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Abstract

Causal decomposition analysis is among the rapidly growing number of tools for identifying factors

(“mediators”) that contribute to disparities in outcomes between social groups. An example of such med-

iators is college completion, which explains later health disparities between Black women and White

men. The goal is to quantify how much a disparity would be reduced (or remain) if we hypothetically

intervened to set the mediator distribution equal across social groups. Despite increasing interest in esti-

mating disparity reduction and the disparity that remains, various estimation procedures are not straight-

forward, and researchers have scant guidance for choosing an optimal method. In this article, the authors

evaluate the performance in terms of bias, variance, and coverage of three approaches that use different

modeling strategies: (1) regression-based methods that impose restrictive modeling assumptions (e.g., lin-

earity) and (2) weighting-based and (3) imputation-based methods that rely on the observed distribution

of variables. The authors find a trade-off between the modeling assumptions required in the method and

its performance. In terms of performance, regression-based methods operate best as long as the restrictive

assumption of linearity is met. Methods relying on mediator models without imposing any modeling

assumptions are sensitive to the ratio of the group-mediator association to the mediator-outcome associa-

tion. These results highlight the importance of selecting an appropriate estimation procedure considering

the data at hand.
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A key objective of decomposition analysis is to identify risks or resources

(“mediators”) that contribute to disparities between groups of individuals defined by

social characteristics, such as race, ethnicity, gender, class, and sexual orientation.

Examples of such mediators include incarceration, which explains the racial earnings

gap among men (Western and Pettit 2005); socioeconomic status (SES), which

explains the cardiovascular health (CVH) gap across race-gender groups (Lee, Park,

and Boylan 2021); and the opportunity to learn, which explains the math achievement

gap across racial/ethnic groups (Schmidt, Guo, and Houang 2021). The key to this
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approach is to single out contributing factors that could play a role in reducing such

disparities across social groups.

Several studies have situated decomposition analysis within the counterfactual

framework of causal inference. VanderWeele and Robinson (2014) first advanced the

idea of focusing on observed social disparities rather than the causal effects of social

groups such as race and gender. Jackson and VanderWeele (2018) further developed

the approach and proposed various definitions of disparity reduction and disparity

remaining using an interventional perspective (Nguyen, Schmid, and Stuart 2021). In

this article, we use one of their definitions that quantifies the extent to which the

observed disparity would be reduced or remain if we hypothetically intervened to set

the mediator distributions equal between social groups among individuals with similar

demographic backgrounds.

Another counterfactual approach to mediation is causal mediation analysis on the

basis of natural direct and indirect effects (Pearl 2001; Robins 2003). We include a

detailed discussion regarding the similarities and differences between these methods

in the section “Relations to Causal Mediation Analysis,” but one notable difference is

that causal decomposition analysis requires fewer assumptions than causal mediation

analysis. One critical assumption required in causal mediation analysis, but not in cau-

sal decomposition analysis, is “no intermediate confounding.” Given that a myriad of

factors contributes to social disparities in health outcomes, intermediate confounding

(effects of social groups confounding the mediator-outcome relationship) is likely to

occur in disparities research, so causal decomposition analysis has a substantial advan-

tage over causal mediation analysis.

Despite this merit, allowing intermediate confounders in causal decomposition anal-

ysis adds a modeling burden, because the identification of disparity reduction and

remaining depends on the conditional probability of intermediate confounders in addi-

tion to that of the mediator and outcome. To reduce the modeling burden, estimation

methods for causal decomposition analysis use different strategies. In this study, we

focus on six methods: two regression methods based on the difference-in-coefficients

and the product-of-coefficients estimators (Jackson and VanderWeele 2018), two

weighting methods based on ratio of mediator probability weighting (RMPW) and

inverse odds ratio weighting (IORW) estimators (Jackson 2021), and two imputation

methods based on the single-mediator imputation estimator (Lundberg 2022;

Sudharsanan and Bijlsma 2021) and the multiple-mediator imputation estimator (Park,

Qin, and Lee 2022). The two regression methods impose restrictive modeling assump-

tions such as linearity. The weighting and imputation methods rely on the observed

distribution of variables instead of imposing a restrictive modeling assumption.

Specifically, the weighting methods rely on the observed distribution of the outcome;

the single-mediator imputation method relies on the observed distribution of the inter-

mediate confounders; and the multiple-mediator imputation method relies on the

observed distribution of the mediator. However, the consequences, in terms of perfor-

mance, of relying on the modeling assumptions or observed distributions are poorly

understood, particularly when combined with varying data conditions critical to med-

iation settings.
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Therefore, the goal of this study is to review the modeling strategies of each method

and assess their performance in various data conditions. Comparing the performance of

methods that use different strategies to reduce the modeling burden is a focal point of

our simulation study, which makes it distinct from other simulation studies that com-

pare performance across traditional mediation methods (e.g., MacKinnon et al. 2002).

To achieve this goal and for simplicity, this review and simulation study focuses on

continuous outcomes.

To empirically ground our investigation, we examine disparities in CVH across

race-gender groups using the Midlife Development in the United States (MIDUS)

study. Specifically, we focus on the research question “To what extent would the CVH

disparity between Black women and White men be reduced if the college completion

rate was equal between the groups?” and we illustrate estimation methods in the con-

text of this example.

CAUSAL DECOMPOSITION ANALYSIS: REVIEW

In this section, we review causal decomposition analysis and then discuss several

issues that emerge when one uses traditional mediation analysis or causal mediation

analysis to study health disparities across socially defined groups.

Using the motivating example, we consider the setting in which the groups are

Black women (R= 1) and White men (R = 0), the mediator is college completion status

(M), and the outcome is CVH (Y ). Because the mediator is not randomized, the rela-

tionship between the mediator and the outcome could be confounded by many life-

course factors. On the basis of previous literature (Suglia et al. 2018; Winkleby et al.

1992), we identified age (C1), genetic vulnerability (C2), childhood SES (X1), and

childhood abuse (X2) as confounders in the mediator-outcome relationship. Among

these confounders, we need to further distinguish baseline covariates (C = (C1,C2))

from other confounders (X = (X1,X2)). Baseline covariates characterize demographics

through which the differences in the mediator or outcome are considered equitable

(Jackson 2021); in our example, these are age and genetic vulnerability measured by

parental history of cardiovascular and metabolic illness (heart problems, stroke, and

diabetes). The rest of the variables are effects of social groups confounding the

mediator-outcome relationship, which are early-life adversity (i.e., childhood SES and

abuse) in the example. We refer to childhood SES and abuse as the intermediate

confounders.

Initial Disparity

We are interested in the CVH disparity between Black women and White men, con-

trolling for age and genetic vulnerability. Formally, the initial disparity between Black

women and White men is defined as tc(1, 0)[E½Y jR = 1, c� � E½Y jR= 0, c�, where

c 2 C. Note that the defined initial disparity is simply the observed mean difference in

an outcome between social groups given baseline covariates. Causal decomposition

analysis does not attempt to estimate the causal effect of social groups, thus avoiding

the issue of assigning counterfactual outcomes to nonmanipulable factors such as race
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and gender (Lundberg 2022; VanderWeele and Robinson 2014). In line with this

approach, we also focus on the observed disparity in CVH between Black women and

White men. The observed disparity is conditional on a specific age and genetic vulner-

ability because the differences in CVH through these background characteristics are

considered equitable.

Disparity Reduction and Remaining

Once we observe the disparity between Black women and White men, we would also

want to identify how to reduce the disparity, for example, by increasing Black

women’s college completion rate to that of White men. We thus equalize the college

completion rate between the groups among those with the same covariate level,

because we consider potential differences in the college completion rate that arise

through age (e.g., cohort differences) or genetic vulnerability as unrelated to dispari-

ties in the college completion rate across gender and racial groups. Then, the disparity

reduction is defined as, conditional on baseline covariates, the difference between the

average CVH of Black women and their counterfactual CVH after setting their college

completion rate equal to that of White men among those with the same baseline cov-

ariate level. Formally, dc(1)[E½Y jR = 1, c� � E½Y (Gmjc(0))jR = 1, c�, where c 2 C and

Gmjc(0) is a random value drawn from the distribution of White men’s college comple-

tion status given baseline covariates. Disparity remaining is defined as, conditional on

baseline covariates, the difference between the average CVH of White men and the

average counterfactual CVH after equalizing the college completion rate between the

groups among those with the same baseline covariate level. Formally,

zc(0)[E½Y (Gmjc(0))jR = 1, c� � E½Y jR= 0, c�. The initial disparity can be obtained by

summing disparity reduction and remaining as tc(1, 0) = dc(1) + zc(0).

Interpretation of these conditional estimands would apply to a specific level of

baseline covariates C = c. For example, the disparity reduction and remaining defined

above are among individuals who have the same values of age and genetic vulnerabil-

ity. Hence, it is critical to choose the values of the baseline covariates to be set when

estimating these conditional estimands. However, some researchers may be more

interested in marginal decomposition, in which the effects are averaged over distribu-

tions of baseline covariates. Formally, marginal disparity reduction is defined as

d(1)[E½Y jR = 1, c�P(c)� E½Y (Gmjc(0))jR= 1, c�P(c); marginal disparity remaining is

defined as z(0)[E½Y (Gmjc(0))jR = 1, c�P(c)� E½Y jR= 0, c�P(c). Interpretation of these

marginal estimands would pertain to a population across different levels of baseline

covariates (for more details, see Jackson and VanderWeele 2018; Lundberg 2022).

Marginal disparities can be obtained for the weighting and imputation methods but not

for the regression methods. Therefore, throughout this article, we focus on disparities

conditional on baseline covariates to ensure comparability across different estimation

methods.

To give causal interpretations to disparity reduction and remaining, we need to make

the following identification assumptions:
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A1. Conditional Independence: Y (m)?M jR= r,X = x,C = c for r 2 f0, 1g, all

m 2 M , x 2 X , and all c 2 C, where Y mð Þ denotes the potential value of the outcome

under M =m. There is no omitted confounding in the mediator-outcome relationship

given the group status, intermediate confounders, and baseline covariates.

A2. Positivity: 0\P(M =mjR= 1,X = x,C = c) for all m 2 M , x 2 X , and all c 2 C.
Positivity states a positive conditional probability among Black women (R= 1) of

each observed value for the mediator given covariates. This implies that Black

women should have a possibility of experiencing all levels of the mediator given cov-

ariates and intermediate confounders.

A3. Consistency: If Mi =m then Yi = Yi(m) for all m 2 M, where Mi and Yi represent

the mediator M and the outcome Y of the ith subject, respectively, and Yi(m) denotes

the potential value of the outcome of the ith subject under Mi =m. The observed out-

come under a particular exposure value is the same as the outcome after intervening

to set the exposure to that value. This assumption would be violated, for example, if

the CVH outcome for an individual is affected by another person’s college comple-

tion status.

All these assumptions are strong, and whether the assumptions are met or not depends

on a substantive example. Assessing the plausibility of the assumptions is essential but

beyond the scope of this study. Given the assumptions, disparity reduction and remain-

ing are nonparametrically identified as

dc(1) =E½Y jR= 1, c� �
P
x,m

E½Y jR= 1, x,m, c�P(xjR = 1, c)P(mjR = 0, c) and

zc(0) =
P
x,m

E½Y jR= 1, x,m, c�P(xjR = 1, c)P(mjR = 0, c)� E½Y jR= 0, c�, ð1Þ

where x 2 X ,m 2 M, and c 2 C. We will review different estimation methods derived

from this identification result in the section “Estimation Methods.”

Relations to Traditional Mediation Analysis

Traditionally, decomposition analysis has been understood, formulated, and conducted

within the linear framework on the basis of the difference-in-coefficients estimator

(Freedman and Schatzkin 1992; Olkin and Finn 1995). For example, a seminal work

by Fryer (2011) used this difference-in-coefficients approach to examine whether con-

trolling for test scores reduced observed racial/ethnic disparities in wages, unemploy-

ment, incarceration, and health. In the context of our motivating example and on the

basis of the traditional difference-in-coefficients estimator, disparity reduction is esti-

mated by ĥ1 � û1 and disparity remaining is estimated by û1 in the following linear

regression models:

Y =h0 +h1R+ h2X1 + h3X2 +h
T
4C + e3, and

Y = u0 + u1R+ u2X1 + u3X2 + u4M + uT5C + e4:
ð2Þ
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The disparity reduction and remaining obtained from this traditional approach dif-

fers from those defined at the beginning of this section. Specifically, if identification

assumptions A1, A2, and A3 are met, ĥ1 � û1 is disparity reduction after controlling

for college completion status (M) within levels of childhood SES and abuse (X1 and

X2) given baseline covariates. For proof, see proposition 2 from Jackson and

VanderWeele (2018). This traditional estimator is meaningful if investigators are

interested in controlling for differential college completion status between the groups

that cannot be attributed to childhood SES and abuse. However, Jackson and

VanderWeele (2018) argued that this estimate within the same levels of intermediate

confounders (childhood SES and abuse) may not be desirable, because reducing dis-

parity for children who have the same childhood SES is suboptimal in equity perspec-

tives. For example, if we only consider individuals with a high level of childhood

SES, the disparity reduction after equalizing college completion rate between the

groups is likely underestimated compared with people across all levels of childhood

SES. In contrast, the defined quantity described earlier estimates disparity reduction

across all levels of intermediate confounders.

Another widely used approach in decomposition is the Kitakawa-Oaxaca-Blinder

(KOB) decomposition (Kitagawa 1955; Oaxaca 1973; Blinder 1973). The KOB is

often used to decompose social disparities in an outcome to the explained (by the fact

that groups have different means for the mediator) and unexplained portions. Hou

(2014) extended the KOB decomposition to address intermediate confounders using a

regression-based mediation analysis framework. His article shows the equivalence

between product-of-coefficients and difference-in-coefficients estimators when no

exposure-mediator interaction exists.

The explained and unexplained portions defined in the KOB decomposition corre-

spond to disparity reduction and disparity remaining, respectively. The only difference

is that the typical KOB decomposes a marginal disparity where it is not conditional on

baseline covariates C. Jackson and VanderWeele (2018) pointed out that this differ-

ence is relatively minor but has important implications regarding causal interpretations

if assumption A1 (conditional independence) is met after conditioning on baseline cov-

ariates. After conditioning on baseline covariates, causal decomposition analysis would

be a causal implementation of the KOB decomposition (Jackson and VanderWeele

2018).

Relations to Causal Mediation Analysis

One popular counterfactual approach to mediation is causal mediation analysis on the

basis of natural direct and indirect effects (Pearl 2001; Robins 2003). Bauer and

Scheim (2019) adopted this approach and applied VanderWeele’s (2013) three-way

decomposition method for disparities research. However, in prior literature (e.g.,

Jackson and VanderWeele 2019; Lundberg 2022; Park et al. 2022) it is argued that

causal decomposition analysis is preferred over causal mediation analysis when study-

ing contributing factors to disparities for the following three reasons.
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First, causal decomposition analysis adopts the framework of a descriptive dispar-

ity, focusing on estimating the causal effects of manipulable factors rather than social

groups. In our example, we are interested in the causal effect of college completion in

reducing a CVH disparity but are agnostic about the causal effect of social groups on

CVH. This framework circumvents the issue of assigning counterfactual outcomes to

nonmanipulable factors such as race and gender. In contrast, causal mediation analysis

is often applied to settings in which a manipulated treatment affects an outcome.

Hence, it focuses on estimating the causal effects of the treatment as well as the

mediator.

Second, causal decomposition analysis is based on interventional effects (Didelez,

Dawid, and Geneletti 2012), which provide a straightforward interpretation of direct

and indirect effects defined in disparities research. If causal mediation analysis was

applied to our example, natural indirect effects would compare each Black woman’s

CVH with the potential CVH outcome of each Black woman after setting their media-

tor (college completion status) to a value that would have naturally resulted had she

been born a White man. Considering this potential outcome is somewhat strange

because a Black woman cannot be reborn as a different race-gender status and experi-

ence the mediator. In contrast, disparity reduction computes the difference between the

average Black woman’s CVH and the average counterfactual outcome of Black women

after hypothetically intervening to equalize the college completion rate between

groups. Compared with natural indirect effects, disparity reduction is more straightfor-

ward to interpret.

Third, identifying disparity reduction requires a weaker assumption than natural

indirect effects. Identifying natural indirect effects requires no omitted confounding in

the (1) exposure-outcome, (2) exposure-mediator, and (3) mediator-outcome relation-

ships. In identifying disparity reduction, no counterfactual outcome is assigned to

social groups, so we do not need to assume there is no omitted confounding in the

exposure-outcome and exposure-mediator relationships. Most importantly, natural

indirect effects require an additional assumption, that is, no intermediate confounding

(Pearl 2009) or no interaction in the group-mediator relationship at the individual level

(Robins 2003). Each assumption is restrictive and unrealistic, and neither assumption

is met in our example. Early-life adversity (childhood SES and abuse) can affect the

risk for dropping out of college and CVH, and the effect of college completion on

CVH might vary by social group. In contrast, disparity reduction on the basis of inter-

ventional indirect effects requires neither assumption. That is, observed intermediate

confounders are allowed, and interaction in the group-mediator relationship is allowed.

However, estimating disparity reduction and remaining in causal decomposition

analysis is challenging because of these added intermediate confounders. As shown in

equation (1), the identification result for disparity reduction and remaining depends on

the conditional probability of intermediate confounders given the group status and

baseline covariates. This dependence implies that, unless we either make restrictive

modeling assumptions or rely on the observed distribution of variables, then intermedi-

ate confounders need to be modeled to estimate disparity reduction and remaining.
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ESTIMATION METHODS

The following section details the estimation procedure of each method and how each

method addresses the modeling burden of intermediate confounders. To estimate dis-

parity reduction and remaining conditional on C = c, we center each continuous cov-

ariate in C at a prespecified value (e.g., mean value) and set a reference group to be

zero for each categorical covariate in C when fitting regression models. For the same

purpose, we omit P(r)
P(rjc) for weighting and imputation methods. Readers can refer to the

original articles that we review for marginal effects.

Regression-Based Approaches

Difference-in-Coefficients Method. The estimation procedure requires modeling

the following four successive outcome models regressed on group status and baseline

covariates, and additionally intermediate confounding (childhood SES X1 and abuse

X2), and finally the mediator (college completion status M) as

Y =f0 +f1R +fT
2C + e1, ð3Þ

Y = g0 + g1R + g2X1 + g
T
3C + e2, ð4Þ

Y =h0 +h1R+h2X1 +h3X2 +h
T
4C + e3, ð5Þ

Y = u0 + u1R+ u2X1 + u3X2 + u4M + uT5C + e4, ð6Þ

where f1 represents the CVH disparity between Black women and White men given

baseline covariates, g1 represents the disparity within levels of childhood SES given

baseline covariates, h1 represents the disparity within levels of childhood SES and

abuse given baseline covariates, and u1 represents the disparity within levels of the

college completion rate, childhood SES, and abuse given baseline covariates.

Given equations (3) to (6), disparity reduction is estimated as

d̂c(1) = ĥ1 � û1 + (ĥ2 � û2)
f̂1�ĝ1

ĝ2
+ (ĥ3 � û3)

(ĝ1�ĥ1) + (1�ĥ2=ĝ2)(f̂1�ĝ1)

ĥ3
; disparity remain-

ing is estimated as ẑc(0) = û1 + û2
f̂1�ĝ1

ĝ2
+ û3

(ĝ1�ĥ1) + (1�ĥ2=ĝ2)(f̂1�ĝ1)

ĥ3
, where â is the esti-

mate of regression coefficient a in the equations above. Standard errors can be

obtained by delta methods or bootstrap methods.

Note that ĥ1 � û1 is the disparity reduction estimate after equalizing the college

completion rate within levels of childhood SES and abuse (X1 and X2) given baseline

covariates. To obtain disparity reduction across all levels of childhood SES and abuse,

we add (ĥ2 � û2)
f̂1�ĝ1

ĝ2
+ (ĥ3 � û3)

(ĝ1�ĥ1) + (1�ĥ2=ĝ2)(f̂1�ĝ1)

ĥ3
, which is the mediated effect

of childhood SES and abuse scaled by the proportion of the mediated portion via the

mediator. Likewise, we add û2
f̂1�ĝ1

ĝ2
+ û3

(ĝ1�ĥ1) + (1�ĥ2=ĝ2)(f̂1�ĝ1)

ĥ3
to disparity remaining

after equalizing the college completion rate within levels of childhood SES and abuse

(û1). Because of this added term, disparity reduction and remaining estimators differ

from the traditional difference-in-coefficients estimator (Freedman and Schatzkin
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1992; Olkin and Finn 1995). We refer to this method as the difference-in-coefficients

estimator to differentiate it from the other type of regression-based method we intro-

duce later. The regression-based approach is generally efficient in terms of standard

errors and is straightforward to use. However, this difference-in-coefficients estimator

relies on the restrictive modeling assumption of no nonlinear relationships at the indi-

vidual level (e.g., group-mediator interactions) as reflected in equations (3) to (6).

Product-of-Coefficients Method. A product-of-coefficients approach is obtained by

posing a model for the causal KOB decomposition discussed by Jackson and

VanderWeele (2018). There are different ways to pose a model to estimate disparity

reduction and disparity remaining. For example, Jackson and VanderWeele require

modeling intermediate confounders in addition to the mediator and the outcome (see

page 17 of their appendix).

Here, we implement the causal KOB decomposition by only fitting the mediator and

outcome models, which has an advantage in terms of reducing the modeling burden.

For illustration, we assume the mediator is continuous (education) and we will show

that the method can address a discrete mediator (college completion status). The esti-

mation procedure requires modeling the following mediator and outcome models as

M =a0 +a1R+aT
2C + em,

Y =b0 +b1R+b2X1 +b3X2 +b4M +b5RM +bT
6C + ey

ð7Þ

where RM represents the group-mediator interaction. Here, a1 is the average disparity

in college completion status between Black women and White men given baseline

covariates; b4 and b4 +b5 are the effect of college completion on CVH for White men

and Black women, respectively, given baseline covariates. Note that a1 includes dis-

parities in college completion status between the groups given baseline covariates,

including differences attributable to childhood SES and abuse. Given equation (7), the

disparity reduction is estimated as d̂c(1) = â13(b̂4 + b̂5) and the disparity remaining is

estimated as ẑc(0) = f̂1 � â13(b̂4 + b̂5), where â1, b̂4, and b̂5 are the estimates of the

regression coefficients in the equations, and f̂1 is the estimate of initial disparity given

covariates from equation (3). This estimator for disparity remaining uses the fact that

disparity reduction and remaining add to the initial disparity (ẑc(0) = t̂c(1, 0)� d̂c(1)).

The standard errors for disparity reduction and remaining are obtained by delta meth-

ods or bootstraps.

Alternatively, as shown in Jackson and VanderWeele’s (2018) appendix, we can

estimate the disparity remaining by modeling intermediate confounders as

ẑalt(0) = b̂1 + b̂2k̂1 + b̂3k̂2 + b̂5â0, where k̂1 and k̂2 are the average disparity in child-

hood SES (X1) and childhood abuse (X2), respectively, between Black women and

White men given the covariates.

This product-of-coefficients estimator allows a group-mediator interaction, and

it can be easily modified to address binary mediators. For instance, a logistic/

probit regression should be fitted for a binary mediator as

P M = 1ð Þ = logit�1 a0 +a1R +aT
2C

� �
. Then, disparity reduction is estimated as
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bdc 1ð Þ=
exp ba0 + ba1 +

baT
2
c

� �
1 + exp ba0 + ba1 +

baT
2
c

� ��
exp ba0 +

baT
2
c

� �
1 + exp ba0 +

baT
2
c

� �
8<
:

9=
;3 cb4 +

cb5

� �
and disparity remaining

is estimated as ẑc(0) = f̂1 � d̂c(1). However, the estimator cannot address nonlinear

relationships other than the group-mediator interaction, for which either a weighting

or imputation method should be considered.

Weighting-Based Approaches

Jackson (2021) proposed two weighting-based estimators on the basis of adaptation of

the RMPW and IORW estimation. These estimators were originally developed in the

causal mediation literature by Hong, Deutsch, and Hill (2015) and Tchetgen Tchetgen

(2013), respectively.

RMPW. The RMPW estimator can be applied to a single discrete mediator. The fol-

lowing estimation procedure relies on two mediator models in which any linear and

nonlinear relationships are allowed (steps 1 and 2) while using the observed distribu-

tion of the outcome (step 3).

1. Fit a mediator model, regressing college completion status on baseline covariates

among White men (R= 0). On the basis of this fitted model, compute the predicted

probability of Mi given C i for each subject (i.e., P(MijRi = 0,C i)).

2. Fit another mediator model, regressing college completion status on baseline covariates

and the intermediate confounders (childhood SES and abuse) among Black women

(R= 1). On the basis of this fitted model, compute the predicted probability of Mi given

X i and C i for each subject (i.e., P(MijRi = 1,X i,C i)).

3. Calculate the average CVH (Y ) among Black women given C = c, weighted by the ratio

of the two predicted probabilities as Wi =
P(MijRi = 0,C i)

P(MijRi = 1,X i,C i)
. This estimates the average

counterfactual outcome of Black women E½Y (Gmjc(0))jR= 1, c�= 1
n1

P
i2P1

WiYi(c),

where Pr indicates the subjects (of size nr) in group R= r for r 2 f0, 1g, and Yi(c)

denotes the observed outcome value of the i th subject given Ci = c. This quantity is

obtained as the intercept in a weighted regression of Y on C among individuals with

R= 1.

4. The disparity reduction is estimated as d̂c(1) =
1
n1

P
i2P1

Yi(c)� 1
n1

P
i2P1

WiYi(c) and

disparity remaining is estimated as ẑc(0) =
1
n1

P
i2P1

WiYi(c)� 1
n0

P
i2P0

Yi(c). Standard

errors are obtained from bootstraps.

IORW. IORW can also be applied to a single discrete mediator. The estimation pro-

cedure relies on two mediator models (step 1) and four exposure models (steps 2 and

3) while using the observed distribution of the outcome. The procedure is similar to

RMPW, so we briefly describe the estimation procedure here.

Park et al. 101

gwimberly@aera.net   -   June 24, 2024   -   Read articles at www.DeepDyve.com



1. Fit two mediator models regressing college completion status on baseline covariates

and intermediate confounders. On the basis of the two fitted models, compute the pre-

dicted probabilities of Mi as P(MijC i) and P(MijX i,C i).

2. Fit two exposure models regressing group status on baseline covariates and intermediate

confounders. On the basis of the two fitted models, compute the predicted probabilities

of being in a specific group as P(Ri = 0jC i) and P(Ri = 1jX i,C i).

3. Fit two exposure models regressing group status on college completion status and base-

line covariates and intermediate confounders. On the basis of the two fitted models,

compute the predicted probabilities of being in a specific group as P(Ri = 0jMi,C i) and

P(Ri = 1jMi,X i,C i)

4. The remaining steps are the same as with the RMPW estimator, except the weight is

given as Wi =
P(Ri = 0jMi ,Ci)

P(Ri = 1jMi ,X i ,Ci)

P(Ri = 0jCi)
P(Ri = 1jX i ,Ci )

3
P(MijC i)

P(MijX i,C i)
.

One advantage of these weighting estimators is their flexibility to accommodate lin-

ear and nonlinear relationships, as the estimators do not change regardless of the fitted

models. However, the disadvantages of these estimators include addressing discrete

mediators only, as most weighting-based approaches do not work very well with con-

tinuous variables. Also, weighting-based approaches are generally less efficient in

terms of standard errors compared with regression-based approaches (VanderWeele

2010).

Imputation-Based Approaches

Single-Mediator Imputation Method. Sudharsanan and Bijlsma (2021) and

Lundberg (2022) proposed an estimator on the basis of the parametric g-formula

(Robins 1986). Their algorithm predicts potential outcomes by randomly drawing val-

ues from mediators and outcomes from probability distributions. To address the uncer-

tainty associated with this procedure, random draws for mediators and outcomes are

conducted hundreds or even thousands of times. Combined with bootstrapping, the

algorithm requires substantial computational power and time. Here, we extend this

approach by using a predicted mediator value for continuous mediators (and a ran-

domly drawn value from the mediator distribution for binary mediators), and we

directly address the uncertainty associated with predicting a mediator value by boot-

strapping rather than randomly drawing from mediator probability distributions multi-

ple times. Although it is a minor difference, it substantially reduces computational

power and time. The following estimation procedure relies on modeling a mediator

and an outcome in which any linear and nonlinear relationships are allowed (steps 1

and 2) while using the observed distribution of the intermediate confounder (step 2).

1. Fit a mediator model, regressing the mediator (college completion status) on group sta-

tus and baseline covariates. Using the coefficients from the fitted model, we compute

the predicted value of the mediator for each subject (denoted as ~mi), after forcing R= 0.

2. Fit an outcome model, regressing CVH on group status, intermediate confounder, med-

iator, and baseline covariates as mrxm(c)[E(YijRi = r,X i = x,Mi =m,C i = c). On the
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basis of the fitted model, compute a predicted outcome value for each subject after

imputing ~mi as mRiX i ~mi
(c). Note that the observed value of the intermediate confounder

(X i) is used in computing the predicted outcome value mRiX i ~mi
.

3. The predicted outcome values obtained from step 2 will be averaged over i among

Black women conditional on C = c. This computes the average counterfactual outcome

of Black women E½Y (Gmjc(0))jR= 1, c�= 1
n1

P
i2P1

mRiX i ~mi
(c), where Pr indicates the

subjects (of size nr) in group R= r.

4. The disparity reduction is estimated as d̂c(1) =
1
n1

P
i2P1

Yi(c)� 1
n1

P
i2P1

mRiX i ~mi
(c) and

disparity remaining is estimated as ẑc(0) =
1
n1

P
i2P1

mRiX i ~mi
(c)� 1

n0

P
i2P0

Yi(c).

Standard errors can be obtained via bootstraps.

This single-mediator imputation estimator is flexible in addressing linear and non-

linear relationships as well as discrete and continuous mediators and outcomes.

Multiple-Mediator Imputation Method. Park et al. (2022) proposed the multiple-

mediator imputation estimator by adopting the result in VanderWeele and

Vansteelandt (2014), which was originally developed for causal mediation analysis.

Park et al. (2022) developed this estimator to address the case of intervening on multi-

ple mediators simultaneously, which is useful when the causal ordering of the media-

tors cannot be easily determined. Although the method is for multiple mediators, it

can also address a single mediator. The following estimation procedure relies on mod-

eling the intermediate confounders and the outcome in which any linear and nonlinear

relationships are allowed (steps 1 and 2) while using the observed distribution of the

mediator (step 2).

1. Fit a confounder model, regressing each intermediate confounder (childhood SES and

abuse) on group status and baseline covariates. Using the coefficients from the fitted

model, we compute a predicted value of each confounder for each subject (denoted as

~xi) among White men (R= 0), after forcing R= 1.

2. Fit an outcome model, regressing CVH on social groups, intermediate confounders,

mediator, and baseline covariates as mrxm(c)[E(YijR= r,X i = x,Mi =m,Ci = c). On the

basis of the fitted outcome model, compute a predicted outcome value for each subject,

after forcing R= 1, and imputing ~xi as m1~xiMi
(c). Note that the observed mediator value

(Mi) is used in computing the predicted outcome value m1~xiMi
(c).

3. The predicted outcome values obtained from step 2 will be averaged over i among

White men given C = c. This computes the average counterfactual outcome of Black

women E½Y (Gmjc(0))jR= 1, c�= 1
n0

P
i2P0

m1~xiMi
(c), where Pr indicates the subjects (of

size nr) in group R= r.

4. The disparity reduction is estimated as d̂c(1) =
1
n1

P
i2P1

Yi(c)� 1
n0

P
i2P0

m1~xiMi
(c) and

disparity remaining is estimated as ẑc(0) =
1
n0

P
i2P0

m1~xiMi
(c)� 1

n0

P
i2P0

Yi(c). Standard

errors can be obtained via bootstraps.

This multiple-mediator imputation estimator is highly flexible because it can address

(1) any nonlinear terms, (2) multiple mediators and a single mediator, and (3) different

variable types of mediators and outcomes.
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However, depending on the causal structure of variables, there could be more bur-

den in correctly specifying models than in the single-mediator imputation method.

This estimator requires modeling intermediate confounders instead of mediators. From

a modeling perspective, this estimator is advantageous only when the number of med-

iators exceeds or equals the number of intermediate confounders.

SIMULATION STUDY

Weighting- or imputation-based methods are generally more flexible than regression-

based methods because no restrictive modeling assumptions are required. However,

this flexibility comes at the cost of relying on the observed distribution of variables.

We conducted a simulation study to assess the performance of the methods, either rely-

ing on the observed distribution of variables or imposing restrictive modeling assump-

tions with various data conditions to help researchers choose an optimal method given

the data at hand. For simplicity, we refer to difference-in-coefficients, product-of-coef-

ficients, RMPW, IORW, single-mediator imputation, and multiple-mediator imputa-

tion as estimators 1, 2, 3, 4, 5, and 6, respectively, in this section. Table 1 shows the

summary of available estimation methods depending on conditions.

Data Generation

To generate synthetic data that mimics real data, we use the distribution of each vari-

able in the MIDUS data used for the motivating example, which contains the group

status R, the outcome Y , baseline covariate C, and intermediate confounder X . For

simplicity, we use a single intermediate confounder and baseline covariate. Because

those variables are related to each other, we also analyze the relationship between vari-

ables using the data with the following regression models:

Y = a0 + a1R+ a2C +Ux ð8Þ

M = b0 + b1R + b2X + b3C +Um ð9Þ

Table 1. Summary of Available Methods

Type of Mediator Number of Mediators Nonlinear Terms

Approach Estimator Categorical Continuous Single Multiple No R3M Others

Regression 1 � � � �
2 � � � � �

Weighting 3 � � � � �
4 � � � � �

Imputation 5 � � � � � �
6 � � � � � � �

Note: Estimators are as follows: 1, difference-in-coefficients; 2, product-of-coefficients; 3, ratio of mediator

probability weighting; 4, inverse odds ratio weighting; 5, single-mediator imputation; and 6, multiple-mediator

imputation. R3M = differential effects of mediators by groups.
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Y = c0 + c1R+ c2X + c3M + c4RM + c5C +Uy ð10Þ

Specifically, we create a binary treatment R that takes the value of 1 or 0, with the

probability 0.5. For observations with R= 1, C is generated from a truncated normal

distribution with mean 50 and standard deviation 12 within the interval (25, 75); for

observations with R = 0, C is generated from the same distribution but with a shifted

mean of 48. We then dichotomize the generated C at 50 to take the value of 0 (the ref-

erence group) and 1. We create X , M , and Y using equations (8), (9), and (10), respec-

tively, with added error terms from a standard normal distribution, instead of the error

terms Ux,Um and Uy from the original data. For a fair comparison across methods, we

do not include the group-mediator interaction effect (R3M) in equation (10) for esti-

mator 1.

For the binary mediator case, we use the same procedure, but dichotomize M at its

median to fit the logistic regression of equation (9). We then generate a binary media-

tor for the synthetic data that takes the value of 0 or 1 with the probability of

logit�1 b0 + b1R + b2X + b3Cð Þ for being M = 1.

On the basis of the synthetic data, we compute the true average outcome values for

R= 1 and R= 0 conditional on C = 0, which correspond to E½Y jR = 1,C = 0� and

E½Y jR = 0,C = 0�, respectively. To generate the true value of E½Y (Gmjc(0))jR = 1,C = 0�,
we compute the predicted outcome value on the basis of equation (10) given R = 1,

C = 0, and X =Xi. For M , we use random draws from the distribution of M for R= 0

given C = 0. Table 2 shows the true values of disparity reduction and disparity remain-

ing and the regression coefficient values used to generate the synthetic data for each

condition. Because we do not include the interaction term between R andM for estima-

tor 1, different coefficient values are used in data-generation (these values can be found

in part A of the online supplement). We fix the percentage of disparity reduction at

30 percent across different settings to ensure comparability.

Table 2. Coefficient Values for Each Scenario and Corresponding Parameters

Mediator
Type Ratio (r)

Effect sizes Coefficients True Effects

R�M M � Y b1 c1 c3 dc(1) zc(0)

Continuous 0.3 .138 (small) –.681 (large) .244 –1.048 –1.322 –.262 –.611
0.5 .177 (small) –.617 (large) .326 –1.048 –1.112 –.263 –.611
1 .247 (small) –.535 (large) .477 –1.048 –.900 –.263 –.611
2 .338 (medium) –.467 (medium) .689 –1.049 –.750 –.263 –.612
3 .402 (medium) –.434 (medium) .852 –1.049 –.684 –.263 –.612

Binary 0.1 .157 (small) –.551 (large) .552 –.669 –1.932 –.249 –.583
0.3 .267 (small) –.390 (medium) 1.032 –.644 –1.244 –.239 –.558
0.5 .355 (medium) –.340 (medium) 1.463 –.674 –1.063 –.252 –.588
0.7 .430 (medium) –.312 (medium) 1.906 –.693 –.964 –.259 –.607
0.9 .504 (large) –.292 (small) 2.466 –.709 –.900 –.268 –.623

Note: b1, c1, and c3 are regression coefficients from equations (9) and (10). For effect sizes, we used partial

correlations for the M � Y and R�M associations and Cohen’s (2013) rules, where 0.1, 0.3, and 0.5 are considered

small, medium, and large, respectively.
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Simulation Setting

We consider three conditions critical to mediation settings: type of mediator, sample

size, and the ratio between the R�M and M � Y associations. First, we use a binary

and continuous mediator because the performance of the estimation methods may

depend on the variable type of the mediator. For each type of mediator, we then con-

sider three sample sizes n= f100, 500, 1000g, which cover reasonably small, medium,

and large sample sizes in observational studies to which causal decomposition analysis

mainly applies.

Last, an important condition that we vary for each fixed sample size is the ratio

between the R�M and M � Y association. If the variables are standardized, the

effect size ratio can be used to assess the performance of methods, as shown in tradi-

tional mediation literature (e.g., Kelcey et al. 2017; MacKinnon et al. 2002). However,

in some cases, keeping the original scale with a meaningful metric (e.g., income in

thousands of dollars) is essential because it is more intuitive to interpret. In this case,

we argue it is more beneficial to use the ratio expressed in the original scale, which

depends on both effect sizes and variances of the variables (i.e., the conditional var-

iance of R, M , and Y after removing the components explained by predictors). This is

because parameter estimation and statistical inference are affected by the variances in

addition to effect sizes. Moreover, the ratio is particularly relevant in evaluating the

performance of causal decomposition methods that use different strategies to reduce

the modeling burden. For example, some methods rely on modeling the mediator

(weighting or single-mediation-imputation), and others rely on the observed distribu-

tion of mediators (multiple-mediator imputation). Given that the disparity reduction

estimate has two sources (the R�M association and the M � Y association), we want

to investigate whether one approach is better than another when the R�M association

is particularly small relative to the M � Y association (or vice versa).

The ratio is defined as r =a1=(b4 +b5) for a continuous mediator and

r = flogit�1(a0 +a1 +a2E½C�)� logit�1(a0 +a2E½C�)g=(b4 +b5) for a binary media-

tor; where a s and b s are from equation (7). We consider r = f0:3, 0:5, 1, 2, 3g for a

continuous mediator, which covers cases where the R�M association is smaller than

(r = 0:3, 0:5), equal to (r = 1), or larger than (r = 2, 3) the M � Y association. We con-

sider r = f0:1, 0:3, 0:5, 0:7, 0:9g for a binary mediator, which covers cases where the

probability difference in M = 1 between R = 1 and R = 0 is less than (r = 0:1, 0:3), equal
to (r = 0:5), or greater than (r = 0:7, 0:9) half the size of the M � Y association. For

binary mediators, the R�M association is bounded between 0 and 1; hence, finding a

set of coefficients for b1, c1, and c3 that makes the ratio greater than 1 was implausi-

ble. Therefore, we limited the ratio for binary mediators to less than 1. The midpoint

(ratio of 0.5) indicates when the probability difference of M = 1 equals half the size of

the effect of M on Y .

Thus, we consider 15 scenarios with different n and r values for each type of med-

iator. To set the desired level of the ratio r, we change the coefficients in equations (9)

and (10). Table 2 shows how to set the coefficients for each scenario. Other than the

three coefficient values in the table, the remaining coefficient values are fixed as the

coefficients from the MIDUS data. We also present the effect sizes of the R�M and
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M � Y associations as information. The variance-covariance matrix for all scenarios

is shown in part B of the online supplement.

In this study, we used the following metrics to compare the performance of each

estimation method: relative bias, the normalized root mean squared errors (nRMSEs),

and 95 percent confidence interval coverage using the percentile bootstrap method

(Efron 1982) with the number of bootstrap replicates of 1,000. The relative bias mea-

sures the difference between the average of the estimates and the true value relative to

the true value. The nRMSE measures the square root of the average squared difference

between the estimate and the true value relative to the true value. For each scenario,

we make 1,000 replicates of the sample from the population, and the performances are

averaged over the 1,000 repetitions. The coverage rate for the 95 percent confidence

interval is defined as the proportion of replications where the true value is covered by

the 95 percent confidence interval out of 1,000 replications.

Simulation Results

The simulation results for a continuous and binary mediator are summarized in Figures

1 and 2, respectively. In the figures, we present the relative bias (first row), nRMSE

(second row), and 95 percenet confidence interval coverage (third row) for disparity

reduction and remaining. Each column represents a different estimator. The x-axis rep-

resents the ratio and the y-axis represents the performance metrics. The gray lines indi-

cate no bias, no root mean squared error, or the nominal level (95 percent). The exact

numerical values of the performance metrics in each scenario can be found in part C

of the online supplement.

Figure 1 (continuous mediator) shows the performance of estimators 1, 2, 5, and 6.

Estimators 3 and 4 are not considered because they are only available for a binary

mediator. Estimators 1, 2, and 6 perform well with a medium or large sample size

(n � 500) regardless of ratios. With a small sample size (n= 100), estimators 1 and 2

perform slightly better than estimator 6 in terms of variance. The nRMSEs for the dis-

parity reduction estimate obtained from estimator 6 are larger than estimators 1 and 2

with a sample size of 100 regardless of ratios.

In contrast, estimator 5 does not perform well in bias and coverage when the ratio is

less than 1. The coverage rate of estimator 5 exceeds 0.98 with ratios less than 1 even

with the sample size of 1,000, which implies that estimator 5 is inefficient in standard

errors (here, shown as wide confidence intervals). In addition, the bias for a small sam-

ple size (n= 100) is substantial. For instance, with a ratio of 0.3, the relative bias is

0.494 (49.4 percent of the true value) for disparity reduction.

Figure 2 (binary mediator) shows that estimators 1, 2, and 6 for disparity reduction

perform well in terms of bias, variance, and coverage with a medium or large sample

size (n � 500) regardless of ratios. Even with a small sample size (n= 100), estimators

1 and 2 demonstrate small biases (less than 5 percent of the true value) and coverage

rates close to the nominal level, regardless of ratios. In contrast, the bias is somewhat

larger for estimator 6 with a small sample size. For example, the relative bias for esti-

mator 6 reaches 0.168 (16.8 percent of the true value) with a ratio of 0.7.
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A. Continuous Mediator, Disparity Reduction
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B. Continuous Mediator, Disparity Remaining

Figure 1. Performance of disparity reduction (A) and disparity remaining (B) with a
continuous mediator.
Note: Estimators are as follows: 1, difference-in-coefficients estimator; 2, product-of-coefficients

estimator; 5, single-mediator imputation estimator; and 6, multiple-mediator imputation estimator.

Estimators 3 and 4 are not considered because they are only available for a binary mediator. In each

panel, we used the log scale of ratio values such that the tick marks on the x-axis are equally spaced.
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For estimators 3 and 4, we observe a low coverage rate with ratios less than 0.5. For

example, with a sample size of 1,000 and a ratio of 0.1, the coverage rates of estimators

3 and 4 are only 0.53 and 0.65, respectively. These low coverage rates are due to nar-

row confidence intervals. Estimator 3 is advantageous in terms of modeling perspective

because it only requires modeling two mediator models. However, the simulation result

suggests this modeling advantage comes at the cost of low coverage when the ratio is

small. We also observe a large bias (22.6 percent of the true value) and low coverage

(0.64) for estimator 3 with a sample size of 100 and a ratio of 0.9.

For estimator 5, we observe a high coverage rate with ratios less than 0.5. For exam-

ple, with a sample size of 1,000 and a ratio of 0.1, the coverage rate of estimator 5 is

0.98. These high coverage rates are due to the wide confidence intervals produced by

the estimator, and this pattern remains consistent for continuous and binary mediators.

The pattern is similar with disparity remaining estimators, but there are two notable

differences. First, estimator 4 has a better coverage rate for disparity remaining, achiev-

ing the nominal level across all sample sizes and ratios. Second, estimator 3 shows a

high coverage rate for ratios less than 0.5. For example, with a sample size of 1,000

and a ratio of 0.1, estimator 3 has a coverage rate of 0.99. These high coverage rates

are due to the wide confidence intervals produced by the estimator.

In addition to these 15 scenarios, we present another set of simulation studies under

the same model specification but with standardized variables in part D of the online

supplement. Although the relative bias and nRMSEs vary slightly, the low and high

coverage issues of the weighting (estimators 3 and 4) and single-mediator imputation

(estimator 5) methods persist, even after standardizing the variables.

In summary, we find a trade-off between the modeling assumptions required and

performance in terms of bias, variance, and coverage. Methods that require a restric-

tive assumption perform best if the assumption is met (e.g., estimators 1 and 2). The

performance of methods that do not require any restrictive modeling assumption but

rely on modeling the mediator (estimators 3, 4, and 5) is sensitive to the ratio of the

R�M association to theM � Y association. With these methods, ratios less than 1 for

a continuous mediator could result in either a biased result or wider confidence inter-

vals (estimator 5); ratios less than 0.5 for a binary mediator could result in narrower

confidence intervals (estimators 3 and 4) or wider confidence intervals (estimator 5).

APPLICATION

Choosing between Methods

On the basis of our review of the methods and the simulation study, we provide recom-

mendations for selecting an optimal method. We illustrate the practice of choosing an

optimal method using the motivating example. Our research question is, to what extent

would the CVH disparity be reduced if we increased the college completion rate of

Black women to the level of White men among individuals with the same age and

genetic vulnerability? The mediator is college completion status and the outcome is

CVH, with higher values indicating better CVH (mean = 8:09, S.D. = 2:12). The med-

iator is binary and the outcome is continuous. We assume differential effects of college
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completion exist between Black women and White men. Given the condition, the fol-

lowing methods are available: product-of-coefficients, RMPW, IORW, single-mediator

imputation, and multiple-mediator imputation (2, 3, 4, 5, and 6 in Table 1).

Which method should be used among these multiple options? In our case, the sam-

ple size is 1,978, and the ratio is 0.319. Given the sample size and ratio, the simulation

study suggests the product-of-coefficients and the multiple-mediator imputation meth-

ods should work well. If investigators are willing to assume no other nonlinear terms

except for the group-mediator interaction, the product-of-coefficients method should

be considered. If other nonlinear terms are modeled, the imputation method should be

considered. The RMPW and IORW methods are also available options, but caution is

required as the confidence interval for disparity reduction obtained from nonparametric

bootstraps may be narrower than expected for ratios smaller than 0.5.

Summary of Findings From the Working Example

Table 3 shows estimates for disparity reduction and remaining obtained from different

estimation methods. We begin by noting that the initial disparity for Black women

compared with White men is t(1, 0) = � 0:965, with the 95 percent confidence inter-

val bounded away from zero, which means Black women’s CVH is significantly worse

(unhealthier) than White men at the confidence level of 95 percent among those who

have the average level of age and genetic vulnerability. The initial disparity is slightly

smaller for the regression-based method (t(1, 0) = � 0:913). Once the disparity is

observed, social scientists would also want to know how to reduce the disparity, for

example, by increasing Black women’s college completion rate to the level of White

men.

The estimand dc(1) ranges from �0:290 (using estimator 2) to �0:402 (using esti-

mator 4) and the confidence intervals (using all three estimators) do not cover zero.

Given the assumptions, this means the CVH disparity between Black women and

White men would be significantly reduced (by 31.8 percent to 41.7 percent) if we

intervened to increase Black women’s college completion rate to the level of White

men. Note that, compared with the confidence interval of the disparity reduction for

the product-of-coefficients method (� 0:481, � 0:107), the CIs from the weighting

methods are narrower (i.e., �0:312, � 0:037 for estimator 3; �0:376, � 0:112 for

estimator 4). This result is consistent with the simulation result with ratios of 0.3 or

smaller.

In this example, the statistical uncertainty reflected in the 95 percent confidence

interval is greater than the variability in the estimate across different methods.

Moreover, the same conclusion is derived from different estimation methods. Yet it is

important to note that a different conclusion could be derived depending on estimation

methods, particularly when the sample size is small or when the ratio is even smaller

than 0.319.
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DISCUSSION

Estimation of disparity reduction and remaining is challenging because of the added

burden of modeling intermediate confounders. Therefore, it is crucial to use an estima-

tion method that reduces the modeling burden while maintaining good performance.

Using both simulation and real-data examples, this article investigated the performance

of six methods for estimating disparity reduction and remaining that use different stra-

tegies to reduce modeling burdens. We found that the methods imposing a restrictive

modeling assumption perform best as long as the assumption is satisfied. For instance,

with a continuous mediator, the regression-based estimators provide a precise estimate

with the 95 percent coverage rate reaching the nominal level.

The other estimators use the observed distribution of variables. Of these, the weight-

ing (RMPW and IORW) and single-mediator imputation estimators rely on modeling a

mediator. The weighting methods for binary mediators perform poorly when the

group-mediator association is smaller than half the size of the mediator-outcome asso-

ciation. A low coverage rate of the weighting estimators obtained from nonparametric

bootstraps with ratios less than 0.5 is particularly worrisome as it could inflate the type

1 error rate. The single-mediator imputation estimator provides a high coverage rate

when the ratio is less than 1 (continuous mediator) or 0.5 (binary mediator), which

could inflate the type 2 error rate. In contrast, the multiple-mediator imputation estima-

tor relies on modeling intermediate confounders, and thus the performance does not

depend on the ratio. However, the performance of this estimator could be affected by

the ratio for X if only a single intermediate confounder exists. This study highlights

the need to carefully consider each method’s modeling strategies and choose the most

appropriate method for a given research project. Applied researchers may choose a

method on the basis of availability or familiarity. However, it is crucial to select an

optimal method on the basis of the data conditions (variable type of the mediator, num-

ber of intermediate confounders, sample size, ratio of the R�M association to the

M � Y association) and whether the method’s modeling assumptions are met. In the

motivating example, we demonstrated how to choose an optimal method after examin-

ing data conditions and assessing the plausibility of modeling assumptions. In choos-

ing an optimal method, we gave primary consideration to coverage rather than the bias

or variance of the estimates. As shown in the example, the statistical uncertainty

reflected in the 95 percent confidence intervals is greater than the range of estimates

obtained from different estimation methods, which reflects the bias and variance asso-

ciated with different methods. In contrast, a low or high coverage rate inflates type 1

and 2 errors, potentially leading to a wrong conclusion.

There are several limitations to our study that could drive future research. First, this

study only addresses one way of defining disparity reduction and remaining. A differ-

ent definition of disparity reduction and remaining exists (Jackson 2021; Jackson and

VanderWeele 2018; Lundberg 2022), and the performance of estimation methods for

different definitions is unknown. Therefore, the simulation study could be extended to

an alternative definition of disparity reduction and remaining. Second, we used the

ratio metric as an important condition in our simulation study, but the metric is useful

only for continuous and binary mediators. Should categorical mediators with more
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than two discrete values be used, the metric must be redefined, and the performance

of methods should be reexamined. Finally, the current study only addresses issues of

estimating disparity reduction and remaining when the identification assumptions,

such as no omitted confounding, are met. However, the assumptions are strong, and

thus they may not be met in many empirical settings. Therefore, it is crucial to exam-

ine whether identification assumptions are met, as the bias due to violations of identi-

fication assumptions could be more extensive than that due to modeling assumptions.
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