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a b s t r a c t

The one-leg, two-step time-stepping scheme proposed by Dahlquist, Liniger and

Nevanlinna has clear advantages in complex, stiff numerical simulations: uncondi-

tional G-stability for variable time-steps and second-order accuracy. Yet it has been

underutilized due, partially, to its complexity of direct implementation. We prove

herein that this method is equivalent to the backward Euler method with pre- and

post arithmetic steps added. This refactorization eases implementation in complex,

possibly legacy codes. The realization we develop reduces complexity, including

cognitive complexity and increases accuracy over both first order methods and

constant time steps second order methods.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical methods for evolution equations are designed based on accuracy and stability. The theory of

both is highly developed for constant time step and linear problems. Less is known for variable time steps

and nonlinear problems. These cases are subtle. For example, for increasing time steps, the BDF2 method

loses A-stability and suffers non-physical energy growth in the approximate solution [1]. Even the trapezoidal

method is unstable when used with variable time steps, see e.g. [2], [3, pp. 181–182]. Dahlquist, Liniger and

Nevanlinna in [2] proposed a one parameter ¶-family of variable-step, one-leg, two-step methods (DLN),

which are second-order accurate, and variable-step, nonlinearly, long-time stable. Its detailed specification

(given in Section 2), is sufficiently Gordian to deter its use in complex applications, in which a method

with DLN’s excellent properties should be valued. Our preliminary work on adaptive time-stepping for flow

problems [4,5] shows that (DLN) has promise, motivating the work herein.

Refactorization generally means restructuring of an existing algorithm without changing its behaviour.

The goal of refactorization is to reduce complexity by creating a simple and clean logical structure, improving

implementation, code readability, source maintainability and extensibility. Herein we show how (DLN) can
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be refactorized to be easily implemented in an intricate, possibly legacy/black-box code, without modifying

the ‘assemble and solve’ portion. While our refactorization can work for other base methods, to fix ideas for

y′ = f (t, y), we consider a method based on the fully implicit Euler method

ynew − yold

tnew − told
= f (tnew, ynew) . (BE)

Fig. 1 illustrates the implementation of the (DLN) method in Algorithm 1, by adding a pre-filter step to

the data ahead of the nonlinear solver (BE), and a poster-filter step after the solver (BE). This algorithmic

idea is our first contribution. In Section 3 we prove a new expression for the local truncation error, which

simplifies the time-adaptive implementation of (DLN), and also recall its variable step G-stability property.

2. The DLN method and its refactorization

We consider a numerical approximation of the initial value problem

y′(t) = f (t, y(t)) , y(0) = y0. (2.1)

at times {tn}ng0, with the time step kn = tn+1 −tn. To present the method of [2], let εn = (kn −kn−1)/(kn +

kn−1) denote the step size variability and ¶ ∈ [0, 1] be an arbitrary parameter. The (DLN) method is a 2-step

method with coefficients:
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⎢⎢⎢⎢⎣
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(
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. (2.2)

Note that {³ℓ}2
ℓ=0 are step size independent, while {´

(n)
ℓ }2

ℓ=0 are step size dependent. Define the average

step size k̂n as follows:

k̂n = ³2kn − ³0kn−1 = ¶
kn − kn−1

2
+

kn + kn−1

2
. (2.3)

The variable step DLN method of [2] as a one-leg2 method is

³2yn+1+³1yn+³0yn−1

k̂n

=f
(
´

(n)
2 tn+1+´

(n)
1 tn+´

(n)
0 tn−1, ´

(n)
2 yn+1+´

(n)
1 yn+´

(n)
0 yn−1

)
. (DLN)

Remark 2.1. The (DLN) methods are indexed by the free parameter ¶ ∈ [0, 1].

When ¶ = 1, the (DLN) method becomes the (implicit) midpoint rule [7,8]

yn+1 − yn

kn

= f
(1

2
(tn+1 + tn),

1

2
(yn+1 + yn)

)
, (one-step midpoint)

while for ¶ = 0, the (DLN) method is the (implicit) midpoint rule with double time step

yn+1 − yn−1

kn + kn−1
= f

(1

2
(tn+1 + tn−1),

1

2
(yn+1 + yn−1)

)
. (two-step midpoint)

The value ¶ = 2
3 was chosen by Dahlquist, Liniger and Nevanlina in [2], in order to minimize the error

constant in the local truncation error (LTE) and to preserve good stability properties.

The value ¶ = 2√
5

was suggested by Kulikov and Shindin in [9] to provide the best stability at infinity,

a property close to the L−stability of Ehle [10,11], and computed by minimizing the spectral radius of the

companion matrix [12].

2 The ‘one-leg’ term was coined by Dahlquist in 1975 [6] to name the multistep methods which involve only one value of f

in each step. In particular, the leapfrog and BDF methods are one-leg multistep methods.
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Fig. 1. Refactorization of the (DLN) method as a pre- and post-processed (BE) method.

To reduce the complexity of implementing (DLN), we consider its implementation through pre- and

post-processes of an implicit (backward) Euler method, described in Algorithm 1, and illustrated in Fig. 1.

Algorithm 1: Refactorization of the (DLN) method

Input: yn, yn−1 and tn−1, tn, tn+1 ;
// Pre-process : interpolation

// Evaluate quantities in (2.2) and (2.3)

³2 = 1
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(2.4)

// Evaluate the time-step for BE

(∆t)BE
n ⇐ b(n)k̂n

// Set the BE time interval: [tnew − (∆t)BE

n , tnew], and yold

n

tnew ⇐ ´
(n)
2 tn+1 + ´

(n)
1 tn + ´

(n)
0 tn−1; yold ⇐ a

(n)
1 yn + a

(n)
0 yn−1 ;

// backward Euler

Solve for ynew:
ynew − yold

(∆t)BE
n

= f (tnew, ynew)

// Post-process : extrapolation

yn+1 ⇐ c
(n)
2 ynew + c

(n)
1 yn + c

(n)
0 yn−1 ; // the DLN solution

Output: yn+1, If desired: Estimate Error and adapt kn

Since ³0 + ³1 + ³2 = 0, ´
(n)
0 + ´

(n)
1 + ´

(n)
2 = 1, the coefficients a

(n)
i , b(n), c

(n)
i satisfy a

(n)
0 + a

(n)
1 =

1, c
(n)
2 + c

(n)
1 + c

(n)
0 = 1.
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Theorem 2.1. Algorithm 1 is equivalent to the (DLN) method.

Proof. First using the notations 2.4, the post-processing step writes

ynew =
1
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c
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2
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0

c
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2
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(n)
0 yn−1.

Using also the pre-processing relations, the backward Euler step in Algorithm 1

ynew − yold

(∆t)BE
n

= f (tnew, ynew) (DLN2BE)

translates to

1

k̂n
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1
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)
.

Finally, by 2.4, this shows that the backward-Euler based Algorithm 1 yields the solution of the (DLN)

method. □

2.1. Related work

The (DLN) method is variable-step G-stable outgrowth of a method of Liniger [13], which is non-

autonomous A-stable (i.e. for y′ = ¼(t)y). The pre- and post-process steps in the Algorithm 1 are akin to

time filters, highly developed as numerical methods in atmospheric science [14–18]. Recently it was noticed

in [19] that this technique for adding stability can also increase accuracy. The idea of prefilter → simple

method → postfilter was developed in a different direction for constant time steps in [20].

The refactorization of an algorithm to reduce its cognitive complexity has been used in [7] to rearrange

a family of one-leg one-step methods into a backward Euler code followed by post-processing, and further

applied for partitioning multi-physics problems [8,21–23]. In [24], the authors describe the implementation

of the (DLN) formulas in a Nordsieck formulation [25,26] essentially identical to that of the backward

differentiation formulas, facilitating to adapt Nordsieck formulation codes like DIFSUB [27,28] to the (DLN)

formulas.

3. Convergence analysis of (DLN)

While stability and consistency were already addressed in [2], we present complementary details on both

which are useful for developing an adaptive (DLN) method.

3.1. Consistency error

In [9,29], the variable time-step (DLN) method was implemented in an adaptive manner, using a local

and global error estimator. Similar to [2], the authors of [6,9,24,29] use the classical definition of the local

truncation error

L1

(
y(t), tn+1, kn

)
=

1

k̂n

2∑

ℓ=0

³ℓy(tn−1+ℓ) − f
(

tn,´ , ´
(n)
2 y(tn+1) + ´

(n)
1 y(tn) + ´

(n)
0 y(tn−1)

)
,

where tn,´ = ´
(n)
2 tn+1 + ´

(n)
1 tn + ´

(n)
0 tn−1. The above definition follows the approach taken in the

analysis of linear multistep methods (see e.g. [30, page 27]), and involves both the differentiation defect
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Ld = 1

k̂n

∑2
ℓ=0 ³ℓy(tn−1+ℓ) − f

(
tn,´ , y(tn,´)

)
, and the interpolation defect Li = f

(
tn,´ , y(tn,´)

)
−

f
(
tn,´ ,

∑2
ℓ=0 ´

(n)
ℓ y(tn−1+ℓ)

)
. Dahlquist raised in [31] the question of the appropriateness of this viewpoint:

“We accept this definition, but we do not accept L1 as the adequate local truncation error!”

Using the refactorized form (DLN2BE) and Theorem 2.1, we now prove that the local truncation error

of the one-leg (DLN) method can be evaluated only by the differentiation defect (LTE), similarly to the

midpoint rule [7] and the Runge–Kutta methods. The new expression (LTE) simplifies greatly the error

estimation.

Proposition 3.1. The local truncation error of (DLN) is the differentiation error and

Ld

(
y(t), tn+1, kn

)
≈ y′′′(tn)

2

[ 1

3k̂n

(
k3

n − ³0

³2
k3

n−1

)
− 1

³2

(
´

(n)
2 kn − ´

(n)
0 kn−1

)2
]
. (LTE)

Proof. The consistency order and the coefficient of the leading term in (LTE) follow by Taylor expansions.

On one hand, since (DLN) can be refactorized as the one-step method (DLN2BE), we further write the

(DLN) method as follows
³2yn+1 + ³1yn + ³0yn−1

k̂n

= f (tnew, ynew) . (3.1)

On the other hand, when we integrate (2.1) on [tn−1, tn] and on [tn, tn+1],

1+¶
2 y(tn+1) − ¶y(tn) − 1−¶

2 y(tn−1) = 1−¶
2

∫ tn

tn−1

f(t, y(t)) dt + 1+¶
2

∫ tn+1

tn

f(t, y(t)) dt.

Finally, approximating both integrals on the right hand-side with the chord quadrature rule, with tnew as

the point of evaluation on both intervals, gives

1+¶
2 y(tn+1) − ¶y(tn) − 1−¶

2 y(tn−1) ≈
(

1+¶
2 (tn+1 − tn) − ¶−1

2 (tn − tn−1)
)

f(tnew, y(tnew)).

which by (2.2)–(2.3) yields the (3.1) method. □

Remark 3.1. In particular, for ¶ = 1 and ¶ = 0, from (LTE) we have that

L(one-step midpoint) ≈ 1
24 k3

ny′′′(tn), L(two-step midpoint) ≈ 1
24 (kn + kn−1)

3
y′′′(tn).

3.2. G-stability

Let ï·, ·ð and ∥ · ∥ denote the inner product and ℓ2-norm in Euclidean space C
d. For any pair of solutions

u(t), v(t) of (2.1), a necessary and sufficient condition [32, page 384] for ∥u(t) − v(t)∥ to be a non-increasing

function of t is the contractivity (one-sided Lipschitz) condition on f :

Re
ï
f(t, u) − f(t, v), u − v

ð
f 0, ∀t g 0, ∀u, v ∈ C

d. (contractivity)

The system (2.1) for which f satisfies the (contractivity) condition is called dissipative, see e.g. the Definition

in [33, page 268]. We recall that a Runge–Kutta method is B-stable, if the (contractivity) condition implies

∥yn+1 − zn+1∥ f ∥yn − zn∥ for any {yn}, {zn} numerical solutions, see e.g. [34, page 359], or Definition 12.2

in [12]. Similarly, a 2-step linear multistep method is called G-stable [12,32,35,36] if there exists a real positive

definite matrix G such that its one-leg version is contractive, namely ∥Yn+1 − Zn+1∥G f ∥Yn − Zn∥G, where

Yn = [ytr
n , ytr

n−1]tr. In the case of the (DLN) method, there exists such a positive definite matrix (independent

of the step size)

G(¶) :=

[
1
4 (1 + ¶)Id 0

0 1
4 (1 − ¶)Id

]
, ∀¶ ∈ [0, 1].

As pointed out by Dahlquist in [37], both B-stability and G-stability imply A-stability, and A-stability

implies G-stability for constant time steps.
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Proposition 3.2. The (DLN) method is unconditionally G-stable, and

ï 2∑

ℓ=0

³ℓyn−1+ℓ,

2∑

ℓ=0

´
(n)
ℓ yn−1+ℓ

ð

Rd

=


yn+1

yn


2

G(¶)

−


yn

yn−1


2

G(¶)

+


2∑

ℓ=0

µ
(n)
ℓ yn−1+ℓ


2

, (3.2)

where the µ-coefficients are µ
(n)
1 = −

√
¶(1−¶2)√

2(1+εn¶)
, µ

(n)
2 = − 1−εn

2 µ
(n)
1 , µ

(n)
0 = − 1+εn

2 µ
(n)
1 .

The ‘energy’ identity (3.2), implicit in [2], follows from algebraic manipulations, see e.g. [4]. The G-

stability of (DLN), i.e. ∥Yn+1 − Zn+1∥G(¶) f ∥Yn − Zn∥G(¶), follows from (3.2) and the (contractivity)

assumption. The only (DLN) methods which yield the ℓ2 invariance of the solution are the symplectic (one-

step midpoint) and (two-step midpoint) rules: the numerical dissipation


∑2
ℓ=0 µ

(n)
ℓ yn−1+ℓ

 vanishes if and

only if ¶ ∈ {0, 1}.
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