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College Major Choice in STEM
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bDepartment of Industrial Education, National Taiwan Normal University, Taipei, Taiwan

ABSTRACT
Guided by the STEM pathway model, our study hypothesizes that 
dual enrollment can serve as an effective strategy to improve and 
equalize college students’ access to STEM programs. We analyzed 
a nationally representative dataset to disaggregate the influence 
of dual enrollment course-taking (i.e. participation, dual credits in 
Math/Science, number of dual credits) on students’ STEM major 
selection, with a focus on traditionally underrepresented stu
dents in STEM. We found that taking dual enrollment courses in 
general is positively associated with the probability of majoring in 
STEM, especially at the baccalaureate level. However, taking dual 
enrollment courses in Math/Science is not associated with the 
probability of majoring in STEM when compared with students 
with no dual enrollment courses in Math/Science. The relation
ship between dual enrollment course-taking and STEM outcomes 
varies across different student background groups: It is consis
tently positive for students of higher household income to major 
in STEM but not statistically significant for low-income students. 
We discussed practical implications and future research with 
a focus on the role dual enrollment plays in advancing postse
condary STEM access.
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Introduction

A critical problem in U.S. postsecondary education is that colleges and uni
versities do not produce enough graduates in science, technology, engineering, 
and mathematics (STEM) to meet the workforce demand (National Science 
Foundation [NSF], 2010; Sithole et al., 2017). The number of STEM graduates 
is especially low for traditionally underrepresented college students, which are 
defined as women, students of color, low-income, and first-generation stu
dents in the current study. Traditionally underrepresented students are often 
less likely to enroll in STEM programs at the postsecondary level, largely due 
to systemic barriers which prevent them from realizing their full potential in 
STEM (Grossman & Porche, 2014; Hardy & Katsinas, 2010; Pierszalowski 
et al., 2021; Wang, 2013b, 2016). For example, Hazari et al. (2013) noted 
that STEM students of different gender and race/ethnicity indicated varying 
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levels of science identity, and Byars‐Winston (2014) emphasized the STEM 
equity imperative in career planning for traditionally underrepresented stu
dents. National research and policy have put priority to broaden and equalize 
STEM participation for traditionally underrepresented students and support 
their STEM success in postsecondary education (Fayer et al., 2017).

To realize educational success and equity in STEM, feasible and effective 
interventions in the secondary-postsecondary nexus are a must. Dual enrollment 
(DE), which allows high school students to take college-level courses and earn 
college credits while in high school, is a potential strategy to improve and equalize 
college students’ access to STEM programs. As of 2022, 48 states and the District 
of Columbia have state-level DE policies, but only 31 states mandate every high 
school to participate (Education Commission of the States [ECS], 2022). On 
average and across states, 82% of public schools offer DE opportunities for 
students, and about a third of high school students have been dually enrolled at 
some point during high school (U.S. Department of Education [ED], 2019, 2020). 
For the development of students’ interest and success in STEM in particular, DE 
programs not only support high school students with early access to college-level 
STEM resources, but they also serve traditionally underrepresented students by 
developing a STEM identity early, accessing postsecondary STEM education while 
enrolled in high school, and accumulating course credits and skillsets toward 
a STEM degree and career (Barnett, 2018; Ozmun, 2013; Zinth, 2018).

While previous studies have indicated that DE participation has 
a generally positive impact on students’ high school graduation, college 
matriculation, and college readiness (e.g., An, 2013; An & Taylor, 2015; 
Cowan & Goldhaber, 2015), these studies often simplify DE participation 
as a binary indicator which obscures students’ varying DE course-taking 
patterns. The multifaceted DE participation (e.g., subject area of DE 
credits, number of DE credits) needs to be specifically identified and 
studied to examine if and how DE course-taking contributes to students’ 
STEM major selection in postsecondary education. Given the prevalence 
of DE programs and the large number of high school students in the 
nation that are dually enrolled, the current study uses a nationally repre
sentative longitudinal dataset to disaggregate the influence of DE course- 
taking (i.e., participation, subject areas, number of credits earned) on 
students’ STEM major selection in college. Guided by the STEM pathway 
model (Cannady et al., 2014; Fealing et al., 2015), this study addresses the 
following research questions:

(1) To what extent does DE course-taking (i.e., participation, subject areas, 
number of credits earned) influence college students’ major choice in 
STEM?

(2) Does the relationship vary across college student groups, in terms of sex, 
student-of-color status, low-income status, and first-generation status?
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Literature review

Sociodemographic disparities in college and major choice

Individuals’ sociodemographic backgrounds play a significant role in college 
and major choice among STEM-aspiring students (Crisp et al., 2009; Hughes 
et al., 2019). Out of the 429,298 bachelor’s degrees conferred in STEM fields in 
2019–20 academic year, 62.6% were conferred to men students and 37.4% 
were conferred to women students (U.S. Department of Education [ED], 
2021), continuing to contribute to the long-standing employment and com
pensation inequity (Michelmore & Sassler, 2016). Similarly, of all the bache
lor’s degrees conferred to students of a certain race/ethnicity, the percentage of 
bachelor’s degrees in STEM varies. Only 14% of Black bachelor’s degree 
holders, 17% of Hispanic/Latinx bachelor’s degree holders, and 14% of 
American Indian and Alaska Native bachelor’s degree holders received their 
degrees in STEM, and these numbers are constantly lower than the national 
average of 21%. In comparison, 37% of Asian American bachelor’s degree 
holders are in STEM fields (National Center of Educational Statistics, 2022). In 
STEM occupations, 26% of STEM workers were women and 74% were men, 
and Hispanic/Latinx and Black populations are substantially underrepresented 
in most STEM occupations (Funk & Parker, 2018; Landivar, 2013).

When discussing its mechanisms, sociological and economic perspectives 
argue that individuals’ background situates themselves in a social and cultural 
system (i.e., habitus) that informs their perceived value of education and prior 
experience with college, which eventually influences their decision of college 
attendance and choice of major (Paulsen, 2001; Perna, 2006). Students who are 
sensitive to the cost and benefit of different types of postsecondary degree 
programs because of financial needs may choose the more affordable sub- 
baccalaureate pathway (e.g., two-year colleges; Wickersham, 2020). Additionally, 
social cognitive and behavioral perspectives posit that individuals of varying 
socioeconomic background accumulate different learning and career experience 
and expectation (Weeden et al., 2020), which in turn guides their educational and 
academic choice and action (Lent & Brown, 2013; Parker et al., 2012).

Empirical research largely resonates with prominent theories that women, 
students of color, students from low-income families, and first-generation 
students in STEM disciplines face multiple obstacles in their pathway to 
college. Due to a lack of resources for college preparation and other systemic 
barriers, traditionally underrepresented students may be exposed to limited 
knowledge of postsecondary education and its benefit even when holding 
academic readiness constant (Cook et al., 2021; Lindstrom et al., 2022; 
Majors, 2019; Perez-Felkner, 2015). Given the commitment of time and 
monetary resources to postsecondary education, the cost may direct students 
to choose sub-baccalaureate programs and prioritize the expected economic 
return over intrinsic academic or career interest (Wickersham, 2020).
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Following the social cognitive approach, accumulating learning experiences is 
one viable way to combat the negative effect of sociodemographic background 
on students’ educational pathways, particularly for STEM-aspiring students 
(Lent et al., 2015). Taking advanced courses, dual enrollment, and even out-of- 
school-time activities have all been found to promote the likelihood of attending 
college and choosing a STEM major (An & Taylor, 2019; Kim et al., 2015; 
Trusty, 2002; Wang et al., 2015). Moreover, beyond the general positive effect on 
academic outcomes, gaining extra learning experiences appears to benefit stu
dents of minoritized sociodemographic backgrounds more (Beyer, 2014; Wang 
et al., 2017). DE course-taking, as an additional educational opportunity, holds 
great promise for more positive STEM outcomes for students from traditionally 
underrepresented backgrounds.

DE course-taking and college major in STEM

As introductory STEM courses follow relatively strict course sequences, they 
can be considered as obstacles to student access and success in STEM fields 
(Dunbar, 2006, U.S. Department of Education [ED], 2018; Xu & Dadgar, 
2017). Among the academic factors of the STEM achievement gap, the long 
math course sequence remains a major barrier for traditionally underrepre
sented students to enter and stay on a STEM track (Fouad et al., 2010). 
A student’s course-taking pattern, such as the number of advanced math 
and science courses, is a predictor for major selection in STEM (Card & 
Payne, 2017; Kim et al., 2015). For example, taking DE course(s) in math 
induces students to take more advanced math courses and reduces their 
likelihood of enrolling in developmental mathematics (Hemelt et al., 2020). 
DE courses in the core academic subjects (e.g., English, science, math), as 
opposed to vocational-focused courses, have a larger effect on promoting 
students’ baccalaureate success in general (Giani et al., 2014).

In particular, DE programs provide an additional access point for tradi
tionally underrepresented students to college-level courses. In general, DE 
courses are more accessible for traditionally underrepresented students than 
other programs that allow high school students to earn college credits (Barnett, 
2018; Zinth & Barnett, 2018). Unlike Advanced Placement (AP) and 
International Baccalaureate (IB) programs, DE courses are not limited to the 
most advanced high school students. Minaya (2021) also found that taking 
dual enrollment courses on STEM subjects motivates high school students in 
Florida to major in STEM in college and increases college retention for Black 
and Hispanic students. Moreover, DE participation can greatly increase 
a student’s rating of their abilities in math and science and support them to 
transition to college (Karp, 2012; Ozmun, 2013; Robinson et al., 2019), parti
cularly familiarizing traditionally underrepresented students with a college 
environment and academic expectations from college faculty (Giani et al., 
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2014). Earning DE credits has the potential to build an academic foundation 
for traditionally underrepresented students and improve college students’ 
STEM access (Zinth, 2018).

Conceptual framework

This study uses the STEM pathway model to explain the logic of how the DE 
intervention may influence students’ college major choice in STEM and how 
the influence may differ by students’ sociodemographic characteristics 
(Cannady et al., 2014; Fealing et al., 2015). The STEM pathway model builds 
upon prior work on STEM identity (Holland et al., 1998), academic momen
tum in STEM (Adelman, 1999, 2006; Wang, 2016), and the social cognitive 
career theory for traditionally underrepresented students (Fouad & Santana, 
2017). Specifically, the model illustrates how a potential intervention (i.e., DE 
course-taking and its various forms) can alter or accelerate a student’s diverse 
academic trajectories in STEM, particularly for traditionally underrepresented 
students. Figure 1 presents a visual representation of the STEM pathway 
model explaining the mechanism of DE programs on students’ diverse path
ways toward STEM majors in college.

Figure 1. The influence of dual enrollment on STEM access from the lens of the STEM pathway 
model.
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First and foremost, the pathway framework acknowledges that a student’s 
access to STEM fields can be a result of structural barriers and contextual factors 
(Grossman & Porche, 2014; Hardy & Katsinas, 2010; Pierszalowski et al., 2021; 
Wang, 2013b). Though DE programs provide relatively broader access to 
college-level courses than similar programs (e.g., AP, IB programs; Barnett, 
2018; Zinth & Barnett, 2018), students do not have equal eligibility to access 
(the same number and subject area) DE course due to preexisting differences, 
such as academic performance and program offering in high schools (Zinth & 
Barnett, 2018). Despite 82% of public high schools offering access to DE courses, 
variations exist across the urbanicity of high schools and the percentage of 
students in a school who were approved for free or reduced-price lunch 
(FRPL). Compared with the national average of 82%, only 72% of city schools 
and 71% of schools in which 75% or more of students were approved for FRPL 
offered dual enrollment (U.S. Department of Education [ED], 2020). For STEM 
DE courses and take Texas for example, all and 73.5% of the surveyed colleges 
and high schools, respectively, offered math DE courses in 2009–10 
academic year, whereas 80% and 50% of the surveyed colleges and high schools, 
respectively, offered science DE courses (compared with above 90% for English 
and social studies; Texas Education Agency, 2011), leaving great room for 
improvement in equitable access to STEM DE courses. DE programs can 
encourage learning, career experience, and expectation in STEM and postse
condary matriculation in STEM for traditionally underrepresented students (An 
& Taylor, 2015; Fouad & Santana, 2017; Zinth, 2015), and the larger context 
(e.g., sociodemographic characteristics) should be empirically accounted for in 
examining the effect of DE course-taking on STEM access and equity.

A key significance of the pathway framework is that it umbrellas STEM 
trajectories in multiple sectors, including students that followed college atten
dance patterns other than a baccalaureate academic program (Wang, 2016). In 
fact, traditionally underrepresented students often attend a community col
lege, take developmental courses, choose a career and technical education 
(CTE) program, or transfer upwardly, in order to pursue an advanced degree 
or a career in STEM (Fealing et al., 2015; Wang, 2020; Wyatt et al., 2015). 
While recent state data show that DE particularly benefits students of color, 
first-generation students, and students of low SES background more than their 
counterparts in terms of choosing four- over two-year college (Lee et al., 2022), 
this study further unpacks STEM major at both the sub-baccalaureate and 
baccalaureate levels.

Finally, disaggregating the concept of DE participation by subject area and 
number of DE credits can identify specific aspects of DE programs that are 
meaningful for equitable STEM access. Among the dual-enrolled students, 
some students can be more likely to earn more DE credits (i.e., the mass in 
academic momentum) and/or take more DE courses in math and science (i.e., 
the direction in academic momentum). Because each additional DE course 
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accumulates to the likelihood of postsecondary persistence and completion 
(Giani et al., 2014), the disparities within DE course-taking patterns (e.g., 
earning 3 versus 15 DE credits, taking advanced math courses versus non- 
essential STEM courses) can have different influences on a student’s progress 
toward STEM major choice in college, thus altering their STEM trajectories in 
the long term. In sum, the STEM pathway model accentuates the focus on 
STEM success and equity for individual students in their situated contexts 
with tangible progress toward their educational goals, without excluding the 
conventional baccalaureate degree path for students to choose a STEM major.

Methods

Data sources and sample

To answer the set of research questions, we analyzed observational data of 
a nationally representative dataset provided by the National Center of 
Educational Statistics (NCES). Conducted by ED, the High School 
Longitudinal Study of 2009 (HSLS:09) firstly surveyed over 23,500 9th graders 
from 944 schools in 2009 and followed up in their 11th grade and 12th grade, 
and three years and four years after high school graduation, respectively. 
Though not highly detailed, HSLS:09 includes students’ DE course-taking 
information (e.g., DE course-taking in Math/Science, number of DE credits 
earned) based on students’ self-report surveys. The sample includes 11,560 
college students with valid major choice records as of February 2016. We 
addressed the missing values of predictors using multiple imputation with 
sampling weight to generate five imputed datasets.1

Variables

We examined the influence of DE course-taking on major selection in STEM. 
Specifically, the first outcome was a binary indicator of major choice in STEM 
as of February 2016, based on the definition used by the Department of 
Defense’s Science, Mathematics, and Research for Transformation (SMART) 
grant. The second outcome was categorical representing if the major is STEM 
or not at the baccalaureate level or sub-baccalaureate level, respectively.

The treatments were defined differently depending on the average treat
ment effect of interest. First, it was defined as a binary indicator of overall DE 
participation to understand the aggregated influence of DE course-taking on 
the outcomes, with the treatment group being students who have taken at least 
one DE course and the control group being students who have never taken 
a DE course. Additionally, DE subject area was defined as binary, indicating 
whether the DE course taken was in the subject of Math/Science or not. 
Finally, to examine the specific impact of the number of DE credits earned, 
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treatment was defined in a continuous manner based on the number of DE 
credits earned in STEM sequence and non-STEM sequence, respectively.

Pre-treatment covariates were selected based on prior research and the 
conceptual framework to predict the likelihood of a certain DE course- 
taking pattern for individual students (Caliendo & Kopeinig, 2008). These 
variables included students’ sociodemographic characteristics (i.e., sex,2 race/ 
ethnicity, socioeconomic status quintile, whether at least one parent working 
in STEM occupation), academic measures in the 9th grade in high school (i.e., 
grade point average [GPA], educational expectations, the highest level of math 
course), and high school characteristics (i.e., whether provide DE opportu
nities, location, control). The outcome model specifications also accounted for 
additional post-treatment covariates. Based on how these variables may influ
ence students’ STEM major selection (e.g., Wang, 2020), we also included 
students’ intent to major in STEM and the number of AP/IB credits earned as 
post-treatment covariates in all outcome models. Detailed operationalizations 
of these variables are also presented in Appendix A.

Addressing selection bias

Students’ DE course-taking depends on students’ pre-college characteristics 
(e.g., race/ethnicity, family income, academic performance) and high school 
characteristics (e.g., whether the high school provides DE opportunities). Thus, 
we employed propensity score models (PSMs) to ensure overlap and compar
ability between the treatment group and the control group to reduce selection 
bias (Guo & Fraser, 2015). PSM as a quasi-experimental research design has 
been widely applied in educational research because it can substantively reduce 
the potential self-selection bias to arrive at findings that are as close as possible 
to causal inference (Powell et al., 2019). We selected a set of pre-treatment 
covariates as mentioned above to predict the likelihood of a certain DE course- 
taking for individual students (Caliendo & Kopeinig, 2008).

Using logistic regression, we estimated propensity score p for each observa
tion, controlling for students’ pre-treatment characteristics. The resulting 
propensity score p represents a student’s probability of receiving treatment 
while enrolled in high school. For the binary treatments (i.e., whether took DE 
courses, whether took DE in Math/Science), the average treatment effect on 
the treated (ATT) reveals what the outcomes would have been for DE students 
had they not received the treatment in the respective model specifications. We 
calculated the ATT weights as the inverse of the resulting propensity score p. 
In this example, students in the treatment group (i.e., DE participation) receive 
a weight of 1, and students in the control group (i.e., no DE participation) 
receive a weight of p/(1 – p). The final weight for each observation included in 
the post-weighting estimation will be normalized as a product term between 
the ATT weight and the sampling weight, divided by the mean of such product 
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term to ensure generalization (Leite, 2017). For the full sample and each 
subsample categorized by sex, student-of-color status,3 low-income status, 
and first-generation status, we repeated this procedure to estimate different 
sets of propensity scores due to students’ varying probability of DE participa
tion in individual subgroups. As indicated in Table 1 and Figure 2, the 
standardized mean differences before and after weighting indicated the data 
met the balancing property of PSM (Rubin, 2001; Shadish et al., 2008). The 
characteristics of all covariates pre- and post-weighting are presented in 
Appendix B.

Table 1. Standardized differences between treated and control groups by treatment.
DE Course-Taking Math/Science DE Course-Taking

Pre-weighting Post-weighting Pre-weighting Post-weighting

Female 0.107 −0.016 0.136 −0.009
Race/Ethnicity

Black/African American −0.064 0.017 −0.165 −0.005
Hispanic/Latinx −0.023 −0.019 −0.137 −0.003
Asian American, Native Hawaiian/Pacific 
Islander

0.013 −0.057 0.044 0.069

American Indian/Alaska Native −0.010 0.024 −0.022 0.013
More than one race −0.016 0.039 −0.028 −0.011

Socioeconomic Status Quintile
Second quintile 0.016 0.035 −0.063 −0.024
Third quintile 0.004 0.020 −0.030 0.000
Fourth quintile 0.041 0.019 0.023 0.076
Highest quintile −0.018 −0.040 0.119 −0.033
At least one parent working in a STEM 
occupation

−0.016 −0.040 0.070 0.005

Highest degree expected
Associate degree −0.048 0.039 −0.132 0.047
Bachelor’s degree −0.012 −0.006 −0.028 −0.047
Master’s degree 0.066 0.064 0.109 0.033
Doctoral degree or Professional degree 0.104 −0.055 0.155 0.006
Don’t know −0.091 −0.024 −0.124 −0.041

Highest level of mathematics
Basic math −0.035 0.013 −0.037 −0.019
Other math −0.050 0.017 −0.059 0.061
Pre-algebra −0.041 −0.010 −0.131 0.016
Algebra I −0.100 0.023 −0.293 0.009
Geometry 0.133 −0.024 0.242 −0.073
Algebra II 0.043 −0.021 0.143 0.024
Trigonometry 0.044 0.003 0.127 0.031
Other advanced math −0.012 −0.004 0.042 0.056

9th Grade GPA 0.340 −0.045 0.674 −0.044
High school provides dual enrollment 

opportunities
0.178 0.050 0.228 0.045

High school location
Suburb −0.041 0.018 −0.076 0.009
Town 0.105 0.048 0.165 0.003
Rural 0.073 −0.069 0.067 0.012

High school control
Private −0.142 0.081 −0.111 0.010

Note. Sampling weights are applied to pre-weighting calculation. The weight for each observation included in the 
post-weighting estimation was a product term between the inverse probability treatment weight and the sampling 
weight, divided by the mean of such product terms. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and 
Student Financial Aid Records Data Collection.
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To further unpack the relationship between the number of DE credit- 
earning and STEM major choices, we estimated the unit-level dose-response 
function to measure the influence of various doses of the treatment on the 
outcomes (Hirano & Imbens, 2004). The goal of this procedure is to reduce 
selection bias within strata with the same density of the treatment, so the 
probability of receiving a given treatment level does not depend on the value of 
the pre-treatment covariates for DE students. Particularly, we followed Bia and 
Mattei (2008) to estimate the generalized propensity scores (GPS) using Stata 
commands gpscore and doseresponse. However, because the treatment did not 
have a normal distribution conditional on the covariates, we converted the 
treatment using the zero-skewness log to estimate the GPS instead.4

Analyses of the influence of DE credits on STEM major choice

Accounting for the selection bias, we conducted both descriptive analysis and 
a series of logistic regression and multinomial regression analyses to examine the 
influence of DE course-taking (i.e., participation, subject in Math/Science, number 
of DE credits earned) on college students’ STEM major selection. For each set of 
outcomes, we used the proper regression model that controlled for the pre- 
treatment and post-treatment variables, incorporating the series of propensity 
score weights, sampling weights, the primary sampling unit, and strata to ensure 
generalization to the national population (Ridgeway et al., 2015). Analyses for each 

gnikaT-esruoCEDecneicS/htaMgnikaT-esruoCED

Pre-weighting 

Post-
weighting 

Figure 2. Estimated propensity scores between treated and control groups (pre- and post- 
weighting).  
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School 
Longitudinal Study of 2009. Selected years 2009, 2012, 2013, and 2016
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subsample of students by sex, student-of-color status, low-income status, and first- 
generation status were also conducted. The effect size of the treatment was also 
calculated if the treatment was statistically significant (Sullivan & Feinn, 2012).

Lastly, we performed sensitivity analyses to examine whether the treatment 
effect would become statistically nonsignificant due to hidden unobservables 
increases since unmeasured confounding variables can bias estimates of the 
treatment effect on outcomes (Linden et al., 2020; VanderWeele & Ding, 
2017). By calculating the E-value, which handles both binary and multi-level 
categorical outcomes incorporating ATT weights, we examined the minimum 
strength of association that “an unmeasured confounder would need to have 
with both the treatment and the outcome to fully explain away a specific 
treatment — outcome association” (VanderWeele & Ding, 2017, p. 1). More 
specifically, E-values for significant associations ranged from 1.57 to 2.22, 
depending on the specified outcome variable and sample. For example, in 
the main analysis, the E-value associated with an odds ratio of 1.38 is 1.63, 
meaning the risk ratio of 1.38 could be explained away by an unmeasured 
confounder that was associated with both the treatment (i.e., DE course- 
taking) and the outcome (i.e., STEM major choice) by an odds ratio of 1.63- 
fold each, but weaker confounders could not. The relatively small E-value 
suggests that our study could not fully exclude the possibility of unmeasured 
confounding that the evidence for causality between DE course-taking and 
students’ STEM major choice might be weak.

Limitations

Under the constraint of a secondary dataset, readers should be cautious 
when interpreting our findings. First of all, since the subject treatment 
variable was self-reported, students might not be aware that they were 
taking DE at all or mistaking an advanced course (e.g., AP) for a DE 
course. Second, since traditionally underrepresented students often 
attend a community college or choose a CTE program before moving 
onto more advanced degree programs (Fealing et al., 2015), CTE-based 
STEM DE may be of particular interest for these students. As such, 
separating CTE and non-CTE DE courses may further shed light on the 
motivating coursework among traditionally underrepresented students 
and correspond to our research interest. However, though we had access 
to the transcript data, it was not readily available to devise a way to 
clearly differentiate STEM coursework from CTE credits. Instead, given 
the Perkins Act of 2006 and Common Core policy and practice, STEM 
and CTE curricula are being integrated to help train students’ STEM 
skills occupationally (Sublett & Plasman, 2017). It is thus highly likely 
that the STEM DE coursework coded in the current study intersected 
with CTE credits. When such information is available, future research 
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can further examine the relationship between DE CTE courses and 
students’ major choice in CTE- or non-CTE-based STEM, particularly 
for underrepresented student population.

Third, we observed missing data in some variables and conducted 
multiple imputations to retain as many participants as possible. Multiple 
imputation is found to be a better choice than listwise deletion (Baraldi 
& Enders, 2010) and the missing value indicator method (Groenwold 
et al., 2012) given the large sample size, the nature of survey data, and 
the uncertainty to ascertain missing completely at random (Little, 1988), 
but it is likely that multiple imputation resulted in a higher correlation 
between variables and thus a higher statistical power. Hence, we gener
ated only five imputed datasets to avoid inflating the statistical power 
(Graham, 2009), addressed all the complex sampling features inherent in 
HSLS:09, and reported pooled results (Horton & Lipsitz, 2001) to coun
terbalance the potential inflation of intercorrelation between variables. 
Finally, whereas we strived to clear potential bias inherent in the data 
through statistical methods (e.g., multiple imputation for handling miss
ing data) and adhered to the complex sampling design, the propensity 
score-based technique precludes strong causal inferences in the relation
ship between DE course-taking and college students’ STEM major 
choice.

Results

Descriptive summary

Table 2 presents the descriptive results for the outcomes in the treatment and 
control groups. Before applying propensity score weights, a larger proportion 
of DE students (23.43%) majored in a STEM field than non-DE students 
(18.89%), and the difference was even larger between students who took 
a DE course in the subject of Math/Science (27.78%) and students without 
taking a DE course in Math/Science (19.93%). On average, a larger proportion 
of DE students majored in a non-STEM field (52.53%) and STEM field 
(19.13%) at the baccalaureate level relative to non-DE students (46.21% in 
non-STEM and 13.47% in STEM at the baccalaureate level). However, 
a smaller proportion of DE students majored in a non-STEM field (24.04%) 
and STEM field (4.3%) at the sub-baccalaureate level relative to non-DE 
students (34.91% in non-STEM and 5.41% in STEM at the sub-baccalaureate 
level). A similar pattern was found between students who took a DE course in 
the subject of Math/Science and students without taking a DE course in Math/ 
Science. After incorporating propensity score weights, the differences between 
the treated group and control group considerably decreased.
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The influence of DE course-taking on STEM major choice

Controlling for pre-treatment and post-treatment covariates, the weighted model 
estimates of the full sample indicated that taking DE courses was positively 
associated with the probability of majoring in STEM (odds ratio = 1.380, p  
= .002). In other words, college students with DE course-taking records were 
1.380 times more likely to major in STEM, when compared with college students 
without DE course-taking records (as presented in Table 3). More specifically, DE 
course-taking was statistically related to students’ probability of STEM major 
choice at varying award levels. Compared with non-DE students, DE students 

Table 2. Descriptive results for STEM major choice.
Pre-weighting Post-weighting

Treated Control Difference Treated Control Difference

Panel A: Treatment being DE Course-Taking
STEM Major Choice 23.43% 18.89% 4.54% 26.19% 23.67% 2.52%
STEM Major Choice and Degree Level

Sub-baccalaureate non-STEM 24.04% 34.91% −10.87% 18.59% 20.60% −2.01%
Sub-baccalaureate STEM 4.30% 5.41% −1.11% 3.64% 3.32% 0.32%
Baccalaureate Non-STEM 52.53% 46.21% 6.32% 55.21% 55.73% −0.52%
Baccalaureate STEM 19.13% 13.47% 5.66% 22.55% 20.35% 2.20%

Number of observations 4,640 6,920 4,640 6,920

Panel B: Treatment being DE Course-Taking in Math/Science
STEM Major Choice 27.78% 19.93% 7.85% 31.71% 24.24% 7.47%
STEM Major Choice and Degree Level

Sub-baccalaureate non-STEM 17.45% 31.85% −14.40% 12.76% 19.70% −6.94%
Sub-baccalaureate STEM 3.82% 5.07% −1.25% 3.90% 3.17% 0.73%
Baccalaureate Non-STEM 54.77% 48.21% 6.56% 55.53% 56.07% −0.54%
Baccalaureate STEM 23.96% 14.86% 9.10% 27.81% 21.07% 6.74%

Number of observations 1,230 10,330 1,230 10,330

Note. Sampling weights are applied to pre-weighting calculation. The weight for each observation included in the 
post-weighting estimation was a product term between the inverse probability treatment weight and the sampling 
weight, divided by the mean of such product terms. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and 
Student Financial Aid Records Data Collection.

Table 3. Odds ratios of the effect of dual enrollment on STEM major choice.

Outcome variable

Pre-weighting Post-weighting

DE course-taking
DE course-taking in 

Math/Science DE course-taking
DE course-taking in 

Math/Science

STEM Major Choice 1.251 
(0.203)

1.054 
(0.226)

1.380** 
(0.145)

1.306 
(0.189)

STEM Major Choice and Degree Level
Sub-baccalaureate 
STEM

1.002 
(0.284)

0.824 
(0.304)

1.155 
(0.214)

1.298 
(0.334)

Sub-baccalaureate 
non-STEM

0.826 
(0.105)

0.799 
(0.163)

0.827* 
(0.074)

0.756 
(0.108)

Baccalaureate STEM 1.254 
(0.206)

1.023 
(0.226)

1.367** 
(0.154)

1.230 
(0.184)

Note. Standard errors in parentheses. Sampling weights are applied to pre-weighting calculation. The weight for each 
observation included in the post-weighting estimation was a product term between the inverse probability 
treatment weight and the sampling weight, divided by the mean of such product terms. n = 11540. 

***p < .001, **p < .01, *p < .05. 
SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 

2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and 
Student Financial Aid Records Data Collection.
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were 1.367 times more likely to major in STEM at the baccalaureate level rather 
than non-STEM at the baccalaureate level (  p = .006), and 0.827 times as likely to 
major in non-STEM at the sub-baccalaureate level than non-STEM at the bacca
laureate level (  p = .035).

No statistically significant relationship at the .05 level was detected between 
DE course-taking in Math/Science and STEM major choice across award levels. 
In supplemental analyses (as shown in Appendix C), we excluded 3,450 dually 
enrolled students in any non-Math/Science subject from the sample to directly 
compare students’ STEM access between students taking DE courses in Math/ 
Science and students with no DE course-taking at all. The weighted model 
specifications suggested that, compared with students with no DE course- 
taking, students taking DE courses in Math/Science were 1.544 times more 
likely to major in STEM (p = .004), 1.469 times more likely to major in STEM 
at the baccalaureate level rather than non-STEM at the baccalaureate level 
(p = .015), and 0.682 times as likely to major in non-STEM at the sub- 
baccalaureate level than non-STEM at the baccalaureate level (p = .012).

The sub-sample analyses suggested that the relationship between DE 
course-taking and STEM major choice may vary by students’ sociodemo
graphic characteristics (as shown in Table 4). While the positive relationship 
between DE course-taking and STEM major choice remained to be signifi
cantly positive for most subgroups of students, it was not statistically signifi
cant for the female and low-income subgroups as well as students of color 
when Asian students were excluded. DE course-taking in Math/Science was 
only positively related to students’ STEM major choice for students of color 
(including Asian) and continuing-generation students but not statistically 
significant for other subgroup analyses. DE course-taking seemed to encou
rage certain student groups to major in STEM at the baccalaureate level, while 
discouraging some other student groups from majoring in non-STEM at the 
sub-baccalaureate level. It is worth noting that the odds ratio should be 
interpreted as comparisons between the treatment group and the control 
group within the subgroup; coefficients and significance tests should not be 
directly compared between subgroups. We discuss statistically significant 
findings on STEM award levels by subgroup specifically.

For the subgroup of male students (as presented in Panel A of Table 4), 
compared with male students who did not take DE courses, male students 
with DE courses were 1.431 times more likely to major in STEM (p = .012). 
For the racial subgroups (as presented in Panel B of Table 4), White 
students who took any DE courses were 1.321 times more likely to major 
in STEM (p = .035) and 27.1% less likely to major in non-STEM at the sub- 
baccalaureate level (odds ratio = 0.729, p = .005). For students of color 
(including Asian students), those who took any DE courses were 1.428 
times more likely to major in STEM (p = .035) and 1.557 times more likely 
to major in STEM at the baccalaureate level (p = .015). Compared with 
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students of color with no DE course-taking in Math/Science, students of 
color with DE course-taking in Math/Science are 1.911 times more likely to 
major in STEM than in non-STEM (p = .007), 1.782 times in STEM at the 
baccalaureate level (p = .019) than non-STEM at the baccalaureate level, but 
only 0.553 times as likely to major in non-STEM at the sub-baccalaureate 
level as opposed to non-STEM at the baccalaureate level (p = .020). 
However, after excluding Asian students from the students of color sub
group, DE course-taking was only positively associated with students’ 
probability of majoring in STEM at the baccalaureate level (odds ratio =  
1.670, p = .029).

For the income-based subgroups (as presented in Panel C of Table 4), DE 
students with higher family income were 1.450 times more likely to major in 
STEM, when compared to non-DE students with higher family income (p  
= .002). Particularly, taking DE courses was positively associated with the 
probability of majoring in STEM at the baccalaureate level (odds ratio =  
1.384, p = .009), but negatively associated with the probability of majoring in 
non-STEM at the sub-baccalaureate level (odds ratio = 0.805, p = .033), as 
opposed to non-STEM at the baccalaureate level for the students with higher 
family income. For the final set of subgroups based on first-generation status 
(as presented in Panel D of Table 4), DE course-taking was positively asso
ciated with students’ STEM major choice regardless of their first-generation 
status. First-generation students with DE courses were 74.5% more likely to 
major in STEM when compared with first-generation students without DE 
courses (odds ratio = 1.745, p = .043). First-generation DE students were 1.944 
times more likely to major in STEM at the baccalaureate level (p = .039) as 
opposed to non-STEM at the baccalaureate level. Continuing-generation 
students with DE courses were 35.1% more likely to major in STEM when 
compared with continuing-generation students without DE courses (p = .012), 
and 1.320 times more likely to major in STEM at the baccalaureate level 
(p = .028) as opposed to non-STEM at the baccalaureate level. DE course- 
taking in Math/Science was only significantly related to the STEM major 
choice in general for continuing-generation students (odds ratio = 1.403, 
p = .04). All results are summarized and presented in Appendix E.

Discussion

Using the STEM Pathways framework, this study examined the impact of DE 
course-taking on college students’ major choice in STEM fields, providing 
evidence-based, generalizable implications for practices to support STEM 
success, especially for traditionally underrepresented students. The findings 
suggest that taking DE courses is positively associated with a 1.38 times 
probability of majoring in STEM, especially at the baccalaureate level. Like 
other programs offering high school students to earn college credits (e.g., AP 
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credits), taking DE courses also supports college students’ STEM success 
(Barnett, 2018; Smith et al., 2018; Zinth, 2018). This positive relationship 
may be attributed to how DE programs provide an additional access point to 
college-level courses and learning experiences for high school students with 
both a college environment and academic expectations from college faculty 
(Karp, 2012; Ozmun, 2013; Robinson et al., 2019; Zinth & Barnett, 2018). This 
finding further emphasized the importance of equal DE access to broaden 
STEM participation to better support traditionally underrepresented students 
(Taylor et al., 2022).

Focusing on students’ diverse STEM pathways, the current study empha
sizes the balance between broadening STEM participation and normalizing 
students’ diverse academic trajectories beyond the conventional baccalaureate 
programs. Our findings indicated that not only is DE course-taking associated 
with an increased probability of majoring in STEM at the baccalaureate level, 
but it also decreases students’ probability of majoring in a non-STEM field at 
the sub-baccalaureate level, relative to students with no DE course-taking 
experiences. However, we did not detect consistent evidence of the relation
ship between DE course-taking and majoring in STEM at the sub- 
baccalaureate level. This null finding aligns with earlier work on DE’s overall 
stronger influence on students’ enrollment at four-year colleges, as opposed to 
two-year colleges (Hemelt et al., 2020; Lee et al., 2022). It further highlights the 
importance to understand how DE participation influences students’ STEM 
outcomes at both sub-baccalaureate and baccalaureate levels (Plasman et al., 
2017) as well as the role sub-baccalaureate programs (e.g., CTE programs) play 
in closing the STEM success gap (Hamilton et al., 2015; Yoon & Strobel, 2017). 
Practitioners and policymakers should be aware that one way to remediate the 
inequity at the postsecondary level is to normalize the different academic 
pathways in STEM fields, such as offering stackable credentials to intentionally 
design sub-baccalaureate programs and provide students with multiple access 
points to the STEM pathways (Bohn & McConville, 2018).

The positive relationship between DE course-taking in Math/Science and 
STEM major choice was not statistically significant, when compared with 
students with no DE course or with DE courses in a non-Math/Science 
subject. In supplemental analyses when the control group only included 
students with no DE course (as shown in Appendix C), our findings on DE 
course-taking in Math/Science are consistent with the main analyses and 
prior studies on how students’ course-taking in advanced math and science 
courses (i.e., the direction of academic momentum) may predict their 
major selection in STEM (Card & Payne, 2017; Hemelt et al., 2020; Kim 
et al., 2015; Minaya, 2021). It is possible that individuals’ DE coursework in 
Math/Science fulfills the general education requirement but does not meet 
specific academic requirements of STEM majors. Take Texas for example, 
math DE courses ranged between general college-level math (e.g., college 
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algebra) to calculus (Texas Education Agency, 2011; The University of 
Texas System, 2018). To declare a STEM major at the sub-baccalaureate 
level, a satisfactory performance (i.e., B or above) in DE college algebra is 
sufficient (Dallas College, n.d.). To declare a STEM major at the bacca
laureate level, a satisfactory performance in DE college algebra is not 
sufficient but DE calculus is (The University of Texas at Austin, n.d.). 
That is, fundamental DE math courses (e.g., college algebra) can be used 
to fulfill the general education requirements in non-STEM disciplines, but 
only advanced DE math courses (e.g., calculus) count toward required math 
courses in STEM majors. Since it is beyond the scope of our study to 
examine the differences between DE courses in non-Math/Science and DE 
courses in Math/Science or the level of DE courses, future research can use 
course-level data to examine if more advanced Math/Science courses which 
fulfill STEM degree plan requirements have a stronger effect on students’ 
STEM major choice. Because DE course-taking is positively related to 
STEM major choice, especially at the baccalaureate level, researchers in 
the future should explore the reasons why students take such courses, and 
whether and how DE in Math/Science effectively influences students’ moti
vation, interest, or aspiration for STEM majors and career (Wang, 2013a).

Finally, the subgroup analyses revealed how the relationship between DE 
course-taking and STEM outcomes varies across different student groups, 
depicting a complex picture of serving the diverse student population with 
DE programs. This finding reflects concerns over the role DE plays in educa
tional equity and social justice (Taylor et al., 2022). Specifically, DE course- 
taking can reinstate educational inequity by benefitting the overrepresented 
student population in STEM rather than certain underrepresented student 
groups and further exacerbates the inequities in the STEM field (Hardy & 
Katsinas, 2010, Wang, 2016). For instance, students with higher family income 
backgrounds tend to benefit more from DE course-taking with a higher like
lihood of majoring in STEM at both baccalaureate and sub-baccalaureate 
levels and a lower likelihood of majoring in non-STEM at the sub- 
baccalaureate level than their counterparts without taking and DE courses. 
On the contrary, students with low family income backgrounds who took DE 
courses did not experience any significantly changed likelihood of majoring in 
STEM at any level. In another example, for the pooled sample, White students 
subsample, and non-White students subsample (including Asian students), 
dually enrolled students are more likely to major in STEM than their counter
parts without DE experiences. However, dually enrolled students of color 
(excluding Asian students) and their non-DE counterparts do not differ in 
the probability of majoring in STEM. These findings imply the limit of DE’s 
influence on enrolling students of all backgrounds in STEM disciplines despite 
the overall positive relationship with STEM major choice.
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As we joined existing literature that SES is related to STEM major choice 
and success (Evans et al., 2020; Jefferies et al., 2020), students with lower 
SES backgrounds can be discouraged from majoring in STEM via a lack of 
sustainable resources and decreasing students’ expectation of success in 
STEM fields, which in turn prevents them from majoring in STEM (Perez- 
Felkner et al., 2019). Following the STEM pathway model, the systemic 
barriers historically underrepresented students experience remain salient 
predictors for students’ STEM access in postsecondary education. Future 
research should unpack whether and how DE learning experience can 
provide positive feedback to students’ expectancy of success in STEM 
fields. To further identify the effectiveness of DE programs on postsecond
ary STEM success, researchers are also encouraged to focus on students’ 
participation in DE and their pursuit of STEM majors and how it interacts 
with their lived experience and individual contexts facing structural 
barriers.

Notes

1. Specifically, the multiple imputation procedure addressed missing values in the control 
variables: race/ethnicity (3.8%), SES (6.8%), high school GPA (7.4%), educational 
expectations (7.5%), highest math level (7.2%), the number of AP/IB credits (4.4%), 
and intent to major in STEM (6.9%), respectively.

2. Because the HSLS data does not properly report gender identity (Marine, 2011), 
we use students’ sex assigned at birth as a binary indicator to create the 
subgroups.

3. Due to the relatively small and unbalanced number of treated observations in 
each racial/ethnic group, we were unable to conduct subgroup analyses using 
propensity score models based on individual racial/ethnic groups. Thus, we had 
to aggregate racially minoritized groups based on their student-of-color status. 
We first defined students of color as students who identify as non-White. In 
additional analyses, we excluded Asian American students from the sub-sample 
given their relatively high performance in STEM fields (National Center of 
Educational Statistics [NCES], 2022).

4. The readers should be cautioned that, due to the treatment transformation, it is 
challenging to interpret the coefficients in the context of DE credits earned. 
Additionally, these commands are not supported by the svy prefix to account for 
complex survey data, the dose-response model only provides suggestive evidence, 
without generalization to the broader population. Given these methodological chal
lenges, we present the dose-response findings as supplemental analyses in Appendix 
D.

Disclosure statement

No potential conflict of interest was reported by the author(s).

626 X. HU AND H.-Y. CHAN



Funding

This research was supported by a grant from the American Educational Research Association 
which receives funds for its “AERA Grants Program” from the National Science Foundation 
under NSF award NSF-DRL #1749275. Opinions reflect those of the author and do not 
necessarily reflect those AERA or NSF.

ORCID

Xiaodan Hu http://orcid.org/0000-0002-8648-0601
Hsun-Yu Chan http://orcid.org/0000-0001-5236-1009

References

Adelman, C. (1999). Answers in the tool box: Academic intensity, attendance patterns, and 
bachelor’s degree attainment. U.S. Department of Education.

Adelman, C. (2006). The toolbox revisited: Paths to degree completion from high school through 
college. U.S. Department of Education.

An, B. P. (2013). The influence of dual enrollment on academic performance and college 
readiness: Differences by socioeconomic status. Research in Higher Education, 54(4), 
407–432. https://doi.org/10.1007/s11162-012-9278-z 

An, B. P., & Taylor, J. L. (2015). Are dual enrollment students college ready? Evidence from the 
wabash national study of liberal arts education. Education Policy Analysis Archives, 23(58), 
1–26. https://doi.org/10.14507/epaa.v23.1781 

An, B. P., & Taylor, J. L. (2019). A review of empirical studies on dual enrollment: Assessing 
educational outcomes. In M. B. Paulsen & L. W. Perna (Eds.), Higher education: Handbook 
of theory and research (Vol. 34, pp. 99–151). Springer International Publishing. https://doi. 
org/10.1007/978-3-030-03457-3_3 

Baraldi, A. N., & Enders, C. K. (2010). An introduction to modern missing data analyses. 
Journal of School Psychology, 48(1), 5–37. https://doi.org/10.1016/j.jsp.2009.10.001 

Barnett, E. (2018). Differentiated dual enrollment and other collegiate experiences: Lessons from 
the STEM early college expansion partnership. Community College Research Center. http:// 
www.jff.org/publications/differentiated-dual-enrollment-and-other-collegiate-experiences 

Beyer, S. (2014). Why are women underrepresented in computer science? Gender differences 
in stereotypes, self- efficacy, values, and interests and predictors of future CS course-taking 
and grades. Computer Science Education, 24(2–3), 153–192. https://doi.org/10.1080/ 
08993408.2014.963363 

Bia, M., & Mattei, A. (2008). A stata package for the estimation of the dose-response function 
through adjustment for the generalized propensity score. The Stata Journal, 8(3), 354–373. 
https://doi.org/10.1177/1536867X0800800303 

Bohn, S., & McConville, S. (2018). Stackable credentials in career education at California 
community colleges. Public Policy Institute of California.

Byars‐Winston, A. (2014). Toward a framework for multicultural STEM‐focused career inter
ventions. The Career Development Quarterly, 62(4), 340–357. https://doi.org/10.1002/j.2161- 
0045.2014.00087.x 

Caliendo, M., & Kopeinig, S. (2008). Some practical guidance for the implementation of 
propensity score matching. Journal of Economic Surveys, 22(1), 31–72. https://doi.org/10. 
1111/j.1467-6419.2007.00527.x 

THE JOURNAL OF HIGHER EDUCATION 627

https://doi.org/10.1007/s11162-012-9278-z
https://doi.org/10.14507/epaa.v23.1781
https://doi.org/10.1007/978-3-030-03457-3_3
https://doi.org/10.1007/978-3-030-03457-3_3
https://doi.org/10.1016/j.jsp.2009.10.001
http://www.jff.org/publications/differentiated-dual-enrollment-and-other-collegiate-experiences
http://www.jff.org/publications/differentiated-dual-enrollment-and-other-collegiate-experiences
https://doi.org/10.1080/08993408.2014.963363
https://doi.org/10.1080/08993408.2014.963363
https://doi.org/10.1177/1536867X0800800303
https://doi.org/10.1002/j.2161-0045.2014.00087.x
https://doi.org/10.1002/j.2161-0045.2014.00087.x
https://doi.org/10.1111/j.1467-6419.2007.00527.x
https://doi.org/10.1111/j.1467-6419.2007.00527.x


Cannady, M. A., Greenwald, E., & Harris, K. N. (2014). Problematizing the STEM pipeline 
metaphor: Is the STEM pipeline metaphor serving our students and the STEM workforce? 
Science Education, 98(3), 443–460. https://doi.org/10.1002/sce.21108 

Card, D., & Payne, A. A. (2017). High school choices and the gender gap in STEM (No. w23769). 
National Bureau of Economic Research.

Cook, A. L., Hayden, L. A., Tyrrell, R., & McCann, A. G. (2021). “Doing everything on my 
own”: Examining African American, Latina/o, and biracial students’ experiences with school 
counselors in promoting academic and college readiness. Urban Education, 56(10), 
1637–1667. https://doi.org/10.1177/0042085918772624 

Cowan, J., & Goldhaber, D. (2015). How much of a “running start” do dual enrollment 
programs provide students? The Review of Higher Education, 38(3), 425–460. https://doi. 
org/10.1353/rhe.2015.0018 

Crisp, G., Nora, A., & Taggart, A. (2009). Student characteristics, pre-college, college, and 
environmental factors as predictors of majoring in and earning a STEM degree: An analysis 
of students attending a hispanic serving institution. American Educational Research Journal, 
46(4), 924–942. https://doi.org/10.3102/0002831209349460 

Dallas College. (n.d.). 2022-2023 catalog: Associate of arts, associate of science and associate of arts 
in teaching degrees. https://www1.dcccd.edu/catalog/academicdegrees/asd.cfm?loc=econ 

Dunbar, S. (2006). Enrollment flow to and from courses below calculus. In N. B. Hastings, 
F. S. Gordon, S. P. Gordon, & J. Narayan (Eds.), A fresh state for collegiate mathematics: 
Rethinking the courses below calculus (pp. 28–42). Mathematical Association of America. 
https://doi.org/10.5948/UPO9781614443025.007 

Education Commission of the States. (2022). Dual/concurrent enrollment policies: State profiles. 
https://www.ecs.org/dual-concurrent-enrollment-policies-state-profiles/ 

Evans, C. A., Chen, R., & Hudes, R. P. (2020). Understanding determinants for STEM major 
choice among students beginning community college. Community College Review, 48(3), 
227–251. https://doi.org/10.1177/0091552120917214 

Fayer, S., Lacey, A., & Watson, A. (2017). STEM occupations: Past, present, and future. The U.S. 
Bureau of Labor Statistics.

Fealing, K. H., Lai, Y., & Myers, S. L. (2015). Pathways vs. pipelines to broadening participation 
in the STEM workforce. Journal of Women and Minorities in Science and Engineering, 21(4), 
271–293. https://doi.org/10.1615/JWomenMinorScienEng.2015004760 

Fouad, N. A., Hackett, G., Smith, P. L., Kantamneni, N., Fitzpatrick, M., Haag, S., & Spencer, D. 
(2010). Barriers and supports for continuing in mathematics and science: Gender and 
educational level differences. Journal of Vocational Behavior, 77(3), 361–373. https://doi. 
org/10.1016/j.jvb.2010.06.004 

Fouad, N. A., & Santana, M. C. (2017). SCCT and underrepresented populations in STEM 
fields: Moving the needle. Journal of Career Assessment, 25(1), 24–39. https://doi.org/10. 
1177/1069072716658324 

Funk, C., & Parker, K. (2018). Diversity in the STEM workforce varies widely across jobs. Pew 
Research Center.

Giani, M., Alexander, C., & Reyes, P. (2014). Exploring variation in the impact of dual-credit 
coursework on postsecondary outcomes: A quasi-experimental analysis of Texas students. 
The High School Journal, 97(4), 200–218. https://doi.org/10.1353/hsj.2014.0007 

Graham, J. W. (2009). Missing data analysis: Making it work in the real world. Annual Review 
of Psychology, 60(1), 549–576. https://doi.org/10.1146/annurev.psych.58.110405.085530 

Groenwold, R. H. H., White, I. R., Donders, A. R. T., Carpenter, J. R., Altman, D. G., & 
Moons, K. G. M. (2012). Missing covariate data in clinical research: When and when not to 
use the missing-indicator method for analysis. Canadian Medical Association Journal, 184 
(11), 1265–1269. https://doi.org/10.1503/cmaj.110977 

628 X. HU AND H.-Y. CHAN

https://doi.org/10.1002/sce.21108
https://doi.org/10.1177/0042085918772624
https://doi.org/10.1353/rhe.2015.0018
https://doi.org/10.1353/rhe.2015.0018
https://doi.org/10.3102/0002831209349460
https://www1.dcccd.edu/catalog/academicdegrees/asd.cfm?loc=econ
https://doi.org/10.5948/UPO9781614443025.007
https://www.ecs.org/dual-concurrent-enrollment-policies-state-profiles/
https://doi.org/10.1177/0091552120917214
https://doi.org/10.1615/JWomenMinorScienEng.2015004760
https://doi.org/10.1016/j.jvb.2010.06.004
https://doi.org/10.1016/j.jvb.2010.06.004
https://doi.org/10.1177/1069072716658324
https://doi.org/10.1177/1069072716658324
https://doi.org/10.1353/hsj.2014.0007
https://doi.org/10.1146/annurev.psych.58.110405.085530
https://doi.org/10.1503/cmaj.110977


Grossman, J. M., & Porche, M. V. (2014). Perceived gender and racial/ethnic barriers to STEM 
success. Urban Education, 49(6), 698–727. https://doi.org/10.1177/0042085913481364 

Guo, S., & Fraser, M. (2015). Propensity score analysis (2nd ed.). Sage.
Hamilton, A. F., Malin, J., & Hackmann, D. (2015). Racial/Ethnic and gender equity patterns in 

Illinois high school career and technical education coursework. Journal of Career and 
Technical Education, 30(1), 29–52. https://doi.org/10.21061/jcte.v30i1.712 

Hardy, D. E., & Katsinas, S. G. (2010). Changing STEM associate’s degree production in public 
associate’s colleges from 1985 to 2005: Exploring institutional type, gender, and field of 
study. Journal of Women and Minorities in Science and Engineering, 16(1), 7–30. https://doi. 
org/10.1615/JWomenMinorScienEng.v16.i1.20 

Hazari, Z., Sadler, P. M., & Sonnert, G. (2013). The science identity of college students: 
A gender and race/ethnicity comparison. Journal of College Science Teaching, 42(5), 82–91.

Hemelt, S. W., Schwartz, N. L., & Dynarski, S. M. (2020). Dual‐credit courses and the road to 
college: Experimental evidence from Tennessee. Journal of Policy Analysis and Management, 
39(3), 686–719. https://doi.org/10.1002/pam.22180 

Hirano, K., & Imbens, G. W. (2004). The propensity score with continuous treatments. In 
A. Gelman & X.-L. Meng (Eds.), Applied bayesian modeling and causal inference from 
incomplete-data perspectives (pp. 73–84). Wiley. https://doi.org/10.1002/0470090456.ch7 

Holland, D., Lachicotte, W., Skinner, D., & Cain, C. (1998). Identity and agency in cultural 
worlds. Harvard University Press.

Horton, N. J., & Lipsitz, S. R. (2001). Multiple imputation in practice. The American 
Statistician, 55(3), 244–254. https://doi.org/10.1198/000313001317098266 

Hughes, R. P., Kimball, E. W., & Koricich, A. (2019). The dual commodification of college- 
going: Individual and institutional influences on access and choice. In M. B. Paulsen & 
L. W. Perna (Eds.), Higher education: Handbook of theory and research (Vol. 34, pp. 
415–477). Springer International Publishing. https://doi.org/10.1007/978-3-030-03457-3_10 

Jeffries, D., Curtis, D. D., & Conner, L. N. (2020). Student factors influencing STEM Subject 
choice in year 12: A structural equation model using PISA/LSAY data. International Journal 
of Science & Mathematics Education, 18(3), 441–461. https://doi.org/10.1007/s10763-019- 
09972-5 

Karp, M. M. (2012). “I don’t know, I’ve never been to college!” Dual enrollment as a college 
readiness strategy. New Directions for Higher Education, 2012(158), 21–28.https://doi.org/ 
10.1002/he.20011 

Kim, J., Kim, J., DesJardins, S. L., & McCall, B. P. (2015). Completing algebra II in high school: 
Does it increase college access and success? The Journal of Higher Education, 86(4), 628–662. 
https://doi.org/10.1353/jhe.2015.0018 

Landivar, L. C. (2013). Disparities in STEM employment by sex, race, and Hispanic origin. 
Education Review, 29(6), 911–922.

Lee, J., Fernandez, F., Ro, H. K., & Suh, H. (2022). Does dual enrollment influence high school 
graduation, college enrollment, choice, and persistence? Research in Higher Education, 63 
(5), 825–848. https://doi.org/10.1007/s11162-021-09667-3 

Leite, W. (2017). Practical propensity score methods using R. SAGE Publications, Inc. https:// 
doi.org/10.4135/9781071802854 

Lent, R. W., & Brown, S. D. (2013). Social cognitive model of career self-management: Toward 
a unifying view of adaptive career behavior across the life span. Journal of Counseling 
Psychology, 60(4), 557–568. https://doi.org/10.1037/a0033446 

Lent, R. W., Miller, M. J., Smith, P. E., Watford, B. A., Hui, K., & Lim, R. H. (2015). Social 
cognitive model of adjustment to engineering majors: Longitudinal test across gender and 
race/ethnicity. Journal of Vocational Behavior, 86(C), 77–85. https://doi.org/10.1016/j.jvb. 
2014.11.004 

THE JOURNAL OF HIGHER EDUCATION 629

https://doi.org/10.1177/0042085913481364
https://doi.org/10.21061/jcte.v30i1.712
https://doi.org/10.1615/JWomenMinorScienEng.v16.i1.20
https://doi.org/10.1615/JWomenMinorScienEng.v16.i1.20
https://doi.org/10.1002/pam.22180
https://doi.org/10.1002/0470090456.ch7
https://doi.org/10.1198/000313001317098266
https://doi.org/10.1007/978-3-030-03457-3_10
https://doi.org/10.1007/s10763-019-09972-5
https://doi.org/10.1007/s10763-019-09972-5
https://doi.org/10.1002/he.20011
https://doi.org/10.1002/he.20011
https://doi.org/10.1353/jhe.2015.0018
https://doi.org/10.1007/s11162-021-09667-3
https://doi.org/10.4135/9781071802854
https://doi.org/10.4135/9781071802854
https://doi.org/10.1037/a0033446
https://doi.org/10.1016/j.jvb.2014.11.004
https://doi.org/10.1016/j.jvb.2014.11.004


Linden, A., Mathur, M. B., & VanderWeele, T. J. (2020). Conducting sensitivity analysis for 
unmeasured confounding in observational studies using E-values: The evalue package. The 
Stata Journal, 20(1), 162–175. https://doi.org/10.1177/1536867X20909696 

Lindstrom, L., Lind, J., Beno, C., Gee, K. A., & Hirano, K. (2022). Career and college readiness 
for underserved youth: Educator and youth perspectives. Youth & Society, 54(2), 221–239. 
https://doi.org/10.1177/0044118X20977004 

Little, R. J. A. (1988). A test of missing completely at random for multivariate data with missing 
values. Journal of the American Statistical Association, 83(404), 1198–1202. https://doi.org/ 
10.1080/01621459.1988.10478722 

Majors, A. T. (2019). From the editorial board: College readiness: A critical race theory 
perspective. The High School Journal, 102(3), 183–188. https://doi.org/10.1353/hsj.2019.0005 

Marine, S. B. (2011). Stonewall’s legacy: Bisexual, gay, lesbian, and transgender students in 
higher education: AEHE (Vol. 152). John Wiley & Sons.

Michelmore, K., & Sassler, S. (2016). Explaining the gender wage gap in STEM: Does field sex 
composition matter? RSF: The Russell Sage Foundation Journal of the Social Sciences, 2(4), 
194–215. https://doi.org/10.7758/rsf.2016.2.4.07 

Miller, T., Kosiewicz, H., Tanenbaum, C., Atchison, D., Knight, D., Ratway, B., Delhommer, S., 
& Levin, J. (2018). Dual-credit education programs in Texas: Phase II. American Institutes for 
Research.

Minaya, V. (2021). Can dual enrollment algebra reduce racial/ethnic gaps in early STEM 
outcomes? Evidence from Florida. Community College Research Center.

National Center of Educational Statistics. (2022). Undergraduate degree fields. https://nces.ed. 
gov/programs/coe/pdf/2022/cta_508.pdf 

National Science Foundation. (2010). Scientists and engineers statistical data system. https:// 
www.nsf.gov/statistics/sestat/ 

Ozmun, C. D. (2013). College and academic self-efficacy as antecedents for high school 
dual-credit enrollment. Community College Enterprise, 19(1), 61–72.

Parker, P. D., Schoon, I., Tsai, Y.-M., Nagy, G., Trautwein, U., & Eccles, J. S. (2012). 
Achievement, agency, gender, and socioeconomic background as predictors of postschool 
choices: A multicontext study. Developmental Psychology, 48(6), 1629–1642. https://doi.org/ 
10.1037/a0029167 

Paulsen, M. B. (2001). The economics of human capital and investment in higher education. In 
M. B. Paulsen & J. C. Smart (Eds.), The Finance of higher education: Theory, research, policy, 
and practice (pp. 55–94). Agathon Press.

Perez-Felkner, L. (2015). Perceptions and resilience in underrepresented students’ pathways to 
college. Teachers College Record, 117(8), 1–60. https://doi.org/10.1177/016146811511700806 

Perez-Felkner, L., Thomas, K., Nix, S., Hopkins, J., & D’Sa, M. (2019). Are 2-Year colleges the 
key? Institutional variation and the gender gap in undergraduate STEM degrees. The Journal 
of Higher Education, 90(2), 181–209. https://doi.org/10.1080/00221546.2018.1486641 

Perna, L. W. (2006). Studying college access and choice: A proposed conceptual model. In 
J. C. Smart (Ed.), Higher education: Handbook of theory and research (Vol. 21, pp. 99–157). 
Springer. https://doi.org/10.1007/1-4020-4512-3_3 

Pierszalowski, S., Bouwma-Gearhart, J., & Marlow, L. (2021). A systematic review of barriers to 
accessing undergraduate research for STEM students: Problematizing under-researched 
factors for students of color. Social Sciences, 10(9), 328. https://doi.org/10.3390/ 
socsci10090328 

Plasman, J. S., Gottfried, M., & Sublett, C. (2017). Are there academic CTE cluster pipelines? 
Linking high school CTE coursetaking and postsecondary credentials. Career and Technical 
Education Research, 42(3), 219–242. https://doi.org/10.5328/cter42.3.219 

630 X. HU AND H.-Y. CHAN

https://doi.org/10.1177/1536867X20909696
https://doi.org/10.1177/0044118X20977004
https://doi.org/10.1080/01621459.1988.10478722
https://doi.org/10.1080/01621459.1988.10478722
https://doi.org/10.1353/hsj.2019.0005
https://doi.org/10.7758/rsf.2016.2.4.07
https://nces.ed.gov/programs/coe/pdf/2022/cta_508.pdf
https://nces.ed.gov/programs/coe/pdf/2022/cta_508.pdf
https://www.nsf.gov/statistics/sestat/
https://www.nsf.gov/statistics/sestat/
https://doi.org/10.1037/a0029167
https://doi.org/10.1037/a0029167
https://doi.org/10.1177/016146811511700806
https://doi.org/10.1080/00221546.2018.1486641
https://doi.org/10.1007/1-4020-4512-3_3
https://doi.org/10.3390/socsci10090328
https://doi.org/10.3390/socsci10090328
https://doi.org/10.5328/cter42.3.219


Powell, M., Hull, D., & Beaujean, A. (2019). Propensity score matching for education data: 
Worked examples. The Journal of Experimental Education, 88(1), 145–164. https://doi.org/ 
10.1080/00220973.2018.1541850 

Ridgeway, G., Kovalchik, S. A., Griffin, B. A., & Kabeto, M. U. (2015). Propensity score analysis 
with survey weighted data. Journal of Causal Inference, 3(2), 237–249. https://doi.org/10. 
1515/jci-2014-0039 

Robinson, K. A., Perez, T., Carmel, J. H., & Linnenbrink-Garcia, L. (2019). Science identity 
development trajectories in a gateway college chemistry course: Predictors and relations to 
achievement and STEM pursuit. Contemporary Educational Psychology, 56, 180–192. https:// 
doi.org/10.1016/j.cedpsych.2019.01.004 

Rubin, D. B. (2001). Using propensity scores to help design observational studies: Application 
to the tobacco litigation. Health Services and Outcomes Research Methodology, 2(3/4), 
169–188. https://doi.org/10.1023/A:1020363010465 

Shadish, W. R., Clark, M. H., & Steiner, P. M. (2008). Can nonrandomized experiments yield 
accurate answers? A randomized experiment comparing random and nonrandom 
assignments. Journal of the American Statistical Association, 103(484), 1334–1356. https:// 
doi.org/10.1198/016214508000000733 

Sithole, A., Chiyaka, E. T., McCarthy, P., Mupinga, D. M., Bucklein, B. K., & Kibirige, J. (2017). 
Student attraction, persistence and retention in STEM programs: Successes and continuing 
challenges. Higher Education Studies, 7(1), 46–59.

Smith, K., Jagesic, S., Wyatt, J., & Ewing, M. (2018). AP STEM participation and postsecondary 
STEM outcomes: Focus on underrepresented minority, first-generation, and female students. 
College Board. https://files.eric.ed.gov/fulltext/ED581514.pdf 

Sublett, C., & Plasman, J. S. (2017). How does applied STEM coursework relate to mathematics and 
science self-efficacy among high school students? Evidence from a national sample. Journal of 
Career and Technical Education, 32(1), 29–50. https://doi.org/10.21061/jcte.v32i1.1589 

Sullivan, G. M., & Feinn, R. (2012). Using effect size—Or why the P value is not enough. 
Journal of Graduate Medical Education, 4(3), 279. https://doi.org/10.4300/JGME-D-12- 
00156.1 

Taylor, J. L., Allen, T. O., An, B. P., Denecker, C., Edmunds, J. A., Fink, J., Giani, M. S., 
Hodara, M., Hu, X., Tobolowsky, B. F., & Chen, W. (2022). Research priorities for advancing 
equitable dual enrollment policy and practice. University of Utah.

Texas Education Agency. (2011). Research study of Texas dual credit programs and courses. 
https://www.air.org/sites/default/files/downloads/report/TX_Dual_Credit_Report_with_ 
appendices_FINAL_ADA_Checked_031711_0.pdf 

Tobolowsky, B. F., & Allen, T. O. (2016). (Un)intended consequences: The first-year college 
experience of female students with dual credits. Journal of the First-Year Experience & 
Students in Transition, 28(1), 27–48.

Trusty, J. (2002). Effects of high school course-taking and other variables on choice of science 
and mathematics college majors. Journal of Counseling & Development, 80(4), 464–474. 
https://doi.org/10.1002/j.1556-6678.2002.tb00213.x 

The University of Texas at Austin. (n.d.). Prerequisites. https://admissions.utexas.edu/explore/ 
prerequisites 

The University of Texas System. (2018). Dual credit study: Dual credit and success in college. 
https://www.utsystem.edu/sites/default/files/documents/ut-system-reports/2018/dual- 
credit-and-success-college/utsystem-dualcreditstudy.pdf 

U.S. Department of Education. (2018). 2015–16 Civil rights data collection STEM course taking. 
https://www2.ed.gov/about/offices/list/ocr/docs/stem-course-taking.pdf 

U.S. Department of Education. (2019). Dual enrollment: Participation and characteristics. 
https://nces.ed.gov/pubs2019/2019176.pdf 

THE JOURNAL OF HIGHER EDUCATION 631

https://doi.org/10.1080/00220973.2018.1541850
https://doi.org/10.1080/00220973.2018.1541850
https://doi.org/10.1515/jci-2014-0039
https://doi.org/10.1515/jci-2014-0039
https://doi.org/10.1016/j.cedpsych.2019.01.004
https://doi.org/10.1016/j.cedpsych.2019.01.004
https://doi.org/10.1023/A:1020363010465
https://doi.org/10.1198/016214508000000733
https://doi.org/10.1198/016214508000000733
https://files.eric.ed.gov/fulltext/ED581514.pdf
https://doi.org/10.21061/jcte.v32i1.1589
https://doi.org/10.4300/JGME-D-12-00156.1
https://doi.org/10.4300/JGME-D-12-00156.1
https://www.air.org/sites/default/files/downloads/report/TX_Dual_Credit_Report_with_appendices_FINAL_ADA_Checked_031711_0.pdf
https://www.air.org/sites/default/files/downloads/report/TX_Dual_Credit_Report_with_appendices_FINAL_ADA_Checked_031711_0.pdf
https://doi.org/10.1002/j.1556-6678.2002.tb00213.x
https://admissions.utexas.edu/explore/prerequisites
https://admissions.utexas.edu/explore/prerequisites
https://www.utsystem.edu/sites/default/files/documents/ut-system-reports/2018/dual-credit-and-success-college/utsystem-dualcreditstudy.pdf
https://www.utsystem.edu/sites/default/files/documents/ut-system-reports/2018/dual-credit-and-success-college/utsystem-dualcreditstudy.pdf
https://www2.ed.gov/about/offices/list/ocr/docs/stem-course-taking.pdf
https://nces.ed.gov/pubs2019/2019176.pdf


U.S. Department of Education. (2020). Dual or concurrent enrollment in public schools in the 
United States. https://nces.ed.gov/pubs2020/2020125.pdf 

U.S. Department of Education. (2021). Number and percentage distribution of science, technol
ogy, engineering, and mathematics (STEM) degrees/certificates conferred by postsecondary 
institutions, by race/ethnicity, level of degree/certificate, and sex of student: 2010-11 through 
2019-20. https://nces.ed.gov/programs/digest/d21/tables/dt21_318.45.asp 

VanderWeele, T. J., & Ding, P. (2017). Sensitivity analysis in observational research: 
Introducing the E-value. Annals of Internal Medicine, 167(4), 268–274. https://doi.org/10. 
7326/M16-2607 

Wang, X. (2013a). Modeling entrance into STEM fields of study among students beginning at 
community colleges and four-year institutions. Research in Higher Education, 54(6), 
664–692. https://doi.org/10.1007/s11162-013-9291-x 

Wang, X. (2013b). Why students choose STEM majors: Motivation, high school learning, and 
postsecondary context of support. American Educational Research Journal, 50(5), 
1081–1121. https://doi.org/10.3102/0002831213488622 

Wang, X. (2016). Course-taking patterns of community college students beginning in STEM: 
Using data mining techniques to reveal viable STEM transfer pathways. Research in Higher 
Education, 57(5), 544–569. https://doi.org/10.1007/s11162-015-9397-4 

Wang, X. (2020). On my own: The challenge and promise of building equitable STEM transfer 
pathways. Harvard Education Press.

Wang, X., Chan, H.-Y., Phelps, L. A., & Washbon, J. I. (2015). Fuel for success: Academic 
momentum as a mediator between dual enrollment and educational outcomes of two-year 
technical college students. Community College Review, 43(2), 165–190. https://doi.org/10. 
1177/0091552115569846 

Wang, X., Chan, H.-Y., Soffa, S. J., & Nachman, B. R. (2017). A nuanced look at women in 
STEM fields at two-year colleges: Factors that shape female students’ transfer intent. 
Frontiers in Psychology, 8(146). https://doi.org/10.3389/fpsyg.2017.00146 

Weeden, K. A., Gelbgiser, D., & Morgan, S. L. (2020). Pipeline dreams: Occupational plans and 
gender differences in STEM major persistence and completion. Sociology of Education, 93 
(4), 297–314. https://doi.org/10.1177/0038040720928484 

Wickersham, K. R. (2020). Where to go from here? Toward a model of 2-year college students’ 
postsecondary pathway selection. Community College Review, 48(2), 107–132. https://doi. 
org/10.1177/0091552119880941 

Wyatt, J. N., Patterson, B. F., & DiGiacomo, F. T. (2015). A comparison of the college outcomes 
of AP and dual enrollment students (research reports 20115-3). College Board. https://files. 
eric.ed.gov/fulltext/ED562578.pdf 

Xu, D., & Dadgar, M. (2017). How effective are community college remedial math courses for 
students with the lowest math skills? Community College Review, 46(1), 62–81. https://doi. 
org/10.1177/0091552117743789 

Yoon, S. Y., & Strobel, J. (2017). Trends in Texas high school student enrollment in mathe
matics, science, and CTE-STEM courses. International Journal of STEM Education, 4(9), 
1–23. https://doi.org/10.1186/s40594-017-0063-6 

Zinth, J. (2015). State approaches to funding dual enrollment. Education Commission of the 
States. http://www.ecs.org/clearinghouse/01/18/92/11892.pdf 

Zinth, J. (2018). STEM dual enrollment: Model policy components. Education Commission of 
the States. https://www.ecs.org/stem-dual-enrollment-model-policy-components/ 

Zinth, J., & Barnett, E. (2018). Rethinking dual enrollment to reach more students. Education 
Commission of the States. https://www.ecs.org/wp-content/uploads/Rethinking_Dual_ 
Enrollment_to_Reach_More_Students.pdf

632 X. HU AND H.-Y. CHAN

https://nces.ed.gov/pubs2020/2020125.pdf
https://nces.ed.gov/programs/digest/d21/tables/dt21_318.45.asp
https://doi.org/10.7326/M16-2607
https://doi.org/10.7326/M16-2607
https://doi.org/10.1007/s11162-013-9291-x
https://doi.org/10.3102/0002831213488622
https://doi.org/10.1007/s11162-015-9397-4
https://doi.org/10.1177/0091552115569846
https://doi.org/10.1177/0091552115569846
https://doi.org/10.3389/fpsyg.2017.00146
https://doi.org/10.1177/0038040720928484
https://doi.org/10.1177/0091552119880941
https://doi.org/10.1177/0091552119880941
https://files.eric.ed.gov/fulltext/ED562578.pdf
https://files.eric.ed.gov/fulltext/ED562578.pdf
https://doi.org/10.1177/0091552117743789
https://doi.org/10.1177/0091552117743789
https://doi.org/10.1186/s40594-017-0063-6
http://www.ecs.org/clearinghouse/01/18/92/11892.pdf
https://www.ecs.org/stem-dual-enrollment-model-policy-components/
https://www.ecs.org/wp-content/uploads/Rethinking_Dual_Enrollment_to_Reach_More_Students.pdf
https://www.ecs.org/wp-content/uploads/Rethinking_Dual_Enrollment_to_Reach_More_Students.pdf


Va
ria

bl
es

Va
ria

bl
e 

Ch
ar

ac
te

ris
tic

s

Ou
tc

om
e 

Va
ria

bl
e

M
aj

or
 in

 S
TE

M
0 

=
 n

on
-S

TE
M

; 1
 =

 S
TE

M
M

aj
or

 in
 S

TE
M

 a
nd

 d
eg

re
e 

le
ve

l
1 

=
 S

ub
-b

ac
ca

la
ur

ea
te

 n
on

-S
TE

M
; 2

 =
 S

ub
-b

ac
ca

la
ur

ea
te

 S
TE

M
; 3

 =
 B

ac
ca

la
ur

ea
te

 n
on

-S
TE

M
;  

4 
=

 B
ac

ca
la

ur
ea

te
 S

TE
M

Tr
ea

tm
en

t
D

E 
pa

rt
ic

ip
at

io
n

0 
=

 N
o 

D
E 

co
ur

se
-t

ak
in

g;
 1

 =
 D

E 
co

ur
se

-t
ak

in
g

N
um

be
r 

of
 t

ot
al

 D
E 

cr
ed

its
 e

ar
ne

d
Co

nt
in

uo
us

Ev
er

 t
oo

k 
D

E 
m

at
h 

an
d/

or
 s

ci
en

ce
 

co
ur

se
s

0 
=

 N
o 

D
E 

m
at

h/
sc

ie
nc

e 
co

ur
se

-t
ak

in
g;

 
1 

=
 E

ve
r 

to
ok

 a
 D

E 
m

at
h/

sc
ie

nc
e 

co
ur

se
Pr

e-
tre

at
m

en
t 

Va
ria

bl
e

So
ci

od
em

og
ra

ph
ic

 
ch

ar
ac

te
ris

tic
s

Se
x

0 
=

 M
al

e;
 1

 =
 F

em
al

e
Ra

ce
1 

=
 W

hi
te

; 2
 =

 B
la

ck
/A

fr
ic

an
 A

m
er

ic
an

; 3
 =

 H
is

pa
ni

c/
La

tin
x;

 4
 =

 A
si

an
 A

m
er

ic
an

 a
nd

 N
at

iv
e 

H
aw

ai
ia

n/
Pa

ci
fic

 
Is

la
nd

er
; 5

 =
 A

m
er

ic
an

 In
di

an
/A

la
sk

a 
N

at
iv

e;
 6

 =
 M

or
e 

th
an

 o
ne

 r
ac

e
So

ci
oe

co
no

m
ic

 s
ta

tu
s 

qu
in

til
e

1 
=

 L
ow

es
t 

qu
in

til
e;

 2
 =

 se
co

nd
 q

ui
nt

ile
; 3

 =
 th

ird
 q

ui
nt

ile
; 4

 =
 fo

ur
th

 q
ui

nt
ile

; 5
 =

 h
ig

he
st

 q
ui

nt
ile

At
 le

as
t 

on
e 

pa
re

nt
 w

or
ki

ng
 in

 S
TE

M
 

oc
cu

pa
tio

n
0 

=
 n

on
-S

TE
M

; 1
 =

 S
TE

M

Ac
ad

em
ic

 m
ea

su
re

s 
in

 9
th

 
gr

ad
e 

hi
gh

 s
ch

oo
l

H
ig

he
st

 d
eg

re
e 

ex
pe

ct
ed

1 
=

 H
S 

an
d 

be
lo

w
; 2

 =
 A

ss
oc

ia
te

 d
eg

re
e;

 3
 =

 B
ac

he
lo

r’s
 d

eg
re

e;
 4

 =
 M

as
te

r’s
 d

eg
re

e;
 5

 =
 D

oc
to

ra
l d

eg
re

e 
or

 
Pr

of
es

si
on

al
 d

eg
re

e;
 6

 =
 d

on
’t 

kn
ow

G
PA

Co
nt

in
uo

us
H

ig
he

st
 le

ve
l o

f m
at

he
m

at
ic

s
0 

=
 N

o 
M

at
h;

 1
 =

 B
as

ic
 m

at
h;

 2
=

 o
th

er
 m

at
h;

 3
 =

 P
re

-a
lg

eb
ra

; 4
 =

 A
lg

eb
ra

 I;
 5

 =
 G

eo
m

et
ry

; 6
 =

 A
lg

eb
ra

 II
; 7

  
=

 T
rig

on
om

et
ry

; 8
 =

 O
th

er
 a

dv
an

ce
d 

m
at

h
H

ig
h 

sc
ho

ol
 c

ha
ra

ct
er

ist
ic

s
W

he
th

er
 h

ig
h 

sc
ho

ol
 p

ro
vi

de
s 

du
al

 
en

ro
llm

en
t 

op
po

rt
un

iti
es

0 
=

 N
o;

 1
 =

 Y
es

Lo
ca

tio
n

1 
=

 c
ity

; 2
 =

 su
bu

rb
; 3

 =
 to

w
n;

 4
 =

 ru
ra

l
Co

nt
ro

l
1 

=
 P

ub
lic

; 2
 =

 P
riv

at
e

Po
st

-tr
ea

tm
en

t V
ar

ia
bl

e
In

te
nt

 t
o 

ch
oo

se
 a

 S
TE

M
 m

aj
or

0 
=

 n
on

-S
TE

M
; 1

 =
 S

TE
M

N
um

be
r 

of
 A

P/
IB

 c
ou

rs
es

 t
ak

en
Co

nt
in

uo
us

A
pp

en
di

x 
A

  

Ch
ar

ac
te

ri
st

ic
s 

of
 V

ar
ia

bl
es

 in
 t

he
 O

ut
co

m
e 

M
od

el

THE JOURNAL OF HIGHER EDUCATION 633



Appendix B  

Descriptive Results for all Variables in the Full Sample

Variable

Pre-weighting Post-weighting

DE Course- 
Taking

No DE Course- 
Taking

DE Course- 
Taking

No DE Course- 
Taking

Female 56.44% 49.69% 57.84% 59.38%

Race/Ethnicity
White 61.90% 51.17% 63.49% 61.73%
Black/African American 9.52% 12.71% 7.61% 7.02%
Hispanic/Latinx 17.45% 21.38% 11.73% 12.44%
Asian American 4.78% 3.91% 9.14% 10.40%
Native Hawaiian/Pacific Islander 0.14% 0.38% 0.35% 0.36%
American Indian/Alaska Native 0.37% 1.17% 0.35% 0.26%
More than one race 5.84% 9.27% 7.33% 7.74%

Socioeconomic Status Quintile
Lowest quintile 11.32% 14.35% 7.23% 7.73%
Second quintile 14.75% 15.31% 12.38% 11.09%
Third quintile 18.66% 19.28% 17.15% 17.15%
Fourth quintile 22.29% 22.50% 23.08% 23.83%
Highest quintile 32.98% 28.56% 40.15% 40.20%
At least one parent working in a STEM 
occupation

24.28% 21.45% 26.58% 29.01%

Highest degree expected
High school graduation or below 5.21% 8.91% 3.22% 3.83%
Associate degree 4.83% 6.83% 4.00% 3.05%
Bachelor’s degree 20.34% 17.77% 18.60% 19.07%
Master’s degree 25.77% 25.24% 27.60% 26.03%
Doctoral degree or Professional degree 27.66% 22.41% 30.13% 31.72%
don’t know 16.19% 18.79% 16.45% 16.31%

Highest level of mathematics
No math 1.00% 4.95% 1.22% 0.86%
Basic math 1.18% 1.50% 0.84% 0.60%
other math 0.44% 1.07% 0.38% 0.48%
Pre-algebra 3.91% 3.28% 2.73% 2.51%
Algebra I 45.68% 48.17% 44.07% 43.30%
Geometry 34.39% 28.84% 35.70% 38.15%
Algebra II 8.00% 6.40% 9.37% 9.72%
Trigonometry 0.89% 0.52% 1.09% 0.66%
Other advanced math 4.50% 5.28% 4.60% 3.73%

9th Grade GPA 3.178 
(0.029)

2.819 
(0.038)

3.275 
(0.016)

3.302 
(0.014)

High school provides dual enrollment 
opportunities

90.40% 89.55% 88.24% 86.28%

High school location
City 27.83% 34.51% 28.32% 28.71%
Suburb 34.40% 35.41% 35.03% 31.94%
Town 11.45% 9.36% 13.20% 13.67%
Rural 26.32% 20.73% 23.46% 25.68%

High school control — Private 7.42% 11.54% 22.37% 20.08%
Intent to choose a STEM major 26.51% 22.56% 29.40% 29.45%
Number of AP/IB courses taken 1.832 

(0.102)
1.696 

(0.085)
1.970 

(0.071)
2.543 

(0.096)
Number of observations 4,640 6,920 4,640 6,920

Standard deviation in parentheses. Sampling weights are applied to pre-weighting calculation. The weight for each 
observation included in the post-weighting estimation was a product term between the inverse probability 
treatment weight and the sampling weight, divided by the mean of such product terms. 

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of 
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and 
Student Financial Aid Records Data Collection.
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Appendix D  

Supplemental Analyses of the Dose-Response Models
Following the same logic of controlling for students’ likelihood of taking DE courses 
when the treatment is dichotomous, the dose-response model controlled for the impacts 
of selection bias to examine the extent to which the probability of choosing a STEM 
major varies with an increase in the number of DE credits earned. Though prior studies 
have indicated that it is important to examine the relationship between the number of 
dual credits and postsecondary outcomes (Giani et al., 2014; Lee et al., 2022; Miller et al., 
2018), no known study has addressed the selection bias derived from students’ likelihood 
of earning a certain number of dual credits in their modeling. As it is challenging to 
interpret our findings in the practical context, future studies should continue to explore 
other methodologically rigorous approaches to identifying the dose-response effect of dual 
enrollment with meaningful practical implications.

Within the sample of students who have ever earned any DE credits (n = 2,130), 
students earned DE credits between 1 and 126 normalized credits (mean = 12 normal
ized credits, mode = 9 normalized credits). Figure D1 depicts the dose-response func
tion, representing the propensity to major in STEM for all values of DE credits earned 
in its zero-skewness log form, along with 95% confidence bands. Descriptively, an 
increase in the number of DE credits seems to be positively associated with 
a student’s probability of majoring in STEM: The slope was steeper as students start 
to accumulate DE credits (i.e., the probability of majoring in STEM increased from 0.24 
to 0.35 when the unit of treatment increased from 10 to 40), and it became flatter with 
more DE credits accumulated (i.e., the probability of majoring in STEM increased from 
0.35 to 0.41 when the unit of treatment increased from 40 to 100). A similar trend was 
found for the probability of majoring in STEM at the baccalaureate level. Additionally, 
students’ probability of enrolling in a non-STEM sub-baccalaureate program decreased 
from 0.19 to 0.15 as they start to accumulate DE credits, but the probability started to 
increase once students accumulated more than 20 units of DE credits in its zero- 
skewness log form. Finally, students’ probability of enrolling in a sub-baccalaureate 
STEM program increased from 0.03 to 0.42 as they start to accumulate DE credits, 
but the probability started to decrease once they accumulated more than 30 units of 
zero-skewness-log-transformed DE credits. However, none of the estimates were statis
tically significant, suggesting that the probability of majoring in STEM with fewer units 
of DE credits (in its zero-skewness log form) was not more or less sensitive to DE 
credits than those with more units of DE credits.
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Building on prior work focusing on the number of DE courses on postsecondary 
outcomes (Giani et al., 2014), our findings indicated that the number of DE credits 
earned is not statistically related to college students’ probability of majoring in STEM, 
once the impact of selection is controlled for. In other words, students that were more 
likely to major in STEM also tended to take more DE courses (i.e., the mass of academic 
momentum). This null finding can also be due to data transformation that the inter
pretation of changes in the outcome is based on the unit of treatment in its zero- 
skewness log form. This suggestive evidence indicates that high schools and colleges 
do not need to overly push high school students to take more DE courses solely to 
broaden STEM access. Even when a student considerably increased the units of DE 
credits earned (from 10 units to 100 units), the probability of majoring in STEM only 
increases by 17 percentage points on average. Especially when students may feel their 
major choice is limited with many earned DE credits and face potential credit loss 
(Taylor et al., 2022; Tobolowsky & Allen, 2016), the risk of earning a large number of 
DE credits in high school can outweigh the benefits. For high school students that intend 
to take only one DE course, one well-designed rigorous DE course, as opposed to the 
large quantity of DE courses, is meaningful for these students to learn both academic 
content and transferrable skills to meet college-level academic demands and develop 
their self-efficacy in STEM fields.

Probability of 
Majoring in STEM 

Probability of Non-
STEM at Sub-

Baccalaureate Level 

Probability of STEM 
at Sub-Baccalaureate 

Level 

Probability of STEM 
at Baccalaureate 

Level 

Confidence Bounds at 95% level.  
Treatment level = The number of dual enrollment credits in the zero-skewness log form 

Figure D1. Estimation and 95% confidence bands of the dose-response function, confidence 
bounds at 95% level. SOURCE: U.S. Department of Education, National Center for Education 
Statistics, High School Longitudinal Study of 2009. Base Year, First Follow-Up, High School 
Transcript Study, and Postsecondary Education Transcript Study and Student Financial Aid 
Records Data Collection.
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