from small particles, only FB 

shows damping of the photonic peak intensity, which confirms that the asymmetry in the excitation of 

photonic modes is not simply caused by the small aggregates on the surface of the cube near the electron 

beam. On the other hand, we can see that modes generated from EBL and FB have a boundary associated 

with large aggregates with dimensions larger than the cube (see Figure 1a). This allows the photonic 

mode to couple into the adjacent aggregates and changes the resonant frequencies. (For more 

information on coupling the reader is referred to Liu et al (Liu et al., 2019)). These observations 

demonstrate that the variations in spectra from photonic modes are caused by the large aggregates at 

the top right side of the cube. 
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To aid the understanding in the origin of the change of the intensity and broadening of the peaks, it is 

useful to look at a simple classical behavior of the peaks in a spectrum. A peak can be described by its 

mode energy (𝐸), integrated intensity (∫ 𝐼𝑑𝐸, where 𝐼 is the intensity), which is proportional to total 

number of photons generated, and characteristic width (Δ𝐸 ). By time-energy uncertainty relation 

𝛥𝐸𝛥𝑡 ≃ ħ, a broad peak (large Δ𝐸) means that the lifetime of the mode (Δ𝑡) will be short. Therefore, 

in terms of lifetime, the photonic modes decays much faster when the beam was placed at the point EBL 

and FB than ETL, EBR, FL and FR according to figure 5. From the simple case of Fresnel laws, when an 

electromagnetic (EM) wave travels normal to the interface, the reflected coefficient (𝑅) and transmitted 

coefficient (𝑇) of two linear media are (Griffiths, 2017): 

𝑅 ≡ (
𝑛1 − 𝑛2

𝑛1 + 𝑛2
 )

2

     𝑇 ≡
4𝑛1𝑛2

(𝑛1 + 𝑛2)2
 ,   𝑅 + 𝑇 = 1, 

where 𝑛1 is the refractive index of the medium that the EM wave comes from, and 𝑛2 is the refractive 

index of the adjacent medium. If the two refractive indices are close to each other, 𝑅 will be close to 0 

while 𝑇 will be close to 1, which means most of the wave will be transmitted through the interface 

instead of reflecting back from the interface. For cavity modes, a larger 𝑅, will increase the probability 

that the photon will be reflected from the surface, thus causing internal reflection and light trapping 

inside the nanocube. Thus, the standing wave formed has a longer lifetime, which will lead to a sharper 

peak in the spectra. According to Maxwell Garnett effective medium theory, the average dielectric 

function of the large cluster (including vacuum) can be approximated as (Bohren & Huffman, 1998): 

𝜖𝑎𝑣𝑔 = 𝜖𝑣𝑎𝑐[1 +

3𝑓 (
𝜖𝐶𝑒𝑂2

− 𝜖𝑣𝑎𝑐

𝜖𝐶𝑒𝑂2
+ 2𝜖𝑣𝑎𝑐

)

1 − 𝑓 (
𝜖𝐶𝑒𝑂2

− 𝜖𝑣𝑎𝑐

𝜖𝐶𝑒𝑂2
+ 2𝜖𝑣𝑎𝑐

)
] 

where 𝜖𝑎𝑣𝑔, 𝜖𝑣𝑎𝑐, 𝜖𝐶𝑒𝑂2
, 𝑓 are the dielectric function of the cluster, vacuum and ceria, and the volume 

fraction of ceria respectively. From this equation we know that the average refractive index of the cluster 

will lie between the refractive index of vacuum and pure ceria. Thus, for waves travelling to the large 

cluster, i.e., modes generated when the electron beam is positioned at EBL and FB, will decay faster due 

to higher probability of energy transmission to the clusters. When the beam is placed at ETL and EBR, 
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most energy will reflect thus forming an intense standing wave, giving a sharper peak in EELS (figure 

3c). For the FL and FR, although the right surface is not perfectly clean, the thickness of the agglomerate 

layer is much smaller compared to both the size of the cube and the size of the large cluster above the 

cube. Thus, coupling to clusters is rather small and there is a higher possibility for the wave to be trapped 

in modes associated with the clean cube. Notice that the ability to sense a large aggregate on the face 

far from the electron beam demonstrates the potential of employing photonic modes in sensing 

applications.  

 

Conclusion 

The photonic modes in a well-defined ceria nanocube have been investigated using STEM-EELS. By 

placing the beam at different positions around the cube (e.g., edge sites and face sites), the existence of 

different modes and the variations in peak intensity was detected. EELS simulations through numerical 

calculation in COMSOL Multiphysics qualitatively agreed with the experiments. A simple standing 

wave model gave photonic eigenmodes of the cube based on particle size and dielectric function, which 

qualitatively agrees with the numerical simulations The finite-element calculation also provides electric 

field distribution in the cube. The field shows a standing wave pattern with wave vectors corresponding 

to different beam positions, i.e., a diagonal wave vector corresponds to edge positions, and a wave 

vector parallel to the side of the cube is generated from the face positions. The slight asymmetry of the 

surrounding environment of the nanocube, i.e., the small and large aggregates attached to the cube, is 

also utilized to demonstrate the transmission properties of photonic modes. Photonic modes associated 

with a clean cube will be suppressed in the presence of large aggregates that have a size comparable 

with the cube. In this case, energy will be transmitted to those clusters rather than being trapped in the 

cube. This work will provide guidance for engineering the energy of photonic modes and, also 

demonstrate EELS as a powerful tool to explore local response in photonic structures.  
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Figure 1 (a) STEM image of the cube and the position of the two points where the spectra were taken. 

The left face of the cube is nearly clean except for two tiny cubes, denoted by dotted circles. Both points 

are 10 nm away from the cube. (b) The background-subtracted energy-loss spectra at two points. The 

energy of the four peaks is indicated by arrows.   

 

Figure 2 The EELS intensity maps associated with the bulk photonic modes of the cube. The white 

dotted box indicates the cube. The dark intensity in the cube is due to strong spectral attenuation by 

elastic scattering. The peak intensity is represented by the blackbody temperature of the color. 

Brightness and contrast of the four images are adjusted independently to highlight the spatial variation 

of each mode.  
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Figure 3 The simulation setup and the simulated energy-loss spectra. (a) The face setting scheme. The 

yellow ceria cube has the same size as the experimental cube (200nm). The vertical black line represents 

the electron beam. To increase the accuracy of calculation, the region near the cube and electron beam 

has a much finer mesh, which shows as a grey cylinder with a radius of 10nm close to the cube. (b) 

Simulated energy loss spectra. As the scheme at the right bottom shows, the blue curve stands for the 

calculated spectra when the beam is placed near the edge, and red curve is for the face setting. 

 

Figure 4 Z-component (parallel to the e-beam) of the electric field in the cube for each major peak. 3D 

plots demonstrate the electric field at the corresponding position as small circles with different colors. 

The position of the electron beam is represented by the black line. The cross-section of the cube at three 

different heights, i.e., z=-50nm, z=0, z=50nm, are also plotted here. On the left side (a-b) are the low 

energy peaks (E1, F1) and right side (c-d) are the high energy peaks (F2, E2).  
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Figure 5 HAADF image and EELS point-scans extracted from EELS mapping at 2 set of geometrically 

equivalent points. (a) The 6 points are showed in the HAADF image. The three edge settings at top-

left, bottom-left, and bottom-right of the cube are denoted by ETL, EBL, EBR, respectively. The three 

face settings at left, bottom, and right of the cube are denoted by FL, FB, FR, respectively. (b-c) Two 

set of spectra shows the energy loss spectra corresponding to each point. (b) presents the face settings 

and (c) presents the edge settings. All the spectra are normalized by zero-loss peak and plotted 

separately. 
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Supplementary material: 

S1. EELS Background Subtraction and raw data 

EELS background was subtracted using the power-law method in Digital Micrograph. We used 

two fitting windows to increase the accuracy. Figure S1 demonstrates the raw data, fitting windows, 

and one of the subtracted data from figure 1. Notice that there are three gaps that have two-pixel 

width, pointed out by the arrow. These gaps are corresponding to the chip boundaries of the detectors. 

We used interpolation to correct these gaps for the data we presented in the paper. 

Figure S1 Raw data and background subtraction. The blue area represents the raw data. The red 

boxes are the windows the program used to fit a power law background and red curve is the fitted 

background. The green area is the background-subtracted data that we present in the paper. Black 

arrows are pointing to the gap corresponding to chip boundaries of the detector. 

 

S2. Spectra inside the cube 
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Although the elastic scattering largely suppressed the overall signal inside the cube, the photonic 

mode is still detectable. Here we sum the spectra inside the cube from the EELS map in figure 2. The 

area we select is ~5 nm away from the cube surface to avoid collecting signal from the surface. As 

shown in the figure S2, the peaks correspond to the modes, indicating by the arrow, are still visible. 

This further confirms that the effect is not a surface effect. 

Figure S2 (a) Virtual BF image reconstructed from EELS mapping. The intensity of each pixel is 

corresponding to the ZLP intensity. The red box represents the area we used for summation. (b) 

Summation of the spectra. The black curve represents the raw spectra summation, and the red curve is 

the background subtraction result. Arrows are pointing to features corresponding to photonic modes.  

S3. Solving the eigenmode equation 

One way to find the numerical solution to the standing wave equation is by plot (figure S3). To 

find the 𝑥 values that meet 𝑓(𝑥) = 𝑔(𝑥), we can plot both function in the same coordinate, and the x 

coordinates of the intersection of will be the solution. Both x and y axis are in unit of energy. The 

straight line is the function at L.H.S., 𝑓(𝐸) = 𝐸, where 𝐸 = ℏ𝜔. All the curves represent the R.H.S. 

of the standing wave equation with different 𝑘2, 𝑔(𝑘2, 𝐸). The intersect will be the solution to the 

equation. 
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Figure S3 Solution to the eigen mode equation. The intersect between the black straight line and the 

curves represent the solution. 

 

S4. Electric field subtraction generated from Cherenkov effect 

Since the velocity of electron in TEM is very high (~0.55c) (figure S4(a)), we need to take 

relativistic effect into consideration, i.e., the Cherenkov radiation. By the criteria, when the velocity of 

moving charged particle 𝑣𝑒 > 𝑐𝐶𝑒𝑂2
= 𝑐/𝑛𝐶𝑒𝑂2

 , where 𝑛𝐶𝑒𝑂2
 is the refractive index of ceria, 

Cherenkov radiation emits and forms a cone shape, i.e., the Cherenkov cone. Figure S4(c) shows a V-

shape electric field cone on the surface of the cube in simulation, which is corresponding to the 

Cherenkov. Although the field is coupled with photonic modes, we can still see a trend of Cherenkov 

cone. 
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Figure S4 Demonstration of Cherenkov effect. (a) Cherenkov threshold for CeO2. The horizontal 

lines are the calculated electron velocity (relativistic) of different acerating voltage. The black curve is 

the Cherenkov threshold corresponding to the dielectric function of CeO2. (b) Demonstration and 

comparison of semi-infinite slab and the cube we used in our simulation. The large orange slab is the 

semi-infinite slab, and the red cube is the simulation cube in face excitation setting. (c-e) Electric field 

plot corresponding to total electric field, electric field caused by Cherenkov effect, and the electric 

field correspond to photonic modes. The black line represents the electron beam. 

 

We assume that the electric field inside the cube only contains two parts: The part corresponding 

to photonic modes, 𝐸𝑝ℎ, and the part corresponding to Cherenkov effect, 𝐸𝐶𝑅. To minimize the 

contribution from Cherenkov radiation and let the field that represents the electric field stand out, a 

simple way is just subtract the field generated from Cherenkov effect. Therefore, we can calculate the 

electric field from Cherenkov effect from a model that has every setting the same as the cube model 

except the geometry (figure S4(b)). Here, we performed a simulation replacing the cube with a semi-

infinite slab, with same thickness but much larger width and depth. By subtracting the electric field at 

the same point in two models (Shown as the red cube in figure S4(b)), we can get the electric field 

from the photonic mode approximately. 
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S5. Electric field in z-direction 

Here we show the electric field of different peaks at different heights. 

Figure S5 Electric field at different z-height for different peaks. Rows represent different peaks, and 

columns represent different height. All the graphs share the same color bar. 

 

 


