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increasing the condition number in the linear systems that must be solved every
time step. To address these three issues various sparse grad-div regularizations and

g:gi ZlTiiS. a modular grad-div method have been developed. We develop and analyze herein
Sparse grad-div a synthesis of a fully decoupled, parallel sparse grad-div method of Guermond and
Navier-Stokes Minev with the modular grad-div method. Let G* = —diag(d2,9%,92) denote the
Mass conservation diagonal of G = —VV:, and a > 0 an adjustable parameter. The 2-step method
Modular grad-div considered is

17"+1 —un

- +um - VErtl 4 vprtl — pAgnt = £ & Vgt =0,

1 1
2: EI +(v+ )G | un Tt = Eﬂ”’“ +[(v+ ®)G" — Gl u™.

We prove its unconditional, nonlinear, long time stability in 3d for a > 0.5. The
analysis also establishes that the method controls the persistent size of ||V - ul| in
general and controls the transients in ||V - u|| when u(z,0) = 0 and f(z,t) # 0
provided a > 0.5v. Consistent numerical tests are presented.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

We present and prove the long time, nonlinear stability of a fully uncoupled, modular, sparse grad-div
(SGD) finite element methods (FEM), approximating the incompressible Navier-Stokes equations (NSE)

ur+u-Vu+ Vp—vAu = f(x,t) and V- u = 0.
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The stability analysis also delineates how the method controls ||V -ul|. Sparse grad-div methods are one slice
of research on improving mass conservation in finite element methods. The complementary slice, currently
giving strong results, uses exactly divergence-free elements. These two, others and their interconnections
are surveyed in [14]. The first sparse grad-div method considered herein is from Guermond and Minev [11],
for which we sharpen their stability result. The second is a new but natural synthesis with the modular
grad-div method of [8]. The flow domain (2 is a bounded open set in R3 with no slip boundary conditions
u =0 on 9. Here u € R3 is the velocity, p € R is the pressure, v is the kinematic viscosity, and f € R3
is the external force. Let « denote the (preset) grad-div parameter. Following Olshanskii [20], the standard
grad-div approximation (with a simple time discretization for concreteness) is the space discretization of

un+1 —um
k + un . vun-i—l + vpn-i-l o VAu""H o ’va . un—i—l _ f(tn+1),
and V-u"tt =0. (1)

If (as here) neither the boundary conditions nor the viscosity depends on the fluid stresses, the added
grad-div term is the only term coupling all velocity components. For v large, the condition number of the
linear system increases [17]. Even for moderate v, penalizing pointwise violation of incompressibility and
asking V -u to be orthogonal to the pressure space has been observed to cause solver issues [8]. To eliminate
this coupling, reduce memory requirements, speed parallel solution and improve the robustness of iterative
methods for the resulting linear system, several sparse grad-div methods have been devised. To specify the
variant considered herein, let G denote —VV- and G* to be the diagonal of G

G:=— [aw Oyy 8yzl & G* = — [ 0 Oy O ] )
0 0 0.,

zx 2y 2z

The synthesis of a sparse grad-div method of Guermond and Minev [11] with the modular grad-div method
of [8] is as follows. Suppressing the space discretization, given u™ two approximations, 4"*! and u"*?!, at
the next time step are calculated by

ﬂn+1 —un

1: B — +u™ - Va4 vptt — v AT = f & VT =0,

and (2)

1 1
2: [kf +(v+ a)G*] u"t = EH”H + [(v + &)G* — 4G] u™.

The linear solve in Step 2 uncouples into 3 smaller and constant in time systems (one for each velocity
component). For example, the first sub-system, for the x component of velocity, is

82
[I —k(y+ a)w} upt = RHS;.

With simple discretizations, structured meshes, mass lumping and axi-parallel domains the above 3 sub-
systems can even be written as one tridiagonal solve for the unknowns on each mesh line. The precise
presentation, including the FEM discretization of their space derivatives, is given in Section 2. The condition
number of the coefficient matrix of Step 2 is proven in the appendix (under typical assumptions for this
estimation) to have a condition number that does not blow up as v+ « — oo, but changes from parabolic
conditioning to elliptic conditioning;:

R+k(y+a),
A <C—1—Lp~2
conds( )_Cl+k(7+a)
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The usual L?(Q) norm is denoted || - ||. The following summarizes the essential result.

Theorem 1. Let v > 0. The method (2) is unconditionally, nonlinearly, long time stable in 3d if a > 0.5y
and in 2d if a > 0.Further, if u®, Vu® € L?(Q) and ||f(t")|| < C < 0o and a > 0.5y we have V -u™ — 0 as
v — 00 in time-average

N
1
lim sup N Z |V -u™[|? <Oyt

N—o0 n—1

If u® =0, then for all N
1 X
SV < or
n=0

1.1. Related work

It has been recognized for a while now that the usual velocity-pressure FEM can result in O(1) errors
in mass conservation, ||V - u|| = O(1), e.g., John, Linke, Merdon and Neilan [14] and Belenli, Rebholz and
Tone [1]. This ||V - u|| = O(1) is clearly evident in the v = a = 0 tests in Appendix A. One cure for this
is added grad-div stabilization, a simple idea with strong positive consequences. Its origin seems to be in
SUPG type local residual stabilization methods, Brooks and Hughes [4], Franca and Hughes [9], and the
idea of adding an operator positive definite on the constraint set in optimization. A penalty term makes
the penalized quantity go to zero as the penalization parameter goes to infinity. This means here that an
added grad-div term forces V-« — 0 as v — 00, see Lemma 20 p. 57 in Linke [16] for a precise realization.
Depending on the choice of finite element spaces, this can force © — 0 or result in an accurate and exactly
incompressible approximate velocity. The work of many summarized in John, Linke, Merdon and Neilan [14]
has delineated these two extremes and intermediate cases. Detailed analysis of an added grad-div term can
be found in, e.g., Case, Ervin, Linke and Rebholz [5], Olshanskii and Reusken [22], Olshanskii [20], Jenkins,
John, Linke and Rebholz [13], Braack, Biirman, John and Lube [3], Layton, Manica, Neda, Olshanskii and
Rebholz [15], Galvin, Linke, Rebholz and Wilson [10] and Connors, Jenkins and Rebholz [6]. Preselection of
the grad-div parameter 7 is treated in many places such as Heavner [12] and self-adaptive selection recently
in Xie [25].

Linke and Rebholz [18] developed the first sparse grad-div method. Their sparse grad-div method con-
tributes no consistency error. It improves solver performance [2], [18], reducing coupling (in 3d) from 3
components to 2 components followed sequentially by a 1 component solve. Since Linke and Rebholz achieve
this with a modified pressure, control of ||V - u|| and stability in 3d are automatic, and higher-order time
stepping is also available. Subsequent sparse grad-div methods of Guermond and Minev [11] achieved greater
uncoupling at the expense of increased consistency error and reduced options for time stepping. Let G de-
note —VV-. Their first method selected G* to be the upper triangular part of G and lagged the remainder:
V- u"t!t =0 and

+ un . Vun+1 + vpn—i-l _ Z/Aun+1_|_
’YG*Un+1 _ ,Y[G* _ G]Un — f(thrl)-

This method, sequentially uncoupling velocity components, was proved stable in 2d and observed but not
proven stable in 3d. Their second sparse grad-div method, equation (3.8) Section 3.3, uncoupled velocity
components in parallel. For a a free parameter select G* to be the diagonal of G. The second method of
Guermond and Minev [11] is V - u"*! = 0 and
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+ - Vun+1 4 Vpn+1 _ Z/A’U,n+1 4 (’Y + a)G*un—i-l _ [(’Y 4 Oé)G* _ ,YG] u” = f(tn+1>. (3)

In Theorem 3.3 they prove stability in 3d for o« > 2+. The proof given in Section 2 for the modular sparse
grad-div method yields the following sharpening of their stability result.

Theorem 2. Under the same conditions as Theorem 1, the conclusions of Theorem 1 for method (2) hold as
well for method (3).

Modular (non-sparse) grad-div, [8], showed improved run times and robustness over standard grad-div.
Similar ideas for the grad-div operator were developed by Minev and Vabishchevich [19]. Finding O(k?)
extensions of (SPARSEGD) with the same unconditional stability is nontrivial. The only step we are aware
of (aside from defect/deferred corrections wrapped around the first-order approximation used by Guermond
and Minev [11]) is Trenchea [24].

2. Analysis of modular sparse grad-div

This section makes the method and result precise and proves stability for o« > 0.5 and control of V - u
for a > 0.5 for the modular sparse grad-div algorithm. This work builds on Guermond and Minev [11], the
work on modular grad-div in [8] and Rong and Fiordilino [23], and the numerical tests of a related method
in Demir and Kaya [7]. We suppress the traditional sub- or super-scripts “A” in finite element formulations.
Let (X,Q) C (H 1(Q)3, L3(Q2) ) denote conforming, div-stable FEM velocity-pressure spaces. To simplify
the notation, define the following bilinear forms and semi-norms.

Definition 3. In 3d (with the obvious modification for 2d), define the symmetric bilinear forms

Alw,0) = (v +a) (w1, 012) + (Ug,y,v2y) + (3,2, 03.2)]
B(uvv) = .A(’LL,U) —’Y(V-U,V'U),
B*(u,v) = B(u,v) — 3(a—29)(V-u,V-v).

If a(u,v) is a symmetric, positive semi-definite bilinear form on X we denote its induced semi-norm by
lvll2 = a(v, v).

The nonlinear term below has been explicitly skew-symmetrized and treated linearly implicitly below.
Other choices are possible such as the EMAC formulation [21].

Algorithm 4. [Modular SGD] Given the initial velocity u® and grad-div parameter v > 0, choose o > 0.
Step 1: Given u™ € X, find (a"*!,p"t!) € (X, Q), for all (v, q) € (X, Q) satisfying:

~n+1 _ n
<%7’U> + % (un . van+17v) _ % (un . vv7an+1)
+v (Vﬂ”H,Vv) — (p”“,v . v) = (f"“,v) ,
and (V Sgn T q) =0.

Step 2: Given @"*! € X, find u"*! € X, for all v € X satisfying:
(" v) + kAW v) = (@™, o) + EB(u",v).

Step 1 uses the standard implicit method to calculate @' at t = ¢"*!. Step 2 adds the sparse grad-div

n+1

stabilization term to @ to get u™*!. This separation of velocity approximations to one where V - uLQ



W. Layton, S. Xu / J. Math. Anal. Appl. 516 (2022) 12648/ 5

and one where ||V - u|| is small may be a reason for the increased robustness observed in [8]. For all time
steps, the uncoupled, same block diagonal matrix I + k(v + «)G* arises in Step 2.
We begin with a lemma.

Lemma 5. Let v > 0, > 0, then

-2
B(v,v) > S0V o) 2,
Thus, if « > 2y > 0 then B(v,v) > 0 for allv € X.
Otherwise, if a > 0 then, for allv e X,
1
3*(%1})ZB(U,U)*E(G*QV)HV'UHQ > 0. (4)

Proof. The second and third claim follow from the first. For the first, since ||V - v|[? = ||v1 4 + va,, + v3.]||?
< 3l[viel* + 3[|va,y [ + 3l[vs,2||?, we have

B(v,v) = (v +a) [[lrall* + llvayll* + s 2|*] = 4]V -0l

’y—f—a
= (v + ) [[loral® + [lvay 1> + lvs 2] -

Y+ o
[ }Hv-vw

( )[Ilv1wll2+llv2yll2+HvszIIQ] -

)+ [ 252 ool

IV ol?

2 [3lforell? + 3llvs |

3

> w0 o

For all cases in the following theorem, the stability is proven via a formula like
E"tY — B 4 2kD" Y < 2k(f, ),
which immediately implies stability (by summing over n = 1, N) provided the dissipation D > 0 and the
energy F is square of a norm of u. The 2d result and the one below for a > 2 in 3d are noted by Guermond

and Minev [11] for method (3).

Proposition 6. Consider the modular sparse grad-div method.
2d case: Assume v > 0. In 2d it is unconditional stable when a > 0:

(e 112 4 Ryl + gt 1]
= Dl 2+ Ryl o + [l 2] +
= a2 [ = @R 2k [V < 2k ),

3d case: Suppose 2y > a > 0.5, then in 3d it is unconditionally stable. It satisfies
En-i-l E™ 4+ 2an+1 _ Qk(f ~n+1)

where
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27 — «
2o+ LA v w2

1
En-l-l: n+1(12 2k - n+1
2 4 2k | Sl + 2

1
Dn+1 _ I/||Vﬁn+1“2 4+ — [”ﬂn-i-l _ ’LLn||2 + Hun+1 _ an-‘rlHQ]

2k
1 n+1 n|2 2 n+1|2
+§||u —u |B*+§(a70.5fy)||V~u [l
27y — «
+ 76 IV - (@™ + w2

If a > 2, then in 3d it is unconditionally stable. It satisfies
BT E™ 4 2kD T = 2k (f, u" Y,
where
B = [l 4k,
R e R [
FANT w2 4 S —

Control of V - u in 3d: Suppose a > 0.5v, u®, Vu® € L*(Q) and ||f(t")||-1 < F < 0o. Then if u® = 0 we
have for any N

1
2 -1
SV < or
n=1
For u® non-zero we have V - u™ — 0 as v — oo in the discrete time averaged sense
N

1
lim sup N Z |V -u™|]? <Oyt (5)

N—o0 n—1

If o = 0.5 the above results hold with ||V - u™||* replaced by ||V - (u™ T + u™)||%.

Proof. The 2d case: To shorten the 2d proof we set o = 0. The idea of the proof in 2d is simple. We
perform a basic energy estimate and subsume the inconvenient terms in ones that fit the desired pattern.
Set v = @"*!, ¢ = p"*! in Step 1. Use the polarization identity and multiply by 2k. We obtain

||’[Ln+lH2 _ ”unHQ 4 ”ﬂn-&-l _ un”Z + 2kl/||vﬁn+1“2 _ 2k(fn+1,iln+l).
Take v = u™*! in Step 2, use the polarization identity, multiply by 2 and rearrange. We obtain

||un+1”2 _ ||,an+1||2 + ||un+1 _ﬂn+1”2+

ok YV -u™, V- yntl) 0
1 1 = 0.
v [(ui ! =l uf EY) + (uph — g, up )]

Add the last two equations. We obtain
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[l = fu™ [ 4 @ — w2 4 [ = a4 2k Va2

2k {y(V - u, V™) by [(uf 5 —uf puyh) + (us )t — g up ]} (6)
Qk(f"—i_l’ﬂn—i_l).

Expanding the term inside braces ({-}) algebraically gives

(Y = g P+ s 2] = (it ull o) + (usyt us )]
+ (V- u™, V- uth)
= [l TP+ [fusf 11P] + [yt et ) + (uidh us,)] -

Using the Cauchy-Schwarz-Young inequality in the last line of the above, then yields

{~}>§[Hu1 P+ ez 17] = [||u1x||2+‘|u2y||]

Inserting this for the term in braces in (6) then implies

[l 2 + ey [l 2117 + [ug 17
= [l + oy [[lud oI + [z, [1°]]
HIEH =P fJup ™ = @ P 2k VAP < 2k A,

Stability now follows by subsuming the @"*! on the RHS into 2kv||Va"*1||? on the LHS and summing over
n.

The 3d case: In 3d there are too many inconvenient terms to simply use the Cauchy-Schwarz-Young
inequality as in 2d to establish the energy estimate. Set v = 4" *!, ¢ = p"*! in Step 1, multiply by 2k and
use the polarization identity to get

[+ 2 = 2] + @+ — w)|? + 2K Va2 = 2k(fm 0, @), (7)
We note that Step 2 can be rewritten as
("t ) + ky(V - w1 Vo) = (" v) — kBu™ T — u™,v).
Take v = u™*! in this form of Step 2, use the polarization identity, multiply by 2 and rearrange. We obtain
[l PHP = a2 4 e = @ 4 2k [V w4 26B(u T — e ) = 0. (8)
Add equation (7) and (8). We obtain

T T e [ [ e R 7 i
+2k {H||V w2 4 Bu"T = u ) ) = 2k (T A,

3d case with o > 2v. This case implies B(v,v) > 0. Apply the polarization identity to the B-semi-inner
product and collect terms. This gives the following

[ 12 + Kl [E] = [lu™ [ + Kl
+||ﬂn+1 _ un||2 + ||un+1 _ ~n+1H2 + 2kV||V7:Ln+1||2

+2k {A|V - w2 4 0.5][un = u[F} = 2k(fH A,
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Summing over n = 1, N yields stability when a > 2.
3d case with 2y > a > 0.5y. We thus focus on the term in braces in the last equation. First, recall (4),
5+ to which a polarization identity can be applied. Motivated

B*(v,v) > 0. Thus B* induces a semi-norm ||-|
by this observation, rewrite algebraically the term in braces as

(I a2 + Bt =, um )} =

a— 2y

= [B’(u’”rl — " ") — 3

(v . (unJrl _ un) ,v . un+1):| +

e- 2PY(V- (u”Jr1 —u") , V- u”H)) =[]+ (II)

+ (7w 25

We expand and apply the polarization identity to the term in brackets, [I], giving
[I] —_ B*(unJrl o un’un+1)

=3 (Il

e — [l + et

2.

Recall that 2y > « > 0.57, so that the multipliers are non-negative, 2y —a > 0 and o — 0.5y > 0. The term
in parentheses, (II), is expanded as

Qv —
a+’7||v n+1|‘2+u(v.un’v_un+l).

(I1) = -

Applying the polarization identity in the form z-y = —0.5(|z|? +|y|? — |z +y|?) to the term (V-u", V- u"*1)
gives

(1) = CELT = DS R P D )
This is rearranged algebraically to read
2'y « 2
(1) = IV - = [V - a ] + 5 (@ = 0.57) [|[V - " T + LV @ )
Putting all this together, we then have

E"tt — E" 4 2kD™ = 2k(f,u" ),

where

1 2
B = |l + 2k §|u I

Dn+1 _ V||vﬂn+1“2 [||~n+1 n||2 + Hun+1 _ an+1”2]

1 2
+ §||u"+1 —u"lg + 3 (@ —0.57) |V - u™ 1|2

27@

+ IV (@ a2,

Since all terms are non-negative, stability follows by summing over n.
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Control of V - u: The subtlety in concluding control of ||V - u|| from stability is that E° & D™ both
depend on the grad-div parameter . For this reason we obtain control in a time averaged sense. Bound the
RHS of the energy inequality by

2k(f,a") < kv||Van % 4 kvt F?
and subsume the first term in D. This implies
En+1 S + an+1 S kVﬁle.

Summing this over n = 0, ..., N — 1, dividing by N and dropping the nonnegative EV term gives
1 1
k—> D" < —E°+ kv 'F?
N ; SN + kv

The RHS is bounded uniformly in /N so the limit superior as N — oo of the LHS exists. We thus have

N —o0

N
1
lim sup N ZD” <y lF?
n=1

and

N

1

Nan <v'F?ifu’ =0.

n=1

The claimed result now follows since D contains (with a positive multiplier) the term ~||V - u™™1||? if
a > 0.5y, and if a = 0.5y the term ||V - (u" ! +u™)||?>. O

3. Stability and control of V - u for flow between 3d offset cylinders

We consider a 3d rotational flow obstructed by an offset cylindrical obstacle inside a cylinder. Let r; =
1,70 =0.1, (c1, 02) = (0.5,0) and

O ={(z,y): 2> +y* <rfand (z —c1)® + (y — c2)* > r3}.

The domain is @ = Q; x (0,1), a cylinder of radius and height one with a cylindrical obstacle removed,
depicted with the mesh used in Fig. 1.
The flow is driven by a counter-clockwise rotational body force with f = 0 on the outer cylinder

f('Iayvz:t) = min{t, 1}(_4y * (1 - xQ - y2)74z * (1 - I’2 - y2)aO)Ta 0 <t< 107

with no-slip boundary conditions, u = 0, on boundaries. The space discretization uses P? — P! Taylor-Hood
elements with 18972 total degrees of freedom in the velocity space and 2619 total degrees of freedom in the
pressure space. This mesh in Fig. 1 is insufficient to test accuracy but suffices to test stability and control
of V - u. The flow rotates about the z-axis and interacts with the inner cylinder. We start the test at rest,
up = (0,0,0)T, and choose the end time to be T' = 10. The kinematic viscosity is ¥ = 0.0001 and the time
step is At = 0.05.

We first tested if the extra « term is necessary for stability. We picked v = 1.0, = 0.5 and o = 0 and
v = a =0 (no sparse grad-div term), solved and plotted the kinetic energy and ||V - u|| in Fig. 2. The right
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0.8
0.6

04

0.2

0.5 1

0.5

-0.5
-0.5

-1 1

Fig. 1. Mesh used to test stability.

x10%0

-+ No sparse grad-div
w0 y=1,a=0

-+ No sparse grad-div
w0 y=1,a=0

Fig. 2. Modular SGD. The left two plots are stable v and a pair (v = 1, « = 0.5) compared with no sparse grad-div term. The right
two are unstable v and « pair (v = 1, @ = 0) compared with no sparse grad-div term.

hand side of the figure shows that the v = 1.0, = 0.0 method is unstable while the v = 1.0, = 0.5 is
stable. This observed stability is consistent with the theoretical result.

The next question tested was whether a = 0.5 (for v = 1) is the critical value for stability. To test this,
we choose v = 1 and the range of values a = 0.3,0.4,0.48,0.49,0.5,0.6,0.7, 1,2, 3, solved and plotted the
kinetic energy and ||V - || vs time in Fig. 3 and Fig. 4.

In Fig. 4, method (2) is stable for a > 0.5, and in Fig. 3, for a < 0.5, the closer « is to the critical 0.5
value, the longer time needed to see instability. No instability over 0 < ¢ < 10 was observed for the nearly
critical values a = 0.48 & 0.49. This could be because the time interval 0 < ¢ < 10 was too short, because
the derived value av = 0.5 is uniform in the viscosity v, so actual stability is slightly better than proven
or because some sharpness was lost in the various inequalities. In further tests, we also observe @ = 0.45
instability starts near ¢t = 21.5. Similar behavior was seen in the plots of ||V - u|| in terms of control or loss
of control of V - u. The only evidence in the plots of ||V - u|| of non-sharpness of the analysis observed is
that for a = 0.57, control of ||V - u|| was observed. In contrast, the theorem predicted control of averages
over 2 time levels for a = 0.5. Please note that different scales were needed on the vertical axis.

Next, we compare the effect of v in (2) on ||V - u||. We choose v = 0.1, 1, 10, 20,50, 100 and o = 0.5 * 7.
For these values, we solved and plotted the evolution of ||V - u|| and kinetic energy in Fig. 5.

The results in Fig. 5 are consistent with ||V - u|| decreasing as v increases. We also note that moderate
values of v, e.g. v = 0.1 and 10, in this test seem to be effective. We conjecture that this is because V-u =0
is also required to be orthogonal to the pressure space. We also present the time-average ||V - u||? and
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6 6
10 x10 10 x10
—+— No sparse grad div —+— No sparse grad div
—6—~v=1,a=03 ——~v=1,a=03
_ ——~y=1,a=04 —%—~y=1,a=04
E) ? coxesy =1, a =0.48
> S 2 S5 v y=1,a=49
= O y=1,a=05
0 % + 0 ¥ FOKHPOKHPORSP ¥
0 2 4 6 8 10 0 2 4 6 8 10
t t
1 20
15
?05 510
3 &
BxwOxTOXTONTO 5
0 0
0 2 4 6 8 10 0 2 4 6 8 10
t t

Fig. 3. Testing the o < 0.5, lower bound of « in (2). The left two plots are |V - u|| vs time. The right two plots are kinetic energy
vs time. When a = 0.3, 0.4, results show instability.

—+— No sparse grad-div
o y=1,a=05
*:

Fig. 4. Testing the o > 0.5, lower bound of « in (2). The left two plots are ||V - u|| vs time. The right plot is kinetic energy vs
time.

Table 1
Time-average ||V - u||? and ||V - u|| at end time T for
different v value when a = 0.5+.

v Avg(IV-ull®)  rate  [[V-u(D)| rate

0.1 0.64305 - 1.1033 -

1 0.033985 -1.28  0.24826 -0.65
10 0.0018455 -1.27  0.054152 -0.66
20 0.00074997 -1.30  0.032871 -0.72
50 0.00026663 -1.13  0.017703 -0.68
100  0.0001403 -0.93  0.01195 -0.57

|V - u| at end time T = 10 for different v in Table. 1. The convergence rate of average ||V - u||? about —1
is consistent with our analysis in the control of V -« in 3d.
We have also performed the above tests of (3). The results were similar, so they are not detailed herein.
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15 20
—+— No sparse grad-div —+— No sparse grad-div -
<0 y=0.1, a =0.05 / 15} [@v=0.1,a=0.05
_10}|"*y=1,a=05 m*--w 1,a=0.5
= x4 =10, a =5 ? x4 =10, a =5
B gy =20, a =10 =10 gy =20, a =10
= g| |0 7=50,a=256 w ---0---7:50,01:25
a4 =100, a =50 e

Fig. 5. Effect of v in (2) on velocity and ||V - u||. The left two plots are |V - u|| vs time. The right two plots are energy vs time.

4. Conclusions

With « > 0.5, the algorithm presented is long time, nonlinearly stable in 3d, and fully uncouples all
velocity components. For a < 0.5, the tests observed either instability or loss of control of V -« (or both).
The lower bound 0.5y thus seems close enough to be sharp in the experiments to be useful. Open problems
include providing an analysis of stability in 3d for the sparse grad-div method with o = 0 and G*, the upper
triangular part of G, and higher-order time discretizations.
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Appendix A. condition number estimation

We give a brief analysis of the condition number of the coefficient matrix occurring in Step 2: Given
4"t € X, find u"t! € X, for all v € X satisfying:

("t v) + kAL v) = (@ o) + kB(u",v).

As noted in the introduction, the coefficient matrix is block diagonal with one block for each velocity
component. Since all blocks have similar structure and condition numbers, we estimate the condition number
of the 1-1 block matrix. Let {¢1, -+, ¢ } denote a standard finite element, nodal basis for the first component
of the finite element space, denoted X;. Then the 1-1 block matrix we consider is

0 0
Azj = (¢zv¢j) + k(’Y+ 04)(%@7 %(b])ﬂ’a] = 17 ce '7N'

We assume the Poincaré-Friedrichs inequality holds in the x-direction, A1 (excluding x-periodic boundary
conditions) and make the following 2 standard assumptions, A2, A3, on X;. These have been proven for
many spaces on quasi-uniform meshes.

A1 [Poincaré-Friedrichs]: For all v € X1, ||v|| < C||22]|.

A2 [Inverse estimates|: For all v € X1, ||Vv|| < Ch~ 1Hv||

A3 [Norm equivalence]: We have N = Ch~%,d = dim(Q2) =2 or 3. For allv € X;,v = vazl cidi(x),||v]|

and /N1 ZZ , ¢2 are uniformly in h equivalent norms.
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For | - | the euclidean norm, we estimate |A| and |[A~1| below. These two estimates show that

1+ k(y+a)Ch™2
<
condq(A) < C T4k + )

For |[A71|, let Ac = b then |A~!|? = max;, |[A71b?/|b|?. Let M denote the finite element mass matrix
M;; = (¢i, ¢i). Solve Ma = b. Define

N

N
w=> ci¢i(x),g = a;¢i(x).
i=1

i=1

Then Ac = b implies w, g satisfy

(w,0) + h(y + o) (L,

5 v) = (g,v), for all v e X;.

da
Setting v = w and using Al gives (1+ k(y+ a)C?) ||w|| < ||g||. Norm equivalence implies ||w|| and

\/N—1 Zf\il ¢? are uniformly in h equivalent norms. Norm equivalence applied twice implies ||w|| and

N1 sz\il b? are uniformly in h equivalent norms. Thus

AT <O +k(y+a) .

To estimate |A| = max.|Ac|/|c|, norm equivalence, A3, implies this is equivalent to estimating above
llgll/[lwl[]. We have ||g|| = max,(g,v)/|[v|]. Then

(9:v) _ (w,v) +k(y+a) (52, 52)

ol [loll

[ERlEAl
|Jwl| —I—k('y—i—a)% and by A2

< lwll + k(v + a)Ch™2||wl].

IA

Thus, [|g]|/|[w]] <1+ k(y + a)Ch™2.
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