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ABSTRACT. Hydrothermal vents serve as a primary interface between the cold deep

ocean and the warm oceanic crust. While early research showed that seawater-rock

interactions add to or remove elements from seawater during the generation of hydro-

thermal fluids, consideration of these fluid fluxes alone does not relay the total impact

that hydrothermal systems have on seawater geochemistry. In addition, hydrothermal

plumes, areas where hydrothermal fluids mix with ocean waters, are host to a range

of particle precipitation and scavenging reactions that further modify gross hydro-

thermal fluid fluxes to define the total “net” hydrothermal impact on oceanic inven-

tories. Here, we review the major discoveries made by the international GEOTRACES

program regarding the geochemical transformations occurring within hydrothermal

plumes. We classify each element into one of five categories based on its behavior in

hydrothermal plumes, a spectrum spanning the geochemical mass balance between

net hydrothermal source fluxes and net hydrothermal plume scavenging sinks. Overall,
we celebrate the role that GEOTRACES has played in defining the extent and dynam-
ics of hydrothermal plume geochemistry, which is a crucial lever for determining

global hydrothermal impacts.

INTRODUCTION
Hydrothermal venting occurs when sea-
water permeating through fissures in the
oceanic crust is geothermally heated,
driving water-rock reactions that mod-
ify the chemical composition of the per-
meating seawater, creating hydrothermal
fluids. Due to their high temperatures,
which can at times exceed 300°-400°C,
hydrothermal fluids are buoyant and
rise upward through the crust into the
ocean. The best studied high-temperature
hydrothermal vents, which occur along
mid-ocean ridges at divergent tectonic
plate boundaries, release fluids that are
acidic, anoxic, metal-rich, and magne-
sium (Mg)-free (Von Damm et al., 1985).
These vent fluids also precipitate copious
iron (Fe)- and manganese (Mn)-rich par-
ticles upon mixing with cold, oxygenated
deep-ocean seawater, which gives plumes
their canonical “black smoker” appear-
ance (Mottl and McConachy, 1990).
Since the discovery of hydrother-
mal vents in 1977 (Corliss et al., 1978;
Spiess et al., 1980), high priority has been
given to understanding the influence of
hydrothermal venting on the geochemi-
cal inventories of elements in the ocean.
In fact, by studying the geochemistry of
the altered basalt on the seafloor, ocean-
ographers were able to predict what the
chemical composition of hydrothermal
fluids might be before they were even

discovered (Humphris and Thompson,
1978). Additionally, the oceanic mass
balances of several elements could not be
resolved without the discovery of hydro-
thermal fluids (Mackenzie and Garrels,
1966), including Mg, which famously had
a “missing sink” flux from the ocean that
was eventually discovered to be domi-
nated by Mg precipitation into crustal
rocks during hydrothermal water-rock
interactions (Humphris and Thompson,
1978). Quickly upon the discovery of
low-temperature Galapagos hydrother-
mal vents in 1977 (Corliss et al., 1978), the
elemental composition of the Galapagos
fluids were correlated to their heat flux
and extrapolated to the global geother-
mal heat flux for an estimation of global
hydrothermal fluxes, which were shown
to be sufficiently large to rival or even
exceed global riverine fluxes (Edmond
et al,, 1979). Hydrothermal vents were
found to be major sources to the ocean of
at least lithium (Li), rubidium (Rb), sul-
fate, calcium (Ca), potassium (K), bar-
ium (Ba), silica (Si), and Mn. When high-
temperature vents were discovered a few
years later (Spiess et al., 1980), the same
elemental-heat correlations produced
similar extrapolated hydrothermal fluid
concentrations (Edmond et al., 1982).

In the two decades after Edmond and
coauthors’ initial global hydrothermal
flux estimates, there were at least two

additional attempts at global hydrother-
mal flux calculations that incorporated
newer hydrothermal research into their
estimates (Elderfield and Schultz, 1996;
Alt, 2003). Critically, both of these stud-
ies acknowledged that using only hydro-
thermal fluid concentrations to calcu-
late the impact of hydrothermal venting
on seawater elemental inventories allows
only a “gross” estimate of hydrothermal
fluxes. The role of subsequent elemen-
tal transformations within hydrother-
mal plumes (Figure 1)—defined here as
the neutrally buoyant, laterally extend-
ing mixtures of dilute hydrothermal
fluids, their associated suspended par-
ticles, and entrained seawater that can
extend thousands of kilometers into
the ocean—was mentioned but pur-
posefully excluded from the flux calcu-
lations of these seminal hydrothermal
flux studies, largely due to lack of com-
plete knowledge of plume dynamics. The
abundant Fe- and Mn-rich particles in
hydrothermal plumes were known to
adsorb, aggregate, and/or co-precipitate
dissolved elements from the hydrother-
mal fluids and/or the plume’s entrained
seawater in a process collectively known
as scavenging (Kadko et al., 1995). Thus,
the total impact of hydrothermal venting
on the geochemical mass balance of the
ocean (Figure 1) is:

“gross” flux (from hydrothermal fluids) +
modifying plume fluxes =
“net” impact on oceanic inventory.

Here, we celebrate and review the role
that the international GEOTRACES pro-
gram has played in revealing the chemi-
cal transformations that occur in hydro-
thermal plumes (Figure 1, Table 1). We
emphasize that it is not the “gross” chem-
ical fluxes from buoyant hydrothermal
fluids that set the total impact of hydro-
thermal activity on the ocean’s elemen-
tal inventories but rather the “net” influ-
ence, which also includes significant
elemental scavenging that occurs in
hydrothermal plumes.
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GEOCHEMISTRY OF BUOYANT
HYDROTHERMAL FLUIDS:

THE “GROSS” CHEMICAL FLUX
TO THE OCEAN

The global hydrothermal flux synthe-
ses published at the turn of the century
(Elderfield and Schultz, 1996; Alt, 2003)
advanced our understanding of hydro-
thermal impacts on ocean chemistry in
two important ways. First, both used
improved estimates of hydrothermal heat
flux, calculated using multiple quantifica-
tion methods (Kadko et al., 1995), for the
global extrapolation. Second, Alt (2003)
added
ridge-flank chemical alteration to the high

estimates of low-temperature
temperature gross chemical fluxes of prior
calculations, although the fluid chemistry
of these ridge flanks remained poorly con-
strained. The two flux calculations agreed
that hydrothermal fluids are sources to
the ocean of alkali metals, beryllium (Be),
Ca, Ba, boron (B), Si, sulfide, metals, and
magmatic volatiles, and they are sinks
from the ocean of Mg, sulfate, alkalinity,

GROSS Hydrothermal Fluxes +

Scavenging from plume
[ Fe, Mn, Pb ]38 :

e

and phosphorus (P). Importantly, how-
ever, both studies admitted one major
shortcoming of their calculations: they
purposefully ignored the more opaque
chemical transformations occurring in
hydrothermal plumes.

Hydrothermal fluid research over the
subsequent two decades has also revealed
that these prior global flux studies were
further limited by the fact that their gross
hydrothermal flux calculations employed
only concentrations from canonical
“high-temperature black smoker” vents
at mid-ocean ridges (Von Damm, 1995).
Instead, we now understand there to be
a large diversity in the temperature and
chemical composition of hydrothermal
vent fluids (reviewed in German et al., in
press). In fact, it is said that no two hydro-
thermal vents have the same fluid com-
position. For example, we have discov-
ered that hydrothermal circulation occurs
across extremely varied geotectonic set-
tings, including mid-ocean ridges, volca-
nic arcs, back-arcs, subduction zones, and

Plume Modifications

AN
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& Persistent fluxes
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intra-plate volcanic hotspots, all with dif-
ferent fluid geochemistry (reviewed in
German et al., in press). This has allowed
an improved focus on the role of source
rock geochemistry in setting vent fluid
chemical composition. For example,
stud-

ies were conducted in regions hosted by

while canonical “black smoker”

mafic crustal rocks, more recent studies of
slow and ultra-slow spreading ridges have
shown the participation of ultramafic
mantle rocks in hydrothermal water-rock
interactions that exhibit unique fluid geo-
chemistry (Kelley et al.,, 2005), includ-
ing the presence of serpentinization reac-
tions (Charlou et al.,, 2010). Altogether,
multiple factors are also thought to con-
trol overall hydrothermal fluid chemis-
try, including geologic setting (including
spreading rate and source rock), max-
imum temperature and pressure of the
fluid in the subsurface, extent of fluid
phase separation, extent of magmatic
degassing, extent of mixing with seawater
in the subseafloor aquifer, presence and

NET Fluxes to Ocean

(

Upwelling for
biogeochemical impact
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-

FIGURE 1. GEOTRACES research has transformed our understanding of elemental behavior in hydrothermal plumes, understanding that is critical to any
assessment of the “net” hydrothermal impact on oceanic elemental inventories. GEOTRACES studies have provided insights into how to trace plume
dilution and mixing, the rates and mechanisms of elemental scavenging onto particles from both seawater and hydrothermal fluid enrichments them-
selves, and the extent and impact of persistent hydrothermal fluxes to the open ocean.
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TABLE 1. Summary of GEOTRACES studies of hydrothermal plume geochemistry, by element, categorized by dissolved elemental behavior in plumes.
Acronyms for common vent fields are used, including the East Pacific Rise (EPR), Juan de Fuca Ridge (JdFR), Mid-Atlantic Ridge (MAR), Southern East
Pacific Rise (SEPR), and Trans-Atlantic Geotraverse (TAG) vent fields.

ELEMENT

TRACERS

Cd

REE

GEOTRACES CONTRIBUTIONS TO HYDROTHERMAL PLUME STUDIES

ENRICHED OR SCAVENGED IN THE PLUME?

He plumes have been detected 500 km away from the MAR (1), 4,000 km
away from the SEPR (2,3,5), as well as distally from both JdFr (5) and
Kama‘ehuakanaloa (4,5)

Ra anomalies have been observed in the TAG (1), SEPR (2), Reykjanes (3),
and Kermadec arc (4) plumes

SCAVENGED FROM SEAWATER

dCd removal reported in MAR plume (11-77 pmol kg™, likely from
Fe oxyhydroxides (1)

dMo depletions and pMo enrichments near the SEPR axis, scavenged by
both Fe and Mn oxides (1)

Both TAG (1) and SEPR (2) vent plumes show clear trends of dPa depletion
(as far as 4,000 km off axis), with depletion being 30%—70% of background
values (2)

dPb in hydrothermal vents shows mixed behavior, with scavenging of
anthropogenic dPb also observed at the MAR (1,2) and EPR (3,4)

Lau Basin (1), TAG (2), and SEPR (4) showed clear depletions in rare earth
element (REE) concentrations (10%—60% deficits from background);
however, there was less evidence of REE depletions in Arctic plumes (3)

Substantial *°Th depletions are observed at TAG (1), Arctic Nansen
Basin (3,5), and the SEPR as far as 4,000 km away from the ridge axis (2,4).
Non-zero but small hydrothermal source of 2*2Th is also present (3)

dV depletions and pV enrichments near the SEPR axis, scavenged mostly
by Fe oxyhydroxides (1)

‘ MIXED BEHAVIOR IN HYDROTHERMAL PLUMES

Small, localized sources of dCo shown near the SEPR (1), MAR (2), and
Kama‘ehuakanaloa (4); however, no dCo source was shown near JdFR (3),
and hydrothermal dCo scavenging was also observed more distally (1,4)

The plume above the MAR in the North Atlantic was shown to be a net
sink for dCu (1,2), there seemed to be no hydrothermal influence on dCu in
the South Atlantic (3), and there was a very low elevated concentration of
dCu (4) and Cu ligands (5) along the SEPR

‘ LOCAL HYDROTHERMAL FLUX

Elevated activities of 22’ Ac were observed at the TAG vent field (1) and
in the surrounding North Atlantic (2), attributed to hydrothermal origin

No dBa enrichments in TAG or SEPR plumes (1), but small dBa anomaly and
light 6'**Ba isotope anomaly points to a tiny hydrothermal contribution near
Gakkel Ridge, Central Arctic (2)

dCr contributions from the Kermadec Arc are small but present in Southern
Ocean data (1), 8-27 nmol kg™ above background levels

Small but noticeable source of dGa surrounding the SEPR (1), up to
35 pmol kg~ compared to background

ESTIMATED FLUXES &
RESIDENCE TIMES

dMo hydrothermal removal rate =
107 mol yr™ (1)

dNd hydrothermal removal rate =
3.44 x 10° mol yr™' (2)

Depletion timescales for 2°Th from
hydrothermal plumes = 64 yr (2)

dV hydrothermal removal rate =
10° mol yr' (1)

dCo hydrothermal flux
from Kama’ehuakanaloa =
6+ 3 x 10 mol yr'(4)

227Ac hydrothermal flux calculated
to be 1.9%—-5.8% of sediment flux
for the Atlantic (1)

dCr hydrothermal flux from the
Kermadec Arc =10 to 10* mol yr™' (1)

dGa global hydrothermal flux =
8.6 + 1.7 x 10° mol yr™' (1)
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(4) Jenkins et al., 2020

(5) Jenkins et al., 2023
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2) Kipp et al., 2018

3) Le Roy et al., 2018

4) Neuholz et al., 2020b

(1) Conway and John, 2015

(1) Ho et al., 2018

(1) Hayes et al., 2015a
(2) Pavia et al., 2018
(3) Gdaniec et al., 2020

(1) Noble et al., 2015

(2) Rigaud et al., 2015

(3) Niedermiller and Baskaran, 2019
(4) Boyle et al., 2020

(1) Behrens et al., 2018

(2) Stichel et al., 2018

(3) Paffrath et al., 2021

(4) Basak et al., 2024

(1) Hayes et al., 2015a
(2) Pavia et al., 2018

(3) Valk et al., 2018

(4) Pavia et al., 2019

(5) Gdaniec et al., 2020

(1) Ho et al., 2018

(1) Hawco et al., 2016
(2) Noble et al., 2017
(3) Zheng et al., 2019
(4) Chmiel et al., 2022

1) Jacquot and Moffett, 2015
2) Roshan and Wu, 2015a
3) Little et al., 2018

4) Roshan and Wu, 2018

5

(
(
(
(
(5) Ruacho et al., 2020

(1) Kipp et al., 2015
(2) Le Roy et al., 2023

(1) Rahman et al., 2022
(2) Whitmore et al., 2022

(1) Janssen et al., 2023

(1) Ho et al., 2019

Table continued...
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TABLE 1. Continued...

GEOTRACES CONTRIBUTIONS TO HYDROTHERMAL PLUME STUDIES

ESTIMATED FLUXES &
?
ELEMENT ENRICHED OR SCAVENGED IN THE PLUME? RESIDENCE TIMES REFERENCES

‘ LOCAL HYDROTHERMAL FLUX - continued...

1) Bowman et al., 2015

Total dHg and MMHg is elevated near the TAG hydrothermal vent (1) and Total Hg hydrothermal flux (2 B tal. 2016
Hg along the MAR generally (3), but no total dHg enrichment was observed from mid ocean ridges = 53; B:;‘/;’Eéagtzlaﬁo16
along the SEPR (2) 1.5-647 tons yr' (4) (4 Torres-Rodrié;uez etal., 2024

Small dSi enrichments above the SEPR (2) and Gakkel Ridge (3), g)zf:sz;r::ti :lndzJooznoes, 207

e but TAG and other SEPR show no concentration change (1,2) (3) Liguori et al., 2020

‘ PERSISTENT HYDROTHERMAL FLUX

dAl global hydrothermal flux = (12) I\:/:ddag et alt %02215
Elevated concentrations of dAl are observed at the MAR (2) and + 9 -1 (2) Measures et a
6.1+ 2.4 x10° mol yr™' (6) (3) Resing et al., 2015
Al up to 3,000 km away from the SEPR (3,4), but are not observed in Ho et al., 2019
Arctic plumes (1,5) dAl hydrothermal residence time | (4)Hoeta
' =156 yr (6) (5) Measures and Hatta, 2021
Y (6) Xu and Weber, 2021

(1) Klunder et al., 2011
(2) Klunder et al., 2012
(3) Nishioka et al., 2013
(4) Saito et al., 2013
(5) Conway and John, 2014b
(6) Rijkenberg et al., 2014
(7) Fitzsimmons et al., 2015
(8) Gamo et al., 2015
(9) Hatta et al., 2015
(10) Resing et al., 2015
(11) Sedwick et al., 2015
(12) Fitzsimmons et al., 2016
(13) Fitzsimmons et al., 2017
(14) Klar et al., 2017
(15) Lough et al., 2017
(16) Buck et al., 2018
(17) John et al., 2018b
(18) Kipp et al., 2018
(19) Chinni et al., 2019
(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Various GEOTRACES studies have shown elevated dFe concentrations
associated with hydrothermal plumes. The most extreme case shows
dFe elevation up to 4,300 km from the ridge axis. dFe hydrothermal

Fe inputs have been observed in the Southern Ocean (1,14-15,24,29),
the Arctic Ocean (2,27,30,34), the MAR (4-7,9,11,22-23,26,33,35-36),
the Indian Ocean (3,8,19,31), the SEPR (10,12-13,16—17,25), the Caribbean
(20-21), the Southwest Pacific (27,33), and along the JdFR (37)

dFe hydrothermal residence time =

9-50 yr (18) or 21-31yr (32) 20) Lough et al., 2019a

21) Lough et al., 2019b
2) Pagnone et al., 2019
3) Gonzélez-Santana et al., 2020
4) Holmes et al., 2020
5) Roshan et al., 2020

6) Tonnard et al., 2020
7) Cohen et al., 2021
28) Gerringa et al., 2021
29) Sieber et al., 2021
30) Zhang et al., 2021
31) Chinni and Singh, 2022
32) Tagliabue et al., 2022
33) Tilliette et al., 2022
34) Wang et al., 2022
35) Hoffman et al., 2023
36) Lough et al., 2023
37) Chan et al., 2024
1) Wu et al., 2014
2) Gamo et al., 2015
3) Hatta et al., 2015

4) Middag et al., 2015

(
(
dMn was elevated in hydrothermal plumes as far as 500 km from the E
(5) Resing et al., 2015
(
(
(
(

MAR (1,3), the Gakkel Ridge (4,8), and in the Gulf of Aden (2), and as

Mn far as 3,000 km off the SEPR (5), as well as along the Kermadec Arc (7) 6) Gonzalez-Santana et al., 2020
and JAFR (9) 7) Neuholz et al., 2020a
8) Gerringa et al., 2021
9) Chan et al.,, 2024
(1) Conway and John, 2014a
7n Persistent dZn enrichments were observed at TAG (1, 2), 4,000 km dZn global hydrothermal flux = 52; gg:z:; :?2|W2u(,)126015b
downstream of the SEPR (3,5), and 1,000 km from the Reykjanes Ridge (4) 175 + 0.35 x 10° mol y™'(3) ( S
(

8
4) John et al.,, 2018a
5) Lemaitre et al., 2020
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composition of sediments above the vent-
ing site, and rates of microbial activity
within the fluids prior to venting.

This recently discovered variety in
the chemical composition of hydrother-
mal fluids makes extrapolation of gross
hydrothermal fluxes to the global ocean
particularly challenging. However, com-
parisons of fluid properties within and
across vent fields are made easier by
data mining, including the incredi-
ble MARHYS (MARine HYdrothermal
Solutions) vent fluid database created by
Diehl and Bach (2020), which promises
exciting future syntheses across hydro-
thermal vent types globally. Nevertheless,
modern research on vent distributions
and fluid geochemistry continues, espe-
cially focusing on the global extent and
chemical composition of vents at slow
and ultraslow spreading centers, as well
as the under-explored, low-temperature
diffuse flow vents that surround axial
vents (Bemis et al., 2012; Lough et al,
2019a), all of which are important vent
systems whose distribution across the
global ocean and fluid chemical composi-
tions remain poorly constrained.

GEOCHEMISTRY OF
HYDROTHERMAL PLUMES:

THE CRITICAL ROLE OF
GEOTRACES RESEARCH

The previously published calculations
of global hydrothermal fluxes (Edmond
et al,, 1979; Elderfield and Schultz, 1996;
Alt, 2003) focused on gross hydrothermal
fluid fluxes but were not able to calculate
for the full suite of elements the additional
chemical fluxes occurring within hydro-
thermal plumes, due to both a lack of
knowledge of the global extent of hydro-
thermal plumes and analytical challenges
in measuring low elemental concentra-
tions within plumes. The first of these
was overcome by investigations of metal-
liferous sediment distributions (Bostrom
et al,, 1969) and global analyses of the dis-
tal plume tracer helium (*He) (Lupton
and Craig, 1981; Jenkins et al., 2019). The
second was overcome by technological
advancements and the rigorous analytical

methods, standardization, and intercali-
bration motivated by the expectations of
the international GEOTRACES program
(Aguilar-Islas et al., 2024, in this issue).

Nonetheless, by the mid-1990s it was
acknowledged that the mixing of hot,
anoxic, and metal-rich fluids with cold,
oxygenated seawater results in the pre-
cipitation of copious Fe- and Mn-rich
particles (Mottl and McConachy, 1990),
which facilitate the scavenging removal
of surface-active dissolved elements
from seawater in hydrothermal plumes
(reviewed in Kadko et al., 1995; Lilley
et al., 1995). Careful study of plume par-
ticulate metal concentrations suggested
several mechanisms for dissolved metal
loss (German et al., 1991), including
(1) co-precipitation with Fe oxyhydrox-
ides such as for the oxyanions arsenic
(As), chromium (Cr), and vanadium (V);
(2) precipitation with sulfide particles
for chalcophilic elements such as cop-
per (Cu), zinc (Zn), and lead (Pb); and
(3) adsorption onto Fe- and Mn-rich par-
ticle surfaces for surface-active elements
such as the rare earth elements (REEs)
and Be. From dissolved element measure-
ments, there was also a growing under-
standing that deep ocean dissolved phos-
phate, an oxyanion, could be net removed
from the ocean by adsorption onto or
co-precipitation with Fe- and Mn-oxides
(Feely et al., 1990). Together, these stud-
ies boldly suggested that, for some ele-
ments, hydrothermal venting might, in
fact, not be a net source to the ocean at
all, as gross hydrothermal sources to the
ocean could be equaled or exceeded by
scavenging sinks within hydrothermal
plumes (German et al., 1991).

Since then, research from the interna-
tional GEOTRACES program has revo-
lutionized our understanding of chemi-
cal transformations within hydrothermal
plumes. The GEOTRACES Science Plan
(GEOTRACES Planning Group, 2006)
identified hydrothermal vents as one
of four major external interfaces of the
ocean, and thus GEOTRACES cruises
have prioritized the study of chemical
transformations between hydrothermal

fluids and the ocean interior within
plumes. The US GEOTRACES GP16
Eastern Pacific Zonal Transect specifically
targeted the 4,000 km-long Southern East
Pacific Rise (SEPR) plume, previously
identified by metalliferous sediment
(Bostrom et al., 1969) and oceanic *He
distributions (Lupton and Craig, 1981),
offering a major advancement in our
understanding of the extent, timescale,
and mechanisms of hydrothermal plume
fluxes occurring over wide spatial scales.
In contrast to work at the fast-spreading
SEPR, the HERMINE (GApr07) and
FRiDGE (GA13) GEOTRACES expedi-
tions focused on hydrothermal plumes
on the slow-spreading Mid-Atlantic
Ridge. Finally, many other GEOTRACES
transects and process studies have inves-
tigated hydrothermal plumes from a vari-
ety of tectonic settings (Table 1) and pro-
duced valuable plume discoveries (see
visual impacts of hydrothermal plumes
on GEOTRACES elemental sections in
Conway et al,, 2024, in this issue).

Here, we review GEOTRACES studies
of hydrothermal plumes, and we split ele-
ments into five categories based on their
plume behavior (Table 1): (1) elements
behaving conservatively and serving as
chemical tracers in hydrothermal plumes,
(2) elements net scavenged from plumes
and/or deep-ocean seawater, (3) elements
with mixed behavior in different hydro-
thermal plumes, (4) elements with “local”
hydrothermal fluxes that do not extend
far from the vent source, and (5) elements
with persistent hydrothermal fluxes reach-
ing far into the open ocean. In essence,
these five categories span the spectrum
of the balance between net hydrothermal
fluid source fluxes and net hydrothermal
plume scavenging sinks.

1. Tracer Elements. First, GEOTRACES
studies made exemplary use of *He, the
quintessential conservative tracer (not
scavenged or biologically cycled) for
hydrothermal plume mixing (e.g., Resing
et al., 2015). Even on a qualitative basis,
GEOTRACES utilized He as the ideal
chemical fingerprint of hydrothermal
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influence when identifying the prove-
nance of deep-sea dissolved metal anom-
alies (e.g., Saito et al., 2013; Jenkins et al.,
2020; Lough et al, 2023). In fact, the
global hydrothermal *He flux (modeled
in Bianchi et al., 2010) as a function of
ridge spreading rate has been combined
with measured plume dissolved Fe/*He
ratios to predict global hydrothermal Fe
fluxes to the ocean (Tagliabue et al., 2010).
GEOTRACES studies were also the first
to measure radium (Ra) isotopes in dis-
tal hydrothermal plumes (Charette et al,,
2015) that, when combined with conser-
vative *He, were used to calculate hydro-
thermal plume ages at individual plume
locations (Kipp et al, 2018). In fact,
combinations of the *He and Ra isotope
tracers allowed scavenging-derived non-
conservations in dissolved Fe distribu-
tions to be identified and quantified within
hydrothermal plumes (Fitzsimmons et al.,
2017; Kipp et al., 2018).

2.Scavenged Elements. A second major
advancement made by GEOTRACES
hydrothermal plume research was the
study of dissolved elements that are net
removed from seawater by scaveng-
ing onto hydrothermal Fe- and Mn-rich
particles (Table 1). While this research
confirmed the elemental groupings of
scavenging-type elements originally pro-
posed by German et al. (1991), it more
importantly added substantial detail on
the spatial extent, magnitude, rates, and
chemical drivers of particle scavenging
in hydrothermal plumes, whose rates
for some elements rival or even exceed
the better-studied boundary scavenging
rates occurring along high-productivity
ocean margins. For example, for the
oxyanions, study of high-resolution sam-
pling data along the 4,000 km-long SEPR
plume showed that dissolved phosphate,
V (present in seawater as H,VO;), and
molybdenum (Mo, present in seawater
as MoO}") are net scavenged from sea-
water, mostly near the ridge axis, with
dissolved-phase depletions concomitant
with particulate enrichments (Ho et al.,
2018). Additionally, GEOTRACES size
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partitioned correlations between particu-
late V or Mo with particulate Fe and Mn
confirmed that pV is primarily scavenged
by Fe oxyhydroxides, while pMo could
be scavenged by both Fe- and Mn-oxides
(Ho et al., 2018).

In contrast to the oxyanions, which
show relatively small (<10%) depletions
from large deep ocean dissolved inven-
tories, GEOTRACES global surveys illu-
minated massive deficits of REEs, thorium
(Th), and protactinium (Pa) from abys-
sal seawater inventories in hydrothermal
plumes from diverse geotectonic settings
all over the globe (Table 1). These deficits
range from 10% to 60% of abyssal inven-
tories of REEs (Behrens et al., 2018; Stichel
et al., 2018; Paffrath et al., 2021) to 30% to
70% of abyssal *°Th and **'Pa (Hayes et al.,
2015a; Pavia et al., 2018, 2019; Valk et al,
2018; Gdaniec et al., 2020). GEOTRACES
analyses also showed that the radiotrac-
ers 2°Th and *'Pa are particularly valu-
able in quantifying partition coefficients
that translate scavenging rates onto dif-
ferent particle types, which have revealed
hydrothermal ***Th scavenging onto pre-
dominantly Fe oxyhydroxides and **'Pa
scavenging onto Mn oxides (Hayes et al.,
2015a; Pavia et al., 2018). This partition-
ing is important for predicting metal scav-
enging in hydrothermal plumes with rel-
atively more/fewer of these particles,
such as at the Trans Atlantic Geotraverse
(TAG) hydrothermal system, which is
relatively Mn oxide-poor compared to
other vent systems (Trocine and Trefry,
1988), or at different portions of the SEPR
plume, which are variably dominated by
particulate Mn or Fe at different depths
(Fitzsimmons et al., 2017; Lee et al., 2018).
A similar partition coefficient approach
was used to show that REEs such as neo-
dymium (Nd) are scavenged onto both Fe-
and Mn-oxides in plumes (Stichel et al.,
2018), with evidence for greater relative
adsorption onto Mn oxides closer to the
ridge axis but greater continued adsorp-
tion onto Fe (oxyhydr)oxides downplume
(Basak et al., 2024).

A multi-radiotracer approach was
also used to verify that Th isotopes are

continually scavenged onto hydrothermal
particles downplume (Pavia et al., 2019),
which is different from the oxyanions that
are mostly scavenged near the ridge axis
(Ho et al., 2018). This also may explain
why the oxyanions have linear particulate
metal/Fe trends, while the REEs (and Th
and Pa) have particulate metal/Fe trends
curved upward, connoting their continu-
ous scavenging from seawater along the
plume’s length (German et al., 1991).
Finally, dissolved Pb was confirmed
to be net scavenged from seawater,
despite its >10°x enrichments in hydro-
thermal fluids above abyssal concen-
trations (Table 1, MARHYS database,
Diehl and Bach, 2020). Pb, alongside Cu
and Zn, form a group of “chalcophilic”
(sulfur-loving) elements that are thought
to co-precipitate with Fe sulfides and be
net-scavenged from hydrothermal plumes
(German et al,, 1991). GEOTRACES Pb
isotope studies have been particularly
useful in studying the balance of hydro-
thermal fluid Pb sources versus seawater
scavenging sinks. For example, Boyle et al.
(2020) showed that even though EPR vent
fluid Pb concentrations represent a gross
source flux to seawater, the removal of
Pb by scavenging onto ferromanganese-
rich particles in the SEPR plume is so sig-
nificant that only 1% of the basaltic Pb
signatures could be identified isotopi-
cally. Similarly, the REEs and **Th can
be enriched above seawater in vent flu-
ids due to hydrothermal water-rock reac-
tions (MARHYS database); GEOTRACES
research has revealed both inert colloidal
#2Th enrichments along the SEPR plume
(Pavia et al,, 2018) and mild but unique
Nd isotopic signatures directly above the
TAG and SEPR ridges (Stichel et al., 2018;
Basak et al., 2024). However, net hydro-
thermal processes (fluids + plume) act as a
net sink of these elements from the ocean.

3. Elements with Mixed Hydrothermal
Plume Behavior. The third group of ele-
ments studied by GEOTRACES con-
tains Cu and cobalt (Co), which uniquely
show hydrothermal enrichments in some
plumes and scavenging deficits in others



(Table 1). The MARHYS database shows
that Cu and Co can both be enriched
in hydrothermal fluids in >10°x abys-
sal dissolved concentrations, magnitudes
that might otherwise point to a major
hydrothermal source flux to the oceans.
However, Cu is also a “chalcophilic”
scavenging-type element that is strongly
scavenged in hydrothermal plumes by
sulfide precipitation and/or scavenging
onto ferromanganese particles (German
etal., 1991), while hydrothermal Co scav-
enging is often associated with Mn oxides
(Moftett and Ho, 1996; van Hulten et al,,
2017). Thus, the excess or deficit of dis-
solved Cu or Co in global hydrothermal
plumes depends on the detailed balance
of its hydrothermal sources and sinks.
Source rock and metal:sulfide ratio
in the vent fluids can certainly affect Cu
precipitation from hydrothermal fluids,
both in the buoyant plume and even sub-
surface during fluid transport, influenc-
ing the gross hydrothermal fluid Cu flux.
However, GEOTRACES research revealed
that the ability for electron-rich organic
compounds called “ligands” to bind dis-
solved Cu cations in seawater, protect-
ing it from scavenging, may also play an
important role in setting ultimate hydro-
thermal Cu fluxes to the ocean (Sander
and Koschinsky, 2011). Copper ligand
concentrations at the TAG hydrothermal
site were low (Jacquot and Moffett, 2015),
contributing to local net dCu scavenging
at TAG (Roshan and Wu, 2015a); how-
ever, Cu ligands were in greater excess
of Cu in the SEPR plume (Ruacho et al.,
2020), potentially contributing to the
~0.3 nM excess of hydrothermally derived
dissolved Cu observed in the SEPR plume
(Roshan and Wu, 2018). In contrast,
GEOTRACES studies have revealed a
source of labile (“free”) Co?" that is sub-
sequently scavenged downplume because
it is not stabilized by organic-Co-binding
ligands. Thus, dissolved Co enrichments
above background are small and are only
present in hydrothermal plumes proximal
to the TAG, SEPR, and Kamaehuakanaloa
(formerly Lo'thi) vent sites, if they are
enriched above background at all (Hawco

etal.,2016; Noble etal.,2017; Chmiel etal.,
2022). Sometimes dCo shows deficits at
the ferromanganese oxide particle maxi-
mum in the hydrothermal plume, which
occur when scavenging outcompetes the
hydrothermal source (Hawco et al., 2016).
4. Elements with “Local” Source
Fluxes. The fourth group of hydrother-
mal plume elemental behaviors revealed
by GEOTRACES studies includes a range
of elements—actinium (**’Ac), Ba, Cr,
gallium (Ga), mercury (Hg), and Si—
that never exhibit net scavenging but
only have local dissolved enrichments
in hydrothermal plumes proximal to the
ridge axes that do not persist very far
into the ocean interior (Table 1). There
are two reasons these elements have only
local hydrothermal enhancements. First,
most of these elements—Ba, Cr, Ga, Hg,
and Si—are only weakly enriched in vent
fluids so when the fluids are diluted sev-
eral orders of magnitude by seawater in
the neutrally buoyant plume, the hydro-
thermal enrichment can hardly or cannot
be distinguished from the abyssal ocean
background (Ho et al, 2019; Rahman
et al., 2022; Janssen et al., 2023; Torres-
Rodriguez et al., 2024). Instead, iso-
topes of these elements have been utilized
to detect hydrothermal anomalies, for
example, §'**Ba in the Arctic (Whitmore
et al., 2022), 8°°Cr in the Kermadec Arc
(Janssen et al., 2023), and §°Si at TAG
and in the Arctic (Brzezinski and Jones,
2015; Liguori et al., 2020).

Another reason some of these ele-
ments have only local hydrothermal
enrichments is subsequent loss to the
particle phase, as for the partially scav-
enged Cu and Co described above, but
perhaps to a lesser extent of scavenging.
GEOTRACES sections indicate some evi-
dence for both *’Ac and Hg scavenging
to ferromanganese particles (Kipp et al.,
2015; Bowman et al., 2016; Le Roy et al.,
2023), though this scavenging is insuffi-
cient to drive *’Ac and Hg deficits below
background concentrations. Finally, in
the SEPR plume, Si exhibited complex
concentration and isotopic patterns over

short spatial scales near the ridge axis that
cannot be explained without some Si pre-
cipitation as amorphous silica, quartz, or
another secondary Si mineral close to the
vents (Grasse et al., 2020). Thus, for these
elements, low hydrothermal fluid abun-
dances combined with high abyssal inven-
tories and/or some scavenging drives only
mild net excess source fluxes to the ocean.

5. Elements with Persistent Hydro-
thermal Fluxes. The hydrothermal plume
elements best studied by the international
GEOTRACES program—aluminum (Al),
Fe, Mn, and Zn—all exhibit signifi-
cant concentration excesses above abys-
sal backgrounds in long-distance hydro-
thermal plumes (Table 1, Figure 1). The
>3,000 km-long hydrothermal enrich-
ments of dissolved Al, Fe, and Mn in the
SEPR plume, one of the highest-impact
discoveries of the entire GEOTRACES
program, famously made the cover of
Nature (Resing et al, 2015), but these
hydrothermal metal excesses are also
found within many other GEOTRACES
sections in every ocean basin, from the
Arctic to the Pacific, Atlantic, and Indian
Oceans, and all the way to the Southern
Ocean (Table 1, and graphically captured
across the global ocean by Conway et al.,
2024, in this issue). The MARHYS data-
base (Diehl and Bach, 2020) suggests
that hydrothermal fluids can have up to
10°x enrichments of Al and Zn and up to
10’x enrichments of Fe and Mn compared
to abyssal seawater. It is these large enrich-
ments in hydrothermal fluid concentra-
tions that provide the greatest chance for
these elements to exhibit anomalies, even
when diluted >10*x by seawater in distal
hydrothermal plumes (Lupton, 1995).
Surprisingly, of this group of metals,
only dissolved Zn is not a scavenging-
type element, as it is only thought to be
mildly reversibly scavenged within sea-
water (John and Conway, 2014; Sieber
et al,, 2023). This explains why hydro-
thermal plume dZn excesses can persist
>1,000 km from the Reykjanes Ridge in
the subpolar North Atlantic (Lemaitre
et al., 2020) and >3,000 km along the
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SEPR plume (Roshan et al., 2016). This
hydrothermal dissolved Zn can also be
detected via isotopically light hydrother-
mal §°Zn signatures found amid the iso-
topically heavier abyssal ocean seawater
(Conway and John, 2014a; John et al,
2018a; Lemaitre et al., 2020).

However, the persistent enrichments
of dissolved Al, Fe, and Mn over thou-
sands of kilometers of hydrothermal
plume length was somewhat surpris-
ing for GEOTRACES oceanographers,
because all three of these metals have
sufficient oceanic scavenging rates to be
otherwise net removed from hydrother-
mal plumes. Persistent hydrothermal dAl
fluxes were explained at TAG by the tall
rift valley walls that trap and concen-
trate dAl in the axial valley (Measures
et al,, 2015), and in the SEPR plume by a
larger dAl source from the more actively
erupting SEPR (Resing et al, 2015).
Overall, it is thought that dAl has slow/
negligible scavenging rates within hydro-
thermal plumes (Ho et al., 2019) due to
dAl scavenging occurring predominantly
by incorporation into siliceous particles
that have low abundances in hydrother-
mal systems (Xu and Weber, 2021).

Dissolved Fe and Mn fluxes, speciation,
and residence times within hydrothermal
plumes have been a primary focus of the
GEOTRACES program (Table 1). While
early hydrothermal fluid research envis-
aged (near-)quantitative precipitation of
hydrothermal Fe and Mn to the metal-
liferous sediments (German et al., 1991),
similarities between dFe and *He profile
shapes in far-field hydrothermal plumes
(Fitzsimmons et al., 2014) introduced the
possibility that only a fraction of the >10%
enrichments in hydrothermal fluid Fe and
Mn concentrations would need to be pre-
served in the dissolved phase to persist as
a substantial enrichment in fully diluted
hydrothermal plumes. This idea was called
the “Leaky Vent Hypothesis” (Toner et al.,
2012), and when an early global biogeo-
chemical model of this “leaky” hydrother-
mal Fe flux tantalizingly hypothesized
that hydrothermally sourced dFe could
support a significant fraction of Southern
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Ocean export production (Tagliabue et al.,
2010), interest in hydrothermal plume Fe
fluxes skyrocketed. Subsequently, numer-
ous early GEOTRACES studies confirmed
the Leaky Vent Hypothesis (Klunder
et al,, 2011, 2012; Nishioka et al., 2013;
Saito et al., 2013; Fitzsimmons et al., 2015;
Hatta et al.,, 2015), providing global evi-
dence for the persistence of dFe and dMn
in hydrothermal plumes from the Arctic
to the Southern Ocean and in every basin
in between (Table 1). GEOTRACES then
modified the research question from
whether hydrothermal dFe and dMn per-
sist in hydrothermal plumes to how and
why they are protected from scavenging.
High-temperature hydrothermal vents
supply Fe in its reduced oxidation state,
Fe(II). Several GEOTRACES studies have
investigated the contributions of Fe(II) to
the hydrothermal plume dFe inventory
and found them to vary substantially.
Certain conditions can produce large
hydrothermal Fe(II) enrichments, such as
proximity to a fluid source (Sedwick et al.,
2015; Holmes et al., 2020) and low oxy-
gen and pH conditions that extend Fe(II)
lifetimes. Otherwise, Fe(II) is rapidly oxi-
dized to Fe(III) in most other hydro-
thermal plumes. Gonzalez-Santana et al.
(2021) have done important work within
GEOTRACES to improve the parameter-
ization of Fe(II) oxidation kinetics at tem-
peratures more representative of the abys-
sal ocean conditions where hydrothermal
plumes exist. This work revealed that the
Fe(II) oxidation half-lives originally cal-
culated for global hydrothermal plumes
(Field and Sherrell, 2000) using original
Fe(II) oxidation kinetics (Millero et al.,
1987) were too short by about a factor of
four, widening the area of plume influ-
ence within which Fe(II) is the dominant
dFe species (Gartman and Findlay, 2020).
Because Fe(III) is minimally soluble
in oxic seawater, what prevents hydro-
thermal Fe from quantitative precipita-
tion and settling to the sediments? Two
primary mechanisms have been pro-
posed. The first proposes that Fe does
in fact precipitate but only to nanopar-
ticulate size, which still falls within the

operationally defined dissolved size frac-
tion. Nanoparticles do not sink to the
sediments due to their small size, though
imaging shows that Fe nanoparticles do
aggregate into larger particles that settle
to the sediments (Hoffman et al., 2020),
perhaps facilitated by entrained organic
carbon (Hoffman et al, 2018). While
this nanoparticle mechanism was orig-
inally proposed for pyrite nanoparti-
cles (Yucel et al., 2011), it has grown to
include pervasive hydrothermal plume
Fe oxyhydroxide nanoparticles as well,
which have been implicated extensively
in hydrothermal plume dFe transforma-
tions (Fitzsimmons et al., 2015, 2017;
Lough et al, 2017, 2019a, 2019b, 2023;
Gonzalez-Santana et al., 2020).

The
that hydrothermally sourced Fe is main-

second mechanism proposes

tained in the dissolved phase via che-
lation by organic ligands, which effec-
tively protect dFe against precipitation
to the solid phase (Bennett et al., 2008;
Sander and Koschinsky, 2011), similar
to dCu as described above. Originally,
electrochemical methods were used to
analyze hydrothermal plume Fe-organic
ligand complexes, including by both for-
ward competitive ligand exchange mode
(Bennett et al., 2008; Buck et al., 2015,
2018) and reverse titration mode (Hawkes
et al., 2013). While valuable in indicat-
ing the lability of dFe complexes, electro-
chemical techniques unfortunately fail to
differentiate nanoparticulate from ligand-
bound dFe phases. Novel siderophore
detection methods developed within
GEOTRACES (e.g., Boiteau et al., 2016)
and applied to hydrothermal plumes have
revealed the presence of siderophores in a
variety of plume settings from geotecton-
ically distinct sites (Hoffman et al., 2023)
that point to microbial origins (Cohen
et al., 2021), perhaps as a way to access
particulate Fe pools. While mechanisti-
cally interesting, siderophores only have
sufficient concentrations to bind up to a
few percent of total hydrothermal dFe.

In the absence of a fully diagnostic dFe
physicochemical speciation method, Fe
isotopic 8°°Fe analyses of hydrothermal



plume seawater have recently been used
to relate Fe speciation in local cases
(reviewed in Fitzsimmons and Conway,
2023). The large &°Fe fractionation
during Fe(II)-Fe(III) reactions can be
used to reveal the relative contributions
of Fe(Il) and Fe(IIl) in hydrothermal
plumes (Klar et al., 2017). Additionally,
under different conditions and assump-
tions, an isotopically heavy plume §°°Fe
signature has been employed to identify
and/or quantify the persistence of organ-
ically chelated dFe species within dis-
tal hydrothermal plumes (Fitzsimmons
etal, 2016, 2017; Sieber et al., 2021).
Finally, biogeochemical models cal-
ibrated against GEOTRACES datasets
have been critical for probing metal spe-
ciation and scavenging rates and the bio-
geochemical fate of hydrothermal Fe.
Hydrothermal Fe and Mn fluxes must be
modeled with a significant gross hydro-
thermal fluid flux that is scavenged at
high rates near the venting site in order
to match the high dissolved metal gradi-
ents observed near ridge axes; for exam-
ple, modeled hydrothermal Mn fluxes
needed to be 96% scavenged near the vent
outflow (van Hulten et al., 2017) to match
observations in the North Atlantic.

For Fe, the potential for significant
fertilization of Southern Ocean primary
production and export by hydrother-
mal Fe (Ardyna et al, 2019) remains a
major motivator for GEOTRACES stud-
ies of hydrothermal Fe plume dynam-
ics. This is particularly true for Southern
Ocean hydrothermal vents (Tagliabue
and Resing, 2016), which would have the
shortest transport timescale from abys-
sal plumes to surface phytoplankton.
Unfortunately, the devil is in the details,
and various models parameterize Fe spe-
ciation and transformations in slightly
different ways, with these distinctions
forming the difference between hydro-
thermal dFe being trapped in the deep
ocean (Roshan et al., 2020) and efficient
dFe fertilization of surface waters (Resing
et al, 2015; Tagliabue et al, 2022).
Additionally, none of the models include
the shallow volcanoes and intraplate

vents that have most recently been stud-
ied by GEOTRACES (German et al,
2020; Jenkins et al., 2020) and that can
have large impacts on phytoplankton pro-
duction (Guieu et al., 2018; Tilliette et al.,
2022; Bonnet et al., 2023). Thus, even with
its significant discoveries, GEOTRACES
research has also stimulated many open
questions for future observational and
modeling research on the dynamics and
biogeochemical impacts of hydrothermal
plume Fe fluxes to answer.

CONCLUSIONS AND

FUTURE WORK

We conclude with two primary messages.
The first is that the elemental scavenging
rates occurring in hydrothermal plumes
are critical for quantifying the “net”
hydrothermal impact on the ocean. The
second is that research conducted within
the international GEOTRACES program
has significantly transformed our under-
standing of hydrothermal plume scaveng-
ing fluxes. We reviewed here the extensive
GEOTRACES studies of hydrothermal
plume geochemistry, and we sorted plume
elemental behavior into five categories
(Table 1, Figure 1) that represent a gra-
dient in the extent of gross hydrothermal
flux vs. scavenging that can be observed in
hydrothermal systems.

In summary, while it was known as
far back as Elderfield and Schultz (1996)
that elements are removed from seawater
in hydrothermal plumes, GEOTRACES
studies have given us a mechanistic
understanding of these plume scaveng-
ing processes, for example, providing
partition coefficients (K;) as a function
of particle type (e.g., Fe oxyhydroxides,
Mn oxides, organic carbon; Hayes et al.,
2015b; Basak et al., 2024). These K, val-
ues can be directly incorporated into bio-
geochemical models where particle types
are designated (e.g., van Hulten et al,
2018). As a simple example of the impact
of these calculations, globally interpolated
hydrothermal plume scavenging fluxes
onto Fe oxyhydroxides were projected to
remove the equivalent of 5%-10% of the
global riverine flux for Mo and twice the

estimated riverine flux of V (Ho et al,,
2018). GEOTRACES studies have also
used radiotracer observations to quan-
tify scavenging rates within hydrothermal
plumes (Pavia et al., 2019). These rates
can then be used directly in models them-
selves or used to ground-truth estimates of
scavenging rates from prognostic models.

This new understanding of hydrother-
mal plume geochemical transformations
has allowed us to imagine a future syn-
thesis where the diverse fluxes of buoy-
ant hydrothermal fluids can be com-
bined with the potential scavenging fluxes
hydrother-
mal plumes to calculate the total “net”

within neutrally buoyant

hydrothermal fluxes and impact on oce-
anic inventories across the globe. While
the largest source of error was previ-
ously on the under-explored hydrother-
mal plume side, GEOTRACES has pro-
vided multiple pathways for calculating
these scavenging rates. Arguably, today’s
largest source of error in calculating the
“net” impact of hydrothermal plumes is
in upscaling the variety of hydrother-
mal vent impacts to a global scale. These
challenges include both extrapolating the
gross hydrothermal fluid fluxes from dif-
ferent vent types (Diehl and Bach, 2020)
to the global ocean, including the influ-
ence of the under-explored ultramafic and
low-temperature diffuse-flow vents, and
scaling up the spatiotemporal extent of
scavenging within hydrothermal plumes
of different vent types that contain dif-
ferent particle types and concentrations.
Additionally, transformative research over
the last two decades has, simultaneously
with GEOTRACES, revealed the critical
role that microbial activity plays in mod-
ifying chemical inventories within hydro-
thermal plumes (e.g. Dick et al., 2013;
Cohen et al., 2021), providing a particu-
larly rich opportunity for the geochemical
and microbial oceanography communi-
ties to collaborate on distinguishing biotic
from abiotic “scavenging” processes over
the coming decade. Future hydrothermal
plume research, born from the momen-
tum of the GEOTRACES program, prom-
ises to deliver on these unknowns.
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