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Inclusion of a term −γ∇∇ ·u, forcing ∇ ·u to be pointwise small, is an effective tool 
for improving mass conservation in discretizations of incompressible flows. However, 
the added grad-div term couples all velocity components decreasing sparsity and 
increasing the condition number in the linear systems that must be solved every 
time step. To address these three issues various sparse grad-div regularizations and 
a modular grad-div method have been developed. We develop and analyze herein 
a synthesis of a fully decoupled, parallel sparse grad-div method of Guermond and 
Minev with the modular grad-div method. Let G∗ = −diag(∂2

x
, ∂2

y
, ∂2

z
) denote the 

diagonal of G = −∇∇·, and α ≥ 0 an adjustable parameter. The 2-step method 
considered is

1 :
ũn+1 − un

k
+ un · ∇ũn+1 + ∇pn+1 − ν∆ũn+1 = f & ∇ · ũn+1 = 0,

2 :

[
1

k
I + (γ + α)G∗

]
un+1 =

1

k
ũn+1 + [(γ + α)G∗ − γG] un.

We prove its unconditional, nonlinear, long time stability in 3d for α ≥ 0.5γ. The 
analysis also establishes that the method controls the persistent size of ||∇ · u|| in 
general and controls the transients in ||∇ · u|| when u(x, 0) = 0 and f(x, t) �= 0
provided α > 0.5γ. Consistent numerical tests are presented.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We present and prove the long time, nonlinear stability of a fully uncoupled, modular, sparse grad-div 

(SGD) finite element methods (FEM), approximating the incompressible Navier-Stokes equations (NSE)

ut + u · 'u + 'p − ν∆u = f(x, t) and ' · u = 0.
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The stability analysis also delineates how the method controls ||' ·u||. Sparse grad-div methods are one slice 

of research on improving mass conservation in finite element methods. The complementary slice, currently 

giving strong results, uses exactly divergence-free elements. These two, others and their interconnections 

are surveyed in [14]. The first sparse grad-div method considered herein is from Guermond and Minev [11], 

for which we sharpen their stability result. The second is a new but natural synthesis with the modular 

grad-div method of [8]. The flow domain Ω is a bounded open set in R3 with no slip boundary conditions 

u = 0 on ∂Ω. Here u ( R
3 is the velocity, p ( R is the pressure, ν is the kinematic viscosity, and f ( R

3

is the external force. Let γ denote the (preset) grad-div parameter. Following Olshanskii [20], the standard 

grad-div approximation (with a simple time discretization for concreteness) is the space discretization of

un+1 − un

k
+ un · 'un+1 + 'pn+1 − ν∆un+1 − γ'' · un+1 = f(tn+1),

and ' · un+1 = 0. (1)

If (as here) neither the boundary conditions nor the viscosity depends on the fluid stresses, the added 

grad-div term is the only term coupling all velocity components. For γ large, the condition number of the 

linear system increases [17]. Even for moderate γ, penalizing pointwise violation of incompressibility and 

asking ' ·u to be orthogonal to the pressure space has been observed to cause solver issues [8]. To eliminate 

this coupling, reduce memory requirements, speed parallel solution and improve the robustness of iterative 

methods for the resulting linear system, several sparse grad-div methods have been devised. To specify the 

variant considered herein, let G denote −''· and G∗ to be the diagonal of G

G := −

[
∂xx ∂xy ∂xz

∂yx ∂yy ∂yz

∂zx ∂zy ∂zz

]
& G∗ := −

[
∂xx 0 0
0 ∂yy 0
0 0 ∂zz

]
.

The synthesis of a sparse grad-div method of Guermond and Minev [11] with the modular grad-div method 

of [8] is as follows. Suppressing the space discretization, given un two approximations, ũn+1 and un+1, at 

the next time step are calculated by

1 :
ũn+1 − un

k
+ un · 'ũn+1 + 'pn+1 − ν∆ũn+1 = f & ' · ũn+1 = 0,

and (2)

2 :

[
1

k
I + (γ + α)G∗

]
un+1 =

1

k
ũn+1 + [(γ + α)G∗ − γG] un.

The linear solve in Step 2 uncouples into 3 smaller and constant in time systems (one for each velocity 

component). For example, the first sub-system, for the x component of velocity, is

[
I − k(γ + α)

∂2

∂x2

]
un+1

1 = RHS1.

With simple discretizations, structured meshes, mass lumping and axi-parallel domains the above 3 sub-

systems can even be written as one tridiagonal solve for the unknowns on each mesh line. The precise 

presentation, including the FEM discretization of their space derivatives, is given in Section 2. The condition 

number of the coefficient matrix of Step 2 is proven in the appendix (under typical assumptions for this 

estimation) to have a condition number that does not blow up as γ + α → ∞, but changes from parabolic 

conditioning to elliptic conditioning:

cond2(A) f C
h2 + k(γ + α)

1 + k(γ + α)
h−2.



W. Layton, S. Xu / J. Math. Anal. Appl. 516 (2022) 126484 3

The usual L2(Ω) norm is denoted || · ||. The following summarizes the essential result.

Theorem 1. Let γ g 0. The method (2) is unconditionally, nonlinearly, long time stable in 3d if α g 0.5γ

and in 2d if α g 0.Further, if u0, 'u0 ( L2(Ω) and ||f(tn)|| f C < ∞ and α > 0.5γ we have ' · un → 0 as 

γ → ∞ in time-average

lim sup
N→∞

1

N

N∑

n=1

||' · un||2 f Cγ−1.

If u0 = 0, then for all N

1

N

N∑

n=0

||' · un||2 f Cγ−1.

1.1. Related work

It has been recognized for a while now that the usual velocity-pressure FEM can result in O(1) errors 

in mass conservation, ||' · u|| = O(1), e.g., John, Linke, Merdon and Neilan [14] and Belenli, Rebholz and 

Tone [1]. This ||' · u|| = O(1) is clearly evident in the γ = α = 0 tests in Appendix A. One cure for this 

is added grad-div stabilization, a simple idea with strong positive consequences. Its origin seems to be in 

SUPG type local residual stabilization methods, Brooks and Hughes [4], Franca and Hughes [9], and the 

idea of adding an operator positive definite on the constraint set in optimization. A penalty term makes 

the penalized quantity go to zero as the penalization parameter goes to infinity. This means here that an 

added grad-div term forces ' · u → 0 as γ → ∞, see Lemma 20 p. 57 in Linke [16] for a precise realization. 

Depending on the choice of finite element spaces, this can force u → 0 or result in an accurate and exactly 

incompressible approximate velocity. The work of many summarized in John, Linke, Merdon and Neilan [14]

has delineated these two extremes and intermediate cases. Detailed analysis of an added grad-div term can 

be found in, e.g., Case, Ervin, Linke and Rebholz [5], Olshanskii and Reusken [22], Olshanskii [20], Jenkins, 

John, Linke and Rebholz [13], Braack, Bürman, John and Lube [3], Layton, Manica, Neda, Olshanskii and 

Rebholz [15], Galvin, Linke, Rebholz and Wilson [10] and Connors, Jenkins and Rebholz [6]. Preselection of 

the grad-div parameter γ is treated in many places such as Heavner [12] and self-adaptive selection recently 

in Xie [25].

Linke and Rebholz [18] developed the first sparse grad-div method. Their sparse grad-div method con-

tributes no consistency error. It improves solver performance [2], [18], reducing coupling (in 3d) from 3 

components to 2 components followed sequentially by a 1 component solve. Since Linke and Rebholz achieve 

this with a modified pressure, control of ||' · u|| and stability in 3d are automatic, and higher-order time 

stepping is also available. Subsequent sparse grad-div methods of Guermond and Minev [11] achieved greater 

uncoupling at the expense of increased consistency error and reduced options for time stepping. Let G de-

note −''·. Their first method selected G∗ to be the upper triangular part of G and lagged the remainder: 

' · un+1 = 0 and

un+1 − un

k
+ un · 'un+1 + 'pn+1 − ν∆un+1+

γG∗un+1 − γ[G∗ − G]un = f(tn+1).

This method, sequentially uncoupling velocity components, was proved stable in 2d and observed but not 

proven stable in 3d. Their second sparse grad-div method, equation (3.8) Section 3.3, uncoupled velocity 

components in parallel. For α a free parameter select G∗ to be the diagonal of G. The second method of 

Guermond and Minev [11] is ' · un+1 = 0 and
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un+1 − un

k
+ un · 'un+1 + 'pn+1 − ν∆un+1 + (γ + α)G∗un+1 − [(γ + α)G∗ − γG] un = f(tn+1). (3)

In Theorem 3.3 they prove stability in 3d for α g 2γ. The proof given in Section 2 for the modular sparse 

grad-div method yields the following sharpening of their stability result.

Theorem 2. Under the same conditions as Theorem 1, the conclusions of Theorem 1 for method (2) hold as 

well for method (3).

Modular (non-sparse) grad-div, [8], showed improved run times and robustness over standard grad-div. 

Similar ideas for the grad-div operator were developed by Minev and Vabishchevich [19]. Finding O(k2)

extensions of (SparseGD) with the same unconditional stability is nontrivial. The only step we are aware 

of (aside from defect/deferred corrections wrapped around the first-order approximation used by Guermond 

and Minev [11]) is Trenchea [24].

2. Analysis of modular sparse grad-div

This section makes the method and result precise and proves stability for α g 0.5γ and control of ' · u

for α > 0.5γ for the modular sparse grad-div algorithm. This work builds on Guermond and Minev [11], the 

work on modular grad-div in [8] and Rong and Fiordilino [23], and the numerical tests of a related method 

in Demir and Kaya [7]. We suppress the traditional sub- or super-scripts “h” in finite element formulations. 

Let (X, Q) ⊂
(

H̊1(Ω)3, L2
0(Ω)

)
denote conforming, div-stable FEM velocity-pressure spaces. To simplify 

the notation, define the following bilinear forms and semi-norms.

Definition 3. In 3d (with the obvious modification for 2d), define the symmetric bilinear forms

A(u, v) := (γ + α) [(u1,x, v1,x) + (u2,y, v2,y) + (u3,z, v3,z)] ,

B(u, v) := A(u, v) − γ(' · u, ' · v),

B∗(u, v) := B(u, v) − 1
3 (α − 2γ)(' · u, ' · v).

If a(u, v) is a symmetric, positive semi-definite bilinear form on X we denote its induced semi-norm by 

||v||2a = a(v, v).

The nonlinear term below has been explicitly skew-symmetrized and treated linearly implicitly below. 

Other choices are possible such as the EMAC formulation [21].

Algorithm 4. [Modular SGD] Given the initial velocity u0 and grad-div parameter γ > 0, choose α g 0.

Step 1: Given un ( X, find (ũn+1, pn+1) ( (X, Q), for all (v, q) ( (X, Q) satisfying:

(
ũn+1 − un

k
, v

)
+

1

2

(
un · 'ũn+1, v

)
−

1

2

(
un · 'v, ũn+1

)

+ν
(
'ũn+1, 'v

)
−

(
pn+1, ' · v

)
=

(
fn+1, v

)
,

and
(
' · ũn+1, q

)
= 0.

Step 2: Given ũn+1 ( X, find un+1 ( X, for all v ( X satisfying:

(un+1, v) + kA(un+1, v) = (ũn+1, vh) + kB(un, v).

Step 1 uses the standard implicit method to calculate ũn+1 at t = tn+1. Step 2 adds the sparse grad-div 

stabilization term to ũn+1 to get un+1. This separation of velocity approximations to one where ' · u⊥Q



W. Layton, S. Xu / J. Math. Anal. Appl. 516 (2022) 126484 5

and one where ||' · u|| is small may be a reason for the increased robustness observed in [8]. For all time 

steps, the uncoupled, same block diagonal matrix I + k(γ + α)G∗ arises in Step 2.

We begin with a lemma.

Lemma 5. Let γ > 0, α g 0, then

B(v, v) g
α − 2γ

3
||' · v||2.

Thus, if α g 2γ > 0 then B(v, v) g 0 for all v ( X.

Otherwise, if α g 0 then, for all v ( X,

B∗(v, v) = B(v, v) −
1

3
(α − 2γ)||' · v||2 g 0. (4)

Proof. The second and third claim follow from the first. For the first, since ||' · v||2 = ||v1,x + v2,y + v3,z|||2

f 3||v1,x||2 + 3||v2,y||2 + 3||v3,z||2, we have

B(v, v) = (γ + α)
[
||v1,x||2 + ||v2,y||2 + ||v3,z||2

]
− γ||' · v||2

= (γ + α)
[
||v1,x||2 + ||v2,y||2 + ||v3,z||2

]
−

γ + α

3
||' · v||2

−

[
γ −

γ + α

3

]
||' · v||2

g (γ + α)
[
||v1,x||2 + ||v2,y||2 + ||v3,z||2

]
−

γ + α

3

[
3||v1,x||2 + 3||v2,y||2 + 3||v3,z||2

]
+

[
α − 2γ

3

]
||' · v||2

g
α − 2γ

3
||' · v||2 g 0. �

For all cases in the following theorem, the stability is proven via a formula like

En+1 − En + 2kDn+1 f 2k(f, ũn+1),

which immediately implies stability (by summing over n = 1, N) provided the dissipation D g 0 and the 

energy E is square of a norm of u. The 2d result and the one below for α g 2γ in 3d are noted by Guermond 

and Minev [11] for method (3).

Proposition 6. Consider the modular sparse grad-div method.

2d case: Assume γ g 0. In 2d it is unconditional stable when α g 0:

[
||un+1||2 + kγ(||un+1

1,x ||2 + ||un+1
2,y ||2

]

−
[
‖un‖2 + kγ(||un

1,x||2 + ||un
2,y||2

]
+

‖ũn+1 − un‖2 + ||un+1 − ũn+1||2 + 2kν‖'ũn+1‖2 f 2k(fn+1, ũn+1).

3d case: Suppose 2γ > α g 0.5γ, then in 3d it is unconditionally stable. It satisfies

En+1 − En + 2kDn+1 = 2k(f, ũn+1),

where
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En+1 = ||un+1||2 + 2k

[
1

2
||un+1||2B∗ +

2γ − α

6
||' · un+1||2

]
,

Dn+1 = ν‖'ũn+1‖2 +
1

2k

[
‖ũn+1 − un‖2 + ||un+1 − ũn+1||2

]

+
1

2
||un+1 − un||2B∗ +

2

3
(α − 0.5γ) ||' · un+1||2

+
2γ − α

6
||' · (un+1 + un)||2.

If α g 2γ, then in 3d it is unconditionally stable. It satisfies

En+1 − En + 2kDn+1 = 2k(f, ũn+1),

where

En+1 = ||un+1||2 + k||un+1||2B,

Dn+1 = ν‖'ũn+1‖2 +
1

2k

[
‖ũn+1 − un‖2 + ||un+1 − ũn+1||2

]

+ γ||' · un+1||2 +
1

2
||un+1 − un||2B.

Control of ' · u in 3d: Suppose α > 0.5γ, u0, 'u0 ( L2(Ω) and ||f(tn)||−1 f F < ∞. Then if u0 = 0 we 

have for any N

1

N

N∑

n=1

||' · un||2 f Cγ−1.

For u0 non-zero we have ' · un → 0 as γ → ∞ in the discrete time averaged sense

lim sup
N→∞

1

N

N∑

n=1

||' · un||2 f Cγ−1. (5)

If α = 0.5γ the above results hold with ||' · un||2 replaced by ||' · (un+1 + un)||2.

Proof. The 2d case: To shorten the 2d proof we set α = 0. The idea of the proof in 2d is simple. We 

perform a basic energy estimate and subsume the inconvenient terms in ones that fit the desired pattern. 

Set v = ũn+1, q = pn+1 in Step 1. Use the polarization identity and multiply by 2k. We obtain

‖ũn+1‖2 − ‖un‖2 + ‖ũn+1 − un‖2 + 2kν‖'ũn+1‖2 = 2k(fn+1, ũn+1).

Take v = un+1 in Step 2, use the polarization identity, multiply by 2 and rearrange. We obtain

||un+1||2 − ||ũn+1||2 + ||un+1 − ũn+1||2+

2k

{
γ(' · un, ' · un+1)

+γ
[
(un+1

1,x − un
1,x, un+1

1,x ) + (un+1
2,y − un

2,y, un+1
2,y )

]
}

= 0.

Add the last two equations. We obtain
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||un+1||2 − ‖un‖2 + ‖ũn+1 − un‖2 + ||un+1 − ũn+1||2 + 2kν‖'ũn+1‖2

2k
{

γ(' · un, ' · un+1) + γ
[
(un+1

1,x − un
1,x, un+1

1,x ) + (un+1
2,y − un

2,y, un+1
2,y )

]}
(6)

= 2k(fn+1, ũn+1).

Expanding the term inside braces ({·}) algebraically gives

{·} = γ
[
||un+1

1,x ||2 + ||un+1
2,y ||2

]
− γ

[
(un+1

1,x , un
1,x) + (un+1

2,y , un
2,y)

]

+ γ(' · un, ' · un+1)

= γ
[
||un+1

1,x ||2 + ||un+1
2,y ||2

]
+ γ

[
(un+1

2,y , un
1,x) + (un+1

1,x , un
2,y)

]
.

Using the Cauchy-Schwarz-Young inequality in the last line of the above, then yields

{·} g
γ

2

[
||un+1

1,x ||2 + ||un+1
2,y ||2

]
−

γ

2

[
||un

1,x||2 + ||un
2,y||2

]
.

Inserting this for the term in braces in (6) then implies

[
||un+1||2 + kγ

[
||un+1

1,x ||2 + ||un+1
2,y ||2

]]

−
[
‖un‖2 + kγ

[
||un

1,x||2 + ||un
2,y||2

]]

+‖ũn+1 − un‖2 + ||un+1
h − ũn+1||2 + 2kν‖'ũn+1‖2 f 2k(fn+1, ũn+1).

Stability now follows by subsuming the ũn+1 on the RHS into 2kν‖'ũn+1‖2 on the LHS and summing over 

n.

The 3d case: In 3d there are too many inconvenient terms to simply use the Cauchy-Schwarz-Young 

inequality as in 2d to establish the energy estimate. Set v = ũn+1, q = pn+1 in Step 1, multiply by 2k and 

use the polarization identity to get

[
‖ũn+1‖2 − ‖un‖2

]
+ ‖ũn+1 − un‖2 + 2kν‖'ũn+1‖2 = 2k(fn+1, ũn+1). (7)

We note that Step 2 can be rewritten as

(un+1, v) + kγ(' · un+1, ' · v) = (ũn+1, v) − kB(un+1 − un, v).

Take v = un+1 in this form of Step 2, use the polarization identity, multiply by 2 and rearrange. We obtain

||un+1||2 − ||ũn+1||2 + ||un+1 − ũn+1||2 + 2kγ||' · un+1||
2

+ 2kB(un+1 − un, un+1) = 0. (8)

Add equation (7) and (8). We obtain

||un+1||2 − ‖un‖2 + ‖ũn+1 − un‖2 + ||un+1 − ũn+1||2 + 2kν‖'ũn+1‖2

+2k
{

γ||' · un+1||2 + B(un+1 − un, un+1)
}

= 2k(fn+1, ũn+1).

3d case with α g 2γ. This case implies B(v, v) g 0. Apply the polarization identity to the B-semi-inner 

product and collect terms. This gives the following

[
||un+1||2 + k||un+1||2B

]
−

[
‖un‖2 + k||un||2B

]

+‖ũn+1 − un‖2 + ||un+1 − ũn+1||2 + 2kν‖'ũn+1‖2

+2k
{

γ||' · un+1||2 + 0.5||un+1 − un||2B
}

= 2k(fn+1, ũn+1).
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Summing over n = 1, N yields stability when α g 2γ.

3d case with 2γ > α g 0.5γ. We thus focus on the term in braces in the last equation. First, recall (4), 

B∗(v, v) g 0. Thus B∗ induces a semi-norm || · ||B∗ to which a polarization identity can be applied. Motivated 

by this observation, rewrite algebraically the term in braces as

{
γ||' · un+1||2 + B(un+1 − un, un+1)

}
=

=

[
B(un+1 − un, un+1) −

α − 2γ

3
(' ·

(
un+1 − un

)
, ' · un+1)

]
+

+

(
γ||' · un+1||2 +

α − 2γ

3
(' ·

(
un+1 − un

)
, ' · un+1)

)
:= [I] + (II)

We expand and apply the polarization identity to the term in brackets, [I], giving

[I] = B∗(un+1 − un, un+1)

=
1

2

(
||un+1||2B∗ − ||un||2B∗ + ||un+1 − un||2B∗

)
.

Recall that 2γ > α g 0.5γ, so that the multipliers are non-negative, 2γ − α > 0 and α − 0.5γ g 0. The term 

in parentheses, (II), is expanded as

(II) =
α + γ

3
||' · un+1||2 +

2γ − α

3
(' · un, ' · un+1).

Applying the polarization identity in the form x ·y = −0.5(|x|2 + |y|2 −|x +y|2) to the term (' ·un, ' ·un+1)

gives

(II) =
α + γ

3
||' · un+1||2 −

2γ − α

6

{
||' · un+1||2 + ||' · un||2

}
+

2γ − α

6
||' · (un+1 + un)||2.

This is rearranged algebraically to read

(II) =
2γ − α

6

[
||' · un+1||2 − ||' · un||2

]
+

2

3
(α − 0.5γ) ||' · un+1||2 +

2γ − α

6
||' · (un+1 + un)||2.

Putting all this together, we then have

En+1 − En + 2kDn+1 = 2k(f, ũn+1),

where

En+1 = ||un+1||2 + 2k

[
1

2
||un+1||2B∗ +

2γ − α

6
||' · un+1||2

]
,

Dn+1 = ν‖'ũn+1‖2 +
1

2k

[
‖ũn+1 − un‖2 + ||un+1 − ũn+1||2

]

+
1

2
||un+1 − un||2B∗ +

2

3
(α − 0.5γ) ||' · un+1||2

+
2γ − α

6
||' · (un+1 + un)||2.

Since all terms are non-negative, stability follows by summing over n.
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Control of ' · u: The subtlety in concluding control of ||' · u|| from stability is that E0 & Dn both 

depend on the grad-div parameter γ. For this reason we obtain control in a time averaged sense. Bound the 

RHS of the energy inequality by

2k(f, ũn+1) f kν||'ũn+1‖2 + kν−1F 2

and subsume the first term in D. This implies

En+1 − En + kDn+1 f kν−1F 2.

Summing this over n = 0, ..., N − 1, dividing by N and dropping the nonnegative EN term gives

k
1

N

N∑

n=1

Dn f
1

N
E0 + kν−1F 2.

The RHS is bounded uniformly in N so the limit superior as N → ∞ of the LHS exists. We thus have

lim sup
N→∞

1

N

N∑

n=1

Dn f ν−1F 2

and

1

N

N∑

n=1

Dn f ν−1F 2 if u0 = 0.

The claimed result now follows since D contains (with a positive multiplier) the term γ||' · un+1||2 if 

α > 0.5γ, and if α = 0.5γ the term ||' · (un+1 + un)||2. �

3. Stability and control of ∇ · u for flow between 3d offset cylinders

We consider a 3d rotational flow obstructed by an offset cylindrical obstacle inside a cylinder. Let r1 =

1, r2 = 0.1, (c1, c2) = (0.5, 0) and

Ω1 = {(x, y) : x2 + y2 < r2
1 and (x − c1)2 + (y − c2)2 > r2

2}.

The domain is Ω = Ω1 × (0, 1), a cylinder of radius and height one with a cylindrical obstacle removed, 

depicted with the mesh used in Fig. 1.

The flow is driven by a counter-clockwise rotational body force with f = 0 on the outer cylinder

f(x, y, z, t) = min{t, 1}(−4y ∗ (1 − x2 − y2), 4x ∗ (1 − x2 − y2), 0)T , 0 f t f 10,

with no-slip boundary conditions, u = 0, on boundaries. The space discretization uses P 2 −P 1 Taylor-Hood 

elements with 18972 total degrees of freedom in the velocity space and 2619 total degrees of freedom in the 

pressure space. This mesh in Fig. 1 is insufficient to test accuracy but suffices to test stability and control 

of ' · u. The flow rotates about the z-axis and interacts with the inner cylinder. We start the test at rest, 

u0 = (0, 0, 0)T , and choose the end time to be T = 10. The kinematic viscosity is ν = 0.0001 and the time 

step is ∆t = 0.05.

We first tested if the extra α term is necessary for stability. We picked γ = 1.0, α = 0.5 and α = 0 and 

γ = α = 0 (no sparse grad-div term), solved and plotted the kinetic energy and ||' · u|| in Fig. 2. The right 
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Fig. 1. Mesh used to test stability.

Fig. 2. Modular SGD. The left two plots are stable γ and α pair (γ = 1, α = 0.5) compared with no sparse grad-div term. The right 
two are unstable γ and α pair (γ = 1, α = 0) compared with no sparse grad-div term.

hand side of the figure shows that the γ = 1.0, α = 0.0 method is unstable while the γ = 1.0, α = 0.5 is 

stable. This observed stability is consistent with the theoretical result.

The next question tested was whether α = 0.5 (for γ = 1) is the critical value for stability. To test this, 

we choose γ = 1 and the range of values α = 0.3, 0.4, 0.48, 0.49, 0.5, 0.6, 0.7, 1, 2, 3, solved and plotted the 

kinetic energy and ||' · u|| vs time in Fig. 3 and Fig. 4.

In Fig. 4, method (2) is stable for α g 0.5, and in Fig. 3, for α < 0.5, the closer α is to the critical 0.5

value, the longer time needed to see instability. No instability over 0 < t < 10 was observed for the nearly 

critical values α = 0.48 & 0.49. This could be because the time interval 0 < t < 10 was too short, because 

the derived value α = 0.5 is uniform in the viscosity ν, so actual stability is slightly better than proven 

or because some sharpness was lost in the various inequalities. In further tests, we also observe α = 0.45

instability starts near t = 21.5. Similar behavior was seen in the plots of ||' · u|| in terms of control or loss 

of control of ' · u. The only evidence in the plots of ||' · u|| of non-sharpness of the analysis observed is 

that for α = 0.5γ, control of ||' · u|| was observed. In contrast, the theorem predicted control of averages 

over 2 time levels for α = 0.5γ. Please note that different scales were needed on the vertical axis.

Next, we compare the effect of γ in (2) on ||' · u||. We choose γ = 0.1, 1, 10, 20, 50, 100 and α = 0.5 ∗ γ. 

For these values, we solved and plotted the evolution of ||' · u|| and kinetic energy in Fig. 5.

The results in Fig. 5 are consistent with ||' · u|| decreasing as γ increases. We also note that moderate 

values of γ, e.g. γ = 0.1 and 10, in this test seem to be effective. We conjecture that this is because ' ·u = 0

is also required to be orthogonal to the pressure space. We also present the time-average ‖' · u‖2 and 
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Fig. 3. Testing the α ≤ 0.5γ, lower bound of α in (2). The left two plots are ‖∇ · u‖ vs time. The right two plots are kinetic energy 
vs time. When α = 0.3, 0.4, results show instability.

Fig. 4. Testing the α ≥ 0.5γ, lower bound of α in (2). The left two plots are ‖∇ · u‖ vs time. The right plot is kinetic energy vs 
time.

Table 1

Time-average ‖∇ · u‖2 and ‖∇ · u‖ at end time T for 
different γ value when α = 0.5γ.

γ Avg(‖∇ · u‖2) rate ‖∇ · u(T )‖ rate

0.1 0.64305 - 1.1033 -
1 0.033985 -1.28 0.24826 -0.65
10 0.0018455 -1.27 0.054152 -0.66
20 0.00074997 -1.30 0.032871 -0.72
50 0.00026663 -1.13 0.017703 -0.68
100 0.0001403 -0.93 0.01195 -0.57

‖' · u‖ at end time T = 10 for different γ in Table. 1. The convergence rate of average ‖' · u‖2 about −1

is consistent with our analysis in the control of ' · u in 3d.

We have also performed the above tests of (3). The results were similar, so they are not detailed herein.
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Fig. 5. Effect of γ in (2) on velocity and ‖∇ · u‖. The left two plots are ‖∇ · u‖ vs time. The right two plots are energy vs time.

4. Conclusions

With α g 0.5γ, the algorithm presented is long time, nonlinearly stable in 3d, and fully uncouples all 

velocity components. For α < 0.5γ, the tests observed either instability or loss of control of ' · u (or both). 

The lower bound 0.5γ thus seems close enough to be sharp in the experiments to be useful. Open problems 

include providing an analysis of stability in 3d for the sparse grad-div method with α = 0 and G∗, the upper 

triangular part of G, and higher-order time discretizations.

Acknowledgment

The research presented herein was supported by NSF grant DMS 2110379.

Appendix A. condition number estimation

We give a brief analysis of the condition number of the coefficient matrix occurring in Step 2: Given 

ũn+1 ( X, find un+1 ( X, for all v ( X satisfying:

(un+1, v) + kA(un+1, v) = (ũn+1, vh) + kB(un, v).

As noted in the introduction, the coefficient matrix is block diagonal with one block for each velocity 

component. Since all blocks have similar structure and condition numbers, we estimate the condition number 

of the 1-1 block matrix. Let {φ1, · ··, φN } denote a standard finite element, nodal basis for the first component 

of the finite element space, denoted X1. Then the 1-1 block matrix we consider is

Aij = (φi, φj) + k(γ + α)(
∂

∂x
φi,

∂

∂x
φj), i, j = 1, · · ·, N.

We assume the Poincaré-Friedrichs inequality holds in the x-direction, A1 (excluding x-periodic boundary 

conditions) and make the following 2 standard assumptions, A2, A3, on X1. These have been proven for 

many spaces on quasi-uniform meshes.

A1 [Poincaré-Friedrichs]: For all v ( X1, ||v|| f C|| ∂v
∂x

||.

A2 [Inverse estimates]: For all v ( X1, ||'v|| f Ch−1||v||.

A3 [Norm equivalence]: We have N = Ch−d, d = dim(Ω) = 2 or 3. For all v ( X1, v =
∑N

i=1 ciφi(x), ||v||

and 

√
N−1

∑N
i=1 c2

i are uniformly in h equivalent norms.
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For | · | the euclidean norm, we estimate |A| and |A−1| below. These two estimates show that

cond2(A) f C
1 + k(γ + α)Ch−2

1 + k(γ + α)
.

For |A−1|, let Ac = b then |A−1|2 = maxb |A−1b|2/|b|2. Let M denote the finite element mass matrix 

Mij = (φi, φi). Solve Ma = b. Define

w =
N∑

i=1

ciφi(x), g =
N∑

i=1

aiφi(x).

Then Ac = b implies w, g satisfy

(w, v) + k(γ + α)(
∂

∂x
w,

∂

∂x
v) = (g, v), for all v ( X1.

Setting v = w and using A1 gives 
(
1 + k(γ + α)C2

)
||w|| f ||g||. Norm equivalence implies ||w|| and √

N−1
∑N

i=1 c2
i are uniformly in h equivalent norms. Norm equivalence applied twice implies ||w|| and √

N−1
∑N

i=1 b2
i are uniformly in h equivalent norms. Thus

|A−1| f C (1 + k(γ + α))
−1

.

To estimate |A| = maxc |Ac|/|c|, norm equivalence, A3, implies this is equivalent to estimating above 

||g||/||w||. We have ||g|| = maxv(g, v)/||v||. Then

(g, v)

||v||
=

(w, v) + k(γ + α)(∂w
∂x

, ∂v
∂x

)

||v||

f ||w|| + k(γ + α)
||∂w

∂x
|||| ∂v

∂x
||

||v||
and by A2

f ||w|| + k(γ + α)Ch−2||w||.

Thus, ||g||/||w|| f 1 + k(γ + α)Ch−2.
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