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Item difficulty and dimensionality often correlate, implying that unidimensional IRT
approximations to multidimensional data (i.e., reference composites) can take a
curvilinear form in the multidimensional space. Although this issue has been pre-
viously discussed in the context of vertical scaling applications, we illustrate how
such a phenomenon can also easily occur within individual tests. Measures of read-
ing proficiency, for example, often use different task types within a single assess-
ment, a feature that may not only lead to multidimensionality, but also an associa-
tion between item difficulty and dimensionality. Using a latent regression strategy,
we demonstrate through simulations and empirical analysis how associations be-
tween dimensionality and difficulty yield a nonlinear reference composite where the
weights of the underlying dimensions change across the scale continuum according
to the difficulties of the items associated with the dimensions. We further show how
this form of curvilinearity produces systematic forms of misspecification in tradi-
tional unidimensional IRT models (e.g., 2PL) and can be better accommodated by
models such as monotone-polynomial or asymmetric IRT models. Simulations and
a real-data example from the Early Childhood Longitudinal Study—Kindergarten
are provided for demonstration. Some implications for measurement modeling and
for understanding the effects of 2PL misspecification on measurement metrics are
discussed.

As the assumption of unidimensionality is beneficial for certain measurement ap-
plications, test practitioners often use unidimensional item response theory models
even when some statistical multidimensionality in the data is known or presumed to
be present. Unidimensional item response theory (IRT) models have become partic-
ularly important for multistage and adaptive test administrations, where the models
provide the psychometric mechanism that allows test performances based on the
administration of different test items to be compared. When multidimensionality is
present, it is often helpful to think about the nature of the unidimensional approxima-
tion that occurs in relation to the multidimensional space. Wang’s (1986) concept of
a linear reference composite is often considered in such contexts. Wang presented the
linear composite conjecture (LCC; see also Strachan et al., 2022), which implies that
the unidimensional IRT approximation to multidimensional test data can be viewed
as a linearly weighted composite of the underlying multiple dimensions. The weights
attached to the multiple dimensions are determined by the discrimination parameters
of the items in the multidimensional space. For example, if a math test measures
the statistically distinguishable dimensions of algebra (dimension 1) and geometry
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(dimension 2), it is customary to think of the reference composite as a single dimen-
sion that is a linearly weighted combination (a weighted “average”) of the algebra
and geometry dimensions. The plausibility of the LCC was recently verified for many
realistic multidimensional test settings by Strachan et al. (2022). Ackerman and Ma
(2024) also illustrated several graphical representations of the LCC using item vector
plots, contour plots and centipede plots, that relatedly comport with an LCC perspec-
tive on the unidimensional approximation.

Despite this useful concept, one context where LCC appears likely to be violated
occurs when dimensionality correlates with item difficulty. Ip et al. (2019) refer
to such a condition in relation to a nonproportional abilities requirement (NPAR),
whereby different test score levels come to distinguish between different latent di-
mensions or dimensional composites. Such a condition is likely common, and even
expected, in an application like vertical scaling, where different grade level tests are
often presumed to measure somewhat different dimensions (often characterized as
“construct shift” multidimensionality; see Li & Lissitz, 2012; Martineau, 2006) and
are also generally of very different difficulty levels (higher grade level tests generally
being more difficult). Ip and Chen (2012, 2014) presented the projective IRT (PIRT)
approach, and Strachan et al. (2021) studied PIRT as a mechanism for handling such
conditions, whereby a single dimension or linear dimensional composite is chosen to
characterize the intended dimension against which test performances across grades,
for example, can be projected and compared.

Carlson (2017), however, presents a seemingly different perspective on this issue.
In the context of a simulated vertical scaling application where dimensionality corre-
lates with difficulty, Carlson (2017) suggested that a unidimensional continuum can
still approximate the multidimensionality, assuming the allowance of a curvilinear
continuum for that unidimensional approximation in the multidimensional space. Ef-
fectively, the unidimensional continuum bends through the multidimensional space
so as to maximally capture the variability seen in test performances at the different
grade levels. As Carlson (2017) notes:

As I have demonstrated in this and my previous research (Carlson, 2001), a unidi-
mensional scale can exist, and be derived, under the condition that the items on the
scale are located on a curved line (or perhaps very close to it; this has not been in-
vestigated in this study) in the multidimensional space and, of course, that the popu-
lations of test takers’ proficiencies on the underlying dimensions are closely aligned
with that curve. Furthermore, unidimensional scaling and linking of such data can
yield a very reasonable scale that should be interpretable as, for example, growth
in an academic assessment subject matter area in which the focus on instruction in
various subareas varies across grade level. (p. 24)

Carlson’s perspective on this issue seems somewhat at odds with that of Strachan
et al. (2021), who argue that “scores along the unidimensional scale will be dis-
torted” (p. 214) to the extent that they reflect a changing dimension or dimensional
composite. Ip et al. (2019, figure 10) essentially show how the use of the 2PL in the
presence of such a composite effectively creates a different scale in which test scores
tend to be more spread out along the latent continuum relative to what would be seen
if a linearly consistent weighted composite were defined.
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Curvilinear Reference Composite

The current paper has several goals. The first goal is to highlight the issue iden-
tified by Carlson (2017) as one that is relevant not just to vertical scaling (e.g.,
across-age or across-grade) applications, but also to multidimensionality that may
be present within individual (e.g., within-grade level) tests. Examples include mea-
sures of math proficiency, where distinct statistical dimensions may underlie easier
conceptual math questions versus more difficult items that might require skill in-
tegration or higher-order thinking. Another example (as we show in our empirical
example) is reading proficiency, where easier items might entail a statistical dimen-
sion associated with letter recognition proficiency while more difficult items tap a
statistically distinguishable decoding proficiency.

A second goal of our paper is to demonstrate the practical observation of a non-
linear reference composite in the presence of a correlation between item difficulty
and dimensionality. We apply a latent regression strategy to show how the single
unidimensional reference composite that emerges when fitting a unidimensional IRT
model, such as the two-parameter logistic (2PL) model, actually represents different
dimensional composites of the multiple dimensions along different regions of the ap-
proximating unidimensional continuum. We demonstrate the ensuing violation of the
LCC both in application to simulation data, as well as in application to empirical data
using routing test data from the Early Childhood Longitudinal Study—Kindergarten
Class of 1998-1999 (ECLS-K) measure of reading proficiency for children at the
K-1st grade level.

A third goal of our paper is to illustrate the implications of the curvilinear contin-
uum in regard to measurement modeling. We show how the presence of a curvilin-
ear latent continuum ultimately leads to systematic forms of misspecification when
using traditional IRT models such as the 2PL model. We consider a couple of al-
ternative models as examples of measurement models that can better accommodate
a nonlinear reference composite. Specifically, we examine both the unidimensional
monotonic polynomial approach of Falk and Cai (2016) as well as a form of asym-
metric IRT modeling using the logistic positive exponent (LPE) model (Samejima,
2000), each of which arguably provides a theoretically preferred approach in the
presence of curvilinearity due to anticipated nonlinear relationships between the la-
tent proficiency and the log-odds of correct response on the items. We illustrate how
the nature of the 2PL misfit that emerges under the studied conditions is consistent
with expectations in the presence of a curvilinear continuum. We conclude the paper
by speculating on metric consequences that may ensue due to measurement model
specification, consequences that we suspect may play a role in some of the find-
ings observed in relation to studies of reading proficiency and its development with
ECLS-K and have implications for future study.

Measurement practitioners are already comfortable with the notion that different
locations along a unidimensional latent proficiency metric can reflect the emergence
of different skill types. The concepts of proficiency scaling (Sheehan & Mislevy,
1994), scale anchoring (Beaton & Allen, 1992; Sinharay et al., 2011), and construct
mapping (Draney & Wilson, 2009) all convey a sense that different scale locations
along the continuum are associated with the emergence of different aspects of pro-
ficiency. Less frequently considered in such contexts are the implications this may
have in regard to unidimensional IRT modeling of the data, especially when such
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effects manifest (to some degree) as multidimensionality. The issue seems particu-
larly likely in the measurement of broadly defined proficiencies that are cumulative
in nature and where task types by necessity are varied to capture the skills most re-
flective of the specific proficiencies at different locations along the latent continuum.
Examples of such proficiencies include subject areas like reading, mathematics, or
second language acquisition, among others.

In the next section, we examine an assessment of reading proficiency that is seen
to produce multidimensionality in relation to task types that are also distinguished in
terms of difficulty.

Empirical Example: K-1st Grade Reading Proficiency Routing Test in the
Early Childhood Longitudinal Study, Kindergarten Class of 1998-1999

(ECLS-K)

In the measurement of reading proficiency, investigators frequently use items re-
flecting different types of tasks in order to assess a wide range of reading proficiency
levels. At the K-1st grade level, ECLS-K assesses reading proficiency using a form
of multistage testing that begins with a common routing test for all respondents,
and is then followed by a second stage of items tailored according to the routing
test performance. The ECLS-K longitudinal study includes a nationally representa-
tive sample of students from both public and private schools with the goal of un-
derstanding learning experiences and growth and the role of contextual factors on
that growth. We focus our analyses in this paper only on the routing test, as this is
administered to all of the K-1st grade respondents. The routing test contains a to-
tal of 20 items reflecting four different task types that are categorized according to
five different proficiency levels. The four different task types are letter naming, let-
ter choosing, decoding, and fill-in-the-blank tasks. The routing tests have 16 open-
ended items and four multiple-choice questions, and all items were scored either
correct or incorrect. Administration of items within the routing test was discontin-
ued if the child was struggling with the material or showing any distress, though
there were no time limits on the test sections (Rock & Pollack, 2002). Items not
reached were thus coded as missing (not administered) in our analyses as opposed
to incorrect. Generally speaking, students who fail to reach the end of the rout-
ing test have typically performed more poorly on the earlier items in the routing
test.

Using an incomplete routing test item response data matrix from over 75,000 stu-
dents, we first assessed the principal component eigenvalues derived from the tetra-
choric correlation matrix of the routing test items. The first four eigenvalues were:
λ1 = 15.812,λ2 = 3.835,λ3 = .116, andλ4 = .087, suggesting a dominant first di-
mension, but potentially two dimensions overall (assuming an eigenvalue greater
than 1 criterion) within the routing test. The ensuing factor pattern observed for a
two-dimensional multidimensional IRT model (Reckase, 1997) suggested that Items
1-4 and Items 13-20 solely measured dimensions 1 and 2, respectively, while Items 5-
12 measured a composite of the two dimensions. Note that for the last four multiple-
choice items, a nonzero lower asymptote parameter was also estimated to account
for potential guessing.
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Table 1
ECLS-K Kindergarten-1st Grade Routing Test Items, Descriptive Statistics and Two-
Dimensional IRT Estimates

Two-Dim IRT Estimates

Routing
Item

Task Proficiency
Level

Task
Type

Prop
Correct

N a1 a2 d g

1 Name
letters

1 Open-
ended

.89 57,940 4.28 0 6.46 0
2 .89 57,940 5.37 0 7.77 0
3 .86 57,920 4.66 0 6.31 0
4 .88 57,930 4.20 0 6.07 0
5 Choose 1 of

8 letters
2 .73 57,940 2.17 1.10 2.90 0

6 .74 57,930 2.75 1.81 3.96 0
7 .72 57,940 2.84 1.90 3.93 0
8 .59 57,940 1.54 1.13 1.42 0
9 3 .52 57,930 1.33 1.95 1.19 0
10 .57 57,940 1.37 1.85 1.56 0
11 .65 57,920 2.02 2.43 2.92 0
12 .63 57,930 1.75 1.82 2.20 0
13 Decoding 4 .57 65,260 0 6.41 1.02 0
14 .41 53,950 0 6.83 .08 0
15 .53 65,250 0 6.22 .35 0
16 .41 53,930 0 5.20 –.01 0
17 Fill in blank 5 Multiple

choice
.78 37,190 0 6.62 –2.11 .22

18 .73 37,190 0 7.02 –2.81 .20
19 .75 36,490 0 9.70 –3.47 .15
20 .71 35,650 0 8.29 –3.41 .13

Note. N = Sample size, rounded to nearest tens; a1 = item discrimination on the first dimension; a2 =
item discrimination on the second dimension; d= item difficulty; g= item guessing. Estimated correlation
between dimensions = .616.
Source. U.S. Department of Education, National Center for Education Statistics, Early Childhood Longi-
tudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

Table 1 displays descriptive statistics for the items on the routing test and also
shows the nature of the task associated with each item. As is apparent from the
table, the task types are strongly related to the item difficulty (d) estimates, ranging
from the easiest items being the letter-naming task items, to the most difficult
being the fill-in-the-blank items. Also shown in the table is the factor pattern
and accompanying discrimination and difficulty estimates obtained from using
the R package mirt (Chalmers, 2012) for a two-dimensional IRT model using
full-information maximum likelihood to accommodate item response missingness.
The estimated correlation between the two dimensions was .616. Note that the pro-
portion correct statistics are not completely consistent with this difficulty ordering,
in particular for the last four items, which can be attributed to at least a couple
of factors. First, the last four items are multiple-choice items and the proportion
correct statistics are thus likely higher than expected in part due to guessing effects.
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Figure 1. Item vector plot displaying the relationship between dimensionality and
difficulty; 2D-IRT estimates of the ECLS routing test, and Wang’s (1986) linear
reference composite.
[Color figure can be viewed at wileyonlinelibrary.com]

Note. The item vector plots are shown here with respect to orthogonal latent dimensions. As a
result, dimension 1 is measured to varying extents by all of the items, while dimension 2 is
measured to varying extents by all items except Level 1 items.
Source. U.S. Department of Education, National Center for Education Statistics, Early
Childhood Longitudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

Second, the end-of-routing test items are likely only reached by K-1st graders of
higher
proficiency levels, implying the proportion correct estimates are also affected
by distributional differences in proficiency among those actually administered the
items. For the difficulty-dimensionality phenomenon of interest, we are focused on
the d estimates of difficulty, as these reflect the inflection points/regions of the item
characteristic curves/surfaces, and thus are the difficulty values most relevant to
understanding the curvilinearity in the reference composite.

Figure 1 provides an item vector plot for the 20 routing test items based on the
two-dimensional MIRT model illustrating the nature of the multidimensionality in
relation to item difficulty. Each vector represents an item; the vector is oriented
in the direction defined by the item discrimination estimates, which is also the di-
rection of the steepest slope in the multidimensional space, the dimensional com-
posite that is best measured by the item. The tail location and length of the vector
represent the multidimensional difficulty and adjusted multidimensional discrimina-
tion (the length of the discrimination vector, often denoted as MDISC), respectively
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Curvilinear Reference Composite

(Ackerman, 1996; Reckase, 2009). The vectors are color-coded according to the cate-
gorized proficiency levels defined within ECLS-K. Also shown is the linear reference
composite for the test following Wang (1986).

It is apparent that the discrimination of the items in the ECLS-K routing test is
generally quite high, and likely higher than practitioners see in most measurement
applications. This appears to be due to the high degree of similarity of items within
each category—e.g., the “letter naming” tasks are consistently naming individual let-
ters (albeit different letters)—likely leading to a high degree of internal consistency.
The correlation between item difficulty (d) and the cosine of the angle between the
item vector and the θ1 axis is .922, suggesting a strong positive association between
dimensionality and difficulty.

We return to this empirical analysis shortly, but next describe a simulation study
that examines the implications of the correlations between difficulty and dimension-
ality on the ensuing reference composite when using a unidimensional IRT model as
an approximation.

Simulation and Empirical Illustrations of a Nonlinear Reference Composite

In contrast to the approaches taken in Carlson (2017) and Strachan et al. (2021),
which emphasized vertical scaling applications, we adopt a latent regression strategy
to demonstrate how the approximating unidimensional IRT continuum for a single
test can come to represent varying dimensional composites in a multidimensional
space when there is a strong association between dimensionality and difficulty.

To illustrate, we generate two-dimensional data in which we manipulate the as-
sociation between difficulty and dimensionality. We then examine how the two di-
mensions are differentially related to the unidimensional proficiency created when
fitting a 2PL model to the item response data. Specifically, we divide the approxi-
mating latent unidimensional continuum, denoted θC, into upper (θC > 0) and lower
segments (θC ≤ 0). We use effect coding (I(θC ≤ 0) = 1 if θC ≤ 0; = −1 if θC > 0)
to regress the θC onto the true generating proficiency parameters (θ1, θ2) as well as
interactions (product variables between each of θ1, θ2 and the effect coded indicator
I(θC ≤ 0)). Note that linear composite conjecture (LCC) is violated to the extent that
we observe statistical significance in the product coefficients, implying the weights
on θ1, θ2 change across the θC continuum.

Our simulation analyses consider designs involving the item responses of 10,000
respondents to two groups of 20 items, the first group measuring only θ1 and the sec-
ond group measuring only θ2. The large number of respondents and items is chosen
so as to minimize the effects of sampling-related estimation error. We additionally
manipulate two factors: (1) the correlation between the θ1, θ2 dimensions, which is
considered at levels of .3, .5, .7, and .8; and (2) the strength of relationship between
item difficulty and dimensionality, which is manipulated by generating item diffi-
culties (d) for the two groups of items from (1) Normal(0,1) and Normal(0,1); (2)
Normal(–.5,1) and Normal (.5,1), or (3) Normal(−1,1) or Normal(1,1). With the ex-
ception of the first condition where the difficulties are equivalently distributed across
dimensions, for the last two difficulty conditions, the group of items measuring θ1 are
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Figure 2. Item vector plot illustrating association between item difficulty and
θ1, θ2, illustrative replication from simulation study.
[Color figure can be viewed at wileyonlinelibrary.com]

Note. The item vectors in the figure are jittered to make the individual items discernible. The
actual item angles are identical within the groups of items shown as blue and red. As for
Figure 1, the plot is shown with respect to orthogonal latent dimensions.

consistently easier; consequently, we anticipate a reference composite θC in which
θ1 is more heavily weighted in the lower segment of the θC continuum, and θ2 is
more heavily weighted in the upper segment. Figure 2 provides an illustrative item
vector plot from one simulation where the correlation between dimensions is .7 and
the item difficulty difference across dimensions is large. We anticipate that when the
difficulties between the two groups are more separated, we will see greater differ-
ences in the relative weighting of θ1, θ2 on θC in the upper and lower segments due
to the stronger relationship between difficulty and dimensionality.

Subject to these conditions, we generate item response data using the multi-
dimensional 2PL model of Reckase (1997), where a ∼Uniform(1.2,1.6) for all
items, and respondent proficiencies are generated from a bivariate normal involving
standardized proficiencies θ1, θ2 having a correlation level as specified by our first
simulation factor. We chose somewhat less discriminating items for our simulation
recognizing that those seen in our empirical analysis were unusually high for the
reasons mentioned earlier. See Appendix 5 for further exploration on the impact
of item discrimination and alternative simulation conditions involving somewhat
higher levels of item discrimination. Regardless of the data generating condition, we
fit the data using the unidimensional 2PL model, so as to approximate conditions in
which a 2PL model is used to define a reference composite θC . In order to evaluate
the anticipated nonlinearity in the composite, we initially fit the 2PL model using
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Table 2
Mean Estimated Regression Coefficients and Associated p-Values from Latent Regression of
θC onto θ1, θ2, and Product Variables with Effect Coded Indicator θ̂C ≤ 0 versus θ̂C > 0,
Simulation Study with 30 Replications

θ1 θ2 θ1 × I (θ̂C ≤ 0) θ2 × I (θ̂C ≤ 0)

Corr(θ1, θ2) Difficulty
Difference

Est. p Est. p Est. p Est. p

.3 None .543 <.001 .547 <.001 –.004 .105 .006 .081
Medium .539 <.001 .546 <.001 .057 <.001 –.055 <.001
Large .530 <.001 .538 <.001 .111 <.001 –.109 <.001

.5 None .516 <.001 .520 <.001 –.003 .098 .006 .083
Medium .512 <.001 .519 <.001 .064 <.001 –.061 <.001
Large .506 <.001 .512 <.001 .122 <.001 –.119 <.001

.7 None .491 <.001 .495 <.001 –.005 .108 .006 .089
Medium .489 <.001 .494 <.001 .068 <.001 –.066 <.001
Large .485 <.001 .489 <.001 .132 <.001 –.129 <.001

.8 None .480 <.001 .483 <.001 –.005 .099 .006 .101
Medium .478 <.001 .482 <.001 .072 <.001 –.070 <.001
Large .474 <.001 .480 <.001 .137 <.001 –.135 <.001

Mplus v 8.9 (Muthén & Muthén, 1998-2022) and use the Expected A Posteriori
(EAP) estimates θ̂C to define the effect coded indicator variable characterizing the
respondent as θ̂C ≤ 0 or θ̂C > 0. Using Mplus, we then apply a regression model
in which the θ̂C of the 2PL model is the outcome, and the predictors are the true
generating θ1, θ2 along with product variables involving the effect coded indicator:

θ̂C = β0 + β1θ1 + β2θ2 + β3θ1I
(
θ̂C ≤ 0

) + β4θ2I
(
θ̂C ≤ 0

) + e.

By evaluating the significance and direction of the product variable coefficients β3
and β4, we are able to see whether and how the composite changes across segments.
Appendix 1 provides the Mplus code used in the analysis. A total of 30 replications
were conducted for each combination of simulation conditions.

Simulation Results

Table 2 reports the regression coefficients observed under the various simulation
conditions. As expected, the presence of a strong association between difficulty and
dimensionality implies a changing relationship between the true multidimensional
proficiencies and the approximating 2PL unidimensional proficiency across levels
of the proficiency. Even under a rather high correlation between θ1, θ2, we see the
θC differentially weights the two dimensions according to where the difficulties of
items measuring the corresponding dimension are concentrated. At lower levels of
θC , we observe a statistically stronger influence of θ1, while at higher levels of θC ,
we observe a statistically stronger influence of θ2. Taking into account the use of
effect coding as ±1 for the predictors, these effects are relatively strong, especially
when the difficulty difference across dimensions is large. It is important to further
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Table 3
Slope Coefficients from Regression of θ̂C onto θ̂1, θ̂2 for Regions θ̂C ≤ 0 and θ̂C > 0, Empir-
ical Study Using Reading Proficiency K-1st Grade Routing Test Items, ECLS-K Data

Est. SE p

θ̂1 .297 .014 <.001
θ̂2 .819 .010 <.001
θ̂1 × I (θ̂C ≤ 0) .139 .015 <.001
θ̂2 × I (θ̂C ≤ 0) –.098 .011 <.001

Source. U.S. Department of Education, National Center for Education Statistics, Early Childhood Longi-
tudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

appreciate that in this analysis, we are treating the effect as a piecewise linear effect
simply to demonstrate the nonlinearity of the reference composite. It can be antici-
pated that as one moves to the extremes of the θC continuum, the effects become
even more pronounced, such that the lowest levels of θC represent primarily θ1, while
the highest levels of θC represent primarily θ2.

Importantly, the significance of the bolded product coefficients in Table 2 con-
flicts in theoretically anticipated ways with the LCC of Wang (1986), where a con-
sistent set of weights are assumed to apply across the entire θC continuum and
thus the coefficients on the product variables should be zero. It thus seems clear
that difficulty plays a role in the weighting of dimensions when difficulty is corre-
lated with dimensionality. Following the results of Carlson (2017), when item diffi-
culty is associated with dimensionality, we see those unidimensional trait locations
closest to the inflection points (as defined by MIRT model d values) of the items
to largely capture the corresponding dimension. Although our current application
is only a two-dimensional illustration, it can be anticipated that similar phenom-
ena will also be seen with more dimensions. Essentially the unidimensional trait
“snakes” through the multidimensional space in a way that allows the single latent
proficiency to best capture whatever variability is present within that region of the
multidimensional space, even if it means changing direction in the high dimensional
space.

Empirical Results

We can mimic the same type of latent regression procedure using the empiri-
cal ECLS-K routing test data. Using the two-dimensional IRT solution reported in
Table 1, we can derive latent trait estimates (θ̂1, θ̂2) for all respondents. In contrast
to the simulation where we relied on latent regression using Mplus, we now fit a
unidimensional 2PL model to the routing test data to get a second set of proficiency
estimates. The 2PL was estimated using mirt (Chalmers, 2012) and full-information
maximum likelihood (FIML). Similar to the simulation, the approximating unidi-
mensional latent trait is then regressed against the θ̂1, θ̂2 and product variables with
the effect coded indicator. Table 3 reports the results. Consistent with the simulation
analysis, when considering the region of the unidimensional continuum below 0, we
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Curvilinear Reference Composite

observe the dimension most associated with the easy items (θ̂1) to have a greater
weight than the dimension associated with the difficult items (θ̂2); just the opposite
occurs for the region of the unidimensional continuum above 0. Consequently, for the
ECLS-K data, we have a unidimensional continuum that is not a linear composite of
the underlying two dimensions. We consider next the consequences of this result in
the use of a 2PL to model the items.

Revisiting Measurement Models in the Presence of a Curvilinear Continuum

The results of Tables 2 and 3 make apparent the potential for an approximating
unidimensional model (in this case the 2PL) to produce a latent metric that is curvi-
linear in the multidimensional space. These analyses show a pattern to the changing
linear composite consistent with expectations; the dimension associated with easier
items contributes more to defining the lower end of the scale under the unidimen-
sional approximation, while the dimension associated with difficult items contributes
more to defining the upper end. Despite the apparent capacity of the unidimensional
2PL to capture multidimensionality using a nonlinear (curvilinear) form, there is still
arguably reason for concern with the application of models like the 2PL under such
conditions. Importantly, the theoretical justification for most traditional IRT mod-
els (e.g., normal ogive, logistic) follows from the presence of a latent continuum
having latent units with interval-level meaning. For such models, the units along
the unidimensional continuum define equivalent changes in the logit of the proba-
bility (i.e., log-odds) of correct response. The presence of a dimensionally varying
unidimensional continuum thus naturally raises questions about the violation of the
interval-level meaning of the scale when the items only measure one of the underly-
ing dimensions. Suppose, for example, a mathematics test consisting of easy algebra
(dimension 1) and difficult geometry (dimension 2) items, so that the curvilinear ref-
erence composite is more aligned with algebra at its low end and geometry at its
high end. When modeling the mix of algebra and geometry items against the unidi-
mensional curvilinear composite, we expect the logit of the ICC for an algebra item
to have a greater slope at the low end than at the high end of the composite, and
just the reverse for geometry items. In fact, from our simulation, this is precisely
what is seen when fitting the 2PL. Figure 3 presents two example items from simu-
lation where the easy and difficult dimensions were assumed to be weakly correlated
(r = .3). We compared the model-based item characteristic curves and the empirical
probability estimates using θ estimates obtained from the 2PL model (we now de-
note θC as θ2PL). The nature of the 2PL misfit seen in these items makes apparent
the challenge in applying the 2PL model when the underlying continuum is curvi-
linear in the multidimensional space. Note how for the easy item there is greater
change in the empirical probabilities at low levels of θ2PL than is implied by the
model (resulting in overestimated probabilities at the lower end), while for the diffi-
cult item, there is greater change at high levels of θ2PL in the probabilities than is im-
plied by the model (resulting in underestimated probabilities at the upper end). Thus
while the 2PL does create a curvilinear continuum, it is constrained in accommo-
dating the curvilinearity owing to its requirement that the logit of the ICC for each
item change linearly with θ2PL. We might view the resulting continuum produced by
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Figure 3. Estimated item characteristic curves (ICCs) for 2-parameter logistic
(2PL) model applied to simulated two-dimensional data with
difficulty-dimensionality association.
[Color figure can be viewed at wileyonlinelibrary.com]

Note. Empirical probability values (shown as triangles) are based on 2PL ability estimates
and the application of a loess smoother.

the 2PL as a type of compromise—a latent metric that is somewhat curvilinear (as
seen earlier) but one also producing systematic misfit in the ICCs to the extent that
the curvilinearity implies a nonlinear relationship with the logit. This naturally leads
to consideration of alternative models that might simultaneously accommodate the
curvilinearity while not requiring a latent metric that is linear with respect to the logit
probabilities.

We consider two alternatives in the next two sections. These alternatives are cho-
sen simply as example illustrations that are anticipated to accommodate curvilinear-
ity in the reference composite—other alternatives are possible and may ultimately be
superior.

Monotonic Polynomial IRT Model

To better accommodate the projection of item scores against a curvilinear ref-
erence composite, we first consider the application of a monotonic polynomial IRT
model (Falk & Cai, 2016; Falk & Feuerstahler, 2022), a modeling approach that adds
flexibility to the 2PL by allowing additional nonlinearity in the logit ICCs while still
preserving their monotonicity. Following work by Liang (2007), Falk and Cai (2016)
show how a monotonic polynomial function can take the place of the traditional
linear function in models like the 2PL, with higher-order polynomials. For a speci-
fied integer value k, an odd-degree polynomial function, determined by the highest
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Curvilinear Reference Composite

order of 2k + 1, is used to model the log-odds (logit) associated with obtaining a
correct answer to an item, expressed as

logit
[
Pi j (Xi j = 1|θi )

] =
2k j+1∑
r=0

br jθi
r .

The approach subsumes the 2PL as a special case (when k = 0), but allows third-
order (k = 1) and fifth-order (k = 2) extensions as generalizations that provide in-
creasing flexibility. While the model parameters are incorporated to ensure sufficient
flexibility in the function, they are not meant to be interpreted, as the focus of at-
tention is the ICC. Monotonic polynomial IRT (MP-IRT) models of this kind can
be fit using the mirt package (Chalmers, 2012) in R, and the reader is referred to
the above references for additional details on model fitting and interpretation. In the
current analysis, we consider the third-order extension, and examine the results of
these models using both the simulated and empirical data in terms of comparative
goodness-of-fit against the 2PL, as well with respect to the resulting ICCs. Given the
nature of the nonlinear reference composites observed above, we anticipate that the
MP-IRT models will demonstrate better comparative fit than the 2PL, and also bring
the comparative fit of a unidimensional model closer to that of the multidimensional
models. In addition, we anticipate that the ICCs of the MP-IRT model will be such
that (a) easier items will show reduced sensitivity to change in the unidimensional
trait at higher trait levels, and (b) more difficult items will show reduced sensitivity
to change in the unidimensional trait at lower trait levels. Such a phenomenon, if
observed, would confirm the influence of the curvilinear reference composite on the
resulting ICCs, and suggest a possible context in which such forms of semiparamet-
ric IRT models become desirable.

Asymmetric IRT: The Logistic Positive Exponent (LPE) Model

Another modeling alternative is the logistic positive exponent (LPE) model pro-
posed by Samejima (2000). Under Samejima’s model, the probability of a correct
response to an item is given by

P
(
Xi j = 1|θi; a j, b j, ξ j

) =
(

exp
[
a j

(
θi − b j

)]
1 + exp

[
aj

(
θi − bj

)]
)ξ j

,

where 0 < ξ j < ∞ is an exponent parameter that defines the asymmetry of the item
characteristic curve (ICC), and θi; a j, b j reflect the unidimensional examinee pro-
ficiency and item discrimination and difficulty parameters, respectively. While the
LPE model is valuable in creating ICC asymmetry, its empirical identification be-
comes challenging without prespecifying the asymmetry parameter ξ j for each item.
In the current application, theory suggests a directionality to asymmetry in relation
to the difficulty of the item. Specifically, because the easy items are more related to
θ1 and difficult items to θ2, we anticipate the easy items to show positive asymmetry
(i.e., reduced discrimination at the high end of the unidimensional continuum) and
the difficult items to show negative asymmetry (i.e., reduced discrimination at the
low end of the unidimensional continuum). Subject to these restrictions, we applied
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Liao, Bolt, and Kim

a sensitivity analysis setting the exponent parameter to different constant levels. and
compared the model goodness-of-fit to determine the optimal asymmetry parame-
ter values for easy and difficult items. The asymmetry parameters were then set to
these constant values in fitting the LPE model using mirt (Chalmers, 2012). As for
the MP-IRT model, interested readers are referred to the mirt routine and Samejima
(2000) for more information on the LPE model and its estimation. Details on how
the asymmetry parameters were handled in the context of the current analysis are
provided in Appendix 2.

Simulation Results

Table 4 provides model comparison results in relation to the datasets considered
in the simulation study. In this case, the models being fit to the simulated datasets
are (1) the true 2-dimensional MIRT model; (2) a third-order MP-IRT model; (3)
the LPE model (with fixed exponent parameters); and (4) the 2PL model. While
we theoretically anticipate better approximations of the curvilinearity with the MP-
IRT and LPE models, the models are compared with respect to likelihood-based
criteria [Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC)]
that also penalize the models according to complexity. As a result, the monotonic
polynomial models only emerge as superior to the 2PL if their greater complexity is
worth it in regard to statistical model fit.

The entries of Table 4 report the mean comparative fit indices seen across the
30 replications. As anticipated, comparative fit is consistently best when fitting the
MIRT model (the data generating model) to the data. Of greater interest is the consis-
tent capacity of the MP-IRT model, and to a lesser extent the LPE model, in provid-
ing a better approximation to the multidimensional data than the 2PL. These results
are consistent with our expectations in that the parametric form of the 2PL does not
provide an optimal unidimensional approximation, especially in the presence of an
association between difficulty and dimensionality, due to the curvilinearity of the
reference composite. While the MP-IRT and LPE models naturally are still not ac-
counting for the true multidimensionality in the data, they are providing a better
unidimensional approximation than the 2PL.

An inspection of the ICCs helps explain why the MP-IRT model provides a better
fit than the 2PL. Figure 4 shows the ICCs. In the upper panel, we show the estimated
ICCs of the 2PL in logit form. The linearity of the logit against proficiency for all
items is a natural feature of the 2PL model, and implies that the logit of expected
performance on the item changes in a linear way from the lowest to highest levels of
the estimated unidimensional latent proficiency. By contrast, for the MP-IRT model,
we see estimated logit curves that are nonlinear. More importantly, the nonlinearity
shows the expected pattern in which items measuring θ1, Items 1-20, show greater
increases at lower levels of θC than at higher levels of θC . Just the opposite occurs
for Items 21-40, which measure θ2, where greater increases in the logit are seen at
higher levels of θC than at lower levels of θC . As noted, such effects are consistent
with the changing nature of θC and hence support the use of MP-IRT in the current
context. Similar results occur for the LPE (not shown here), which as noted were set
to have positively asymmetric items for the easier items, and negatively asymmetric
items for the more difficult items.
14
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Figure 4. Estimated item logit probability curves for (a) 2PL and (b) third-order monotonic
polynomial IRT (MP-IRT) models, illustrative example from a single replication of the
simulation study. [Color figure can be viewed at wileyonlinelibrary.com]
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Curvilinear Reference Composite

As described earlier, the value of the logit ICCs no longer being required to be
linear under the MP-IRT and LPE models is that it allows the unidimensional latent
metric to better accommodate the curvilinearity in the unidimensional approxima-
tion. To demonstrate this, we are able to replicate the process used to produce the
results in Table 2, but now using the unidimensional approximation provided by
the MP-IRT (Table 5) and LPE (Table 6). With both models, we see the magnitude
of the coefficients on the product terms (the two rightmost columns in each table)
under conditions where there is a difficulty difference across dimensions. Most sig-
nificantly, these coefficients become larger in absolute magnitude than was the case
for the 2PL. They are also larger for the MP-IRT than the LPE, suggesting the great-
est accommodation of the curvilinearity under MP-IRT, a result also consistent with
the observation of better comparative fit for the MP-IRT compared to the LPE and
2PL. Along these lines, Figure 5 shows the estimated curvilinear continuum for the
MP-IRT, LPE, and 2PL models (along with the linear reference composite) for the
item vector plot in Figure 2 under conditions in which the correlation between di-
mensions is .7. For each model, the curvilinear function is drawn based on the piece-
wise linear slopes estimated from the regression analysis, and the assumption that
the rate of change in the weights of the two dimensions is constant across the ap-
proximating continuum. A comparison among different curvilinear approximations
makes apparent that the greatest curvilinearity occurs through use of the MP-IRT
model.

Empirical Results

Table 7 and Figure 6a and b show corresponding results based on the empirical
analysis of the ECLS-K reading proficiency routing test. In this case, to account
for possible guessing effects, we combine the 2PL with the 3PL so as to estimate
a nonzero lower asymptote for Items 17-20. As with the simulation data, we theo-
retically anticipate a better fit of the MP-IRT and LPE models due to their capacity
to accommodate the previously illustrated curvilinearity. Consistent with the simu-
lation analysis, in Table 7, we observe the MP-IRT model to provide a better unidi-
mensional approximation to the routing test data than the 2PL/3PL, even accounting
for its greater complexity. While the MP-IRT and LPE models remain inferior to the
multidimensional model, they are superior to the traditional 2PL/3PL IRT analysis,
with the MP-IRT model again being comparatively better than the LPE.

Figure 6a and b again shows the mechanism by which the MP-IRT model pro-
vides a better comparative fit. While the 2PL/3PL analysis in constrained to require
a consistent linear effect in relation to the logit ICCs (in this case we subtract off the
guessing component for Items 17-20), we see the anticipated patterns to the nonlin-
earity of the logit under the estimated MP-IRT model. Specifically, for Items 1-4, we
see a reduced change in the logit as θC increases, while for Items 5-16 (which are
also influenced by θ2), we observe a reduced change in the logit at lower levels of
θC , but an acceleration as θC increases. Note that this general pattern is also present
for Items 17-20, but there is also an apparent substantial change at very low levels
of θC . This effect is an artifact due to our approach in subtracting off the effects of
guessing on the logit and reflects what in actuality are very small changes in item
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Figure 5. Hypothetical reference composites under different models,
simulation condition with large difficulty difference, correlation
between dimensions = .7. [Color figure can be viewed at
wileyonlinelibrary.com]

Table 7
Model Comparison Fit Results, Reading Proficiency K-1st Grade Routing Test, ECLS-K Data

Number of
Model Log-Like AIC BIC Parameters N

2D-MIRT –417189.1 834484.1 834973.8 53 76,080
3rd Mono-Poly –421999.3 844158.7 844897.8 80
LPE_fixed –422736.9 845553.8 845923.4 40*

2PL/3PL Logistic –423153.6 846395.3 846801.8 44

Note. N is the sample size, rounded to the nearest tens.
*Two additional asymmetry parameters were predetermined in the first-stage sensitivity analysis.
Source. U.S. Department of Education, National Center for Education Statistics, Early Childhood Longi-
tudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

response probabilities at lower levels of the θC . Although not shown here, the same
ICC patterns are seen in the LPE.

Tables 8 and 9 show the results of the regression analysis analogous to Table 3,
but now based on the approximating unidimensional proficiencies obtained using
the MP-IRT and LPE models, respectively. Consistent with Table 3, the coefficient
patterns for the product coefficients are consistent with the curvilinearity, and again
the MP-IRT shows greater curvilinearity than the 2PL, as evidenced by coefficients
that are larger in absolute magnitude relative to those in Table 3. Interestingly, the
coefficients for the LPE are not greater in absolute magnitude than for the 2PL,
suggesting less of a curvilinear approximation. Such results could point to a need
for more than two levels of asymmetry across items.
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Figure 6. Estimated item logit probability curves for (a) 2PL/3PL and (b) third-order
monotonic polynomial IRT (MP-IRT) models, reading proficiency K-1st grade routing test,
ECLS-K data.
[Color figure can be viewed at wileyonlinelibrary.com]
Source. U.S. Department of Education, National Center for Education Statistics, Early
Childhood Longitudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).
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Table 8
Slope Coefficients from Regression of θ̂MP onto θ̂1, θ̂2 for Regions θ̂MP ≤ 0 and θ̂MP > 0,
Empirical Study Using Reading Proficiency K-1st Grade Routing Test Items, ECLS-K Data

Est. SE p

θ̂1 .274 .013 <.001
θ̂2 .823 .009 <.001
θ̂1 × I (θ̂MP ≤ 0) .217 .014 <.001
θ̂2 × I (θ̂MP ≤ 0) –.153 .010 <.001

Source. U.S. Department of Education, National Center for Education Statistics, Early Childhood Longi-
tudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

Table 9
Slope Coefficients from Regression of θ̂LPE onto θ̂1, θ̂2 for Regions θ̂LPE ≤ 0 and θ̂LPE > 0,
Empirical Study Using Reading Proficiency K-1st Grade Routing Test Items, ECLS-K Data

Est. SE p

θ̂1 .270 .015 <.001
θ̂2 .838 .010 <.001
θ̂1 × I (θ̂LPE ≤ 0) .044 .015 .001
θ̂2 × I (θ̂LPE ≤ 0) –.031 .010 .001

Source. U.S. Department of Education, National Center for Education Statistics, Early Childhood Longi-
tudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).

Figure 7. Estimated curvilinear reference composites under MP-IRT,
LPE, and 2PL models, ECLS-K routing test data.
[Color figure can be viewed at wileyonlinelibrary.com]

Source. U.S. Department of Education, National Center for Education Statistics, Early
Childhood Longitudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).
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Curvilinear Reference Composite

Taken together, we see the results of both the simulation and empirical analyses as
pointing to the practical implications of a multidimensionality-induced curvilinearity
in the reference composite when using unidimensional IRT models as approxima-
tions to multidimensional data. Traditional unidimensional IRT models like the 2PL
become misspecified in the presence of such conditions. We reflect on consequences
of this misspecification in discussion.

Figure 7 provides the estimated curvilinear continua defined by the MP-IRT, LPE,
and 2PL models for the empirical application, defined in the same way as for the
simulation. As for the simulation, the MP-IRT approach shows the greatest potential
in accommodating curvilinearity.

Conclusions and Discussion

Our simulation and empirical results demonstrate the emergence of a nonlinear
reference composite when fitting unidimensional IRT models to multidimensional
data where difficulty and dimensionality correlate. The result provides a clear con-
text in which the linear composite conjecture (LCC) of Wang (1986) will not hold
and is consistent with simulation results from Carlson (2017) and Strachan et al.
(2021), which considered similar occurrences in vertical scaling contexts. To the
extent that most psychometric models have their theoretical justification from the
presumed existence of an underlying interval-level latent metric, the presence of
curvilinearity makes the appropriateness of such measurement models suspect for
settings where item difficulty is associated with dimensionality. We can anticipate
model misfit when traditional models (e.g., the 2PL) are applied under such condi-
tions. We show how more flexible models, such as the MP-IRT and LPE, by repre-
senting possible nonlinear changes in the log-odds of correct response, are also better
able to accommodate the curvilinearity in the reference composite.

We believe these results are meaningful for a couple of different reasons. First,
they highlight a context in which semiparametric IRT models, like the MP-IRT, or
asymmetric IRT models, like the LPE, will be useful. While previous considera-
tions have focused on aspects of psychological response process as a possible basis
for such models (Samejima, 2000), this paper has shown that multidimensionality
can be another source, especially where dimensionality is associated with item dif-
ficulty. One very practical implication naturally relates to vertical scaling, a context
where difficulty/dimensionality associations are known to occur. While prior authors
have sought to somehow incorporate explicit modeling of the multidimensionality
into the vertical scaling process, we show that we can also accommodate the mul-
tidimensionality (at least to an extent) through the use of more flexible models like
MPIRT or LPE, which can better accommodate the curvilinear reference composite
that emerges. Second, the results raise questions as to the possible metric conse-
quences of using models such as the 2PL, when correlations between dimensionality
and difficulty are present. Prior work (e.g., Bolt et al., 2014; Bolt & Liao, 2022)
has similarly shown how misspecification of the kind seen in this study can render
metric distortions when models like the 2PL are nonetheless applied. Model speci-
fication plays an important role in how the underlying metrics of measurement are
defined (Feuerstahler, 2019). We believe the results of our paper have implications
for both applications and research using educational test data. One application that is
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relevant concerns applications of vertical scaling and growth measurement. The ex-
pected presence of construct shift multidimensionality across grades typically leads
to attempts at multidimensional solutions, such as bifactor or projective IRT methods
(e.g., Li & Lissitz, 2012; Strachan et al., 2021). Like Carlson, our results suggest the
plausibility of considering the unidimensional approximation as a curvilinear con-
tinuum, a result that can be better achieved by allowing alternative models, such as
monotonic polynomial or asymmetric IRT models, that can accommodate nonlin-
earity in the logit against that quantitative continuum. The best ways of using such
models, or making them a part of practical efforts for vertical scaling purposes are
the focus of ongoing work.

There are also very practical ways in which our findings speak to research based
on the use of educational measures. For example, metric distortions have been spec-
ulated to be a cause of variability in the observation of Matthew effects in reading
(Morgan et al., 2008). A Matthew effect refers to a type of “rich get richer” phe-
nomenon sometimes seen in reading whereby students who have higher baseline
measures of reading proficiency tend to show greater growth than students of lower
baseline reading proficiency. While issues of noninterval scales have been raised as
possible contributing factors to such phenomena (Protopapas et al., 2016), there have
not been psychometric reasons provided for how and why such metrics can become
systematically distorted. As we demonstrate in this paper, multidimensionality can
provide one such psychometric explanation. Another research application concerns
the presence of fadeout effects, namely the tendency to see initially efficacious treat-
ments reduce over time, as the control group “catches up” to the treatment group, an
observation often seen in mathematics. The so-called “fadeout effects” have similarly
been recognized as a possible consequence of score metric distortion in the applica-
tion of IRT models (Wan et al., 2021). Our results highlight the role multidimen-
sionality can play here. As for ECLS-K, developmental studies of mathematics often
involve different problem types at different difficult levels, and we can anticipate
latent metric distortion when traditional IRT models (Rasch, 2PL, 3PL) are applied.

There are additional directions for further research based on our findings in this
paper. While we anticipate the results will extend naturally to higher dimensional
settings (i.e., three or more dimensions), such effects remain to be studied. It is also
conceivable that something other than strictly linear associations between difficulty
and dimensionality may be present in some contexts; how or whether similar types of
effects might emerge under such conditions also remains to be seen. Finally, we note
the challenges inherent in applications of the LPE due to difficulties in estimating
the asymmetry parameter. We explored an approach in which these parameters were
fixed at theoretically and empirically informed values. However, as evidenced in our
empirical analysis, such an approach does not always work, and thus needs further
attention if the LPE is to be considered in this context.
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Appendix A: Mplus Code for Latent Regression Analyses

TITLE: Two-parameter logistic IRT model and latent regression
DATA: FILE = res.dat;
VARIABLE: NAMES ARE u1-u40, theta1, theta2 int1 int2;

CATEGORICAL ARE u1-u40;
ANALYSIS: ESTIMATOR = MLR;
MODEL: f BY u1-u40*;

f@1;
f ON theta1 theta2 int1 int2;

OUTPUT: stan

Appendix B: LPE Model with Fixed Asymmetry Parameters

In this section, we detail our approach to handling the asymmetry parameters that
are a part of specifying the logistic positive exponent (LPE) models. Under the LPE
model, the probability of a correct response to an item is given by

P
(
Xi j = 1|θi; a j, b j, ξ j

) =
(

exp
[
a j

(
θi − bj

)]
1 + exp

[
aj

(
θi − b j

)]
)ξ j
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Table B1
Asymmetry Parameter Specifications and Associated Log Likelihood, Simulation Condition
Example

Easy
Items

Items Log-Like Items Hard Items Log-Like

.4 10 –109112.6 10 .4 –108248.5

.4 5 –109077.2 10 .2 –108151.5

.6 10 –109012.9 10 .1 –108136.8

.6 5 –108974.4 20 1 –108474.3
1 1 –108627.6 20 .6 –108337.8
1 .6 –108499.5 20 .4 –108240.7
1 .4 –108405.9 20 .2 –108143.9
1 .2 –108308.3 20 .1 –108129.6
1 .1 –108289.4 30 1 –108471.9
5 1 –108496.9 30 .6 –108335.2
5 .6 –108361.4 30 .4 –108238.1
5 .4 –108264.6 30 .2 –108141.4
5 .2 –108167.2 30 .1 –108127.2
5 .1 –108151.8 50 .1 –108125.4
10 1 –108481.7 80 .1 –108124.4
10 .6 –108345.5 150 .08 –108127.3

where 0 < ξ j < ∞ is an exponent parameter that defines the asymmetry of the item
characteristics curve (ICC), and θi; a j, b j reflect the unidimensional examinee pro-
ficiency and item discrimination and difficulty parameters, respectively. While the
LPE model depicts ICC asymmetry, its empirical identification is generally chal-
lenging without specifying the asymmetry parameter ξ j for each item. To this end,
we conducted a sensitivity analysis along the lines of Bolt and Liao (2022), by set-
ting the asymmetry parameter at a consistent level across items associated with a
common dimension. In our two-dimensional application, this implied two different
asymmetry parameters, one for items solely measuring dimension 1, and one for
items solely measuring dimension 2. We then evaluated model comparison indices
when specifying these parameters at different levels to determine the optimal values.
For instance, using one simulation condition as an example, Table B1 presents the
results of the model comparisons for a range of combinations of different asymmetry
values. In this example, the latent correlation between the two dimensions is .3 and
the average item difficulty difference is large. The findings demonstrate the theoret-
ically expected result that easier items present positive asymmetry, whereas harder
items exhibit negative asymmetry. From the example shown, the chosen asymmetry
parameter for items measuring only dimension 1 was 80, while for items measuring
only dimension 2 it was .1.

The same asymmetry pattern was seen with the empirical data. Based on the es-
timated item logit probability curves from the MP-IRT model, we set the first four
items (letter naming task) as easier items while the remaining items as difficult items.
Sensitivity analysis suggested asymmetry parameters of 5 and .4, respectively.
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Liao, Bolt, and Kim

Appendix C: Illustrating Item-Level Fit under Different IRT Models in the
Presence of a Curvilinear Reference Composite

Figures C1 and C2 show the estimated ICCs and the corresponding logit ICCs
under model specifications including the 2PL, LPE, and third-order MP models as
considered in the paper. We also considered for illustration the projective IRT (PIRT)
approach of Strachan et al (2021) using dimension 1 as the dimension of projection.
As seen in Figure C1, the nonlinear form of the MP-IRT, and to a lesser extent the
LPE, are able to accommodate the misfit seen for the2PLand PIRT approaches at low
and high levels of the trait for easy and difficult items, respectively.

Figure C2 shows the same item response functions as in Figure C1, now in logit
form, making clear that the nonlinearity accommodated by the MP-IRT and LPE is
what allows them to fit better.

Figure C3 displays the relationships between the metrics produced by the different
models against that of the MP-IRT model, now also including the projection IRT
result in which the second dimension is the dimension of projection (PIRT2).

Figure C1. Estimated item characteristic curves (ICCs) and empirical probabilities for (a)
monotonic polynomial IRT model, (b) logistic positive exponent model, (c) two-parameter
logistic model, and (d) projected IRT on the first (easy) dimension. Illustrative example for
two simulated items from simulation study.
[Color figure can be viewed at wileyonlinelibrary.com]
Note. Empirical probability values (shown as triangles) are based on the corresponding
ability estimates and application of loess smoother.
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Figure C2. Estimated item logit probability curves (ILCs) for probabilities for (a)
monotonic polynomial IRT model, (b) logistic positive exponent model, (c) two-parameter
logistic model, and (d) projected IRT on the first (easy) dimension. Illustrative example for
two simulated items from simulation study. [Color figure can be viewed at
wileyonlinelibrary.com]

Figure C3. Comparison of latent scale estimated by the projected IRT (PIRT) on each
dimension, 2-parameter logistic model (2PL), logistic positive exponent model (LPE),
on the metric from the third-order monotonic polynomial IRT model (MP). PIRT1 =
projection on the first (easy) dimension, PIRT2 = projection on the second (hard)
dimension. [Color figure can be viewed at wileyonlinelibrary.com]
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Liao, Bolt, and Kim

Appendix D: Test Characteristic Curves

Figure D1 displays the estimated test characteristic curves (TCCs) for the empiri-
cal data studied in the paper.

Figure D1. Estimated test characteristic curves for 2PL/3PL, LPE, and third-order
monotonic polynomial IRT models, reading proficiency K-1st grade routing test,
ECLS-K data.
[Color figure can be viewed at wileyonlinelibrary.com]

Note. As the proficiency metrics defined by different models also differ, the TCCs shown are
not strictly comparable across models.
Source. U.S. Department of Education, National Center for Education Statistics, Early
Childhood Longitudinal Study—Kindergarten Class of 1998-1999 (ECLS-K).
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Appendix E: Additional Simulation on the Impact of Item Discrimination

Table E1
Mean Estimated Regression Coefficients and Associated p-Values from Latent Regression of
θC onto θ1, θ2, and Product Variables with Effect Coded Indicator θ̂C ≤ 0 versus θ̂C > 0,
Simulation Study with 30 Replications

θ1 θ2 θ1 × I (θ̂C ≤ 0) θ2 × I (θ̂C ≤ 0)

corr(θ1, θ2) Difficulty
Difference

Est. p Est. p Est. p Est. p

.3 None .560 <.001 .560 <.001 –.010 .090 .010 .072
Medium .550 <.001 .570 <.001 .060 <.001 –.060 <.001
Large .540 <.001 .570 <.001 .120 <.001 –.120 <.001

.5 None .530 <.001 .540 <.001 –.010 .089 .010 .074
Medium .530 <.001 .540 <.001 .070 <.001 –.070 <.001
Large .520 <.001 .530 <.001 .140 <.001 –.140 <.001

.7 None .500 <.001 .510 <.001 –.010 .083 .010 .069
Medium .500 <.001 .510 <.001 .080 <.001 –.080 <.001
Large .500 <.001 .510 <.001 .160 <.001 –.160 <.001

.8 None .490 <.001 .500 <.001 –.010 .093 .010 .072
Medium .490 <.001 .500 <.001 .090 <.001 –.090 <.001
Large .490 <.001 .490 <.001 .170 <.001 –.170 <.001

In the simulation of a nonlinear reference composite in the main paper, we
intentionally generated somewhat lower item discrimination parameters using
Uni f (1.2, 1.6). As we acknowledge that the discrimination parameters may seem
on the low side compared to discrimination values in practice, we report below a
simulation analysis using higher discrimination parameters. In this analysis, we gen-
erated item discrimination parameters from Uni f (2.1, 2.5) and kept all other simu-
lation conditions the same. We used the 2PL model to define a reference composite
θC , and the results are shown in Table E1.

Compared to the results reported in Table 2, even more pronounced interaction
effects are observed. This suggests that greater item discrimination yields the same
findings and in fact appears to create even more pronounced curvilinearity.
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