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Abstract
Background: Digital health programs provide individualized support to patients with chronic diseases and their effectiveness
is measured by the extent to which patients achieve target individual clinical outcomes and the program’s ability to sustain patient
engagement. However, patient dropout and inequitable intervention delivery strategies, which may unintentionally penalize certain
patient subgroups, represent challenges to maximizing effectiveness. Therefore, methodologies that optimize the balance between
success factors (achievement of target clinical outcomes and sustained engagement) equitably would be desirable, particularly
when there are resource constraints.
Objective: Our objectives were to propose a model for digital health program resource management that accounts jointly for
the interaction between individual clinical outcomes and patient engagement, ensures equitable allocation as well as allows for
capacity planning, and conducts extensive simulations using publicly available data on type 2 diabetes, a chronic disease.
Methods: We propose a restless multiarmed bandit (RMAB) model to plan interventions that jointly optimize long-term
engagement and individual clinical outcomes (in this case measured as the achievement of target healthy glucose levels). To
mitigate the tendency of RMAB to achieve good aggregate performance by exacerbating disparities between groups, we propose
new equitable objectives for RMAB and apply bilevel optimization algorithms to solve them. We formulated a model for the
joint evolution of patient engagement and individual clinical outcome trajectory to capture the key dynamics of interest in digital
chronic disease management programs.
Results: In simulation exercises, our optimized intervention policies lead to up to 10% more patients reaching healthy glucose
levels after 12 months, with a 10% reduction in dropout compared to standard-of-care baselines. Further, our new equitable
policies reduce the mean absolute difference of engagement and health outcomes across 6 demographic groups by up to 85%
compared to the state-of-the-art.
Conclusions: Planning digital health interventions with individual clinical outcome objectives and long-term engagement
dynamics as considerations can be both feasible and effective. We propose using an RMAB sequential decision-making framework,
which may offer additional capabilities in capacity planning as well. The integration of an equitable RMAB algorithm further
enhances the potential for reaching equitable solutions. This approach provides program designers with the flexibility to switch
between different priorities and balance trade-offs across various objectives according to their preferences.
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Introduction
Chronic diseases, while obviously heterogeneous in their
physiology, pose a series of common management challenges.
One of them is that, by the very nature of these conditions,
interventions have to impact multiple aspects of the patient’s
daily living to be effective. This scenario is propitious for the
implementation of digital health programs (via wearables,
mobile apps, or virtual care), such as vida (Vida) and welldoc
(Welldoc), that provide patient-centric support between in-clinic
visits. These digital health programs may lead to improved
clinical outcomes [1-3].

The success of digital health programs, however, hinges on the
dynamic balance of several factors. The ultimate metric of
success of any program is always the improvement of the
individual health outcomes of participants in the program.
However, these programs need to sustain participant engagement
to be effective [4]. The importance of patients engaging with
specific intervention points is clear since only the interventions
that patients receive can have an effect. However, sustained
engagement over time is a critical success factor in itself, as it
can mediate enduring and (potentially) disease-modifying
long-term shifts in patients’ attitudes and perceptions about the
management of their own health and lifestyle [5]. Yet, attrition
and dropout across programs are estimated to be as high as
∼50% [6], representing a major barrier to optimal effectiveness.
Moreover, these programs may have capacity limitations (eg,
the volume of coaches or health counselors) and need to allocate
intervention resources proactively. The options for resource
management in digital health programs can vary widely,
depending on the metrics and time horizon on which success is
measured. In that context, it can be challenging to estimate
which approach will be the most effective for a given set of
goals.

Our focus is on type 2 diabetes (T2D), which is a representative
chronic disease condition. T2D is a high-prevalence,
high-burden disease. In the United States, 30 million people are
estimated to live with diabetes, the 8th leading cause of mortality
[7], and it is estimated to account for over US $300 billion of
economic cost [7-9]. The physiologic hallmark of the disease
is elevated blood glucose, and success in clinical management
is monitored by testing the levels of hemoglobin A1c (HbA1c)
tests [10]. T2D can lead to organ damage, but it is manageable
through medication and lifestyle changes. Our work is based
on a digital program that supports patients through a mobile
app, virtual coaching (web-based and app-based), and integration
of sensor-collected information.

Our digital program of interest contacts patients to maintain
engagement and direct and support specific patient actions.
Resource investment into those outreach interventions often
relies on an intuitive strategy guided by a present clinical state
(eg, in this case, giving preference to patients with the highest
HbA1c). However, such engagement-agnostic strategies may

not lead to the best possible health outcomes at the population
level, since reactive strategies that only prioritize immediate
clinical improvements may do so at the expense of future
engagement, reducing the ability to deliver interventions to
patients who have dropped out.

Digital programs that consider the joint dynamics of engagement
and clinical status may arrive at better determinations about
intervention strategies. This is a problem that entails long-term
planning usually in resource-constrained settings, therefore it
can naturally be cast as a restless multiarmed bandit (RMAB)
framework, of the type used for studying resource allocation in
the context of stochastic scheduling problems [11]. Recent
examples of applying RMABs to health-related problems include
computing optimal cancer screening regimens [12], improving
maternal health through telehealth [13], and planning hepatitis-C
treatment delivery [14].

RMAB frameworks generate sequential resource allocation
strategies in pursuit of desired outcomes (in our case it would
be optimal health status and engagement) but may be prone to
maximizing system-level rewards by sacrificing certain groups
to favor the “most promising” ones, hence leading to inequities
[15]. In a disease-management context, these (potentially)
inequitable policies would translate into disparate outcomes
across demographic groups, potentially exacerbating existing
systemic inequities in health care [15]. To mitigate this issue,
there have been recent studies of fairness in RMAB, in the sense
of generating resource allocation strategies with a degree of
distributive fairness, where all arms have an opportunity to
receive the intervention of interest (in this case resources).
Specifically, some works view fairness from the lens of equality,
guaranteeing a lower bound of receiving an intervention for all
groups [16,17]. Fairness has also been set by modulating risk
sensitivity, encoding risk-averseness or risk-prevalence levels
to shape the reward functions [18].

In this work, we aimed to develop a resource allocation strategy
for a digital health app to support patients with T2D applying
an RMAB framework. We intentionally sought to incorporate
equity as a desirable feature of our approach, aiming to leverage
recent innovations in health care, such as the emergence of
digital health, without perpetuating systemic flaws in care
delivery, such as societal inequities [15]; moreover, T2D
represents an unfortunate example where the presence of
systemic inequities continues to have a negative impact in care
[19]. We introduce a new solution, equitable RMAB (ERMAB),
which requires that allocation policies take affirmative steps to
distribute resources in a way that equalizes outcomes across
prespecified groups. That is, we focus on fairness through the
lens of achieving equitable outcomes in resource allocation. We
applied this paradigm to the resource allocation of outreach
interventions in our program, evaluating an engagement-health
dynamics model and an equitable intervention planning approach
via an extensive simulation study using publicly available
statistics about digital T2D management. Subsequently, we

JMIR Diabetes 2024 | vol. 9 | e52688 | p. 2https://diabetes.jmir.org/2024/1/e52688
(page number not for citation purposes)

Killian et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


carried out a Pareto analysis to further study the interplay of
engagement-clinical outcome dynamics under different
intervention strategies, and perform sensitivity analyses to
demonstrate our framework’s robustness across RMAB
parameter settings.

Methods
Model

Overview
Our model needed to simultaneously address the following
facets essential to digital health programs: (1) evolution of
clinical outcomes per patient, (2) joint engagement-health
dynamics per patient, (3) limited observability of clinical
outcomes, and (4) limited resource availability.

We model the problem as a restless bandit with n ∈ 1, . . . , N
arms representing each patient, discrete per-arm state space Sn,
per-arm action space An = {User self-care, Intervention}
(equivalently {U, I}), per-arm transition functions Pn defining
the probability of arm n transitioning from state s to state s′
given action a, per-arm reward function Rn (s) defining the
reward for an arm being in state s, time horizon H, and action
budget B. For ease of exposition, Sn, An, and Rn(s) are the same
for all arms, so we drop the subscript n from these, but our
methods apply to the general setting where arms have different
state, action, and reward functions. Let st be the N-length vector
of arm states at time t, indexed as st

n, and let at be an N-length
1-hot encoding of the arms that receive interventions from the
program in time period t. The planner must take actions to
maximize their objective, subject to a per-round budget
constraint, |at|1 ≤ B ∀t ∈ 1, . . . , H.

To capture the joint dynamics of engagement and health in
digital health programs, we included a dimension for each factor

in our state space. For the T2D domain, we also include a
dimension for memory, since intervention effects have a delayed
impact on clinical outcomes. We represent this 3D state space
S by a 3-tuple (sE, sC, and sM), where sE captures the arm’s
engagement, sC captures the arm’s clinical (ie, health) state, and
sM is a 2-length memory vector. All dimensions of the state
space are modeled as discrete, where continuous spaces are
discretized via threshold rules, described next.

The engagement dimension, sE, has 3 states: {Engaged,
Maintenance, and Dropout}. A patient is Engaged if they
received an intervention from the care team and they responded
to the team within the app in the current time period. A patient
is in the Maintenance state if they have produced any
interactions within the app, but did not respond to an
intervention if it was attempted in the current time period. A
patient is in the Dropout state if they have not produced any
interactions in the app in the current time period and will no
longer do so in any future time period (eg, they have deleted
the app). These states are chosen to capture the primary
high-level engagement dynamics seen in our digital program.

The clinical dimension, sC, captures a user’s HbA1c value (via
2 states: {HbA1c < 8, HbA1c ≥ 8}. This threshold was chosen
to model the clinical outcome target for app users in publicly
available data, that is, reducing their HbA1c below 8. Finally,
the memory dimension, sM, is a 2-length vector for recording
previous values of sE, so its entries can take the same values as
the sE dimension. The memory serves to implement a 3-month
delay between an intervention and its impact on the clinical
state. This effect is observed in data and is due to the biological
nature of HbA1c progression, that is, it is a summary measure
of the body’s blood sugar over the previous 3 months. Let sMi
reference the ith entry of the 0-indexed, 2-length memory vector.

Transition dynamics are summarized below (Figures 1 and 2).
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Figure 1. State transition diagram for 1 arm. Bold arrows are transitions when a = intervention and dotted arrows represent transitions when a = user
self-care. Eng: engaged; Maint: maintenance.

Engagement Dynamics
The engagement model is made up of 4 main effects. First, each
patient has their own independent probability of responding to
an intervention and transitioning to the Engaged state from
either the Engaged or Maintenance states. Second, the
probability of a patient responding to an intervention if they
were previously in the Engaged state is higher than if they were
previously in the Maintenance state. Third, the probability of
a patient transitioning to a Dropout state is lower if the patient
receives an intervention, than if they do not. Lastly, patients in
the Dropout state will never respond to an intervention. In
summary, this corresponds to 4 open parameters for the
engagement dynamics, pI

MtoE, pI
EtoE, pI

MtoD, and pU
MtoD, where

superscripts, I or U, denote the action.

Clinical Dynamics
There are 2 meaningful clinical dynamics, corresponding to the
clinical evolution of patients who did and did not respond to an

intervention. Specifically, we assume that patients who received
and responded to an intervention (ie, were in the Engaged state)
will have a higher probability of transitioning to a healthy
clinical state than a patient who did not receive or respond to
an intervention. In addition, all effects are delayed by 3 months
via the memory states as described in the equations below
(Figure 2). Note that we assume that HbA1c progression is the
same for users who were in the Maintenance and Dropout states.
We show the evolution of the clinical state s′C, given the
memory state sM1 (ie, clinical state 3 months ago), and the
current clinical state sC, in Table 1. Row 1 of Table 1 represents
users who received and responded to an intervention 3 months
ago, whereas row 2 represents users who did not receive or
respond to an intervention 3 months ago. Note that this requires
estimating only 4 parameters for clinical progression, that is,
pE

A1c≥8, pE
A1c<8, pĒA1c≥8, and pĒA1c<8, all of which encode the

probability of having an HbA1c level less than 8 in 3 months.
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Figure 2. Construction of the delayed intervention effect on clinical state, sC, via zoomed in view of Figure 1. Each transition (arrow) in Figure 1
encodes 2 transitions with different probabilities (the dashed and dotted arrows in this figure), each of which depend on the engagement state of the
user 3 months ago, that is, the last entry of the memory state M. Specifically, the probability of transitioning to a better clinical state will be larger if
the user was in the engaged state 3 months ago. Eng: engaged.

Table 1. The table shows the evolution of clinical state P (s′C = HbA1c < 8|r, c) where r represents the memory state sM1 and c represents the current
clinical state sC.

s′C = HbA1c < 8s′C = HbA1c ≥ 8Evolution of clinical state P (s′C = HbA1c < 8|r, c)

pE
A1c<8pE

A1c≥8sM1 = Enga

pĒA1c<8pĒA1c≥8sM1 ≠ Eng

aEng: Engaged.

Memory Dynamics
The memory dimension is a sliding window to record the
engagement state of the previous 3 months:

P (s′M0 = sE, s′M1 = sM0 | sE, sM0) = 1
Finally, note that the arrows in Figures 1 and 2 represent joint
engagement-clinical-memory transition probabilities. These are
obtained by multiplying the engagement, clinical, and memory
transition rules.

Observability
By definition, the engagement state sE, and thus memory state
sM, are fully observable. However, the clinical state sC relies on
a patient collecting a measurement of their HbA1c in a given
time period. We assume that users in the Engaged state have
fully observable sC, for example, they will measure their HbA1c
upon request from the program, patients in the Maintenance
state have a partially observable HbA1c, for example, they will
measure their HbA1c in a given round with probability qObs

Maint,
and users in the Dropout state have an unobservable HbA1c. To
handle this partial observability in a computationally scalable
way, we convert the partially observable system via a belief-state
conversion which allows us to treat the converted system as
fully observable [20]. The main benefit is that it allows us to
use more efficient optimization tools, at the cost of having a
slightly larger state space in the converted system.

Rewards
We assign rewards based on the current state of each patient
and represent them as R(s). In general, our objective is to jointly
boost engagement and clinical state. To capture that objective,
we define rewards for each state dimension independently as:

The reward for a patient’s full state is then computed as R([sE,
sC, sM]) = αrE(sE) + (1 – α) rC(sC).

Thus the parameter α represents the relative weight on the
engagement reward and it can be tuned based on the planner’s
desired objective.

Equitable Restless Bandit Problem

Overview
We model the problem as an RMAB, a framework for finding
optimal allocations of constrained resources across many
Markov Decision Processes and across time. In this work, we
enforce that solutions must also be equitable across groups of
arms, introducing a new class of ERMAB. Here, we give a brief
overview of the ERMAB framework and the equitable objectives
considered for our simulation analysis. For full technical
background on restless bandits and full derivations of ERMABs
and their solutions, please see Killian et al [21].

Preliminaries
We consider predefined groups of arms (patients) G, indexed
by g. Let M-1(g) be the set of arms in group g. Given a time
horizon H, a start state s0

g, and per-round budget bg, a
reward-maximizing allocation policy for a group of arms can
be found by computing the value function V0

g(s
0
g, bg), where:
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and VH
g(·) = 0. However, solving this exactly is PSPACE-Hard

[22], due to the coupling between arms imposed by the budget
constraint. Thus, it is more common to work with objectives
that relax the budget constraint equation 4 in a Lagrangian
fashion, trading some solution quality for computational
tractability. Solutions to the relaxed value functions are denoted
Lt

g(st
g, bg), rather than Vt

g(st
g, bg).

Equitable Objectives
In ERMABs, our objective is to both maximize reward and
ensure that rewards are distributed equitably across groups of
arms. Below, we give 2 objectives for planning such policies.

Maximin Reward
Maximin reward (MMR) is a robust objective that maximizes
the minimum prospective total reward of any group.

where B is the total per-round budget constraint over all groups.
This objective takes a bottom-up approach to equity, ensuring
that the groups that are the worst-off are prioritized for
resources. However, since the objective focuses only on
maximizing the worst case, on some data distributions, it may
over-commit resources to a subset of groups with very low
potential for improved outcomes, at the expense of potential
gains to other groups, which may be undesirable. To account
for this, we also consider a second equitable objective that is

sensitive to gains across the distribution of groups, while still
prioritizing the worst-off.

Maximum Nash Welfare

The maximum Nash welfare (MNW) objective gives
diminishing returns as the prospective total reward of a group
becomes larger. This leads to prioritizing allocations that
improve the rewards of all groups more equitably. However, if
1 or a subset of groups have little potential for gains, the
allocations will go to the next-worst-off groups which may see
some meaningful utility increase from the allocation.

Both objectives represent a natural bilevel optimization problem,
where the inner problem solves for the value function within 1
group, and the outer problem solves for the equitable distribution
of resources across groups. To solve equation 5, we use
algorithm 1 (Figure 3 [21]), an efficient water filling procedure
that incrementally assigns a budget to the group with the
smallest long-term value L, until the total budget B is exhausted.
To solve equation 6, we use algorithm 2 (Figure 3 [21]), an
efficient greedy approach that incrementally assigns a budget
to the group that will see the largest marginal (log) increase in
its long-term value L, until the total budget B is exhausted. The
algorithm also includes nuance which corrects for computational
biases that occur in the presence of unequal group sizes. To take
actions (assign resources) in the simulations, we follow the
actions implied by the value functions Lt

g(s
t
g, bg) output by

algorithms 1 or 2 (for complete algorithm derivation, with
additional proofs and technical detail, see Killian et al [21]).
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Figure 3. Algorithms. ERMAB: equitable restless multiarmed bandit.

Simulation

MarketScan Datasource
To derive baseline statistics on clinical evolution, we relied on
the widely used Truven Health MarketScan Commercial
Database [23], a convenience sample of medical insurance
claims from patients who are privately insured in the United
States over the years 2018 to 2020, which includes
measurements of HbA1c. We consider users enrolled for more
than 6 months that have T2D only, that is, excluding those with
hypertension, depression, heart failure, or cancer. We then group
users by age, gender, and starting HbA1c to derive statistics per
group on monthly HbA1c change (full details in Multimedia
Appendix 1). These provide values of pĒA1c≥8 and pĒA1c<8 of
approximately 7.5% and 0.5%, respectively, with about 1%
variation across groups. The MarketScan data set is publicly

accessible and provides a reasonable estimate for the background
rate of HbA1c change for users not in a specific digital health
program, but receiving standard care. It provides a conservative
baseline for our experiments.

For the engagement dynamics, statistics on monthly dropout
rates by demographic groups from digital health programs are
not readily available. Therefore, we use age and gender-based
monthly dropout statistics published by the National Diabetes
Prevention Program (NDPP) lifestyle change program, primarily
made up of in-person meetings [24]. With monthly dropout
rates near 10%, this again forms a reasonable conservative
baseline for experiments, serving as a proxy for patients’
willingness to engage with T2D-related ongoing behavior
change coaching. These statistics populate pU

MtoD in our model,
with about 4% variation between groups.

JMIR Diabetes 2024 | vol. 9 | e52688 | p. 7https://diabetes.jmir.org/2024/1/e52688
(page number not for citation purposes)

Killian et alJMIR DIABETES

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


The remaining parameters require estimates from digital health
program data which are not readily available publicly. Thus we
make the following assumptions to instantiate their values. For
pE

A1c≥8 and pE
A1c<8, that is, the clinical probabilities of patients

who received and responded to intervention, the patients in age
ranges of aged 30-44, 45-54, and 55-64 years receive 25%, 50%,
and 75% boost in their clinical probability of transitioning to
HbA1c < 8, respectively. We found that this leads to clinical
trajectories in line with 1 published observational study of a
digital diabetes management program [25], and included
age-based variation to align with variation observed in NDPP’s
monthly dropout statistics. For pI

EtoE and pI
MtoD, we assign

values of 99% and 3%, respectively, encoding an assumption
that patients are more likely to stay in the program if intervened
or if already engaged. For pI

EtoE, we assign values with a mean
of 75%, but with the same group variation as was present in the
data for NDPP’s dropout statistics.

Finally, we set the probability of observing the clinical state of
a patient in the maintenance state, that is, qObs

Maint to 30%, in
line with statistics from MarketScan.

MMR Counterexample Data
Since MMR objectives are prone to “getting stuck” on
unmovable targets, we include a domain to serve as a
counterexample that induces this effect. To achieve this, we
adopt the probabilities of the MarketScan data, but change the
probabilities of 1 group such that interventions are barely
effective. Full details are given in the Multimedia Appendix 1.

Analyses
Our simulation analyses quantify the extent to which target
clinical outcomes are achieved by calculating the numbers and
proportions of patients reaching target HbA1c levels (< 8). For
all simulation experiments, we started with all patients in the
Engaged state, with HbA1c ≥ 8, and a memory state of [M, M].
We divided data sets by 3 age ranges (aged 30-44, 45-54, and
55-64 years) and 2 genders (man and woman), creating 6 groups
in total. The 6 groups had relative sizes of 0.175, 0.15, 0.2, 0.15,
0.125, and 0.2. To ensure each patient followed a unique
behavior profile in simulation, for each patient in a group, we
instantiated their transition probabilities by sampling each
parameter from a normal distribution using the group value as
the mean and σ = 0.05 SD.

Policies were optimized with α = .0 unless otherwise noted.

We generated simulation results based on our 2 new equitable
policies, MMR and MNW-EG which implemented the MMR
and max Nash welfare (with equalized groups) policies,
respectively.

We compared simulation results against 2 baselines that served
as proxies for how our digital health program of interest, and
similar ones, assign intervention resources, that is, based only
on the current clinical state. Specifically, allocating interventions
randomly each round on patients who are “High Risk,” that is,

patients with sC = HbA1c ≥ 8 (termed high-risk random
allocation), and a round robin approach which prioritized acting
on patients with both sC = HbA1c ≥ 8 and with the longest time
period without an intervention (termed high-risk round robin
allocation).

Additionally, we included a No Action baseline which simulated
without assigning any intervention resources, to generate a lower
bound of expected outcomes, that is the outcomes observed if
individuals were not enrolled in a digital health program, but
solely passively seeking care from the traditional primary care
system.

We also compared against a state-of-the-art baseline (termed
Opt), which assigns resources according to the asymptotically
optimal utility-maximizing Whittle index policy [11,26].

Ethical Considerations
This is a simulation study, without human subject participation.
World Medical Association Helsinki Declaration and informed
consent guidelines are not applicable.

Results
Overview
We evaluated our modeling and algorithmic contributions in
simulation environments with data derived from publicly
available sources on diabetes progression and health program
engagement.

We ran experiments for N ∈ {150, 300, 600} patients, horizon
of H = 18 months, for budget values B ∈ {30, 60, 75, 100, 150}
and α ∈ {0, .25, .50, .75, 1.0}. To simulate gradual patient
enrollment over time, a real-world consideration raised by our
digital program, 20% of patients are randomly added to the
simulation in each of the first 5 months. Final statistics are all
reported based on the health state of each patient after their 12th
month in the simulation. We use the Gini coefficient [27]
concerning each group’s average final reward to measure the
equity of each policy applied to each data distribution. Each
combination of parameters was run for 50 random seeds, and
the results show the average and SE over the seeds.

Achievement of Target Individual Health Outcomes
After 12 months, the Opt, MMR, and MNW-EG policies
produced better individual clinical outcomes (measured by
number of patients reaching healthy HbA1c levels) and
engagement than the baselines (Figure 4). The baselines
increased the number of users with healthy HbA1c after 12
months by roughly 5%, whereas at the same budget level,
assignment policies considering joint clinical-engagement
dynamics, that is, the Opt, MMR, and MNW-EG RMAB
policies, could double this improvement, up to a further 10%
on the MarketScan data set simulation analysis. MMR finds
policies nearly 4-times more equitable, for little system-level
cost. On the counterexample, MNW-EG avoids the pitfalls of
maximin approaches, achieving more equity for little
system-level cost.
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Figure 4. Individual clinical outcomes (average number of patients reaching healthy HbA1c level) with each policy after 12 months, with a monthly
intervention budget of B = N 10. Bars show average proportions by policy. Gini coefficient is displayed atop each policy (lower is better). Top:
MarketScan. Bottom: MMR-Counterexample. Panels A, B, and C: analyses with N ∈ [150, 300, 600] patients, respectively. Counterexamp: counterexample;
Max: maximum; Opt: baseline policy that assigns, based on the optimal utility-maximizing Whittle index policy; random: randomization.

MMR and MNW-EG achieved their lift in the proportion of
patients with healthy HbA1c while ensuring greater equity of
outcomes across the groups (Figure 5). Specifically, MMR
reduced inequity by nearly a factor of 4, at only a slight
performance cost. In the counterexample domain (bottom row
in the figure), we found that the overly conservative (by design)
MMR over-committed resources to improving outcomes of the
unmovable group, at the expense of the performance of all other

groups. However, in this case, MNW-EG maintained
performance as good as Opt, while achieving the most equitable
outcomes of any non-MMR policy. We included additional
results in the Multimedia Appendix 1 that show analogous
results when policies optimize strictly for engagement (ie, α =
1.0), conclusions held similarly, although the fair policies were
able to achieve even greater improvements to equity over
baselines.
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Figure 5. Individual clinical outcomes (proportion of patients reaching healthy HbA1c level) across demographic subgroups. Bars show average
proportions by group (0-5) and policy. Gini coefficient is displayed atop each policy. N = 300, B = 30. Top: MarketScan. Bottom: MMR-Counterexample.
Counterexamp: counterexample; Equit: equity; Max: maximum; Opt: baseline policy that assigns, based on the optimal utility-maximizing Whittle
index policy.

Policy Performance Under Different Preferred
Specifications (Pareto Analysis)
Pareto analyses (Figure 6) showed that, even with the choice
of α = 0 (ie, optimizing only for health), MNW-EG and MMR
approaches could achieve both improved health and improved
engagement compared to clinical-only baselines. Interestingly,
for the MarketScan data set, optimizing with α = 0.25, that is,
a quarter of reward weighted by engagement, could lead to

roughly a 10% total reduction in 12-month dropout compared
to baselines, while maintaining the 10% boost in 12-month
HbA1c targets. We hypothesize that this is due to the “sticky”
nature of healthy HbA1c in the MarketScan data set, that is,
patients with HbA1c < 8 have a <1% chance of flipping back to
HbA1c > 8 in the next month. We give additional results in the
Multimedia Appendix 1 for more values of the monthly budget
B, and with the Gini index as an axis—the equitable policies
remained fairer than Opt across choices of α and B.
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Figure 6. Pareto curve for each policy as α varies from 0 to 1, with number of engaged patients after 12 months (ie, in E or M states) on the x-axis and
number of patients with healthy clinical outcomes (HbA1c < 8) on the y-axis. The results are shown for the MarketScan data set with N = 300 and B =
N 10. Equit: equity; Max: maximum; Opt: baseline policy that assigns, based on the optimal utility-maximizing Whittle index policy; random:
randomization.

Clinical Outcomes According to Resource Allocations:
Capacity Planning
Using the MarketScan data set, we performed analyses to
estimate the clinical outcomes resulting from different levels
of intervention resource allocations. These analyses
demonstrated the capability to perform resource capacity
planning for prospective cohorts using our MNW-EG and MMR
approaches (Figure 7). For example, if the 12-month target was
to reach 200 users with HbA1c < 8, this analysis suggested that
roughly 30 intervention resources would be needed if following
the Opt policy or MNW-EG policies and 45 resources if

following the MMR policies. In contrast, the use of our baseline
approaches to reach comparable goals would nearly double the
budget, up to 100 monthly intervention resources. Additional
results for the counterexample domain, and for α-weighted
targets, found similar conclusions (Multimedia Appendix 1).
These capacity planning plots allowed us to compute the “cost
of fairness,” that is, the additional monthly intervention
resources required for a more equitable policy to achieve the
same total system-level return as the unfair optimal one, by
estimating the horizontal difference between where each policy’s
line intersects with the target dashed line. In our analysis, the
cost of fairness for MNW-EG was negligible, but it was roughly
15 monthly resources for MMR.
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Figure 7. Analysis of individual clinical outcomes according to resource allocation, MarketScan data set, N = 300. In this case, clinical outcomes are
measured as the number of patients with healthy outcomes (ie, with HbA1c < 8). Max: maximum; Opt: baseline policy that assigns, based on the optimal
utility-maximizing Whittle index policy; random: randomization.

Discussion
Principal Findings
In this study of a digital health program in T2D, we used a
simulation exercise to present a methodological approach to
allocate resources in a digital health program with the potential
to balance optimization of clinical outcomes, engagement of
participants, and distribution of resources in an equitable fashion
across participant subgroups. As an example of that potential,
in our simplified simulation exercise, optimized intervention
policies based on our proposed ERMAB framework led to 10%
more patients reaching a healthy clinical outcome (defined by
target HbA1c levels) after 12 months, with a 10% reduction in
program engagement dropout compared to standard-of-care
baselines. Further, these new equitable policies reduced the
mean absolute difference (a common equity measure) of
engagement and health outcomes across 6 demographic groups
by up to 85% compared to the state-of-the-art. We also
demonstrated a new capability for a principled capacity planning
system. That is, our system allows planners to estimate the
required number of intervention resources needed for this digital
health program to support a prospective cohort of patients, each
with unique support needs and starting state, in reaching target
HbA1c levels. While this study was performed in a T2D setting,
we believe that the general tenets of our observations may have
applications across a spectrum of chronic diseases. Note that,
for simulation, we streamlined our modeling approach, with
simplified health goals and demographic groups based on age.
Therefore, our quantitative results are merely illustrative, but
the principles of this approach could be applied and enriched
with more sophisticated modeling and other criteria, such as
race or ethnicity, geographic location, or other salient sources

of existing inequity (as documented in diabetes care [19]), when
information about those factors is available.

Comparison to Other Work
This work is related to a wide literature on using machine
learning to make predictions in support of the delivery of digital
health. Examples include predicting mood and depression [31],
predicting medication adherence [32], ranking the efficacy of
smoking cessation messages [33], and predicting heart
arrhythmias from smart watches [34]. There are, however,
several elements that contrast this study from others. While
other works make predictions about the current or future states
of a patient’s health, they do not offer tools for planning the
allocation of resources. Our work focuses on building up the
algorithmic tools required for the long-term planning of
allocations of limited resources in ways that will benefit the
digital health system as a whole.

This study is also the first to formulate an RMAB model of
digital health which has the novel characteristic of a
multidimensional state space that encodes the joint dynamics
of engagement and clinical health, giving the problem a relevant
new structure, but increasing the computational complexity over
previous domains.

Furthermore, we had equity-focused objectives, which viewed
fairness through the lens of taking affirmative steps toward
equitable outcomes. Overall considerations of equity in digital
health are an underdeveloped area of study; prior or ongoing
studies are still trying to measure the inequality problem in
digital health in terms of usability, access, or feedback
opportunities [35-39]. Most results show that societal
inequalities at large have a reflection in the field of digital
health, compounded by the issue of uneven technical access.
These findings lend more urgency to the development of
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optimizing strategies that tackle the problem of inequality
intentionally and proactively. Our work is novel in that it
proposes to formulate digital health programs to achieve
outcome-based fairness. To our knowledge, this is the first study
of its kind leveraging restless bandits and the first to give a
principled framework for solving the problem of equitable
outcomes with guarantees, in contrast to previous work on
probabilistic fairness, which merely guaranteed each arm a
lower bound of being considered for an intervention [16,17].

Specific Strengths
In addition, we demonstrated a key new capability of interest
to digital health program administrators, namely the ability to
perform resource capacity planning for prospective cohorts.
This feature allows, for instance, to answer the question of
whether the digital health program needs the same number of
intervention resources to support a cohort of people aged 55-64
years from a particular region as it does to support a cohort of
people aged 35-44 years from a different location. Given
estimates of each cohort’s clinical and engagement behaviors
derived from historical data, one can simulate their preferred
intervention policies to understand how many resources are
needed to reasonably expect each cohort to reach their clinical
goals. Capacity planning analysis, coupled with group-level
evaluations of policy equity should allow planners to make
principled decisions about resource needs for different
populations.

Limitations
We acknowledge that this study also has limitations. As reported
in this paper, we have only conducted simulation exercises with
the analytical framework that we are proposing. We found the
simulated results encouraging regarding the potential of our
approach to achieve the objectives of allocating digital health
program resources in a manner that is effective for reaching
individual target clinical outcomes, and for maintaining patient
engagement and population-level equitable care delivery
throughout the process. However, further research applying this
ERMAB framework in a real-world context is warranted to
confirm the upside potential shown in simulations. In addition,
our T2D model is simplified and we used claims data for our

simulations; claims have limitations as sources when inquiries
go beyond information directly related to medical procedures,
thus we opted for a simplified strategy accordingly. First, we
are modeling a binary distinction for HbA1c outcomes (< 8 or
≥ 8); while there is precedent for this approach, this
simplification is still a limitation of the model. This cutoff point
may not be optimal for all patients [40]. Second, the model does
not consider comorbidities, which are highly relevant in
diabetes, and chronic conditions in general, and could have
meaningful effects on outputs, particularly the individual health
outcomes. However, this model can be expanded with more
granularity, as long as it can learn additional parameters from
more sophisticated real-world data sets. These considerations
(more individualized HbA1c outcomes, comorbidities, and
relevant subcohorts to the investigation of inequity) will all be
important for future research based on other sources (such as
electronic health records or clinical registries), to determine to
which extent increasing complexity in the desired outcomes
may affect the model’s performance, and the practical
implementation of the results.

Conclusions
In conclusion, our work showed the potential feasibility of
planning interventions in digital health attending to several
important factors in today’s societal environment and
resource-constrained systems. Our approach to intervention
planning accounts not only for individual clinical outcome
objectives but also for long-term participant engagement
dynamics, using an RMAB sequential decision-making
framework. We were able to simulate more equitable policies
that could jointly improve engagement as well as clinical
outcomes and demonstrated how the RMAB simulation
framework could also provide key new capabilities in capacity
planning, and objectively analyze how to trade-off between
different program outcomes. Finally, we make a key new
algorithmic contribution by introducing ERMABs and designing
an efficient and fair approach for reaching population-level
equitable solutions. We hope that ERMABs will add to the
arsenal of tools available to practitioners addressing resource
allocation problems in ethically sensitive domains.
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