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ABSTRACT ARTICLE HISTORY
Guided by the STEM pathway model, our study hypothesizes that Received 31 July 2022
dual enrollment can serve as an effective strategy to improve and Accepted 12 July 2023
equalize college students’ access to STEM programs. We analyzed KEYWORDS

a nationally representative dataset to disaggregate the influence Dual enrollment: STEM:
of dual enrollment course-taking (i.e. participation, dual credits in college major choice;
Math/Science, number of dual credits) on students’ STEM major sociodemographic
selection, with a focus on traditionally underrepresented stu- background; High School
dents in STEM. We found that taking dual enrollment courses in Longitudinal Study
general is positively associated with the probability of majoring in

STEM, especially at the baccalaureate level. However, taking dual

enrollment courses in Math/Science is not associated with the

probability of majoring in STEM when compared with students

with no dual enrollment courses in Math/Science. The relation-

ship between dual enrollment course-taking and STEM outcomes

varies across different student background groups: It is consis-

tently positive for students of higher household income to major

in STEM but not statistically significant for low-income students.

We discussed practical implications and future research with

a focus on the role dual enrollment plays in advancing postse-

condary STEM access.

Introduction

A critical problem in U.S. postsecondary education is that colleges and uni-
versities do not produce enough graduates in science, technology, engineering,
and mathematics (STEM) to meet the workforce demand (National Science
Foundation [NSF], 2010; Sithole et al., 2017). The number of STEM graduates
is especially low for traditionally underrepresented college students, which are
defined as women, students of color, low-income, and first-generation stu-
dents in the current study. Traditionally underrepresented students are often
less likely to enroll in STEM programs at the postsecondary level, largely due
to systemic barriers which prevent them from realizing their full potential in
STEM (Grossman & Porche, 2014; Hardy & Katsinas, 2010; Pierszalowski
et al., 2021; Wang, 2013b, 2016). For example, Hazari et al. (2013) noted
that STEM students of different gender and race/ethnicity indicated varying
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levels of science identity, and Byars-Winston (2014) emphasized the STEM
equity imperative in career planning for traditionally underrepresented stu-
dents. National research and policy have put priority to broaden and equalize
STEM participation for traditionally underrepresented students and support
their STEM success in postsecondary education (Fayer et al., 2017).

To realize educational success and equity in STEM, feasible and effective
interventions in the secondary-postsecondary nexus are a must. Dual enrollment
(DE), which allows high school students to take college-level courses and earn
college credits while in high school, is a potential strategy to improve and equalize
college students’ access to STEM programs. As of 2022, 48 states and the District
of Columbia have state-level DE policies, but only 31 states mandate every high
school to participate (Education Commission of the States [ECS], 2022). On
average and across states, 82% of public schools offer DE opportunities for
students, and about a third of high school students have been dually enrolled at
some point during high school (U.S. Department of Education [ED], 2019, 2020).
For the development of students’ interest and success in STEM in particular, DE
programs not only support high school students with early access to college-level
STEM resources, but they also serve traditionally underrepresented students by
developing a STEM identity early, accessing postsecondary STEM education while
enrolled in high school, and accumulating course credits and skillsets toward
a STEM degree and career (Barnett, 2018; Ozmun, 2013; Zinth, 2018).

While previous studies have indicated that DE participation has
a generally positive impact on students’ high school graduation, college
matriculation, and college readiness (e.g., An, 2013; An & Taylor, 2015;
Cowan & Goldhaber, 2015), these studies often simplify DE participation
as a binary indicator which obscures students’ varying DE course-taking
patterns. The multifaceted DE participation (e.g., subject area of DE
credits, number of DE credits) needs to be specifically identified and
studied to examine if and how DE course-taking contributes to students’
STEM major selection in postsecondary education. Given the prevalence
of DE programs and the large number of high school students in the
nation that are dually enrolled, the current study uses a nationally repre-
sentative longitudinal dataset to disaggregate the influence of DE course-
taking (i.e., participation, subject areas, number of credits earned) on
students’ STEM major selection in college. Guided by the STEM pathway
model (Cannady et al., 2014; Fealing et al., 2015), this study addresses the
following research questions:

(1) To what extent does DE course-taking (i.e., participation, subject areas,
number of credits earned) influence college students’ major choice in
STEM?

(2) Does the relationship vary across college student groups, in terms of sex,
student-of-color status, low-income status, and first-generation status?
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Literature review
Sociodemographic dispatrities in college and major choice

Individuals’ sociodemographic backgrounds play a significant role in college
and major choice among STEM-aspiring students (Crisp et al., 2009; Hughes
etal., 2019). Out of the 429,298 bachelor’s degrees conferred in STEM fields in
2019-20 academic year, 62.6% were conferred to men students and 37.4%
were conferred to women students (U.S. Department of Education [ED],
2021), continuing to contribute to the long-standing employment and com-
pensation inequity (Michelmore & Sassler, 2016). Similarly, of all the bache-
lor’s degrees conferred to students of a certain race/ethnicity, the percentage of
bachelor’s degrees in STEM varies. Only 14% of Black bachelor’s degree
holders, 17% of Hispanic/Latinx bachelor’s degree holders, and 14% of
American Indian and Alaska Native bachelor’s degree holders received their
degrees in STEM, and these numbers are constantly lower than the national
average of 21%. In comparison, 37% of Asian American bachelor’s degree
holders are in STEM fields (National Center of Educational Statistics, 2022). In
STEM occupations, 26% of STEM workers were women and 74% were men,
and Hispanic/Latinx and Black populations are substantially underrepresented
in most STEM occupations (Funk & Parker, 2018; Landivar, 2013).

When discussing its mechanisms, sociological and economic perspectives
argue that individuals’ background situates themselves in a social and cultural
system (i.e., habitus) that informs their perceived value of education and prior
experience with college, which eventually influences their decision of college
attendance and choice of major (Paulsen, 2001; Perna, 2006). Students who are
sensitive to the cost and benefit of different types of postsecondary degree
programs because of financial needs may choose the more affordable sub-
baccalaureate pathway (e.g., two-year colleges; Wickersham, 2020). Additionally,
social cognitive and behavioral perspectives posit that individuals of varying
socioeconomic background accumulate different learning and career experience
and expectation (Weeden et al., 2020), which in turn guides their educational and
academic choice and action (Lent & Brown, 2013; Parker et al., 2012).

Empirical research largely resonates with prominent theories that women,
students of color, students from low-income families, and first-generation
students in STEM disciplines face multiple obstacles in their pathway to
college. Due to a lack of resources for college preparation and other systemic
barriers, traditionally underrepresented students may be exposed to limited
knowledge of postsecondary education and its benefit even when holding
academic readiness constant (Cook et al., 2021; Lindstrom et al., 2022;
Majors, 2019; Perez-Felkner, 2015). Given the commitment of time and
monetary resources to postsecondary education, the cost may direct students
to choose sub-baccalaureate programs and prioritize the expected economic
return over intrinsic academic or career interest (Wickersham, 2020).
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Following the social cognitive approach, accumulating learning experiences is
one viable way to combat the negative effect of sociodemographic background
on students’ educational pathways, particularly for STEM-aspiring students
(Lent et al., 2015). Taking advanced courses, dual enrollment, and even out-of-
school-time activities have all been found to promote the likelihood of attending
college and choosing a STEM major (An & Taylor, 2019; Kim et al., 2015;
Trusty, 2002; Wang et al., 2015). Moreover, beyond the general positive effect on
academic outcomes, gaining extra learning experiences appears to benefit stu-
dents of minoritized sociodemographic backgrounds more (Beyer, 2014; Wang
et al, 2017). DE course-taking, as an additional educational opportunity, holds
great promise for more positive STEM outcomes for students from traditionally
underrepresented backgrounds.

DE course-taking and college major in STEM

As introductory STEM courses follow relatively strict course sequences, they
can be considered as obstacles to student access and success in STEM fields
(Dunbar, 2006, U.S. Department of Education [ED], 2018; Xu & Dadgar,
2017). Among the academic factors of the STEM achievement gap, the long
math course sequence remains a major barrier for traditionally underrepre-
sented students to enter and stay on a STEM track (Fouad et al.,, 2010).
A student’s course-taking pattern, such as the number of advanced math
and science courses, is a predictor for major selection in STEM (Card &
Payne, 2017; Kim et al., 2015). For example, taking DE course(s) in math
induces students to take more advanced math courses and reduces their
likelihood of enrolling in developmental mathematics (Hemelt et al., 2020).
DE courses in the core academic subjects (e.g., English, science, math), as
opposed to vocational-focused courses, have a larger effect on promoting
students’ baccalaureate success in general (Giani et al., 2014).

In particular, DE programs provide an additional access point for tradi-
tionally underrepresented students to college-level courses. In general, DE
courses are more accessible for traditionally underrepresented students than
other programs that allow high school students to earn college credits (Barnett,
2018; Zinth & Barnett, 2018). Unlike Advanced Placement (AP) and
International Baccalaureate (IB) programs, DE courses are not limited to the
most advanced high school students. Minaya (2021) also found that taking
dual enrollment courses on STEM subjects motivates high school students in
Florida to major in STEM in college and increases college retention for Black
and Hispanic students. Moreover, DE participation can greatly increase
a student’s rating of their abilities in math and science and support them to
transition to college (Karp, 2012; Ozmun, 2013; Robinson et al., 2019), parti-
cularly familiarizing traditionally underrepresented students with a college
environment and academic expectations from college faculty (Giani et al.,
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2014). Earning DE credits has the potential to build an academic foundation
for traditionally underrepresented students and improve college students’
STEM access (Zinth, 2018).

Conceptual framework

This study uses the STEM pathway model to explain the logic of how the DE
intervention may influence students’ college major choice in STEM and how
the influence may differ by students’ sociodemographic characteristics
(Cannady et al., 2014; Fealing et al., 2015). The STEM pathway model builds
upon prior work on STEM identity (Holland et al., 1998), academic momen-
tum in STEM (Adelman, 1999, 2006; Wang, 2016), and the social cognitive
career theory for traditionally underrepresented students (Fouad & Santana,
2017). Specifically, the model illustrates how a potential intervention (i.e., DE
course-taking and its various forms) can alter or accelerate a student’s diverse
academic trajectories in STEM, particularly for traditionally underrepresented
students. Figure 1 presents a visual representation of the STEM pathway
model explaining the mechanism of DE programs on students’ diverse path-
ways toward STEM majors in college.

Structural Contexts for Historically Underrepresented Students in STEM
® (Gender
®  Race/ethnicity Dual Enrollment Participation in High School
® Socioeconomic status 1. Social cognitive career factor: Learning experience
® DE Participation
2. Academic momentum: Mass
®  Number of DE Credits
3. Academic momentum: Direction
®  Subject Area of DE Credits

|

Postsecondary Access & Major Choice Outcomes

Types of postsecondary
institutions

Four-year institutions

Two-year institutions

Less-than-two-year X

institutions

® Notattending
postsecondary
education

Types of major
® STEM
® Non-STEM

Figure 1. The influence of dual enrollment on STEM access from the lens of the STEM pathway
model.
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First and foremost, the pathway framework acknowledges that a student’s
access to STEM fields can be a result of structural barriers and contextual factors
(Grossman & Porche, 2014; Hardy & Katsinas, 2010; Pierszalowski et al., 2021;
Wang, 2013b). Though DE programs provide relatively broader access to
college-level courses than similar programs (e.g., AP, IB programs; Barnett,
2018; Zinth & Barnett, 2018), students do not have equal eligibility to access
(the same number and subject area) DE course due to preexisting differences,
such as academic performance and program offering in high schools (Zinth &
Barnett, 2018). Despite 82% of public high schools offering access to DE courses,
variations exist across the urbanicity of high schools and the percentage of
students in a school who were approved for free or reduced-price lunch
(FRPL). Compared with the national average of 82%, only 72% of city schools
and 71% of schools in which 75% or more of students were approved for FRPL
offered dual enrollment (U.S. Department of Education [ED], 2020). For STEM
DE courses and take Texas for example, all and 73.5% of the surveyed colleges
and high schools, respectively, offered math DE courses in 2009-10
academic year, whereas 80% and 50% of the surveyed colleges and high schools,
respectively, offered science DE courses (compared with above 90% for English
and social studies; Texas Education Agency, 2011), leaving great room for
improvement in equitable access to STEM DE courses. DE programs can
encourage learning, career experience, and expectation in STEM and postse-
condary matriculation in STEM for traditionally underrepresented students (An
& Taylor, 2015; Fouad & Santana, 2017; Zinth, 2015), and the larger context
(e.g., sociodemographic characteristics) should be empirically accounted for in
examining the effect of DE course-taking on STEM access and equity.

A key significance of the pathway framework is that it umbrellas STEM
trajectories in multiple sectors, including students that followed college atten-
dance patterns other than a baccalaureate academic program (Wang, 2016). In
fact, traditionally underrepresented students often attend a community col-
lege, take developmental courses, choose a career and technical education
(CTE) program, or transfer upwardly, in order to pursue an advanced degree
or a career in STEM (Fealing et al.,, 2015; Wang, 2020; Wyatt et al., 2015).
While recent state data show that DE particularly benefits students of color,
first-generation students, and students of low SES background more than their
counterparts in terms of choosing four- over two-year college (Lee et al., 2022),
this study further unpacks STEM major at both the sub-baccalaureate and
baccalaureate levels.

Finally, disaggregating the concept of DE participation by subject area and
number of DE credits can identify specific aspects of DE programs that are
meaningful for equitable STEM access. Among the dual-enrolled students,
some students can be more likely to earn more DE credits (i.e., the mass in
academic momentum) and/or take more DE courses in math and science (i.e.,
the direction in academic momentum). Because each additional DE course
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accumulates to the likelihood of postsecondary persistence and completion
(Giani et al., 2014), the disparities within DE course-taking patterns (e.g.,
earning 3 versus 15 DE credits, taking advanced math courses versus non-
essential STEM courses) can have different influences on a student’s progress
toward STEM major choice in college, thus altering their STEM trajectories in
the long term. In sum, the STEM pathway model accentuates the focus on
STEM success and equity for individual students in their situated contexts
with tangible progress toward their educational goals, without excluding the
conventional baccalaureate degree path for students to choose a STEM major.

Methods
Data sources and sample

To answer the set of research questions, we analyzed observational data of
a nationally representative dataset provided by the National Center of
Educational Statistics (NCES). Conducted by ED, the High School
Longitudinal Study of 2009 (HSLS:09) firstly surveyed over 23,500 9" graders
from 944 schools in 2009 and followed up in their 11" grade and 12™ grade,
and three years and four years after high school graduation, respectively.
Though not highly detailed, HSLS:09 includes students’ DE course-taking
information (e.g., DE course-taking in Math/Science, number of DE credits
earned) based on students’ self-report surveys. The sample includes 11,560
college students with valid major choice records as of February 2016. We
addressed the missing values of predictors using multiple imputation with
sampling weight to generate five imputed datasets.

Variables

We examined the influence of DE course-taking on major selection in STEM.
Specifically, the first outcome was a binary indicator of major choice in STEM
as of February 2016, based on the definition used by the Department of
Defense’s Science, Mathematics, and Research for Transformation (SMART)
grant. The second outcome was categorical representing if the major is STEM
or not at the baccalaureate level or sub-baccalaureate level, respectively.

The treatments were defined differently depending on the average treat-
ment effect of interest. First, it was defined as a binary indicator of overall DE
participation to understand the aggregated influence of DE course-taking on
the outcomes, with the treatment group being students who have taken at least
one DE course and the control group being students who have never taken
a DE course. Additionally, DE subject area was defined as binary, indicating
whether the DE course taken was in the subject of Math/Science or not.
Finally, to examine the specific impact of the number of DE credits earned,
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treatment was defined in a continuous manner based on the number of DE
credits earned in STEM sequence and non-STEM sequence, respectively.

Pre-treatment covariates were selected based on prior research and the
conceptual framework to predict the likelihood of a certain DE course-
taking pattern for individual students (Caliendo & Kopeinig, 2008). These
variables included students’ sociodemographic characteristics (i.e., sex,” race/
ethnicity, socioeconomic status quintile, whether at least one parent working
in STEM occupation), academic measures in the 9™ grade in high school (i.e.,
grade point average [GPA], educational expectations, the highest level of math
course), and high school characteristics (i.e., whether provide DE opportu-
nities, location, control). The outcome model specifications also accounted for
additional post-treatment covariates. Based on how these variables may influ-
ence students’ STEM major selection (e.g., Wang, 2020), we also included
students’ intent to major in STEM and the number of AP/IB credits earned as
post-treatment covariates in all outcome models. Detailed operationalizations
of these variables are also presented in Appendix A.

Addressing selection bias

Students’ DE course-taking depends on students’ pre-college characteristics
(e.g., race/ethnicity, family income, academic performance) and high school
characteristics (e.g., whether the high school provides DE opportunities). Thus,
we employed propensity score models (PSMs) to ensure overlap and compar-
ability between the treatment group and the control group to reduce selection
bias (Guo & Fraser, 2015). PSM as a quasi-experimental research design has
been widely applied in educational research because it can substantively reduce
the potential self-selection bias to arrive at findings that are as close as possible
to causal inference (Powell et al., 2019). We selected a set of pre-treatment
covariates as mentioned above to predict the likelihood of a certain DE course-
taking for individual students (Caliendo & Kopeinig, 2008).

Using logistic regression, we estimated propensity score p for each observa-
tion, controlling for students’ pre-treatment characteristics. The resulting
propensity score p represents a student’s probability of receiving treatment
while enrolled in high school. For the binary treatments (i.e., whether took DE
courses, whether took DE in Math/Science), the average treatment effect on
the treated (ATT) reveals what the outcomes would have been for DE students
had they not received the treatment in the respective model specifications. We
calculated the ATT weights as the inverse of the resulting propensity score p.
In this example, students in the treatment group (i.e., DE participation) receive
a weight of 1, and students in the control group (i.e., no DE participation)
receive a weight of p/(1 - p). The final weight for each observation included in
the post-weighting estimation will be normalized as a product term between
the ATT weight and the sampling weight, divided by the mean of such product
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term to ensure generalization (Leite, 2017). For the full sample and each
subsample categorized by sex, student-of-color status,” low-income status,
and first-generation status, we repeated this procedure to estimate different
sets of propensity scores due to students’ varying probability of DE participa-
tion in individual subgroups. As indicated in Table 1 and Figure 2, the
standardized mean differences before and after weighting indicated the data
met the balancing property of PSM (Rubin, 2001; Shadish et al., 2008). The
characteristics of all covariates pre- and post-weighting are presented in
Appendix B.

Table 1. Standardized differences between treated and control groups by treatment.

DE Course-Taking Math/Science DE Course-Taking
Pre-weighting  Post-weighting  Pre-weighting  Post-weighting
Female 0.107 -0.016 0.136 —0.009
Race/Ethnicity
Black/African American —0.064 0.017 —-0.165 —0.005
Hispanic/Latinx —-0.023 —-0.019 -0.137 —-0.003
Asian American, Native Hawaiian/Pacific 0.013 —0.057 0.044 0.069
Islander
American Indian/Alaska Native —-0.010 0.024 —0.022 0.013
More than one race -0.016 0.039 —-0.028 -0.011
Socioeconomic Status Quintile
Second quintile 0.016 0.035 —0.063 —-0.024
Third quintile 0.004 0.020 —0.030 0.000
Fourth quintile 0.041 0.019 0.023 0.076
Highest quintile -0.018 —0.040 0.119 —-0.033
At least one parent working in a STEM —-0.016 —-0.040 0.070 0.005
occupation
Highest degree expected
Associate degree —0.048 0.039 —-0.132 0.047
Bachelor's degree —-0.012 —0.006 —-0.028 —-0.047
Master's degree 0.066 0.064 0.109 0.033
Doctoral degree or Professional degree 0.104 —-0.055 0.155 0.006
Don't know —0.091 -0.024 -0.124 —0.041
Highest level of mathematics
Basic math —0.035 0.013 —0.037 —-0.019
Other math —-0.050 0.017 —-0.059 0.061
Pre-algebra —0.041 —-0.010 —-0.131 0.016
Algebra | —0.100 0.023 —-0.293 0.009
Geometry 0.133 -0.024 0.242 —-0.073
Algebra I 0.043 —0.021 0.143 0.024
Trigonometry 0.044 0.003 0.127 0.031
Other advanced math —-0.012 —-0.004 0.042 0.056
9th Grade GPA 0.340 —0.045 0.674 —0.044
High school provides dual enroliment 0.178 0.050 0.228 0.045

opportunities
High school location

Suburb —-0.041 0.018 -0.076 0.009

Town 0.105 0.048 0.165 0.003

Rural 0.073 —-0.069 0.067 0.012
High school control

Private —-0.142 0.081 -0.111 0.010

Note. Sampling weights are applied to pre-weighting calculation. The weight for each observation included in the
post-weighting estimation was a product term between the inverse probability treatment weight and the sampling
weight, divided by the mean of such product terms.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and
Student Financial Aid Records Data Collection.
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DE Course-Taking

Math/Science DE Course-Taking

Pre-weighting

Full Sample with Sampling Weights Only

4 )
Estimated Propensity Score

— —— Not Taking Dual Enrollment Taking Dual Enrollment

Full Sample with Sampling Weights Only

4 6
Estimated Propensity Score

——— Not Taking Math/Science DE

Taking Math/Science DE

Full Sample with Sample Weights and Inverse Probability Treatment Weights

Full Sample with Sample Weights and Inverse Probability Treatment Weights

Post-
weighting -

8

4
Estimated Propensity Score

4 6
Estimated Propensity Score

[—7— Not Taking Dual Enrollment Taking Dual Enrollment ‘ [ === Not Taking Mattscience DE

Taking Math/Science DE |

Figure 2. Estimated propensity scores between treated and control groups (pre- and post-
weighting).

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School
Longitudinal Study of 2009. Selected years 2009, 2012, 2013, and 2016

To further unpack the relationship between the number of DE credit-
earning and STEM major choices, we estimated the unit-level dose-response
function to measure the influence of various doses of the treatment on the
outcomes (Hirano & Imbens, 2004). The goal of this procedure is to reduce
selection bias within strata with the same density of the treatment, so the
probability of receiving a given treatment level does not depend on the value of
the pre-treatment covariates for DE students. Particularly, we followed Bia and
Mattei (2008) to estimate the generalized propensity scores (GPS) using Stata
commands gpscore and doseresponse. However, because the treatment did not
have a normal distribution conditional on the covariates, we converted the
treatment using the zero-skewness log to estimate the GPS instead.*

Analyses of the influence of DE credits on STEM major choice

Accounting for the selection bias, we conducted both descriptive analysis and
a series of logistic regression and multinomial regression analyses to examine the
influence of DE course-taking (i.e., participation, subject in Math/Science, number
of DE credits earned) on college students” STEM major selection. For each set of
outcomes, we used the proper regression model that controlled for the pre-
treatment and post-treatment variables, incorporating the series of propensity
score weights, sampling weights, the primary sampling unit, and strata to ensure
generalization to the national population (Ridgeway et al., 2015). Analyses for each
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subsample of students by sex, student-of-color status, low-income status, and first-
generation status were also conducted. The effect size of the treatment was also
calculated if the treatment was statistically significant (Sullivan & Feinn, 2012).

Lastly, we performed sensitivity analyses to examine whether the treatment
effect would become statistically nonsignificant due to hidden unobservables
increases since unmeasured confounding variables can bias estimates of the
treatment effect on outcomes (Linden et al., 2020; VanderWeele & Ding,
2017). By calculating the E-value, which handles both binary and multi-level
categorical outcomes incorporating ATT weights, we examined the minimum
strength of association that “an unmeasured confounder would need to have
with both the treatment and the outcome to fully explain away a specific
treatment — outcome association” (VanderWeele & Ding, 2017, p. 1). More
specifically, E-values for significant associations ranged from 1.57 to 2.22,
depending on the specified outcome variable and sample. For example, in
the main analysis, the E-value associated with an odds ratio of 1.38 is 1.63,
meaning the risk ratio of 1.38 could be explained away by an unmeasured
confounder that was associated with both the treatment (i.e., DE course-
taking) and the outcome (i.e., STEM major choice) by an odds ratio of 1.63-
fold each, but weaker confounders could not. The relatively small E-value
suggests that our study could not fully exclude the possibility of unmeasured
confounding that the evidence for causality between DE course-taking and
students’ STEM major choice might be weak.

Limitations

Under the constraint of a secondary dataset, readers should be cautious
when interpreting our findings. First of all, since the subject treatment
variable was self-reported, students might not be aware that they were
taking DE at all or mistaking an advanced course (e.g., AP) for a DE
course. Second, since traditionally underrepresented students often
attend a community college or choose a CTE program before moving
onto more advanced degree programs (Fealing et al., 2015), CTE-based
STEM DE may be of particular interest for these students. As such,
separating CTE and non-CTE DE courses may further shed light on the
motivating coursework among traditionally underrepresented students
and correspond to our research interest. However, though we had access
to the transcript data, it was not readily available to devise a way to
clearly differentiate STEM coursework from CTE credits. Instead, given
the Perkins Act of 2006 and Common Core policy and practice, STEM
and CTE curricula are being integrated to help train students’ STEM
skills occupationally (Sublett & Plasman, 2017). It is thus highly likely
that the STEM DE coursework coded in the current study intersected
with CTE credits. When such information is available, future research
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can further examine the relationship between DE CTE courses and
students’ major choice in CTE- or non-CTE-based STEM, particularly
for underrepresented student population.

Third, we observed missing data in some variables and conducted
multiple imputations to retain as many participants as possible. Multiple
imputation is found to be a better choice than listwise deletion (Baraldi
& Enders, 2010) and the missing value indicator method (Groenwold
et al., 2012) given the large sample size, the nature of survey data, and
the uncertainty to ascertain missing completely at random (Little, 1988),
but it is likely that multiple imputation resulted in a higher correlation
between variables and thus a higher statistical power. Hence, we gener-
ated only five imputed datasets to avoid inflating the statistical power
(Graham, 2009), addressed all the complex sampling features inherent in
HSLS:09, and reported pooled results (Horton & Lipsitz, 2001) to coun-
terbalance the potential inflation of intercorrelation between variables.
Finally, whereas we strived to clear potential bias inherent in the data
through statistical methods (e.g., multiple imputation for handling miss-
ing data) and adhered to the complex sampling design, the propensity
score-based technique precludes strong causal inferences in the relation-
ship between DE course-taking and college students’ STEM major
choice.

Results
Descriptive summary

Table 2 presents the descriptive results for the outcomes in the treatment and
control groups. Before applying propensity score weights, a larger proportion
of DE students (23.43%) majored in a STEM field than non-DE students
(18.89%), and the difference was even larger between students who took
a DE course in the subject of Math/Science (27.78%) and students without
taking a DE course in Math/Science (19.93%). On average, a larger proportion
of DE students majored in a non-STEM field (52.53%) and STEM field
(19.13%) at the baccalaureate level relative to non-DE students (46.21% in
non-STEM and 13.47% in STEM at the baccalaureate level). However,
a smaller proportion of DE students majored in a non-STEM field (24.04%)
and STEM field (4.3%) at the sub-baccalaureate level relative to non-DE
students (34.91% in non-STEM and 5.41% in STEM at the sub-baccalaureate
level). A similar pattern was found between students who took a DE course in
the subject of Math/Science and students without taking a DE course in Math/
Science. After incorporating propensity score weights, the differences between
the treated group and control group considerably decreased.
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Table 2. Descriptive results for STEM major choice.
Pre-weighting Post-weighting

Treated Control Difference Treated Control Difference

Panel A: Treatment being DE Course-Taking

STEM Major Choice 23.43% 18.89% 4.54% 26.19%  23.67% 2.52%
STEM Major Choice and Degree Level
Sub-baccalaureate non-STEM 24.04% 3491% -10.87% 18.59% 20.60% -2.01%
Sub-baccalaureate STEM 430% 541% -1.11% 3.64%  3.32% 0.32%
Baccalaureate Non-STEM 52.53% 46.21% 6.32% 5521% 55.73%  —0.52%
Baccalaureate STEM 19.13% 13.47% 5.66% 22.55% 20.35% 2.20%
Number of observations 4,640 6,920 4,640 6,920
Panel B: Treatment being DE Course-Taking in Math/Science
STEM Major Choice 27.78% 19.93% 7.85% 31.71% 24.24% 7.47%
STEM Major Choice and Degree Level
Sub-baccalaureate non-STEM 17.45% 31.85% —1440% 12.76% 19.70% —6.94%
Sub-baccalaureate STEM 3.82%  5.07% -1.25% 390%  3.17% 0.73%
Baccalaureate Non-STEM 54.77% 48.21% 6.56% 55.53% 56.07%  —0.54%
Baccalaureate STEM 23.96% 14.86% 9.10% 27.81% 21.07% 6.74%
Number of observations 1,230 10,330 1,230 10,330

Note. Sampling weights are applied to pre-weighting calculation. The weight for each observation included in the
post-weighting estimation was a product term between the inverse probability treatment weight and the sampling
weight, divided by the mean of such product terms.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and
Student Financial Aid Records Data Collection.

The influence of DE course-taking on STEM major choice

Controlling for pre-treatment and post-treatment covariates, the weighted model
estimates of the full sample indicated that taking DE courses was positively
associated with the probability of majoring in STEM (odds ratio =1.380, p
=.002). In other words, college students with DE course-taking records were
1.380 times more likely to major in STEM, when compared with college students
without DE course-taking records (as presented in Table 3). More specifically, DE
course-taking was statistically related to students’ probability of STEM major
choice at varying award levels. Compared with non-DE students, DE students

Table 3. Odds ratios of the effect of dual enrollment on STEM major choice.

Pre-weighting Post-weighting
DE course-taking in DE course-taking in
Outcome variable DE course-taking Math/Science DE course-taking Math/Science
STEM Major Choice 1.251 1.054 1.380%* 1.306
(0.203) (0.226) (0.145) (0.189)
STEM Major Choice and Degree Level
Sub-baccalaureate 1.002 0.824 1.155 1.298
STEM (0.284) (0.304) (0.214) (0.334)
Sub-baccalaureate 0.826 0.799 0.827* 0.756
non-STEM (0.105) (0.163) (0.074) (0.108)
Baccalaureate STEM 1.254 1.023 1.367** 1.230
(0.206) (0.226) (0.154) (0.184)

Note. Standard errors in parentheses. Sampling weights are applied to pre-weighting calculation. The weight for each
observation included in the post-weighting estimation was a product term between the inverse probability
treatment weight and the sampling weight, divided by the mean of such product terms. n = 11540.

**¥p <.001, **p < .01, *p <.05.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and
Student Financial Aid Records Data Collection.
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were 1.367 times more likely to major in STEM at the baccalaureate level rather
than non-STEM at the baccalaureate level ( p =.006), and 0.827 times as likely to
major in non-STEM at the sub-baccalaureate level than non-STEM at the bacca-
laureate level ( p =.035).

No statistically significant relationship at the .05 level was detected between
DE course-taking in Math/Science and STEM major choice across award levels.
In supplemental analyses (as shown in Appendix C), we excluded 3,450 dually
enrolled students in any non-Math/Science subject from the sample to directly
compare students’ STEM access between students taking DE courses in Math/
Science and students with no DE course-taking at all. The weighted model
specifications suggested that, compared with students with no DE course-
taking, students taking DE courses in Math/Science were 1.544 times more
likely to major in STEM (p =.004), 1.469 times more likely to major in STEM
at the baccalaureate level rather than non-STEM at the baccalaureate level
(p=.015), and 0.682 times as likely to major in non-STEM at the sub-
baccalaureate level than non-STEM at the baccalaureate level (p =.012).

The sub-sample analyses suggested that the relationship between DE
course-taking and STEM major choice may vary by students’ sociodemo-
graphic characteristics (as shown in Table 4). While the positive relationship
between DE course-taking and STEM major choice remained to be signifi-
cantly positive for most subgroups of students, it was not statistically signifi-
cant for the female and low-income subgroups as well as students of color
when Asian students were excluded. DE course-taking in Math/Science was
only positively related to students” STEM major choice for students of color
(including Asian) and continuing-generation students but not statistically
significant for other subgroup analyses. DE course-taking seemed to encou-
rage certain student groups to major in STEM at the baccalaureate level, while
discouraging some other student groups from majoring in non-STEM at the
sub-baccalaureate level. It is worth noting that the odds ratio should be
interpreted as comparisons between the treatment group and the control
group within the subgroup; coefficients and significance tests should not be
directly compared between subgroups. We discuss statistically significant
findings on STEM award levels by subgroup specifically.

For the subgroup of male students (as presented in Panel A of Table 4),
compared with male students who did not take DE courses, male students
with DE courses were 1.431 times more likely to major in STEM (p =.012).
For the racial subgroups (as presented in Panel B of Table 4), White
students who took any DE courses were 1.321 times more likely to major
in STEM (p =.035) and 27.1% less likely to major in non-STEM at the sub-
baccalaureate level (odds ratio=0.729, p=.005). For students of color
(including Asian students), those who took any DE courses were 1.428
times more likely to major in STEM (p =.035) and 1.557 times more likely
to major in STEM at the baccalaureate level (p=.015). Compared with
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students of color with no DE course-taking in Math/Science, students of
color with DE course-taking in Math/Science are 1.911 times more likely to
major in STEM than in non-STEM (p =.007), 1.782 times in STEM at the
baccalaureate level (p =.019) than non-STEM at the baccalaureate level, but
only 0.553 times as likely to major in non-STEM at the sub-baccalaureate
level as opposed to non-STEM at the baccalaureate level (p=.020).
However, after excluding Asian students from the students of color sub-
group, DE course-taking was only positively associated with students’
probability of majoring in STEM at the baccalaureate level (odds ratio =
1.670, p =.029).

For the income-based subgroups (as presented in Panel C of Table 4), DE
students with higher family income were 1.450 times more likely to major in
STEM, when compared to non-DE students with higher family income (p
=.002). Particularly, taking DE courses was positively associated with the
probability of majoring in STEM at the baccalaureate level (odds ratio =
1.384, p =.009), but negatively associated with the probability of majoring in
non-STEM at the sub-baccalaureate level (odds ratio =0.805, p=.033), as
opposed to non-STEM at the baccalaureate level for the students with higher
family income. For the final set of subgroups based on first-generation status
(as presented in Panel D of Table 4), DE course-taking was positively asso-
ciated with students’ STEM major choice regardless of their first-generation
status. First-generation students with DE courses were 74.5% more likely to
major in STEM when compared with first-generation students without DE
courses (odds ratio = 1.745, p =.043). First-generation DE students were 1.944
times more likely to major in STEM at the baccalaureate level (p =.039) as
opposed to non-STEM at the baccalaureate level. Continuing-generation
students with DE courses were 35.1% more likely to major in STEM when
compared with continuing-generation students without DE courses (p =.012),
and 1.320 times more likely to major in STEM at the baccalaureate level
(p=.028) as opposed to non-STEM at the baccalaureate level. DE course-
taking in Math/Science was only significantly related to the STEM major
choice in general for continuing-generation students (odds ratio = 1.403,
p =.04). All results are summarized and presented in Appendix E.

Discussion

Using the STEM Pathways framework, this study examined the impact of DE
course-taking on college students’ major choice in STEM fields, providing
evidence-based, generalizable implications for practices to support STEM
success, especially for traditionally underrepresented students. The findings
suggest that taking DE courses is positively associated with a 1.38 times
probability of majoring in STEM, especially at the baccalaureate level. Like
other programs offering high school students to earn college credits (e.g., AP
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credits), taking DE courses also supports college students’ STEM success
(Barnett, 2018; Smith et al., 2018; Zinth, 2018). This positive relationship
may be attributed to how DE programs provide an additional access point to
college-level courses and learning experiences for high school students with
both a college environment and academic expectations from college faculty
(Karp, 2012; Ozmun, 2013; Robinson et al., 2019; Zinth & Barnett, 2018). This
finding further emphasized the importance of equal DE access to broaden
STEM participation to better support traditionally underrepresented students
(Taylor et al., 2022).

Focusing on students’ diverse STEM pathways, the current study empha-
sizes the balance between broadening STEM participation and normalizing
students’ diverse academic trajectories beyond the conventional baccalaureate
programs. Our findings indicated that not only is DE course-taking associated
with an increased probability of majoring in STEM at the baccalaureate level,
but it also decreases students’ probability of majoring in a non-STEM field at
the sub-baccalaureate level, relative to students with no DE course-taking
experiences. However, we did not detect consistent evidence of the relation-
ship between DE course-taking and majoring in STEM at the sub-
baccalaureate level. This null finding aligns with earlier work on DE’s overall
stronger influence on students’ enrollment at four-year colleges, as opposed to
two-year colleges (Hemelt et al., 2020; Lee et al., 2022). It further highlights the
importance to understand how DE participation influences students’ STEM
outcomes at both sub-baccalaureate and baccalaureate levels (Plasman et al.,
2017) as well as the role sub-baccalaureate programs (e.g., CTE programs) play
in closing the STEM success gap (Hamilton et al., 2015; Yoon & Strobel, 2017).
Practitioners and policymakers should be aware that one way to remediate the
inequity at the postsecondary level is to normalize the different academic
pathways in STEM fields, such as offering stackable credentials to intentionally
design sub-baccalaureate programs and provide students with multiple access
points to the STEM pathways (Bohn & McConville, 2018).

The positive relationship between DE course-taking in Math/Science and
STEM major choice was not statistically significant, when compared with
students with no DE course or with DE courses in a non-Math/Science
subject. In supplemental analyses when the control group only included
students with no DE course (as shown in Appendix C), our findings on DE
course-taking in Math/Science are consistent with the main analyses and
prior studies on how students’ course-taking in advanced math and science
courses (i.e., the direction of academic momentum) may predict their
major selection in STEM (Card & Payne, 2017; Hemelt et al., 2020; Kim
et al., 2015; Minaya, 2021). It is possible that individuals’ DE coursework in
Math/Science fulfills the general education requirement but does not meet
specific academic requirements of STEM majors. Take Texas for example,
math DE courses ranged between general college-level math (e.g., college
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algebra) to calculus (Texas Education Agency, 2011; The University of
Texas System, 2018). To declare a STEM major at the sub-baccalaureate
level, a satisfactory performance (i.e., B or above) in DE college algebra is
sufficient (Dallas College, n.d.). To declare a STEM major at the bacca-
laureate level, a satisfactory performance in DE college algebra is not
sufficient but DE calculus is (The University of Texas at Austin, n.d.).
That is, fundamental DE math courses (e.g., college algebra) can be used
to fulfill the general education requirements in non-STEM disciplines, but
only advanced DE math courses (e.g., calculus) count toward required math
courses in STEM majors. Since it is beyond the scope of our study to
examine the differences between DE courses in non-Math/Science and DE
courses in Math/Science or the level of DE courses, future research can use
course-level data to examine if more advanced Math/Science courses which
tulfill STEM degree plan requirements have a stronger effect on students’
STEM major choice. Because DE course-taking is positively related to
STEM major choice, especially at the baccalaureate level, researchers in
the future should explore the reasons why students take such courses, and
whether and how DE in Math/Science eftectively influences students” moti-
vation, interest, or aspiration for STEM majors and career (Wang, 2013a).

Finally, the subgroup analyses revealed how the relationship between DE
course-taking and STEM outcomes varies across different student groups,
depicting a complex picture of serving the diverse student population with
DE programs. This finding reflects concerns over the role DE plays in educa-
tional equity and social justice (Taylor et al., 2022). Specifically, DE course-
taking can reinstate educational inequity by benefitting the overrepresented
student population in STEM rather than certain underrepresented student
groups and further exacerbates the inequities in the STEM field (Hardy &
Katsinas, 2010, Wang, 2016). For instance, students with higher family income
backgrounds tend to benefit more from DE course-taking with a higher like-
lihood of majoring in STEM at both baccalaureate and sub-baccalaureate
levels and a lower likelihood of majoring in non-STEM at the sub-
baccalaureate level than their counterparts without taking and DE courses.
On the contrary, students with low family income backgrounds who took DE
courses did not experience any significantly changed likelihood of majoring in
STEM at any level. In another example, for the pooled sample, White students
subsample, and non-White students subsample (including Asian students),
dually enrolled students are more likely to major in STEM than their counter-
parts without DE experiences. However, dually enrolled students of color
(excluding Asian students) and their non-DE counterparts do not differ in
the probability of majoring in STEM. These findings imply the limit of DE’s
influence on enrolling students of all backgrounds in STEM disciplines despite
the overall positive relationship with STEM major choice.
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As we joined existing literature that SES is related to STEM major choice
and success (Evans et al., 2020; Jefferies et al., 2020), students with lower
SES backgrounds can be discouraged from majoring in STEM via a lack of
sustainable resources and decreasing students’ expectation of success in
STEM fields, which in turn prevents them from majoring in STEM (Perez-
Felkner et al., 2019). Following the STEM pathway model, the systemic
barriers historically underrepresented students experience remain salient
predictors for students’ STEM access in postsecondary education. Future
research should unpack whether and how DE learning experience can
provide positive feedback to students’ expectancy of success in STEM
fields. To further identify the effectiveness of DE programs on postsecond-
ary STEM success, researchers are also encouraged to focus on students’
participation in DE and their pursuit of STEM majors and how it interacts
with their lived experience and individual contexts facing structural
barriers.

Notes

1. Specifically, the multiple imputation procedure addressed missing values in the control
variables: race/ethnicity (3.8%), SES (6.8%), high school GPA (7.4%), educational
expectations (7.5%), highest math level (7.2%), the number of AP/IB credits (4.4%),
and intent to major in STEM (6.9%), respectively.

2. Because the HSLS data does not properly report gender identity (Marine, 2011),
we use students’ sex assigned at birth as a binary indicator to create the
subgroups.

3. Due to the relatively small and unbalanced number of treated observations in
each racial/ethnic group, we were unable to conduct subgroup analyses using
propensity score models based on individual racial/ethnic groups. Thus, we had
to aggregate racially minoritized groups based on their student-of-color status.
We first defined students of color as students who identify as non-White. In
additional analyses, we excluded Asian American students from the sub-sample
given their relatively high performance in STEM fields (National Center of
Educational Statistics [NCES], 2022).

4. The readers should be cautioned that, due to the treatment transformation, it is
challenging to interpret the coefficients in the context of DE credits earned.
Additionally, these commands are not supported by the svy prefix to account for
complex survey data, the dose-response model only provides suggestive evidence,
without generalization to the broader population. Given these methodological chal-
lenges, we present the dose-response findings as supplemental analyses in Appendix
D.
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Appendix B

Descriptive Results for all Variables in the Full Sample

Pre-weighting Post-weighting
DE Course- No DE Course- DE Course- No DE Course-
Variable Taking Taking Taking Taking
Female 56.44% 49.69% 57.84% 59.38%
Race/Ethnicity
White 61.90% 51.17% 63.49% 61.73%
Black/African American 9.52% 12.71% 7.61% 7.02%
Hispanic/Latinx 17.45% 21.38% 11.73% 12.44%
Asian American 4.78% 3.91% 9.14% 10.40%
Native Hawaiian/Pacific Islander 0.14% 0.38% 0.35% 0.36%
American Indian/Alaska Native 0.37% 1.17% 0.35% 0.26%
More than one race 5.84% 9.27% 7.33% 7.74%
Socioeconomic Status Quintile
Lowest quintile 11.32% 14.35% 7.23% 7.73%
Second quintile 14.75% 15.31% 12.38% 11.09%
Third quintile 18.66% 19.28% 17.15% 17.15%
Fourth quintile 22.29% 22.50% 23.08% 23.83%
Highest quintile 32.98% 28.56% 40.15% 40.20%
At least one parent working in a STEM 24.28% 21.45% 26.58% 29.01%
occupation
Highest degree expected
High school graduation or below 5.21% 8.91% 3.22% 3.83%
Associate degree 4.83% 6.83% 4.00% 3.05%
Bachelor’s degree 20.34% 17.77% 18.60% 19.07%
Master's degree 25.77% 25.24% 27.60% 26.03%
Doctoral degree or Professional degree 27.66% 22.41% 30.13% 31.72%
don’t know 16.19% 18.79% 16.45% 16.31%
Highest level of mathematics
No math 1.00% 4.95% 1.22% 0.86%
Basic math 1.18% 1.50% 0.84% 0.60%
other math 0.44% 1.07% 0.38% 0.48%
Pre-algebra 3.91% 3.28% 2.73% 2.51%
Algebra | 45.68% 48.17% 44.07% 43.30%
Geometry 34.39% 28.84% 35.70% 38.15%
Algebra Il 8.00% 6.40% 9.37% 9.72%
Trigonometry 0.89% 0.52% 1.09% 0.66%
Other advanced math 4.50% 5.28% 4.60% 3.73%
9th Grade GPA 3.178 2.819 3.275 3.302
(0.029) (0.038) (0.016) (0.014)
High school provides dual enrollment 90.40% 89.55% 88.24% 86.28%
opportunities
High school location
City 27.83% 34.51% 28.32% 28.71%
Suburb 34.40% 35.41% 35.03% 31.94%
Town 11.45% 9.36% 13.20% 13.67%
Rural 26.32% 20.73% 23.46% 25.68%
High school control — Private 7.42% 11.54% 22.37% 20.08%
Intent to choose a STEM major 26.51% 22.56% 29.40% 29.45%
Number of AP/IB courses taken 1.832 1.696 1.970 2.543
(0.102) (0.085) (0.071) (0.096)
Number of observations 4,640 6,920 4,640 6,920

Standard deviation in parentheses. Sampling weights are applied to pre-weighting calculation. The weight for each
observation included in the post-weighting estimation was a product term between the inverse probability
treatment weight and the sampling weight, divided by the mean of such product terms.

SOURCE: U.S. Department of Education, National Center for Education Statistics, High School Longitudinal Study of
2009. Base Year, First Follow-Up, High School Transcript Study, and Postsecondary Education Transcript Study and
Student Financial Aid Records Data Collection.
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Appendix D

Supplemental Analyses of the Dose-Response Models

Following the same logic of controlling for students’ likelihood of taking DE courses
when the treatment is dichotomous, the dose-response model controlled for the impacts
of selection bias to examine the extent to which the probability of choosing a STEM
major varies with an increase in the number of DE credits earned. Though prior studies
have indicated that it is important to examine the relationship between the number of
dual credits and postsecondary outcomes (Giani et al., 2014; Lee et al., 2022; Miller et al.,
2018), no known study has addressed the selection bias derived from students’ likelihood
of earning a certain number of dual credits in their modeling. As it is challenging to
interpret our findings in the practical context, future studies should continue to explore
other methodologically rigorous approaches to identifying the dose-response effect of dual
enrollment with meaningful practical implications.

Within the sample of students who have ever earned any DE credits (n=2,130),
students earned DE credits between 1 and 126 normalized credits (mean =12 normal-
ized credits, mode =9 normalized credits). Figure D1 depicts the dose-response func-
tion, representing the propensity to major in STEM for all values of DE credits earned
in its zero-skewness log form, along with 95% confidence bands. Descriptively, an
increase in the number of DE credits seems to be positively associated with
a student’s probability of majoring in STEM: The slope was steeper as students start
to accumulate DE credits (i.e., the probability of majoring in STEM increased from 0.24
to 0.35 when the unit of treatment increased from 10 to 40), and it became flatter with
more DE credits accumulated (i.e., the probability of majoring in STEM increased from
0.35 to 0.41 when the unit of treatment increased from 40 to 100). A similar trend was
found for the probability of majoring in STEM at the baccalaureate level. Additionally,
students’ probability of enrolling in a non-STEM sub-baccalaureate program decreased
from 0.19 to 0.15 as they start to accumulate DE credits, but the probability started to
increase once students accumulated more than 20 units of DE credits in its zero-
skewness log form. Finally, students’ probability of enrolling in a sub-baccalaureate
STEM program increased from 0.03 to 0.42 as they start to accumulate DE credits,
but the probability started to decrease once they accumulated more than 30 units of
zero-skewness-log-transformed DE credits. However, none of the estimates were statis-
tically significant, suggesting that the probability of majoring in STEM with fewer units
of DE credits (in its zero-skewness log form) was not more or less sensitive to DE
credits than those with more units of DE credits.
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Figure D1. Estimation and 95% confidence bands of the dose-response function, confidence
bounds at 95% level. SOURCE: U.S. Department of Education, National Center for Education
Statistics, High School Longitudinal Study of 2009. Base Year, First Follow-Up, High School
Transcript Study, and Postsecondary Education Transcript Study and Student Financial Aid
Records Data Collection.

Building on prior work focusing on the number of DE courses on postsecondary
outcomes (Giani et al.,, 2014), our findings indicated that the number of DE credits
earned is not statistically related to college students’ probability of majoring in STEM,
once the impact of selection is controlled for. In other words, students that were more
likely to major in STEM also tended to take more DE courses (i.e., the mass of academic
momentum). This null finding can also be due to data transformation that the inter-
pretation of changes in the outcome is based on the unit of treatment in its zero-
skewness log form. This suggestive evidence indicates that high schools and colleges
do not need to overly push high school students to take more DE courses solely to
broaden STEM access. Even when a student considerably increased the units of DE
credits earned (from 10 units to 100 units), the probability of majoring in STEM only
increases by 17 percentage points on average. Especially when students may feel their
major choice is limited with many earned DE credits and face potential credit loss
(Taylor et al., 2022; Tobolowsky & Allen, 2016), the risk of earning a large number of
DE credits in high school can outweigh the benefits. For high school students that intend
to take only one DE course, one well-designed rigorous DE course, as opposed to the
large quantity of DE courses, is meaningful for these students to learn both academic
content and transferrable skills to meet college-level academic demands and develop
their self-efficacy in STEM fields.
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